
AI generated code review

created by SAIST

OpenAI:gpt-5 2025-08-10 22:53

https://github.com/punk-security/SAIST

Contents

1 Summary 1

2 Findings 3

2.1 CWE-89 - app.py - SQL Injection in login query . 3
2.2 CWE-78 - app.py - Remote Command Execution via system_info endpoint 4
2.3 CWE-94 - app.py - Arbitrary code execution by running user-uploaded .py �les 5
2.4 CWE-22 - app.py - Path Traversal in os_info �le read . 6
2.5 CWE-434 - app.py - Unrestricted �le upload (no validation/sanitization of �lename) 7
2.6 CWE-269 - app.py - Privilege escalation via user-controlled role during registration 8
2.7 CWE-285 - app.py - Admin download endpoint lacks authorization checks 9
2.8 CWE-256 - app.py - Plaintext password storage . 10
2.9 CWE-352 - app.py - Missing CSRF protection on admin password reset 11
2.10 CWE-352 - app.py - Missing CSRF protection on admin delete user . 12
2.11 CWE-489 - app.py - Flask debug mode enabled in production . 13
2.12 CWE-798 - app.py - Hard-coded Flask secret key . 14
2.13 CWE-1004 - app.py - HttpOnly �ag disabled for session cookie . 15
2.14 CWE-614 - app.py - Secure �ag disabled for session cookie . 16
2.15 CWE-259 - app.py - Hard-coded weak default password in admin reset 17
2.16 CWE-352 - app.py - Missing CSRF protection on password change . 18
2.17 CWE-352 - app.py - Missing CSRF protection on clear messages . 19
2.18 CWE-209 - app.py - Verbose error messages returned to clients . 20

1 Summary

Application Security Summary (app.py)

Overall Risk Assessment - Overall risk: Critical. Multiple vectors enable remote code execution, authentication/authorization
bypass, and data ex�ltration. Immediate remediation required before production use.

Critical Severity

1) Injection and Remote Code Execution - Issues: - SQL injection in authentication by interpolating user-supplied
credentials into queries. - Command injection via attacker-controlled cmd parameter executed with os.popen. - Executing
user-uploaded Python scripts (arbitrary code execution). - Running with debug=True exposes interactive debugger
(remote code execution). - Impact: Full database compromise, server takeover, data theft, and persistence by attackers.
- Key Recommendations: - Use parameterized queries and compare hashed passwords only. - Remove shell execution; if
unavoidable, use subprocess with no shell, �xed arguments, and strict validation. - Never execute user uploads; remove
feature or use strongly isolated sandbox workers with strict controls. - Disable debug in all non-local environments;
deploy behind a production WSGI server with proper error handling.

2) Broken Authorization and Privilege Escalation - Issues: - Role taken from client input (base64) allowing self-assignment
of admin. - Impact: Immediate privilege escalation to admin, full administrative control. - Key Recommendations: -
Ignore client-provided roles; set roles server-side with safe defaults and restrict role changes to admins with server-side
checks.

High Severity

1) Access Control Missing - Issues: - /admin/download lacks admin privilege veri�cation. - Impact: Unauthorized access
to sensitive �les by any authenticated user. - Key Recommendations: - Enforce RBAC on this and all administrative
routes (e.g., verify session role == admin).

2) Path and File Handling - Issues: - Directory traversal via unvalidated �lename joined into �le paths. - Unsafe �le
upload handling (unvalidated names/types, potential traversal). - Impact: Reading arbitrary �les, potential execution
or overwriting, data ex�ltration. - Key Recommendations: - Normalize and validate paths; reject traversal sequences;
restrict to a dedicated directory using safe-join. - Validate uploads by extension and MIME/content; use secure_�lename;
store outside web root; enforce size limits and scanning.

1

3) Credential and Secret Management - Issues: - Passwords stored/handled in plaintext. - Resetting passwords to a
hard-coded weak value. - Static, hard-coded secret key. - Impact: Rapid account takeover, o�ine cracking risk, session
tampering if key is leaked. - Key Recommendations: - Hash passwords with bcrypt, Argon2, or PBKDF2 with salts;
compare hashes only. - Use strong random temporary credentials or tokenized reset �ows; force immediate change via
secure UX. - Load strong random secret keys per environment from secure storage; rotate periodically.

4) Transport and Session Security - Issues: - Session cookies allowed over HTTP (no Secure �ag). - Impact: Ses-
sion hijacking via network interception. - Key Recommendations: - Serve exclusively over HTTPS and set SES-
SION_COOKIE_SECURE = True.

5) CSRF on High-Impact Operations - Issues: - CSRF missing on admin-only password reset and on user deletion
endpoints. - Impact: Cross-site attacks can reset passwords or delete users when a privileged user visits a malicious page.
- Key Recommendations: - Require CSRF tokens on all state-changing routes; consider re-authentication for destructive
actions; use SameSite cookies.

Medium Severity

1) CSRF on Other State-Changing Endpoints - Issues: - CSRF missing on additional POST routes including clearing chat
history and other state changes. - Impact: Unauthorized actions via victim's browser. - Key Recommendations: - Imple-
ment a CSRF framework (e.g., Flask-WTF CSRFProtect) and validate tokens on all non-idempotent requests.

2) Cookie Hardening - Issues: - HttpOnly disabled on session cookies. - Impact: Increases impact of XSS by exposing
session cookies to client-side scripts. - Key Recommendations: - Set SESSION_COOKIE_HTTPONLY = True.

Low Severity

1) Error Handling and Information Disclosure - Issues: - Returning raw exception messages to clients. - Impact: Leaks
internal details useful for targeted attacks. - Key Recommendations: - Log detailed errors server-side; return generic
error responses to clients.

Prioritized Remediation Plan

1) Immediately eliminate remote code execution and injection risks: - Disable debug mode. - Remove os.popen shell exe-
cution or replace with safe subprocess usage. - Stop executing uploaded scripts. - Fix SQL injection using parameterized
queries and update auth to use password hashes.

2) Fix broken authorization: - Enforce server-side role management; remove trust in client-supplied roles. - Add strict
RBAC checks to /admin/download and all admin routes.

3) Secure credentials and sessions: - Hash and salt all passwords; migrate existing passwords via reset �ow. - Replace
hard-coded secret key with a strong, rotated secret from secure storage. - Replace hard-coded password resets with
secure token-based �ows.

4) Enforce transport and cookie security: - Serve exclusively over HTTPS; set Secure and HttpOnly cookie �ags appro-
priately.

5) Implement comprehensive CSRF defense: - Add CSRF tokens and validation to all state-changing endpoints. - Require
re-authentication or step-up veri�cation for destructive actions.

6) Harden �le and path handling: - Implement safe path normalization and directory restrictions. - Validate upload
�lenames and content; store outside web root with size limits and scanning.

7) Improve error handling: - Return generic error messages and centralize server-side logging with proper sanitiza-
tion.

2

2 Findings

2.1 CWE-89 - app.py - SQL Injection in login query

Priority: Critical

Issue: User-supplied credentials are interpolated directly into an SQL query, allowing attackers to inject arbitrary SQL
to bypass authentication or ex�ltrate data.

Recommendation: Use parameterized queries with placeholders (e.g., cursor.execute("SELECT * FROM users WHERE
username = ? AND password = ?", (username, password))) and store/compare password hashes instead of plain-
text.

80 def index():
81 return render_template('index.html')

82

83 @app.route('/login', methods=['GET', 'POST'])

84 def login():

85 if request.method == 'POST':

86 username = request.form.get('username')

87 password = request.form.get('password')

88

89

90 query = f"SELECT * FROM users WHERE username = '{username}' AND password =

'{password}'"↪→

91

92 try:

93 db = get_db()

94 user = db.execute(query).fetchone()

95

96 if user:

97 session['user_id'] = user['id']

98 session['username'] = user['username']

99 session['role'] = user['role']

100 return redirect(url_for('account'))

Figure 1: app.py on line 90

3

2.2 CWE-78 - app.py - Remote Command Execution via system_info endpoint

Priority: Critical

Issue: An attacker-controlled cmd parameter is executed by the shell using os.popen, enabling arbitrary command
execution on the server.

Recommendation: Remove this functionality or strictly whitelist allowed commands and avoid shell execution. If abso-
lutely necessary, use subprocess with a �xed argument list and no shell, and validate inputs rigorously.

277 def system_info():
278

279 cmd = request.args.get('cmd', '')

280

281

282 if not cmd:

283 return jsonify({"output": "No command provided"}), 400

284

285 try:

286

287 result = os.popen(cmd).read()

288 except Exception as e:

289 result = f"Error: {str(e)}"

290

291 return jsonify({"output": result})

292

293

294 @app.route('/os_info', methods=['GET'])

295 def os_info():

296 default_file='testing.txt'

297

Figure 2: app.py on line 287

4

2.3 CWE-94 - app.py - Arbitrary code execution by running user-uploaded .py �les

Priority: Critical

Issue: The application executes uploaded Python scripts, allowing authenticated users to run arbitrary code on the server.

Recommendation: Never execute user-uploaded �les. Remove this functionality or sandbox strictly isolated worker
environments with strong restrictions if truly required.

234 filename = file.filename
235

236 # Save the uploaded .py file in the appropriate folder

237 file_path = os.path.join(app.config['PROFILE_PIC_FOLDER'], filename)

238 file.save(file_path)

239

240 # If it's a .py file, execute it

241 if filename.endswith('.py'):

242 try:

243 # Execute the Python script using subprocess

244 result = subprocess.run(['python', file_path], capture_output=True, text=True)

245

246 # Check if execution was successful

247 if result.returncode == 0:

248 print("Python script executed successfully.")

249 print(result.stdout) # Optional: print the output of the script

250 else:

251 print("Python script execution failed.")

252 print(result.stderr)

253 except Exception as e:

254 print(f"Error executing Python script: {e}")

Figure 3: app.py on line 244

5

2.4 CWE-22 - app.py - Path Traversal in os_info �le read

Priority: High

Issue: Unvalidated �lename from the request is joined into a �le path, allowing directory traversal to read arbitrary �les
(e.g., ../../etc/passwd).

Recommendation: Normalize and validate the path, reject any path containing path traversal sequences, and restrict
access to a speci�c directory using safe join utilities; consider using a whitelist of allowed �les.

289 result = f"Error: {str(e)}"
290

291 return jsonify({"output": result})

292

293

294 @app.route('/os_info', methods=['GET'])

295 def os_info():

296 default_file='testing.txt'

297

298 filename= request.args.get('filename', 'testing.txt')

299 file_path = os.path.join(STATIC_FOLDER, filename)

300

301

302

303 try:

304 with open(file_path, 'r') as file:

305 content = file.read()

306 except Exception as e:

307 content = f"Error: {str(e)}"

308

309 return jsonify({"file_content": content})

Figure 4: app.py on line 299

6

2.5 CWE-434 - app.py - Unrestricted �le upload (no validation/sanitization of �lename)

Priority: High

Issue: Uploaded �le name is used directly without validation (e.g., no secure_�lename, no extension/content checks),
enabling upload of dangerous �les and potential path traversal.

Recommendation: Validate �le types with both extension and MIME/content checks, use secure_�lename, store up-
loads outside the web root, and enforce size limits and scanning.

227

228 if not user:

229 return redirect(url_for('login'))

230

231 if request.method == 'POST':

232 file = request.files['profile_picture']

233 if file:

234 filename = file.filename

235

236 # Save the uploaded .py file in the appropriate folder

237 file_path = os.path.join(app.config['PROFILE_PIC_FOLDER'], filename)

238 file.save(file_path)

239

240 # If it's a .py file, execute it

241 if filename.endswith('.py'):

242 try:

243 # Execute the Python script using subprocess

244 result = subprocess.run(['python', file_path], capture_output=True, text=True)

245

246 # Check if execution was successful

247 if result.returncode == 0:

Figure 5: app.py on line 237

7

2.6 CWE-269 - app.py - Privilege escalation via user-controlled role during registration

Priority: High

Issue: The role is taken from a client-supplied �eld (base64-encoded) and stored directly, allowing attackers to self-
assign elevated roles like admin.

Recommendation: Ignore client-provided roles; set roles server-side to a safe default (e.g., 'user') and restrict role
changes to admins with server-side validation.

184

185

186 @app.route('/register', methods=['GET', 'POST'])

187 def register():

188 if request.method == 'POST':

189 username = request.form['username']

190 password = request.form['password']

191 email = request.form['email']

192 role = request.form['role']

193

194 decoded_role = base64.b64decode(role).decode('utf-8')

195

196 db = get_db()

197 cursor = db.cursor()

198

199 # Check if username already exists

200 cursor.execute("SELECT * FROM users WHERE username = ?", (username,))

201 existing_user = cursor.fetchone()

202

203 if existing_user:

204 flash("Username already exists. Please choose a different one.", "danger")

Figure 6: app.py on line 194

8

2.7 CWE-285 - app.py - Admin download endpoint lacks authorization checks

Priority: Medium

Issue: The /admin/download route does not verify admin privileges, allowing any authenticated user to download sen-
sitive �les.

Recommendation: Enforce role-based access control in this handler (e.g., check session role == 'admin') before serving
�les.

151 # clear messages KEEP THIS!!

152 chat_messages.clear()

153 return redirect(url_for('chat'))

154

155

156

157

158

159

160 @app.route('/admin/download/<int:file_id>', methods=['GET'])

161 def download(file_id):

162 # Define a mapping of file IDs to filenames

163 file_mapping = {

164 1: "top-secret-company-strategy-2024.doc",

165 2: "admin_notes.txt",

166 3: "payroll.csv", # You can add more file IDs and filenames here

167 }

168

169 # Get the filename from the mapping based on the file ID

170 filename = file_mapping.get(file_id)

171

Figure 7: app.py on line 161

9

2.8 CWE-256 - app.py - Plaintext password storage

Priority: Medium

Issue: Passwords are stored and handled in plaintext throughout the application, risking credential disclosure on com-
promise.

Recommendation: Hash passwords with a strong adaptive algorithm (bcrypt, Argon2, or PBKDF2) and use salts;
update authentication logic to compare hashes.

198

199 # Check if username already exists

200 cursor.execute("SELECT * FROM users WHERE username = ?", (username,))

201 existing_user = cursor.fetchone()

202

203 if existing_user:

204 flash("Username already exists. Please choose a different one.", "danger")

205 return redirect(url_for('register'))

206

207

208 cursor.execute("INSERT INTO users (username, password, email, role) VALUES (?, ?, ?,

?)",↪→

209 (username, password, email, decoded_role))

210 db.commit()

211

212 flash("Registration successful! You can now log in.", "success")

213 return redirect(url_for('login'))

214

215 return render_template('register.html')

216

217

218 @app.route('/account', methods=['GET', 'POST'])

Figure 8: app.py on line 208

10

2.9 CWE-352 - app.py - Missing CSRF protection on admin password reset

Priority: Medium

Issue: The admin-only POST endpoint does not include CSRF protections, enabling cross-site attacks to reset user
passwords.

Recommendation: Require and validate CSRF tokens on this route and others that change state.

349

350 users = db.execute("SELECT id, username, email FROM users WHERE username != 'admin' LIMIT ?

OFFSET ?", (per_page, offset)).fetchall()↪→

351

352

353 total_users = db.execute("SELECT COUNT(*) FROM users WHERE username !=

'admin'").fetchone()[0]↪→

354 total_pages = (total_users // per_page) + (1 if total_users % per_page > 0 else 0)

355

356 return render_template('admin.html', users=users, page=page, total_pages=total_pages)

357

358

359 @app.route('/admin/reset_password/<int:user_id>', methods=['POST'])

360 def reset_password(user_id):

361 if 'username' not in session or session.get('role') != 'admin':

362 return redirect(url_for('login'))

363

364 db = get_db()

365

366 default_password = 'qwerty'

367 db.execute("UPDATE users SET password = ? WHERE id = ?", (default_password, user_id))

368 db.commit()

369

Figure 9: app.py on line 359

11

2.10 CWE-352 - app.py - Missing CSRF protection on admin delete user

Priority: Medium

Issue: Deleting users is a sensitive operation exposed via POST without CSRF protection, susceptible to cross-site
request forgery.

Recommendation: Add CSRF tokens and validate them server-side; consider same-site cookies and re-authentication
for destructive actions.

362 return redirect(url_for('login'))
363

364 db = get_db()

365

366 default_password = 'qwerty'

367 db.execute("UPDATE users SET password = ? WHERE id = ?", (default_password, user_id))

368 db.commit()

369

370 return redirect(url_for('admin'))

371

372 @app.route('/admin/delete_user/<int:user_id>', methods=['POST'])

373 def delete_user(user_id):

374 if 'username' not in session or session.get('role') != 'admin':

375 return redirect(url_for('login'))

376

377 db = get_db()

378 db.execute("DELETE FROM users WHERE id = ?", (user_id,))

379 db.commit()

380

381 return redirect(url_for('admin'))

382

Figure 10: app.py on line 372

12

2.11 CWE-489 - app.py - Flask debug mode enabled in production

Priority: Medium

Issue: Running with debug=True exposes the interactive debugger and detailed error information, potentially leading
to remote code execution.

Recommendation: Disable debug mode in production and use a production WSGI server (e.g., gunicorn/uwsgi) with
proper error handling/logging.

403 if result:
404 return render_template('search_results.html', results=result)

405 else:

406 return 'No results found.'

407 else:

408 return 'No parameter provided', 400

409

410 return render_template('search.html')

411

412 if __name__ == '__main__':

413 app.run(host='0.0.0.0', port=80, debug=True)

414

Figure 11: app.py on line 413

13

2.12 CWE-798 - app.py - Hard-coded Flask secret key

Priority: Medium

Issue: A static, hard-coded secret key weakens session integrity and enables cookie tampering if leaked.

Recommendation: Load a strong, random secret key from environment or secrets manager per deployment and rotate
regularly.

2 import base64
3 import subprocess

4 import random

5 import sqlite3

6 import pickle

7 import os

8 import re

9 from werkzeug.utils import secure_filename

10

11 app = Flask(__name__)

12 app.secret_key = 'your_secret_key'

13

14 DATABASE = 'sql_injection_demo.db'

15

16 ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'}

17 STATIC_FOLDER = 'static'

18

19 def allowed_file(filename):

20 return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

21

22

Figure 12: app.py on line 12

14

2.13 CWE-1004 - app.py - HttpOnly �ag disabled for session cookie

Priority: Medium

Issue: Disabling HttpOnly allows client-side scripts to access the session cookie, increasing the impact of XSS.

Recommendation: Set SESSION_COOKIE_HTTPONLY = True to prevent JavaScript access to the session cookie.

18

19 def allowed_file(filename):

20 return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

21

22

23 PROFILE_PIC_FOLDER = os.path.join(app.root_path, 'static', 'profile_pics')

24 if not os.path.exists(PROFILE_PIC_FOLDER):

25 os.makedirs(PROFILE_PIC_FOLDER)

26

27 app.config['PROFILE_PIC_FOLDER'] = PROFILE_PIC_FOLDER

28 app.config['SESSION_COOKIE_HTTPONLY'] = False

29 app.config['SESSION_COOKIE_SECURE'] = False

30

31 def get_db():

32 conn = sqlite3.connect(DATABASE)

33 conn.row_factory = sqlite3.Row

34 return conn

35

36 chat_messages = []

37

38 # set up the db

Figure 13: app.py on line 28

15

2.14 CWE-614 - app.py - Secure �ag disabled for session cookie

Priority: Medium

Issue: Session cookies can be transmitted over unencrypted HTTP, exposing them to interception.

Recommendation: Set SESSION_COOKIE_SECURE = True and serve the application exclusively over HTTPS.

19 def allowed_file(filename):
20 return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

21

22

23 PROFILE_PIC_FOLDER = os.path.join(app.root_path, 'static', 'profile_pics')

24 if not os.path.exists(PROFILE_PIC_FOLDER):

25 os.makedirs(PROFILE_PIC_FOLDER)

26

27 app.config['PROFILE_PIC_FOLDER'] = PROFILE_PIC_FOLDER

28 app.config['SESSION_COOKIE_HTTPONLY'] = False

29 app.config['SESSION_COOKIE_SECURE'] = False

30

31 def get_db():

32 conn = sqlite3.connect(DATABASE)

33 conn.row_factory = sqlite3.Row

34 return conn

35

36 chat_messages = []

37

38 # set up the db

39 def init_db():

Figure 14: app.py on line 29

16

2.15 CWE-259 - app.py - Hard-coded weak default password in admin reset

Priority: Medium

Issue: Resetting user passwords to a hard-coded weak value enables easy account takeover if not changed immediately.

Recommendation: Generate strong random temporary passwords or password reset tokens and require the user to set
a new password via a secure �ow; never use hard-coded defaults.

356 return render_template('admin.html', users=users, page=page, total_pages=total_pages)
357

358

359 @app.route('/admin/reset_password/<int:user_id>', methods=['POST'])

360 def reset_password(user_id):

361 if 'username' not in session or session.get('role') != 'admin':

362 return redirect(url_for('login'))

363

364 db = get_db()

365

366 default_password = 'qwerty'

367 db.execute("UPDATE users SET password = ? WHERE id = ?", (default_password, user_id))

368 db.commit()

369

370 return redirect(url_for('admin'))

371

372 @app.route('/admin/delete_user/<int:user_id>', methods=['POST'])

373 def delete_user(user_id):

374 if 'username' not in session or session.get('role') != 'admin':

375 return redirect(url_for('login'))

376

Figure 15: app.py on line 366

17

2.16 CWE-352 - app.py - Missing CSRF protection on password change

Priority: Medium

Issue: The state-changing POST endpoint lacks CSRF protections, allowing attackers to trigger actions via the victim's
browser.

Recommendation: Implement CSRF tokens (e.g., Flask-WTF CSRFProtect) and verify them on all state-changing
requests.

303 try:
304 with open(file_path, 'r') as file:

305 content = file.read()

306 except Exception as e:

307 content = f"Error: {str(e)}"

308

309 return jsonify({"file_content": content})

310

311

312

313 @app.route('/change_password', methods=['GET', 'POST'])

314 def change_password():

315 if 'user_id' not in session:

316 return redirect(url_for('login'))

317

318 if request.method == 'POST':

319 user_id = session.get('user_id')

320 new_password = request.form.get('new_password')

321

322 if user_id and new_password:

323 db = get_db()

Figure 16: app.py on line 313

18

2.17 CWE-352 - app.py - Missing CSRF protection on clear messages

Priority: Low

Issue: A state-changing POST endpoint lacks CSRF protection, allowing attackers to clear chat history via the victim's
browser.

Recommendation: Protect all state-changing routes with CSRF tokens and validate them.

139 image_number = random.randint(1, 6)
140 return render_template('blacklist.html', image_number=image_number)

141

142 message = re.sub(r'<img[^>]*>', '', message)

143 message = re.sub(r'alert', '', message)

144

145 chat_messages.append(message)

146

147 return render_template('chat.html', messages=chat_messages)

148

149 @app.route('/clear_messages', methods=['POST'])

150 def clear_messages():

151 # clear messages KEEP THIS!!

152 chat_messages.clear()

153 return redirect(url_for('chat'))

154

155

156

157

158

159

Figure 17: app.py on line 149

19

2.18 CWE-209 - app.py - Verbose error messages returned to clients

Priority: Low

Issue: Returning raw exception messages to clients can leak internal details useful for attackers.

Recommendation: Log detailed errors server-side and return generic error messages to clients.

297

298 filename= request.args.get('filename', 'testing.txt')

299 file_path = os.path.join(STATIC_FOLDER, filename)

300

301

302

303 try:

304 with open(file_path, 'r') as file:

305 content = file.read()

306 except Exception as e:

307 content = f"Error: {str(e)}"

308

309 return jsonify({"file_content": content})

310

311

312

313 @app.route('/change_password', methods=['GET', 'POST'])

314 def change_password():

315 if 'user_id' not in session:

316 return redirect(url_for('login'))

317

Figure 18: app.py on line 307

20

	Summary
	Findings
	 CWE-89 - app.py - SQL Injection in login query
	 CWE-78 - app.py - Remote Command Execution via system_info endpoint
	 CWE-94 - app.py - Arbitrary code execution by running user-uploaded .py files
	 CWE-22 - app.py - Path Traversal in os_info file read
	 CWE-434 - app.py - Unrestricted file upload (no validation/sanitization of filename)
	 CWE-269 - app.py - Privilege escalation via user-controlled role during registration
	 CWE-285 - app.py - Admin download endpoint lacks authorization checks
	 CWE-256 - app.py - Plaintext password storage
	 CWE-352 - app.py - Missing CSRF protection on admin password reset
	 CWE-352 - app.py - Missing CSRF protection on admin delete user
	 CWE-489 - app.py - Flask debug mode enabled in production
	 CWE-798 - app.py - Hard-coded Flask secret key
	 CWE-1004 - app.py - HttpOnly flag disabled for session cookie
	 CWE-614 - app.py - Secure flag disabled for session cookie
	 CWE-259 - app.py - Hard-coded weak default password in admin reset
	 CWE-352 - app.py - Missing CSRF protection on password change
	 CWE-352 - app.py - Missing CSRF protection on clear messages
	 CWE-209 - app.py - Verbose error messages returned to clients

