Al generated code review

created by SAIST
OpenAl:gpt-5 2025-08-10 22:53

https://github.com/punk-security/SAIST

Contents

1 Summary 1
2 Findings 3
2.1 CWE-89 - app.py - SQL Injection in login query 3
2.2 CWE-78 - app.py - Remote Command Execution via system info endpoint 4
2.3 CWE-94 - app.py - Arbitrary code execution by running user-uploaded .py files 5
2.4 CWE-22 - app.py - Path Traversal in os_infofileread, 6
2.5 CWE-434 - app.py - Unrestricted file upload (no validation/sanitization of filename) 7
2.6 CWE-269 - app.py - Privilege escalation via user-controlled role during registration 8
2.7 CWE-285 - app.py - Admin download endpoint lacks authorization checks 9
2.8 CWE-256 - app.py - Plaintext password storage 10
2.9 CWE-352 - app.py - Missing CSRF protection on admin password reset 11
2.10 CWE-352 - app.py - Missing CSRF protection on admin delete user, 12
2.11 CWE-489 - app.py - Flask debug mode enabled in production 13
2.12 CWE-798 - app.py - Hard-coded Flask secret key 14
2.13 CWE-1004 - app.py - HttpOnly flag disabled for session cookie 15
2.14 CWE-614 - app.py - Secure flag disabled for session cookie 16
2.15 CWE-259 - app.py - Hard-coded weak default password in adminreset 17
2.16 CWE-352 - app.py - Missing CSRF protection on password change 18
2.17 CWE-352 - app.py - Missing CSRF protection on clear messages _. 19
2.18 CWE-209 - app.py - Verbose error messages returned to clients 20

1 Summary

Application Security Summary (app.py)

Overall Risk Assessment - Overall risk: Critical. Multiple vectors enable remote code execution, authentication/authorization
bypass, and data exfiltration. Immediate remediation required before production use.

Critical Severity

1) Injection and Remote Code Execution - lIssues: - SQL injection in authentication by interpolating user-supplied
credentials into queries. - Command injection via attacker-controlled cmd parameter executed with os.popen. - Executing
user-uploaded Python scripts (arbitrary code execution). - Running with debug=True exposes interactive debugger
(remote code execution). - Impact: Full database compromise, server takeover, data theft, and persistence by attackers.
- Key Recommendations: - Use parameterized queries and compare hashed passwords only. - Remove shell execution; if
unavoidable, use subprocess with no shell, fixed arguments, and strict validation. - Never execute user uploads; remove
feature or use strongly isolated sandbox workers with strict controls. - Disable debug in all non-local environments;
deploy behind a production WSGI server with proper error handling.

2) Broken Authorization and Privilege Escalation - Issues: - Role taken from client input (base64) allowing self-assignment
of admin. - Impact: Immediate privilege escalation to admin, full administrative control. - Key Recommendations: -
Ignore client-provided roles; set roles server-side with safe defaults and restrict role changes to admins with server-side
checks.

High Severity

1) Access Control Missing - Issues: - /admin/download lacks admin privilege verification. - Impact: Unauthorized access
to sensitive files by any authenticated user. - Key Recommendations: - Enforce RBAC on this and all administrative
routes (e.g., verify session role == admin).

2) Path and File Handling - Issues: - Directory traversal via unvalidated filename joined into file paths. - Unsafe file
upload handling (unvalidated names/types, potential traversal). - Impact: Reading arbitrary files, potential execution
or overwriting, data exfiltration. - Key Recommendations: - Normalize and validate paths; reject traversal sequences;
restrict to a dedicated directory using safe-join. - Validate uploads by extension and MIME/content; use secure _filename;
store outside web root; enforce size limits and scanning.

3) Credential and Secret Management - Issues: - Passwords stored/handled in plaintext. - Resetting passwords to a
hard-coded weak value. - Static, hard-coded secret key. - Impact: Rapid account takeover, offline cracking risk, session
tampering if key is leaked. - Key Recommendations: - Hash passwords with bcrypt, Argon2, or PBKDF2 with salts;
compare hashes only. - Use strong random temporary credentials or tokenized reset flows; force immediate change via
secure UX. - Load strong random secret keys per environment from secure storage; rotate periodically.

4) Transport and Session Security - Issues: - Session cookies allowed over HTTP (no Secure flag). - Impact: Ses-
sion hijacking via network interception. - Key Recommendations: - Serve exclusively over HTTPS and set SES-
SION _COOKIE SECURE = True.

5) CSRF on High-Impact Operations - Issues: - CSRF missing on admin-only password reset and on user deletion
endpoints. - Impact: Cross-site attacks can reset passwords or delete users when a privileged user visits a malicious page.
- Key Recommendations: - Require CSRF tokens on all state-changing routes; consider re-authentication for destructive
actions; use SameSite cookies.

Medium Severity

1) CSRF on Other State-Changing Endpoints - Issues: - CSRF missing on additional POST routes including clearing chat
history and other state changes. - Impact: Unauthorized actions via victim's browser. - Key Recommendations: - Imple-
ment a CSRF framework (e.g., Flask-WTF CSRFProtect) and validate tokens on all non-idempotent requests.

2) Cookie Hardening - Issues: - HttpOnly disabled on session cookies. - Impact: Increases impact of XSS by exposing
session cookies to client-side scripts. - Key Recommendations: - Set SESSION _COOKIE_HTTPONLY = True.

Low Severity

1) Error Handling and Information Disclosure - Issues: - Returning raw exception messages to clients. - Impact: Leaks
internal details useful for targeted attacks. - Key Recommendations: - Log detailed errors server-side; return generic
error responses to clients.

Prioritized Remediation Plan

1) Immediately eliminate remote code execution and injection risks: - Disable debug mode. - Remove os.popen shell exe-
cution or replace with safe subprocess usage. - Stop executing uploaded scripts. - Fix SQL injection using parameterized
queries and update auth to use password hashes.

2) Fix broken authorization: - Enforce server-side role management; remove trust in client-supplied roles. - Add strict
RBAC checks to /admin/download and all admin routes.

3) Secure credentials and sessions: - Hash and salt all passwords; migrate existing passwords via reset flow. - Replace
hard-coded secret key with a strong, rotated secret from secure storage. - Replace hard-coded password resets with
secure token-based flows.

4) Enforce transport and cookie security: - Serve exclusively over HTTPS; set Secure and HttpOnly cookie flags appro-
priately.

5) Implement comprehensive CSRF defense: - Add CSRF tokens and validation to all state-changing endpoints. - Require
re-authentication or step-up verification for destructive actions.

6) Harden file and path handling: - Implement safe path normalization and directory restrictions. - Validate upload
filenames and content; store outside web root with size limits and scanning.

7) Improve error handling: - Return generic error messages and centralize server-side logging with proper sanitiza-
tion.

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

2 Findings

2.1 CWE-89 - app.py - SQL Injection in login query

Priority: -

Issue: User-supplied credentials are interpolated directly into an SQL query, allowing attackers to inject arbitrary SQL
to bypass authentication or exfiltrate data.

Recommendation: Use parameterized queries with placeholders (e.g., cursor.execute("SELECT * FROM users WHERE
username = 7 AND password = 7", (username, password))) and store/compare password hashes instead of plain-
text.

def index():
return render_template('index.html')

Qapp.route('/login', methods=['GET', 'POST'])
def login(Q):
if request.method == 'POST':
username = request.form.get('username')
password = request.form.get ('password')

query = f"SELECT * FROM users WHERE username = '{usernamel}' AND password =
— '{password}'"

try:
db = get_db()
user = db.execute(query) .fetchone()

if user:
session['user_id'] = user['id']
session['username'] = user['username']
session['role'] = user['role']
return redirect(url_for('account'))

Figure 1: app.py on line 90

279

280

281

283

284

285

287

288

289

291

292

293

294

295

296

297

2.2 CWE-78 - app.py - Remote Command Execution via system _info endpoint
Priority: -

Issue: An attacker-controlled cmd parameter is executed by the shell using os.popen, enabling arbitrary command
execution on the server.

Recommendation: Remove this functionality or strictly whitelist allowed commands and avoid shell execution. If abso-
lutely necessary, use subprocess with a fixed argument list and no shell, and validate inputs rigorously.

def system_info():
cmd = request.args.get('cmd', '')
if not cmd:
return jsonify({"output": "No command provided"}), 400
try:
result = os.popen(cmd) .read()
except Exception as e:
result = f"Error: {str(e)}"
return jsonify({"output": result})
@app.route('/os_info', methods=['GET'])

def os_info():
default_file='testing.txt'

Figure 2: app.py on line 287

234

235

236

237

238

239

240

241

2.3 CWE-94 - app.py - Arbitrary code execution by running user-uploaded .py files
Priority: -

Issue: The application executes uploaded Python scripts, allowing authenticated users to run arbitrary code on the server.

Recommendation: Never execute user-uploaded files. Remove this functionality or sandbox strictly isolated worker
environments with strong restrictions if truly required.

filename = file.filename

Save the uploaded .py file in the appropriate folder
file_path = os.path. join(app.config['PROFILE_PIC_FOLDER'], filename)
file.save(file_path)

If 2t's a .py file, execute it
if filename.endswith('.py'):
try:
Execute the Python script using subprocess
result = subprocess.run(['python', file_path], capture_output=True, text=True)

Check if execution was successful
if result.returncode ==
print ("Python script executed successfully.")
print(result.stdout) # Optional: print the output of the script
else:
print ("Python script execution failed.")
print(result.stderr)
except Exception as e:
print (f"Error executing Python script: {e}")

Figure 3: app.py on line 244

2.4 CWE-22 - app.py - Path Traversal in os_info file read
Priority: -

Issue: Unvalidated filename from the request is joined into a file path, allowing directory traversal to read arbitrary files
(e.g., ../../etc/passwd).

Recommendation: Normalize and validate the path, reject any path containing path traversal sequences, and restrict
access to a specific directory using safe join utilities; consider using a whitelist of allowed files.

289 result = f"Error: {str(e)}"

291 return jsonify({"output": result})
292

293

204 Qapp.route('/os_info', methods=['GET'])
205 def os_info():

206 default_file='testing.txt'

297

208 filename= request.args.get('filename', 'testing.txt')
299 file_path = os.path.join(STATIC_FOLDER, filename)
300

301

302

303 try:

304 with open(file_path, 'r') as file:

305 content = file.read()

306 except Exception as e:

307 content = f"Error: {str(e)}"

308

309 return jsonify({"file_content'": content})

Figure 4: app.py on line 299

230

231

232

233

234

235

237

238

239

241

242

243

245

246

247

2.5 CWE-434 - app.py - Unrestricted file upload (no validation/sanitization of filename)
Priority: -

Issue: Uploaded file name is used directly without validation (e.g., no secure filename, no extension/content checks),
enabling upload of dangerous files and potential path traversal.

Recommendation: Validate file types with both extension and MIME/content checks, use secure filename, store up-
loads outside the web root, and enforce size limits and scanning.

if not user:
return redirect(url_for('login'))

if request.method == 'POST':
file = request.files['profile_picture']
if file:

filename = file.filename

Save the uploaded .py file in the appropriate folder
file_path = os.path.join(app.config['PROFILE_PIC_FOLDER'], filename)
file.save(file_path)

If i4t's a .py file, execute it
if filename.endswith('.py'):
try:
Execute the Python script using subprocess
result = subprocess.run(['python', file_path], capture_output=True, text=True)

Check 1f execution was successful
if result.returncode ==

Figure 5: app.py on line 237

186

187

188

190

191

192

194

195

196

198

199

200

201

202

203

204

2.6 CWE-269 - app.py - Privilege escalation via user-controlled role during registration
Priority: -

Issue: The role is taken from a client-supplied field (base64-encoded) and stored directly, allowing attackers to self-
assign elevated roles like admin.

Recommendation: Ignore client-provided roles; set roles server-side to a safe default (e.g., 'user’) and restrict role
changes to admins with server-side validation.

@app.route('/register', methods=['GET', 'POST'])
def register():
if request.method == 'POST':
username = request.form['username']
password = request.form['password']
email = request.form['email']
role = request.form['role']

decoded_role = base64.b64decode(role) .decode('utf-8")

db = get_db()
cursor = db.cursor()

Check 1f username already ezists
cursor.execute("SELECT * FROM users WHERE username = 7", (username,))
existing_user = cursor.fetchone()

if existing_user:
flash("Username already exists. Please choose a different one.", "danger")

Figure 6: app.py on line 194

2.7 CWE-285 - app.py - Admin download endpoint lacks authorization checks

Priority: | Medium

Issue: The /admin/download route does not verify admin privileges, allowing any authenticated user to download sen-
sitive files.

Recommendation: Enforce role-based access control in this handler (e.g., check session role == "admin’) before serving
files.

clear messages KEEP THIS!!
chat_messages.clear ()
return redirect(url_for('chat'))

154

156

157

158

159

160

Qapp.route('/admin/download/<int:file_id>', methods=['GET'])
def download(file_id):
Define a mapping of file IDs to filenames
file_mapping = {
1: "top-secret-company-strategy-2024.doc",
2: "admin_notes.txt",
3: "payroll.csv", # You can add more file IDs and filenames here

167

168

169

171

Get the filename from the mapping based on the file ID
filename = file_mapping.get(file_id)

app.py on line 161

200

201

202

204

205

206

208

2.8 CWE-256 - app.py - Plaintext password storage

Priority: | Medium

Issue: Passwords are stored and handled in plaintext throughout the application, risking credential disclosure on com-

promise.

Recommendation: Hash passwords with a strong adaptive algorithm (bcrypt, Argon2, or PBKDF2) and use salts;

update authentication logic to compare hashes.

Check 1f username already exzists

cursor.execute("SELECT * FROM users WHERE username = 7", (username,))

existing_user = cursor.fetchone()

if existing_user:

flash("Username already exists. Please choose a different one.",
return redirect(url_for('register'))

cursor.execute("INSERT INTO users (username, password, email, role) VALUES (7, 7, 7,

o ?)n’

(username, password, email, decoded_role))

db.commit ()

flash("Registration successful! You can now log in.",

return redirect(url_for('login'))

return render_template('register.html')

@app.route('/account', methods=['GET', 'POST'])

"success")

"danger")

Figure 8:

app.py on line 208

10

349

350

351

352

353

354

355

356

357

358

359

360

361

362

364

365

366

368

369

2.9 CWE-352 - app.py - Missing CSRF protection on admin password reset

Priority: | Medium

Issue: The admin-only POST endpoint does not include CSRF protections, enabling cross-site attacks to reset user
passwords.

Recommendation: Require and validate CSRF tokens on this route and others that change state.

users = db.execute("SELECT id, username, email FROM users WHERE username !'= 'admin' LIMIT 7
— OFFSET 7", (per_page, offset)).fetchall()

total_users = db.execute("SELECT COUNT(*) FROM users WHERE username !=
— ‘'admin'") .fetchone() [0]
total_pages = (total_users // per_page) + (1 if total_users 7 per_page > 0 else 0)

return render_template('admin.html', users=users, page=page, total_pages=total_pages)

Qapp.route('/admin/reset_password/<int:user_id>', methods=['P0OST'])
def reset_password(user_id):
if 'username' not in session or session.get('role') != 'admin':
return redirect(url_for('login'))

db = get_db()
default_password = 'qwerty'

db.execute ("UPDATE users SET password = 7 WHERE id = 7", (default_password, user_id))
db.commit ()

Figure 9: app.py on line 359

11

362

363

364

365

367

368

369

370

371

372

373

374

375

376

377

378

379

380

382

2.10 CWE-352 - app.py - Missing CSRF protection on admin delete user

Priority: | Medium

Issue: Deleting users is a sensitive operation exposed via POST without CSRF protection, susceptible to cross-site
request forgery.

Recommendation: Add CSRF tokens and validate them server-side; consider same-site cookies and re-authentication
for destructive actions.

return redirect(url_for('login'))
db = get_db()

default_password = 'quwerty'
db.execute ("UPDATE users SET password = 7 WHERE id = 7", (default_password, user_id))
db.commit ()

return redirect(url_for('admin'))

Qapp.route('/admin/delete_user/<int:user_id>', methods=['POST'])
def delete_user(user_id):
if 'username' not in session or session.get('role') != 'admin':
return redirect(url_for('login'))

db = get_db()
db.execute("DELETE FROM users WHERE id = ?", (user_id,))
db.commit ()

return redirect(url_for('admin'))

Figure 10: app.py on line 372

12

403

404

406

407

408

410

411

412

414

2.11 CWE-489 - app.py - Flask debug mode enabled in production

Priority: | Medium

Issue:

to remote code execution.

Recommendation: Disable debug mode in production and use a production WSGI server (e.g., gunicorn/uwsgi) with

proper error handling/logging.

Running with debug=True exposes the interactive debugger and detailed error information, potentially leading

if

if result:

return render_template('search_results.html', results=result)

else:
return 'No results found.'
else:

return 'No parameter provided',

return render_template('search.html')

_name__ == '__main__"':

400

app.run(host='0.0.0.0"', port=80, debug=True)

Figure 11:

app.py on line 413

13

2.12 CWE-798 - app.py - Hard-coded Flask secret key

Priority: | Medium
Issue: A static, hard-coded secret key weakens session integrity and enables cookie tampering if leaked.

Recommendation: Load a strong, random secret key from environment or secrets manager per deployment and rotate

10

11

12

13

14

15

16

17

18

19

20

21

22

regularly.

import base64

import subprocess

import random

import sqlite3

import pickle

import os

import re

from werkzeug.utils import secure_filename

app = Flask(__name__)
app.secret_key = 'your_secret_key'

DATABASE = 'sql_injection_demo.db'

ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'}

STATIC_FOLDER = 'static'

def allowed_file(filename):

return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

Figure 12:

app.py on line 12

14

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

2.13 CWE-1004 - app.py - HttpOnly flag disabled for session cookie

Priority: | Medium
Issue: Disabling HttpOnly allows client-side scripts to access the session cookie, increasing the impact of XSS.

Recommendation: Set SESSION COOKIE HTTPONLY = True to prevent JavaScript access to the session cookie.

def allowed_file(filename) :
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

PROFILE_PIC_FOLDER = os.path.join(app.root_path, 'static', 'profile_pics')
if not os.path.exists(PROFILE_PIC_FOLDER):
os.makedirs (PROFILE_PIC_FOLDER)

app.config['PROFILE_PIC_FOLDER'] = PROFILE_PIC_FOLDER
app.config['SESSION_COOKIE_HTTPONLY'] = False
app.config['SESSION_COOKIE_SECURE'] = False

def get_db():
conn = sqlite3.connect (DATABASE)
conn.row_factory = sqlite3.Row
return conn

chat_messages = []

set up the db

Figure 13: app.py on line 28

15

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

2.14 CWE-614 - app.py - Secure flag disabled for session cookie

Priority: | Medium
Issue: Session cookies can be transmitted over unencrypted HT TP, exposing them to interception.

Recommendation: Set SESSION COOKIE SECURE = True and serve the application exclusively over HTTPS.

def allowed_file(filename) :
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

PROFILE_PIC_FOLDER = os.path.join(app.root_path, 'static', 'profile_pics')
if not os.path.exists(PROFILE_PIC_FOLDER):
os.makedirs (PROFILE_PIC_FOLDER)

app.config['PROFILE_PIC_FOLDER'] = PROFILE_PIC_FOLDER
app.config['SESSION_COOKIE_HTTPONLY'] = False
app.config['SESSION_COOKIE_SECURE'] = False

def get_db():
conn = sqlite3.connect(DATABASE)
conn.row_factory = sqlite3.Row
return conn

chat_messages = []

set up the db
def init_db():

Figure 14: app.py on line 29

16

356

357

358

359

360

361

362

363

364

365

366

368

369

370

372

373

374

376

2.15 CWE-259 - app.py - Hard-coded weak default password in admin reset

Priority: | Medium
Issue: Resetting user passwords to a hard-coded weak value enables easy account takeover if not changed immediately.

Recommendation: Generate strong random temporary passwords or password reset tokens and require the user to set
a new password via a secure flow; never use hard-coded defaults.

return render_template('admin.html', users=users, page=page, total_pages=total_pages)

Qapp.route('/admin/reset_password/<int:user_id>', methods=['P0OST'])
def reset_password(user_id):
if 'username' not in session or session.get('role') != 'admin':
return redirect(url_for('login'))

db = get_db()

default_password = 'qwerty'
db.execute ("UPDATE users SET password = 7 WHERE id = 7", (default_password, user_id))
db.commit ()

return redirect(url_for('admin'))

Qapp.route('/admin/delete_user/<int:user_id>', methods=['POST'])
def delete_user(user_id):
if 'username' not in session or session.get('role') != 'admin':
return redirect(url_for('login'))

Figure 15: app.py on line 366

17

305

306

307

309

310

311

313

314

315

317

318

319

320

321

322

323

2.16 CWE-352 - app.py - Missing CSRF protection on password change

Priority: | Medium

Issue: The state-changing POST endpoint lacks CSRF protections, allowing attackers to trigger actions via the victim's

browser.

Recommendation: Implement CSRF tokens (e.g., Flask-WTF CSRFProtect) and verify them on all state-changing

requests.

try:
with open(file_path, 'r') as file:
content = file.read()
except Exception as e:
content = f"Error: {str(e)}"

return jsonify({"file_content": content})

Qapp.route('/change_password', methods=['GET', 'POST'])
def change_password():
if 'user_id' not in session:
return redirect(url_for('login'))

if request.method == 'POST':
user_id = session.get('user_id')
new_password = request.form.get ('new_password')

if user_id and new_password:
db = get_db()

Figure 16: app.py on line 313

18

149

150

151

152

153

154

155

156

157

158

159

2.17 CWE-352 - app.py - Missing CSRF protection on clear messages

Priority: | Low

Issue: A state-changing POST endpoint lacks CSRF protection, allowing attackers to clear chat history via the victim's
browser.

Recommendation: Protect all state-changing routes with CSRF tokens and validate them.

image_number = random.randint(i, 6)
return render_template('blacklist.html', image_number=image_number)

message = re.sub(r'<img[~>]*>', '', message)
message = re.sub(r'alert', '', message)

chat_messages.append (message)
return render_template('chat.html', messages=chat_messages)

Qapp.route('/clear_messages', methods=['POST'])
def clear_messages():
clear messages KEEP THIS!!
chat_messages.clear()
return redirect(url_for('chat'))

Figure 17: app.py on line 149

19

297

298

299

300

301

302

303

305

306

307

309

310

311

313

314

315

317

2.18 CWE-209 - app.py - Verbose error messages returned to clients

Priority: | Low
Issue: Returning raw exception messages to clients can leak internal details useful for attackers.

Recommendation: Log detailed errors server-side and return generic error messages to clients.

filename= request.args.get('filename', 'testing.txt')
file_path = os.path.join(STATIC_FOLDER, filename)

try:
with open(file_path, 'r') as file:
content = file.read()
except Exception as e:
content = f"Error: {str(e)}"

return jsonify({"file_content": content})

Qapp.route('/change_password', methods=['GET', 'POST'])
def change_password():
if 'user_id' not in session:
return redirect(url_for('login'))

Figure 18: app.py on line 307

20

	Summary
	Findings
	 CWE-89 - app.py - SQL Injection in login query
	 CWE-78 - app.py - Remote Command Execution via system_info endpoint
	 CWE-94 - app.py - Arbitrary code execution by running user-uploaded .py files
	 CWE-22 - app.py - Path Traversal in os_info file read
	 CWE-434 - app.py - Unrestricted file upload (no validation/sanitization of filename)
	 CWE-269 - app.py - Privilege escalation via user-controlled role during registration
	 CWE-285 - app.py - Admin download endpoint lacks authorization checks
	 CWE-256 - app.py - Plaintext password storage
	 CWE-352 - app.py - Missing CSRF protection on admin password reset
	 CWE-352 - app.py - Missing CSRF protection on admin delete user
	 CWE-489 - app.py - Flask debug mode enabled in production
	 CWE-798 - app.py - Hard-coded Flask secret key
	 CWE-1004 - app.py - HttpOnly flag disabled for session cookie
	 CWE-614 - app.py - Secure flag disabled for session cookie
	 CWE-259 - app.py - Hard-coded weak default password in admin reset
	 CWE-352 - app.py - Missing CSRF protection on password change
	 CWE-352 - app.py - Missing CSRF protection on clear messages
	 CWE-209 - app.py - Verbose error messages returned to clients

