
Tasks

TODO Memory batcher implementation

[2025-07-08 Tue] file:~/Documents/code/findex/crate/memories/src/memory_batcher.rs

Two designs are possible:

• a client-server architecture in which a server awaits for a given number of
incoming messages;

• a decentralized architecture in which the first client to fill the buffer has
to process it.

The pros in favor of the client-server architecture is that clients are trivial: they
simply send their request and await for an answer. Also, the sensitive logic is
centralized which makes verifying it easier. The cons is that a concurrent task
has to be spawned in order for client calls to be answered.

The pros in favor of the decentralized architecture is that no additional con-
current task is required. The cons is that logic is distributed and thus hard to
verify.

A middle-ground can be taken in adopting a version of the decentralized archi-
tecture in which all concurrency-related code is centralized in a few function
which all others call. The following operations implement the logic related to
the client operations. Strikingly, batch_read and guarded_write are almost
identical.

Memory batcher implementation

Note that in order for this implementation to work, channels must not block
the sender, otherwise the process calling manage_buffer would block trying to
send data to itself.

struct MemoryBatcher(Arc<Mutex<FixedSizeBuffer>>);

impl MemoryBatcher {
async fn unsuscribe(&self) -> Result<(), Error> {

let res = { self.buffer.lock().unwrap().shrink_capacity() };
if let Some(ops) = res {

self.manage(ops).await?;
}
Ok(())

}

1

~/Documents/code/findex/crate/memories/src/memory_batcher.rs


async fn apply(&self, op: MemoryOperation) -> Result<MemoryResult, Error> {
let (snd, rcv) = channel();
let res = { self.buffer.lock().unwrap().push((snd, op)) };
if let Some(ops) = res {

self.manage(ops).await?;
}
rcv.recv().await

}

async fn batch_read(&self, addresses: Vec<Address>) -> Result<Vec<Word>, Error> {
let res = self.apply(MemoryOperation::Read(addresses)).await?;

if let MemoryResult::Read(words) = res {
Ok(words)

} else {
Err(Error::WrongResultType)

}
}

async fn guarded_write(
&self,
guard: (Address, Option<Word>),
bindings: Vec<(Address, Word)>,

) -> Result<Vec<Word>, Error> {
let res = self.apply(MemoryOperation::Write(guard, bindings)).await?;

if let MemoryResult::Write(word) = res {
Ok(word)

} else {
Err(Error::WrongResultType)

}
}

}

The manage operation is implemented (almost) identically to the manage_buffer
from tbz/batcher.

Buffer implementation

The buffer operations can trivially be implemented:

struct Buffer<T> {
capacity: usize,
data: Vec<T>,

}

2



impl<T> Buffer<T> {
fn new(capacity: usize) -> Self {

let data = Vec::with_capacity(capacity);
Self { capacity, data }

}
}

impl<T: Clone> Buffer<T> {
/* Correctness invariant:
*
* 0 <= self.data.len() < self.capacity
*
* or
*
* 0 = self.data.len() = self.capacity
*
* */

fn shink_capacity(&mut self) -> Result<Option<Vec<T>>, BufferError> {
if self.capacity == 0 {

return Err(BufferError::Underflow);
}

self.capacity -= 1;

if 0 < self.capacity && self.capacity == self.data.len() {
Ok(Some(self.data.drain(0..self.capacity).cloned().collect()))

} else {
Ok(None)

}
}

fn push(&mut self, t: T) -> Option<Vec<T>> {
if self.capacity == 0 {

return Err(BufferError::Overflow);
}

self.data.push(t);

if self.capacity == self.data.len() {
Ok(Some(self.data.drain(0..self.capacity).cloned().collect()))

} else {
Ok(None)

}
}

3



}

Since all the logic is centralized, it is possible to locally verify the correctness
invariant. Since all data is returned from the operation, the lock does not need
to be hold through the asynchronous call to manage anymore.

4


	Tasks
	TODO Memory batcher implementation
	Memory batcher implementation
	Buffer implementation



