Q.No Question Source

1 What happens during the Linux system boot process from power on | DEV.to [deadlock]
to login prompt?

2 What steps occur when the 1s command is issued in the terminal? DEV.to [deadlock]

3 Explain what inodes are in Linux and their significance in the DEV.to [deadlock];
filesystem. ZeroToMastery

4 What is the /proc filesystem and what information does it expose in | DEV.to [deadlock]
Linux?

5 How would you troubleshoot a “filesystem full” error when df shows | DEV.to [deadlock]
free space?

6 Name several performance monitoring tools you have used on Linux | DEV.to [deadlock]
and describe their purpose.

7 What are the different types of filesystems supported on Linux and DEV.to [deadlock]
which have you used?

8 Explain kernel space vs user space and why this distinction is DEV.to [deadlock]
important.

9 What are processes and threads? How are they different? DEV.to [deadlock];

ZeroToMastery

10 How does Linux manage process and thread scheduling? ZeroToMastery

11 Explain Linux kernel memory management in brief. DEV.to [deadlock]

12 What is the difference between stack and heap in process memory? DEV.to [deadlock]

13 Describe race conditions and how Linux manages concurrency. DEV.to [deadlock]

14 What does a high load average indicate? How do you investigate load | DEV.to [deadlock]
average issues?

15 How would you troubleshoot high I/0 issues on a Linux host? DEV.to [deadlock]

16 What happens when the system runs out of inodes? DEV.to [deadlock]

17 What is a zombie process? How do you find them and clean them up? | DEV.to [deadlock]

18 What is a runaway process and how would you identify it? DEV.to [deadlock]

19 How do you change file permissions and ownership in Linux? ZeroToMastery
Mention the commands.

20 What is the purpose of the chown and chmod commands? ZeroToMastery

21 What are sticky bits, setuid, and setgid? ZeroToMastery

22 How do you manage and view running processes? Mention ZeroToMastery
commands involved.

23 How do you find and Kkill a process by name or port number in Linux? | ZeroToMastery

24 What is SSH? How do you secure SSH access for production servers? | LinkedIn: Praveen

Singampalli




25 How do you set limits for a user or a process in Linux? ZeroToMastery

26 What is nice and renice? How are they used? ZeroToMastery

27 How do you delete or clean up empty files securely? ZeroToMastery

28 Explain the differences and use-cases for hard links and symbolic ZeroToMastery
links.

29 How do you schedule recurring tasks on Linux? ZeroToMastery

30 How would you monitor disk usage and find large files or directories | DEV.to [deadlock];
quickly? ZeroToMastery

31 What backup strategies and tools have you implemented on Linux? DEV.to [deadlock]

32 How do you configure static and dynamic [P addresses on Linux ZeroToMastery
interfaces?

33 How would you set up and manage firewalls on a Linux server? ZeroToMastery

34 What is SELinux/AppArmor and what role does it play in production | ZeroToMastery
infrastructure?

35 How would you investigate and solve DNS resolution issues in Linux | DEV.to [deadlock]
hosts?

36 What are the common troubleshooting steps when an application is ZeroToMastery
unreachable over the network?

37 How would you tune the Linux kernel parameters (sysctl)? ZeroToMastery

38 What is shell scripting? Give an example of shell script automation in | ZeroToMastery
past work.

39 How does package management differ between apt and yum? ZeroToMastery

40 Which log files do you frequently check for troubleshooting? Where DEV.to [deadlock]
are logs stored?

41 What is systemd? How does it differ from init? DEV.to [deadlock]

42 Describe the sequence of actions when a user logs into a system via DEV.to [deadlock]
SSH.

43 How do you investigate and resolve “out of memory” issues in Linux? | DEV.to [deadlock]

44 What is cgroups? How do you use cgroups to limit resource usage? ZeroToMastery

45 Which commands or tools are useful for examining network usage ZeroToMastery
and connections?

46 What's your strategy for securing a freshly deployed public Linux ZeroToMastery
server?

47 What user and group management commands do you know? ZeroToMastery

48 How do you perform kernel upgrades safely? ZeroToMastery

49 How do you automate deployments or configuration management on | LinkedIn: Praveen

Linux?

Singampalli




50

Explain the basic workflow of troubleshooting a failed service on
Linux.

DEV.to [deadlock]




Answers to the above questions.

Q.No Answer

1 During a Linux system boot: BIOS/UEFlI initializes hardware, bootloader (GRUB/LILO) loads the
kernel, which then initializes drivers. init or systemd starts essential services and user-space
processes. Lastly, the login manager or shell prompts the user.

2 After 1s is entered: The shell creates a process to run /bin/1s, which makes system calls to list
directory contents, fetches metadata from inodes, and outputs to the terminal.

3 Inodes store filesystem metadata (owner, permissions, timestamps, disk block locations) for
files/directories, but not names.

4 /proc is a virtual filesystem exposing kernel/process info (CPU, memory, process state) as files.

5 “Filesystem full” with space available: Check inode usage (df -1i), disk quotas, files on hidden
mount points, and open file descriptors holding deleted files (find via 1sof).

6 Monitoring tools: top, htop, vmstat, iostat, sar, dstat, free, nmon are common, provide
CPU, memory, 10, and process info.

7 Filesystems: ext4, xfs, btrfs, zfs, nfs, tmpfs, etc. extd/xfs common for general use; nfs for
network shares.

8 Kernel space: System and hardware code runs here, isolated from user space, where apps run.
Separation prevents user bugs from crashing the system.

9 Process: Independent execution contexts with memory and resources. Thread: Lightweight,
shares process memory/context. Threads within a process share most resources; processes are
isolated.

10 Linux uses a scheduler (CFS in modern kernels) to allocate CPU time fairly among
threads/processes based on priority and workload.

11 Linux manages memory with paging, virtual memory, cache, swap; using LRU and demand
paging to optimize performance.

12 Stack: Stores function calls, local vars, grows/shrinks per call. Heap: Dynamically allocated at
runtime with malloc, persists until freed.

13 Race conditions occur when processes/threads access shared resources concurrently. Use
locks, semaphores, mutexes in Linux to avoid.

14 High load average indicates many runnable processes; check CPU, 10 bottlenecks, run top,
uptime, investigate blocking tasks.

15 Troubleshoot I/0: Use iostat, iotop, vmstat to check disk throughput, latency, IO wait states.

Identify heavy writers/readers.




16 No inodes: Can’t create new files, even with disk space. Check df -1i, find/delete small
files/directories.

17 Zombie process: Defunct, finished execution but not reaped by parent. Find with ~ ps aux

18 Runaway process: Consumes excess CPU/memory, often an infinite loop or bug. Identify with
top/ps, kill or debug as needed.

19 Permissions: chmod (change mode), chown (change owner), chgrp (group). E.g., chmod 755
file.txt, chown user:group file.txt.

20 chown: Change file ownership (user/group). chmod: Change file/directory permissions
(read/write/execute).

21 Sticky bit: Restrict file deletion to owner/root. setuid/setgid: Run file with file owner/group
privileges (chmod u+s/g+s file).

22 View processes: ps, top, htop, pgrep, pstree, jobs (in shell).

23 Find/kill process by name: pkill processname; by port: fuser -n tcp PORTNUMor 1sof -
i :PORTNUM, then kill PID.

24 SSH (Secure Shell) provides secure remote login. Secure by disabling root login, using key-based
auth, changing default ports, restricting users, enabling fail2ban.

25 Set limits: User/per-process resource limits via /etc/security/limits.conf (ulimit for
session), e.g. nofile, nproc, memlock.

26 nice: Set process priority at start. renice: Change priority of running processes. Lower value =
higher priority.

27 Delete emptyfiles: find . -type f -empty -delete. Secure delete: shred, wipe, or srm.

28 Hard link: Another name for same inode; symbolic (soft) link: pointer to filename. Hard links
can’t span filesystems or link directories.

29 Recurring tasks: Use cron (crontab -e), or at for one-time jobs.

30 Find large files: du -h --max-depth=1,find . -size +100M -print, ncdu, ordf -hfor
space usage.

31 Backup strategies: rsync, tar, cpio, dd, automated cron, cloud backup solutions (e.g. AWS S3,
rclone). Incremental and full backups.

32 IP configuration: Edit /etc/network/interfaces (Debian)or ifcfg-* (RedHat), use ip addr,
ifconfig, nmcli or netplan for newer systems.

33 Firewalls: Use iptables, firewalld, ufw (Ubuntu-friendly). Define/allow/deny by ports/IPs.

34 SELinux/AppArmor: Offer mandatory access control, restricting program abilities for defense-in-
depth in production Linux systems.

35 DNS troubleshooting: Use nslookup, dig, host for lookups; check /etc/resolv.conf; verify
network routes/firewalls.

36 Unreachable app: Check process status, logs, firewall, port availability (netstat/ss), DNS, and

health checks.




37 Tune kernel: Edit /etc/sysctl.conforuse sysctl -w key=value;e.g., for networking,
memory, file descriptors.

38 Shell scripts automate tasks. Example: update packages, rotate logs, schedule cron backups.
Use Bash, sh, etc.

39 apt (Debian/Ubuntu): Uses deb packages; yum (RHEL/CentOS): Uses rpm packages, different
dependency management, configuration.

40 Logs: Main: /var/log/ (syslog, messages, auth.log, dmesg, journalctl). Check relevant logs for
service/debug info.

41 systemd: Modern PID 1 init system, service manager; replaces older init with dependency
management, parallel startup, logging.

42 SSH login: Client connects, authenticates via key/password, server spawns login shell,
initializes user environment.

43 Out of memory: System may invoke OOM Kkiller, killing large processes. Monitor with vmstat,
top, check /var/log/messages, add swap, optimize memory use.

44 cgroups: Kernel feature to limit/resource groups of processes (CPU, memory, 10). Used by
Docker, Kubernetes, systemd.

45 Network usage: netstat, ss, iftop, nethogs, iptraf, tcpdump, wireshark.

46 Securing Linux: Update, create non-root users, configure SSH, enable firewall, disable unused
services, enforce password policies, audit logs.

47 User/group commands: useradd, usermod, passwd, groupadd, groups, deluser, delgroup.

48 Kernel upgrades: Use package manager (apt, yum), reboot, keep previous kernel(s) for fallback,
test firstin staging.

49 Automation/config mgmt: Ansible, Chef, Puppet, SaltStack, shell/Python scripts; CI/CD
pipelines (Jenkins, GitLab Cl), Docker, Kubernetes.

50 Service troubleshooting: Check status (systemctl status), logs (journalctl), configfiles,
restart, diagnose dependencies/resources.

Sources:

DEV.to SRE/DevOps Questions

ZeroToMastery Linux Interview Prep

LinkedIn: Praveen Singampalli



https://dev.to/deadlock/sre-devops-interview-questions-linux-troubleshooting-4878
https://zerotomastery.io/blog/linux-interview-questions/
https://www.linkedin.com/posts/praveen-singampalli_90-of-devops-engineers-will-fail-to-answer-activity-7299627308552699904-D_H8

