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1 Summary

Application Security Summary (app.py)

Overall Risk Assessment - Overall risk: Critical. Multiple vectors enable remote code execution, authentication/authorization
bypass, and data exfiltration. Immediate remediation required before production use.

Critical Severity

1) Injection and Remote Code Execution - lIssues: - SQL injection in authentication by interpolating user-supplied
credentials into queries. - Command injection via attacker-controlled cmd parameter executed with os.popen. - Executing
user-uploaded Python scripts (arbitrary code execution). - Running with debug=True exposes interactive debugger
(remote code execution). - Impact: Full database compromise, server takeover, data theft, and persistence by attackers.
- Key Recommendations: - Use parameterized queries and compare hashed passwords only. - Remove shell execution; if
unavoidable, use subprocess with no shell, fixed arguments, and strict validation. - Never execute user uploads; remove
feature or use strongly isolated sandbox workers with strict controls. - Disable debug in all non-local environments;
deploy behind a production WSGI server with proper error handling.

2) Broken Authorization and Privilege Escalation - Issues: - Role taken from client input (base64) allowing self-assignment
of admin. - Impact: Immediate privilege escalation to admin, full administrative control. - Key Recommendations: -
Ignore client-provided roles; set roles server-side with safe defaults and restrict role changes to admins with server-side
checks.

High Severity

1) Access Control Missing - Issues: - /admin/download lacks admin privilege verification. - Impact: Unauthorized access
to sensitive files by any authenticated user. - Key Recommendations: - Enforce RBAC on this and all administrative
routes (e.g., verify session role == admin).

2) Path and File Handling - Issues: - Directory traversal via unvalidated filename joined into file paths. - Unsafe file
upload handling (unvalidated names/types, potential traversal). - Impact: Reading arbitrary files, potential execution
or overwriting, data exfiltration. - Key Recommendations: - Normalize and validate paths; reject traversal sequences;
restrict to a dedicated directory using safe-join. - Validate uploads by extension and MIME/content; use secure _filename;
store outside web root; enforce size limits and scanning.



3) Credential and Secret Management - Issues: - Passwords stored/handled in plaintext. - Resetting passwords to a
hard-coded weak value. - Static, hard-coded secret key. - Impact: Rapid account takeover, offline cracking risk, session
tampering if key is leaked. - Key Recommendations: - Hash passwords with bcrypt, Argon2, or PBKDF2 with salts;
compare hashes only. - Use strong random temporary credentials or tokenized reset flows; force immediate change via
secure UX. - Load strong random secret keys per environment from secure storage; rotate periodically.

4) Transport and Session Security - Issues: - Session cookies allowed over HTTP (no Secure flag). - Impact: Ses-
sion hijacking via network interception. - Key Recommendations: - Serve exclusively over HTTPS and set SES-
SION _COOKIE SECURE = True.

5) CSRF on High-Impact Operations - Issues: - CSRF missing on admin-only password reset and on user deletion
endpoints. - Impact: Cross-site attacks can reset passwords or delete users when a privileged user visits a malicious page.
- Key Recommendations: - Require CSRF tokens on all state-changing routes; consider re-authentication for destructive
actions; use SameSite cookies.

Medium Severity

1) CSRF on Other State-Changing Endpoints - Issues: - CSRF missing on additional POST routes including clearing chat
history and other state changes. - Impact: Unauthorized actions via victim's browser. - Key Recommendations: - Imple-
ment a CSRF framework (e.g., Flask-WTF CSRFProtect) and validate tokens on all non-idempotent requests.

2) Cookie Hardening - Issues: - HttpOnly disabled on session cookies. - Impact: Increases impact of XSS by exposing
session cookies to client-side scripts. - Key Recommendations: - Set SESSION _COOKIE_HTTPONLY = True.

Low Severity

1) Error Handling and Information Disclosure - Issues: - Returning raw exception messages to clients. - Impact: Leaks
internal details useful for targeted attacks. - Key Recommendations: - Log detailed errors server-side; return generic
error responses to clients.

Prioritized Remediation Plan

1) Immediately eliminate remote code execution and injection risks: - Disable debug mode. - Remove os.popen shell exe-
cution or replace with safe subprocess usage. - Stop executing uploaded scripts. - Fix SQL injection using parameterized
queries and update auth to use password hashes.

2) Fix broken authorization: - Enforce server-side role management; remove trust in client-supplied roles. - Add strict
RBAC checks to /admin/download and all admin routes.

3) Secure credentials and sessions: - Hash and salt all passwords; migrate existing passwords via reset flow. - Replace
hard-coded secret key with a strong, rotated secret from secure storage. - Replace hard-coded password resets with
secure token-based flows.

4) Enforce transport and cookie security: - Serve exclusively over HTTPS; set Secure and HttpOnly cookie flags appro-
priately.

5) Implement comprehensive CSRF defense: - Add CSRF tokens and validation to all state-changing endpoints. - Require
re-authentication or step-up verification for destructive actions.

6) Harden file and path handling: - Implement safe path normalization and directory restrictions. - Validate upload
filenames and content; store outside web root with size limits and scanning.

7) Improve error handling: - Return generic error messages and centralize server-side logging with proper sanitiza-
tion.
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2 Findings

2.1 CWE-89 - app.py - SQL Injection in login query

Priority: -

Issue: User-supplied credentials are interpolated directly into an SQL query, allowing attackers to inject arbitrary SQL
to bypass authentication or exfiltrate data.

Recommendation: Use parameterized queries with placeholders (e.g., cursor.execute("SELECT * FROM users WHERE
username = 7 AND password = 7", (username, password))) and store/compare password hashes instead of plain-
text.

def index():
return render_template('index.html')

Qapp.route('/login', methods=['GET', 'POST'])
def login(Q):
if request.method == 'POST':
username = request.form.get('username')
password = request.form.get ('password')

query = f"SELECT * FROM users WHERE username = '{usernamel}' AND password =
— '{password}'"

try:
db = get_db()
user = db.execute(query) .fetchone()

if user:
session['user_id'] = user['id']
session['username'] = user['username']
session['role'] = user['role']
return redirect(url_for('account'))

Figure 1: app.py on line 90
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2.2 CWE-78 - app.py - Remote Command Execution via system _info endpoint
Priority: -

Issue: An attacker-controlled cmd parameter is executed by the shell using os.popen, enabling arbitrary command
execution on the server.

Recommendation: Remove this functionality or strictly whitelist allowed commands and avoid shell execution. If abso-
lutely necessary, use subprocess with a fixed argument list and no shell, and validate inputs rigorously.

def system_info():
cmd = request.args.get('cmd', '')
if not cmd:
return jsonify({"output": "No command provided"}), 400
try:
result = os.popen(cmd) .read()
except Exception as e:
result = f"Error: {str(e)}"
return jsonify({"output": result})
@app.route('/os_info', methods=['GET'])

def os_info():
default_file='testing.txt'

Figure 2: app.py on line 287
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2.3 CWE-94 - app.py - Arbitrary code execution by running user-uploaded .py files
Priority: -

Issue: The application executes uploaded Python scripts, allowing authenticated users to run arbitrary code on the server.

Recommendation: Never execute user-uploaded files. Remove this functionality or sandbox strictly isolated worker
environments with strong restrictions if truly required.

filename = file.filename

# Save the uploaded .py file in the appropriate folder
file_path = os.path. join(app.config['PROFILE_PIC_FOLDER'], filename)
file.save(file_path)

# If 2t's a .py file, execute it
if filename.endswith('.py'):
try:
# Execute the Python script using subprocess
result = subprocess.run(['python', file_path], capture_output=True, text=True)

# Check if execution was successful
if result.returncode ==
print ("Python script executed successfully.")
print(result.stdout) # Optional: print the output of the script
else:
print ("Python script execution failed.")
print(result.stderr)
except Exception as e:
print (f"Error executing Python script: {e}")

Figure 3: app.py on line 244



2.4 CWE-22 - app.py - Path Traversal in os_info file read
Priority: -

Issue: Unvalidated filename from the request is joined into a file path, allowing directory traversal to read arbitrary files
(e.g., ../../etc/passwd).

Recommendation: Normalize and validate the path, reject any path containing path traversal sequences, and restrict
access to a specific directory using safe join utilities; consider using a whitelist of allowed files.

289 result = f"Error: {str(e)}"

291 return jsonify({"output": result})
292

293

204 Qapp.route('/os_info', methods=['GET'])
205 def os_info():

206 default_file='testing.txt'

297

208 filename= request.args.get('filename', 'testing.txt')
299 file_path = os.path.join(STATIC_FOLDER, filename)
300

301

302

303 try:

304 with open(file_path, 'r') as file:

305 content = file.read()

306 except Exception as e:

307 content = f"Error: {str(e)}"

308

309 return jsonify({"file_content'": content})

Figure 4: app.py on line 299
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2.5 CWE-434 - app.py - Unrestricted file upload (no validation/sanitization of filename)
Priority: -

Issue: Uploaded file name is used directly without validation (e.g., no secure filename, no extension/content checks),
enabling upload of dangerous files and potential path traversal.

Recommendation: Validate file types with both extension and MIME/content checks, use secure filename, store up-
loads outside the web root, and enforce size limits and scanning.

if not user:
return redirect(url_for('login'))

if request.method == 'POST':
file = request.files['profile_picture']
if file:

filename = file.filename

# Save the uploaded .py file in the appropriate folder
file_path = os.path.join(app.config['PROFILE_PIC_FOLDER'], filename)
file.save(file_path)

# If i4t's a .py file, execute it
if filename.endswith('.py'):
try:
# Execute the Python script using subprocess
result = subprocess.run(['python', file_path], capture_output=True, text=True)

# Check 1f execution was successful
if result.returncode ==

Figure 5: app.py on line 237
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2.6 CWE-269 - app.py - Privilege escalation via user-controlled role during registration
Priority: -

Issue: The role is taken from a client-supplied field (base64-encoded) and stored directly, allowing attackers to self-
assign elevated roles like admin.

Recommendation: Ignore client-provided roles; set roles server-side to a safe default (e.g., 'user’) and restrict role
changes to admins with server-side validation.

@app.route('/register', methods=['GET', 'POST'])
def register():
if request.method == 'POST':
username = request.form['username']
password = request.form['password']
email = request.form['email']
role = request.form['role']

decoded_role = base64.b64decode(role) .decode('utf-8")

db = get_db()
cursor = db.cursor()

# Check 1f username already ezists
cursor.execute("SELECT * FROM users WHERE username = 7", (username,))
existing_user = cursor.fetchone()

if existing_user:
flash("Username already exists. Please choose a different one.", "danger")

Figure 6: app.py on line 194



2.7 CWE-285 - app.py - Admin download endpoint lacks authorization checks

Priority: | Medium

Issue: The /admin/download route does not verify admin privileges, allowing any authenticated user to download sen-
sitive files.

Recommendation: Enforce role-based access control in this handler (e.g., check session role == "admin’) before serving
files.

# clear messages KEEP THIS!!
chat_messages.clear ()
return redirect(url_for('chat'))

154
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159

160

Qapp.route('/admin/download/<int:file_id>', methods=['GET'])
def download(file_id):
# Define a mapping of file IDs to filenames
file_mapping = {
1: "top-secret-company-strategy-2024.doc",
2: "admin_notes.txt",
3: "payroll.csv", # You can add more file IDs and filenames here

167

168

169

171

# Get the filename from the mapping based on the file ID
filename = file_mapping.get(file_id)

app.py on line 161
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2.8 CWE-256 - app.py - Plaintext password storage

Priority: | Medium

Issue: Passwords are stored and handled in plaintext throughout the application, risking credential disclosure on com-

promise.

Recommendation: Hash passwords with a strong adaptive algorithm (bcrypt, Argon2, or PBKDF2) and use salts;

update authentication logic to compare hashes.

# Check 1f username already exzists

cursor.execute("SELECT * FROM users WHERE username = 7", (username,))

existing_user = cursor.fetchone()

if existing_user:

flash("Username already exists. Please choose a different one.",
return redirect(url_for('register'))

cursor.execute("INSERT INTO users (username, password, email, role) VALUES (7, 7, 7,

o ?)n’

(username, password, email, decoded_role))

db.commit ()

flash("Registration successful! You can now log in.",

return redirect(url_for('login'))

return render_template('register.html')

@app.route('/account', methods=['GET', 'POST'])

"success")

"danger")

Figure 8:

app.py on line 208
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2.9 CWE-352 - app.py - Missing CSRF protection on admin password reset

Priority: | Medium

Issue: The admin-only POST endpoint does not include CSRF protections, enabling cross-site attacks to reset user
passwords.

Recommendation: Require and validate CSRF tokens on this route and others that change state.

users = db.execute("SELECT id, username, email FROM users WHERE username !'= 'admin' LIMIT 7
— OFFSET 7", (per_page, offset)).fetchall()

total_users = db.execute("SELECT COUNT(*) FROM users WHERE username !=
— ‘'admin'") .fetchone() [0]
total_pages = (total_users // per_page) + (1 if total_users 7 per_page > 0 else 0)

return render_template('admin.html', users=users, page=page, total_pages=total_pages)

Qapp.route('/admin/reset_password/<int:user_id>', methods=['P0OST'])
def reset_password(user_id):
if 'username' not in session or session.get('role') != 'admin':
return redirect(url_for('login'))

db = get_db()
default_password = 'qwerty'

db.execute ("UPDATE users SET password = 7 WHERE id = 7", (default_password, user_id))
db.commit ()

Figure 9: app.py on line 359
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2.10 CWE-352 - app.py - Missing CSRF protection on admin delete user

Priority: | Medium

Issue: Deleting users is a sensitive operation exposed via POST without CSRF protection, susceptible to cross-site
request forgery.

Recommendation: Add CSRF tokens and validate them server-side; consider same-site cookies and re-authentication
for destructive actions.

return redirect(url_for('login'))
db = get_db()

default_password = 'quwerty'
db.execute ("UPDATE users SET password = 7 WHERE id = 7", (default_password, user_id))
db.commit ()

return redirect(url_for('admin'))

Qapp.route('/admin/delete_user/<int:user_id>', methods=['POST'])
def delete_user(user_id):
if 'username' not in session or session.get('role') != 'admin':
return redirect(url_for('login'))

db = get_db()
db.execute("DELETE FROM users WHERE id = ?", (user_id,))
db.commit ()

return redirect(url_for('admin'))

Figure 10: app.py on line 372
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2.11 CWE-489 - app.py - Flask debug mode enabled in production

Priority: | Medium

Issue:

to remote code execution.

Recommendation: Disable debug mode in production and use a production WSGI server (e.g., gunicorn/uwsgi) with

proper error handling/logging.

Running with debug=True exposes the interactive debugger and detailed error information, potentially leading

if

if result:

return render_template('search_results.html', results=result)

else:
return 'No results found.'
else:

return 'No parameter provided',

return render_template('search.html')

_name__ == '__main__"':

400

app.run(host='0.0.0.0"', port=80, debug=True)

Figure 11:

app.py on line 413
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2.12 CWE-798 - app.py - Hard-coded Flask secret key

Priority: | Medium
Issue: A static, hard-coded secret key weakens session integrity and enables cookie tampering if leaked.

Recommendation: Load a strong, random secret key from environment or secrets manager per deployment and rotate

10
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22

regularly.

import base64

import subprocess

import random

import sqlite3

import pickle

import os

import re

from werkzeug.utils import secure_filename

app = Flask(__name__)
app.secret_key = 'your_secret_key'

DATABASE = 'sql_injection_demo.db'

ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'}

STATIC_FOLDER = 'static'

def allowed_file(filename):

return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

Figure 12:

app.py on line 12
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2.13 CWE-1004 - app.py - HttpOnly flag disabled for session cookie

Priority: | Medium
Issue: Disabling HttpOnly allows client-side scripts to access the session cookie, increasing the impact of XSS.

Recommendation: Set SESSION COOKIE HTTPONLY = True to prevent JavaScript access to the session cookie.

def allowed_file(filename) :
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

PROFILE_PIC_FOLDER = os.path.join(app.root_path, 'static', 'profile_pics')
if not os.path.exists(PROFILE_PIC_FOLDER):
os.makedirs (PROFILE_PIC_FOLDER)

app.config['PROFILE_PIC_FOLDER'] = PROFILE_PIC_FOLDER
app.config['SESSION_COOKIE_HTTPONLY'] = False
app.config['SESSION_COOKIE_SECURE'] = False

def get_db():
conn = sqlite3.connect (DATABASE)
conn.row_factory = sqlite3.Row
return conn

chat_messages = []

# set up the db

Figure 13: app.py on line 28
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2.14 CWE-614 - app.py - Secure flag disabled for session cookie

Priority: | Medium
Issue: Session cookies can be transmitted over unencrypted HT TP, exposing them to interception.

Recommendation: Set SESSION COOKIE SECURE = True and serve the application exclusively over HTTPS.

def allowed_file(filename) :
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

PROFILE_PIC_FOLDER = os.path.join(app.root_path, 'static', 'profile_pics')
if not os.path.exists(PROFILE_PIC_FOLDER):
os.makedirs (PROFILE_PIC_FOLDER)

app.config['PROFILE_PIC_FOLDER'] = PROFILE_PIC_FOLDER
app.config['SESSION_COOKIE_HTTPONLY'] = False
app.config['SESSION_COOKIE_SECURE'] = False

def get_db():
conn = sqlite3.connect(DATABASE)
conn.row_factory = sqlite3.Row
return conn

chat_messages = []

# set up the db
def init_db():

Figure 14: app.py on line 29
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2.15 CWE-259 - app.py - Hard-coded weak default password in admin reset

Priority: | Medium
Issue: Resetting user passwords to a hard-coded weak value enables easy account takeover if not changed immediately.

Recommendation: Generate strong random temporary passwords or password reset tokens and require the user to set
a new password via a secure flow; never use hard-coded defaults.

return render_template('admin.html', users=users, page=page, total_pages=total_pages)

Qapp.route('/admin/reset_password/<int:user_id>', methods=['P0OST'])
def reset_password(user_id):
if 'username' not in session or session.get('role') != 'admin':
return redirect(url_for('login'))

db = get_db()

default_password = 'qwerty'
db.execute ("UPDATE users SET password = 7 WHERE id = 7", (default_password, user_id))
db.commit ()

return redirect(url_for('admin'))

Qapp.route('/admin/delete_user/<int:user_id>', methods=['POST'])
def delete_user(user_id):
if 'username' not in session or session.get('role') != 'admin':
return redirect(url_for('login'))

Figure 15: app.py on line 366
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2.16 CWE-352 - app.py - Missing CSRF protection on password change

Priority: | Medium

Issue: The state-changing POST endpoint lacks CSRF protections, allowing attackers to trigger actions via the victim's

browser.

Recommendation: Implement CSRF tokens (e.g., Flask-WTF CSRFProtect) and verify them on all state-changing

requests.

try:
with open(file_path, 'r') as file:
content = file.read()
except Exception as e:
content = f"Error: {str(e)}"

return jsonify({"file_content": content})

Qapp.route('/change_password', methods=['GET', 'POST'])
def change_password():
if 'user_id' not in session:
return redirect(url_for('login'))

if request.method == 'POST':
user_id = session.get('user_id')
new_password = request.form.get ('new_password')

if user_id and new_password:
db = get_db()

Figure 16: app.py on line 313
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2.17 CWE-352 - app.py - Missing CSRF protection on clear messages

Priority: | Low

Issue: A state-changing POST endpoint lacks CSRF protection, allowing attackers to clear chat history via the victim's
browser.

Recommendation: Protect all state-changing routes with CSRF tokens and validate them.

image_number = random.randint(i, 6)
return render_template('blacklist.html', image_number=image_number)

message = re.sub(r'<img[~>]*>', '', message)
message = re.sub(r'alert', '', message)

chat_messages.append (message)
return render_template('chat.html', messages=chat_messages)

Qapp.route('/clear_messages', methods=['POST'])
def clear_messages():
# clear messages KEEP THIS!!
chat_messages.clear()
return redirect(url_for('chat'))

Figure 17: app.py on line 149
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2.18 CWE-209 - app.py - Verbose error messages returned to clients

Priority: | Low
Issue: Returning raw exception messages to clients can leak internal details useful for attackers.

Recommendation: Log detailed errors server-side and return generic error messages to clients.

filename= request.args.get('filename', 'testing.txt')
file_path = os.path.join(STATIC_FOLDER, filename)

try:
with open(file_path, 'r') as file:
content = file.read()
except Exception as e:
content = f"Error: {str(e)}"

return jsonify({"file_content": content})

Qapp.route('/change_password', methods=['GET', 'POST'])
def change_password():
if 'user_id' not in session:
return redirect(url_for('login'))

Figure 18: app.py on line 307
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