
Q.No Question Source

1 What happens during the Linux system boot process from power on

to login prompt?
DEV.to [deadlock]

2 What steps occur when the ls command is issued in the terminal? DEV.to [deadlock]
3 Explain what inodes are in Linux and their significance in the

filesystem.
DEV.to [deadlock];

ZeroToMastery
4 What is the /proc filesystem and what information does it expose in

Linux?
DEV.to [deadlock]

5 How would you troubleshoot a “filesystem full” error when df shows

free space?
DEV.to [deadlock]

6 Name several performance monitoring tools you have used on Linux

and describe their purpose.
DEV.to [deadlock]

7 What are the different types of filesystems supported on Linux and

which have you used?
DEV.to [deadlock]

8 Explain kernel space vs user space and why this distinction is

important.
DEV.to [deadlock]

9 What are processes and threads? How are they different? DEV.to [deadlock];

ZeroToMastery
10 How does Linux manage process and thread scheduling? ZeroToMastery
11 Explain Linux kernel memory management in brief. DEV.to [deadlock]
12 What is the difference between stack and heap in process memory? DEV.to [deadlock]
13 Describe race conditions and how Linux manages concurrency. DEV.to [deadlock]
14 What does a high load average indicate? How do you investigate load

average issues?
DEV.to [deadlock]

15 How would you troubleshoot high I/O issues on a Linux host? DEV.to [deadlock]
16 What happens when the system runs out of inodes? DEV.to [deadlock]
17 What is a zombie process? How do you find them and clean them up? DEV.to [deadlock]
18 What is a runaway process and how would you identify it? DEV.to [deadlock]
19 How do you change file permissions and ownership in Linux?

Mention the commands.
ZeroToMastery

20 What is the purpose of the chown and chmod commands? ZeroToMastery
21 What are sticky bits, setuid, and setgid? ZeroToMastery
22 How do you manage and view running processes? Mention

commands involved.
ZeroToMastery

23 How do you find and kill a process by name or port number in Linux? ZeroToMastery
24 What is SSH? How do you secure SSH access for production servers? LinkedIn: Praveen

Singampalli

25 How do you set limits for a user or a process in Linux? ZeroToMastery
26 What is nice and renice? How are they used? ZeroToMastery
27 How do you delete or clean up empty files securely? ZeroToMastery
28 Explain the differences and use-cases for hard links and symbolic

links.
ZeroToMastery

29 How do you schedule recurring tasks on Linux? ZeroToMastery
30 How would you monitor disk usage and find large files or directories

quickly?
DEV.to [deadlock];

ZeroToMastery
31 What backup strategies and tools have you implemented on Linux? DEV.to [deadlock]
32 How do you configure static and dynamic IP addresses on Linux

interfaces?
ZeroToMastery

33 How would you set up and manage firewalls on a Linux server? ZeroToMastery
34 What is SELinux/AppArmor and what role does it play in production

infrastructure?
ZeroToMastery

35 How would you investigate and solve DNS resolution issues in Linux

hosts?
DEV.to [deadlock]

36 What are the common troubleshooting steps when an application is

unreachable over the network?
ZeroToMastery

37 How would you tune the Linux kernel parameters (sysctl)? ZeroToMastery
38 What is shell scripting? Give an example of shell script automation in

past work.
ZeroToMastery

39 How does package management differ between apt and yum? ZeroToMastery
40 Which log files do you frequently check for troubleshooting? Where

are logs stored?
DEV.to [deadlock]

41 What is systemd? How does it differ from init? DEV.to [deadlock]
42 Describe the sequence of actions when a user logs into a system via

SSH.
DEV.to [deadlock]

43 How do you investigate and resolve “out of memory” issues in Linux? DEV.to [deadlock]
44 What is cgroups? How do you use cgroups to limit resource usage? ZeroToMastery
45 Which commands or tools are useful for examining network usage

and connections?
ZeroToMastery

46 What’s your strategy for securing a freshly deployed public Linux

server?
ZeroToMastery

47 What user and group management commands do you know? ZeroToMastery
48 How do you perform kernel upgrades safely? ZeroToMastery
49 How do you automate deployments or configuration management on

Linux?
LinkedIn: Praveen

Singampalli

50 Explain the basic workflow of troubleshooting a failed service on

Linux.
DEV.to [deadlock]

Answers to the above questions.

Q.No Answer

1 During a Linux system boot: BIOS/UEFI initializes hardware, bootloader (GRUB/LILO) loads the
kernel, which then initializes drivers. init or systemd starts essential services and user-space
processes. Lastly, the login manager or shell prompts the user.

2 After ls is entered: The shell creates a process to run /bin/ls, which makes system calls to list
directory contents, fetches metadata from inodes, and outputs to the terminal.

3 Inodes store filesystem metadata (owner, permissions, timestamps, disk block locations) for
files/directories, but not names.

4 /proc is a virtual filesystem exposing kernel/process info (CPU, memory, process state) as files.
5 “Filesystem full” with space available: Check inode usage (df -i), disk quotas, files on hidden

mount points, and open file descriptors holding deleted files (find via lsof).
6 Monitoring tools: top, htop, vmstat, iostat, sar, dstat, free, nmon are common, provide

CPU, memory, IO, and process info.
7 Filesystems: ext4, xfs, btrfs, zfs, nfs, tmpfs, etc. ext4/xfs common for general use; nfs for

network shares.
8 Kernel space: System and hardware code runs here, isolated from user space, where apps run.

Separation prevents user bugs from crashing the system.
9 Process: Independent execution contexts with memory and resources. Thread: Lightweight,

shares process memory/context. Threads within a process share most resources; processes are
isolated.

10 Linux uses a scheduler (CFS in modern kernels) to allocate CPU time fairly among
threads/processes based on priority and workload.

11 Linux manages memory with paging, virtual memory, cache, swap; using LRU and demand
paging to optimize performance.

12 Stack: Stores function calls, local vars, grows/shrinks per call. Heap: Dynamically allocated at
runtime with malloc, persists until freed.

13 Race conditions occur when processes/threads access shared resources concurrently. Use
locks, semaphores, mutexes in Linux to avoid.

14 High load average indicates many runnable processes; check CPU, IO bottlenecks, run top,
uptime, investigate blocking tasks.

15 Troubleshoot I/O: Use iostat, iotop, vmstat to check disk throughput, latency, IO wait states.
Identify heavy writers/readers.

16 No inodes: Can’t create new files, even with disk space. Check df -i, find/delete small
files/directories.

17 Zombie process: Defunct, finished execution but not reaped by parent. Find with `ps aux
18 Runaway process: Consumes excess CPU/memory, often an infinite loop or bug. Identify with

top/ps, kill or debug as needed.
19 Permissions: chmod (change mode), chown (change owner), chgrp (group). E.g., chmod 755

file.txt, chown user:group file.txt.
20 chown: Change file ownership (user/group). chmod: Change file/directory permissions

(read/write/execute).
21 Sticky bit: Restrict file deletion to owner/root. setuid/setgid: Run file with file owner/group

privileges (chmod u+s/g+s file).
22 View processes: ps, top, htop, pgrep, pstree, jobs (in shell).
23 Find/kill process by name: pkill processname; by port: fuser -n tcp PORTNUM or lsof -

i :PORTNUM, then kill PID.
24 SSH (Secure Shell) provides secure remote login. Secure by disabling root login, using key-based

auth, changing default ports, restricting users, enabling fail2ban.
25 Set limits: User/per-process resource limits via /etc/security/limits.conf (ulimit for

session), e.g. nofile, nproc, memlock.
26 nice: Set process priority at start. renice: Change priority of running processes. Lower value =

higher priority.
27 Delete empty files: find . -type f -empty -delete. Secure delete: shred, wipe, or srm.
28 Hard link: Another name for same inode; symbolic (soft) link: pointer to filename. Hard links

can’t span filesystems or link directories.
29 Recurring tasks: Use cron (crontab -e), or at for one-time jobs.
30 Find large files: du -h --max-depth=1, find . -size +100M -print, ncdu, or df -h for

space usage.
31 Backup strategies: rsync, tar, cpio, dd, automated cron, cloud backup solutions (e.g. AWS S3,

rclone). Incremental and full backups.
32 IP configuration: Edit /etc/network/interfaces (Debian) or ifcfg-* (RedHat), use ip addr,

ifconfig, nmcli or netplan for newer systems.
33 Firewalls: Use iptables, firewalld, ufw (Ubuntu-friendly). Define/allow/deny by ports/IPs.
34 SELinux/AppArmor: Offer mandatory access control, restricting program abilities for defense-in-

depth in production Linux systems.
35 DNS troubleshooting: Use nslookup, dig, host for lookups; check /etc/resolv.conf; verify

network routes/firewalls.
36 Unreachable app: Check process status, logs, firewall, port availability (netstat/ss), DNS, and

health checks.

37 Tune kernel: Edit /etc/sysctl.conf or use sysctl -w key=value; e.g., for networking,
memory, file descriptors.

38 Shell scripts automate tasks. Example: update packages, rotate logs, schedule cron backups.
Use Bash, sh, etc.

39 apt (Debian/Ubuntu): Uses deb packages; yum (RHEL/CentOS): Uses rpm packages, different
dependency management, configuration.

40 Logs: Main: /var/log/ (syslog, messages, auth.log, dmesg, journalctl). Check relevant logs for
service/debug info.

41 systemd: Modern PID 1 init system, service manager; replaces older init with dependency
management, parallel startup, logging.

42 SSH login: Client connects, authenticates via key/password, server spawns login shell,
initializes user environment.

43 Out of memory: System may invoke OOM killer, killing large processes. Monitor with vmstat,
top, check /var/log/messages, add swap, optimize memory use.

44 cgroups: Kernel feature to limit/resource groups of processes (CPU, memory, IO). Used by
Docker, Kubernetes, systemd.

45 Network usage: netstat, ss, iftop, nethogs, iptraf, tcpdump, wireshark.
46 Securing Linux: Update, create non-root users, configure SSH, enable firewall, disable unused

services, enforce password policies, audit logs.
47 User/group commands: useradd, usermod, passwd, groupadd, groups, deluser, delgroup.
48 Kernel upgrades: Use package manager (apt, yum), reboot, keep previous kernel(s) for fallback,

test first in staging.
49 Automation/config mgmt: Ansible, Chef, Puppet, SaltStack, shell/Python scripts; CI/CD

pipelines (Jenkins, GitLab CI), Docker, Kubernetes.
50 Service troubleshooting: Check status (systemctl status), logs (journalctl), config files,

restart, diagnose dependencies/resources.

Sources:

• DEV.to SRE/DevOps Questions

• ZeroToMastery Linux Interview Prep

• LinkedIn: Praveen Singampalli

https://dev.to/deadlock/sre-devops-interview-questions-linux-troubleshooting-4878
https://zerotomastery.io/blog/linux-interview-questions/
https://www.linkedin.com/posts/praveen-singampalli_90-of-devops-engineers-will-fail-to-answer-activity-7299627308552699904-D_H8

