Inverse Kinematics for the Rover’s Arm

Neven Johnson
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1 Background

On the rover’s arm, each revolute joint’s axis is along the positive y-axis, which is to the left
from the point of view of the rover (the positive z-axis is forward and the positive z-axis is
upward). Thus a positive rotation is clockwise as viewed from the right, like in this diagram.
This results in unintuitive negations of angles sometimes—beware.

Note that we are using the angles «, 3, and  as relative to the positive z-axis, whereas the

angles 61, 65, and 65 are relative to the previous arm link.
Goals:

1. Given a final position for the end effector (Z3) and target pitch (7), compute the angles
01, 65, 05 required to reach the desired position with the correct orientation.

2. Given a velocity vector for the end effector (75 = ¥)) and a target pitch angular velocity
(7'), compute the required joint velocities 61, 85, 0% required to move the arm as desired.



2 The Math

First we begin by performing the positional inverse kinematics. Begin by noting that we are
given the position 3 = ﬁ‘g and the pitch v of the end effector. We can solve for 7y as
3

follows (note the negation of 7):
. To xg — ccos(—7) xg — ccos(y)
Zo 23 — csin(—7) 23 + csin(y)

Now we have reduced the problem by one joint. To solve the remaining problem, consider

the following drawing:
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Using the law of cosines, we have

T3+ 25 = a® + b* — 2abcos(m — 0;)

Note that cos(m — 2) = — cos(f), so we have
2,2 _ 2 _p?
cos(fs) = 2T ZQQaba
Thus
22422 —a® - b?
0, — —1/%2 2
h =cos 570 )
Now we wish to find the angle #; = ¢; + ¢2. Note that
22
tan(—gy) = =
an(—¢») e
SO ;
— —tan (2
03 an (@)



Again using the law of cosines, we have that

b = a® + 25 + 25 — 2a4/ 2% + 23 cos(¢y) =

a’+ a3+ 25 — b?

cos(¢p1) =
(@) 2a+/x3 + 23
b = —cos’l(a2 + 22 + 22 — b2

2ar\/ 13 + 23

signs for ¢, ¢9 kinda cooked ngl
Thus we have

a’ + x4+ 22— b
L2 ) — tan™" (=)

2a+/ 13 + 23 )

01 = b1+ ¢ = —cos™ !

Now, we calculate 03. Note that
=0 — 0 —03=—v

so then

‘93:7—91—92‘

To make our formulas a little nicer, let ¢ = 23 + 22. Then we have

2 2 12
_ +a —b 1,79
9 = — 1 C— _t 1 =
1 cos™ " ( S0 ) — tan <x2)
A —a?— b
QQZCOS_I(T)
O3 =7 —01— 06

For the second part of our calculations, we simply take the time derivative of each angle to
find the corresponding angular velocity.

d d L, —at = A—a* =0, 1 d,A—a* -V
20— Zcos (T T YV ] (2 T2, 2 T T
= gles Ty ) = )
2 —a®—b? g1 1 d
=—[1—( 5l )72 %(QCEC)

Thus we have

A—a?-0v_, 1 1
0, = —[1 — N2 . —(2¢¢
2 [ ( 2a,b ) ] 2ab< CC)
Similarly, for 6;, we have
d d ?+a®— b 29
— 0, = —(—cos ! —tan (X2
dt! dt( cos™( 2ac ) (xg))



d c+a?®—b? 29

2 +a? —b? (
dt 2ac To
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_n (CQ + a? b2)2]_% 2cc - 2ac — 2ac (? + a* — b?) 1+ <22 12)1 2hTy — 29T%
B 2ac 4a?c? Ty x5
g — [1 (62 +a? — 62)2]_% 2 — c/(a2 _ b2) (1 . (22 )2)_125332 — 2’237/2
e 2ac 2ac? To x3

We can then use #] and 6, to compute 65:

d d

%03: g(—’y—ﬁl—ﬁg) = —"}//—9/1—95

So, overall we have
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