
12223682정유진

CS 개념정리: thread와 lock
thread의 개념 및 공유 변수 접근을 방지하기 위한 lock

thread
프로그램 내 실행흐름

process
실행 중인 프로그램

process와 thread
process, thread 개념

for(int i=0; i<5; i++){

printf(“%d”, i);

}

i=1일 때의 실행흐름

thread
프로그램 내 실행흐름

i=2일 때의 실행흐름

process와 thread
thread를 사용했을 때의 장점

process
실행 중인 프로그램

CPU
연산을 처리

1. 병렬적으로 더 빠른 시간 내에 작업을 처리할 수 있다

Process 의 작업 수행

CPU가 여러 개 있는 멀티 프로세서 환경에서
하나의 프로그램을 실행하려고 할 때,연산을 하지 않는 프로세서가 존재한다

컴퓨터 시스템의 목적: CPU를 효율적으로 활용하여 성능 향상하기!

CPU
연산을 처리

process와 thread
thread를 사용했을 때의 장점

1. 병렬적으로 더 빠른 시간 내에 작업을 처리할 수 있다

Thread 의 작업 수행

thread
프로그램 내 실행흐름

process
실행 중인 프로그램

thread
프로그램 내 실행흐름

Thread 의 작업 수행

CPU
연산을 처리

CPU
연산을 처리

process
실행 중인 프로그램

process와 thread
thread를 사용했을 때의 장점

2. I/O작업을 수행하는 경우, 멈추지 않고 다른 동작을 진행할 수 있다

process 의 I/O 작업 수행

외부장치(키보드, 마우스 등)와 상호작용하는 작업
CPU에 비해 훨씬 느리다. 최소 수천 배!

키보드로 값이 전부 다
입력 될 때까지 기다리는 중

CPU
연산을 처리

process와 thread
thread를 사용했을 때의 장점

2. I/O작업을 수행하는 경우, 멈추지 않고 다른 동작을 진행할 수 있다

Thread 의 I/O 작업 수행

thread
프로그램 내 실행흐름

thread
프로그램 내 실행흐름

외부장치(키보드, 마우스 등)와 상호작용하는 작업
CPU에 비해 훨씬 느리다. 최소 수천 배!

CPU
연산을 처리

process와 thread
thread를 사용했을 때의 장점

2. I/O작업을 수행하는 경우, 멈추지 않고 다른 동작을 진행할 수 있다

다른 thread 실행
I/O로 인해 멈추지 않는다

thread
프로그램 내 실행흐름

thread
프로그램 내 실행흐름

외부장치(키보드, 마우스 등)와 상호작용하는 작업
CPU에 비해 훨씬 느리다. 최소 수천 배!

CPU
연산을 처리

process와 thread
thread와 공유 변수

한 process 안의 thread들은 같은 메모리 공간을 공유한다

thread
프로그램 내 실행흐름

thread
프로그램 내 실행흐름

thread
프로그램 내 실행흐름

Memory
저장소

(data, code, stack,
heap 등을 저장)

메모리 접근!

메모리 접근!

메모리 접근!

thread 2

process와 thread
thread와 공유 변수

같은 메모리 공간을 공유하면서 문제가 발생하는 경우: 동일한 변수에 접근

thread 1 Memory

50X

x = x + 1 x = x + 1

CPU
0x80

eax

thread 2

process와 thread
thread와 공유 변수

같은 메모리 공간을 공유하면서 문제가 발생하는 경우: 동일한 변수에 접근

thread 1 Memory

50X

x = x + 1 x = x + 1

CPU
0x80

eax

mov 0x80 %eax

add $0x1 %eax

mov %eax 0x80

thread 2

process와 thread
thread와 공유 변수

같은 메모리 공간을 공유하면서 문제가 발생하는 경우: 동일한 변수에 접근

thread 1 Memory

50X

x = x + 1 x = x + 1

CPU
0x80

eax

mov 0x80 %eax

add $0x1 %eax

mov %eax 0x80
50

process와 thread
thread와 공유 변수

같은 메모리 공간을 공유하면서 문제가 발생하는 경우: 동일한 변수에 접근

thread 1 Memory

50X

x = x + 1 x = x + 1

CPU
0x80

eax

mov 0x80 %eax

add $0x1 %eax

mov %eax 0x80
51

thread 2

process와 thread
thread와 공유 변수

같은 메모리 공간을 공유하면서 문제가 발생하는 경우: 동일한 변수에 접근

thread 1 Memory

51X

x = x + 1 x = x + 1

CPU
0x80

eax

mov 0x80 %eax

add $0x1 %eax

mov %eax 0x80
51

thread 2

process와 thread
thread와 공유 변수

같은 메모리 공간을 공유하면서 문제가 발생하는 경우: 동일한 변수에 접근

thread 1 Memory

50X

x = x + 1 x = x + 1

CPU
0x80

eax

mov 0x80 %eax

add $0x1 %eax

mov %eax 0x80
51

thread 2

process와 thread
thread와 공유 변수

같은 메모리 공간을 공유하면서 문제가 발생하는 경우: 동일한 변수에 접근

thread 1 Memory

50X

x = x + 1 x = x + 1

CPU
0x80

eax

mov 0x80 %eax

add $0x1 %eax

mov %eax 0x80
51

thread 2

thread 2

process와 thread
thread와 공유 변수

같은 메모리 공간을 공유하면서 문제가 발생하는 경우: 동일한 변수에 접근

thread 1 Memory

50X

x = x + 1 x = x + 1

CPU
0x80

eax

mov 0x80 %eax

add $0x1 %eax

mov %eax 0x80
50

thread 2

process와 thread
thread와 공유 변수

같은 메모리 공간을 공유하면서 문제가 발생하는 경우: 동일한 변수에 접근

thread 1 Memory

50X

x = x + 1 x = x + 1

CPU
0x80

eax

mov 0x80 %eax

add $0x1 %eax

mov %eax 0x80
51

process와 thread
thread와 공유 변수

같은 메모리 공간을 공유하면서 문제가 발생하는 경우: 동일한 변수에 접근

Memory

51X

x = x + 1 x = x + 1

CPU
0x80

eax

mov 0x80 %eax

add $0x1 %eax

mov %eax 0x80
51

thread 2thread 1

process와 thread
thread와 공유 변수

같은 메모리 공간을 공유하면서 문제가 발생하는 경우: 동일한 변수에 접근

thread 1 Memory

50X

x = x + 1 x = x + 1

CPU
0x80

eax

mov 0x80 %eax

add $0x1 %eax

mov %eax 0x80
51

thread 2

thread 1

process와 thread
thread와 공유 변수

같은 메모리 공간을 공유하면서 문제가 발생하는 경우: 동일한 변수에 접근

Memory

50X

x = x + 1 x = x + 1

CPU
0x80

eax

mov 0x80 %eax

add $0x1 %eax

mov %eax 0x80
51

thread 2

process와 thread
임계 영역과 상호 배제

경쟁 조건(race condition)
명령어의 실행 순서에 따라 결과가 달라지는 상황

임계 영역(critical section)
race condition을 유발하는 코드 부분

상호 배제(mutual exclusion)
임계 영역 내 코드를 수행하는 동안
다른 thread가 실행할 수 없게끔 보장해 주는 것

세 개의 코드가 모두 원자적으로 실행되길 바람

세 개의 코드가 하나의 작은 단위처럼,
모두 수행되거나 / 수행되지 않거나의 결과를 가지는 것

mov 0x80 %eax

add $0x1 %eax

mov %eax 0x80

x = x + 1

thread lock
lock의 개념 및 평가

x = x + 1

Lock (&mutex)

Unlock (&mutex)

thread 1

1. 현재 lock 잡은 thread 없음!
Thread 1이 lock 잡고 임계 영역에 들어감

thread 2

2. 임계 영역에 들어가고자 lock을 잡으려 하였으나
이미 다른 쓰레드가 lock 잡고 수행 중임

3. Thread 1이 작업을 다 수행한 후 unlock
이제 대기중이던 thread 2가 lock을 잡을 수 있게 됨

& mutex: lock 변수로,
현재 이 자원이 잠겨 있는지열려 있는지를 기록한다.
0 = 자원 사용 가능(unlock), 1 = 자원 사용 중(unlock)

thread lock
lock의 개념 및 평가

x = x + 1

Lock (&mutex)

Unlock (&mutex)

lock은 어떻게 구현해야 할까? 어떻게 만드는 것이 좋은 lock일까?

1. 상호 배제를 제대로 지원하는가

2. thread들이 lock 획득에 대한 공정한 기회를 받는가

3. 성능 평가

- thread가 lock을 잡는 데 발생하는 비용은 얼마나 되는가?
(lock 사용 시 발생하는 overhead)

- 여러 thread가 단일 CPU에서 lock을 획득하려고 경쟁하는 경우

thread lock
lock의 구현: interrupt 제어

Void lock(){

DisableInterrupts();

}

Void unlock(){

EnableInterrupts();

}

가장 간단한 생각: 임계 구역 수행 중일 때 CPU가 다른 작업을 하지 못하게 막는다

interrupt: CPU가 하던 일을 잠깐 멈추고,
갑자기 들어온 외부 신호(키보드, 마우스, 알림 등)를 먼저 처리하게 만드는 장치

한계: CPU가 여러 개인 경우 제어가 어려움 / 중요한 인터럽트마저 무시하는 경우 발생

thread lock
lock의 구현: 하나의 flag 사용

하드웨어를 사용하지 않고 변수만으로 lock을 구현할 수는 없을까?

Void lock(lock_t *mutex){

while(mutex → flag == 1)

;

mutex → flag = 1;

}

flag = 0

lock_t Void unlock(lock_t *mutex){

mutex → flag = 0;

}

thread lock
lock의 구현: 하나의 flag 사용

문제점! 상호 배제가 안정적으로 보장되지 못함

Void lock(lock_t *mutex){

while(mutex → flag == 1)

;

mutex → flag = 1;

}

flag = 0

lock_t Void unlock(lock_t *mutex){

mutex → flag = 0;

}

thread 1 thread 2

thread lock
lock의 구현: 하나의 flag 사용

문제점! 상호 배제가 안정적으로 보장되지 못함

Void lock(lock_t *mutex){

while(mutex → flag == 1)

;

mutex → flag = 1;

}

flag = 1

lock_t Void unlock(lock_t *mutex){

mutex → flag = 0;

}

thread 1 thread 2

임계 영역으로 들어옴

thread lock
lock의 구현: 하나의 flag 사용

문제점! 상호 배제가 안정적으로 보장되지 못함

Void lock(lock_t *mutex){

while(mutex → flag == 1)

;

mutex → flag = 1;

}

flag = 1

lock_t Void unlock(lock_t *mutex){

mutex → flag = 0;

}

thread 1 thread 2

임계 영역으로 들어옴임계 영역으로 들어옴

thread lock
lock의 구현: peterson의 알고리즘

하나의 flag만으로는 상호 배제를 완벽하게 수행할 수 없다!
또 다른 변수를 하나 더 추가해서 조정하자

Void lock(lock_t *mutex){

flag[self] = 1;

turn = 1 - self

while(flag[1 - self] == 1

&& turn == 1 - self)

;

}

turn = 0

Void unlock(lock_t *mutex){

flag[self] = 0;

}

flag[2] = 0

2개의 thread만 안정적으로 처리할 수 있음
최근의 하드웨어에서는 명령어가 순차적으로 실행된다는 보장이 없어서, 사용 불가

→ 하드웨어 명령어를 통해 수행하자!

thread lock
lock의 구현: Test-And-Set을 사용한 spin lock

Int TestAndSet (int *old_ptr, int new){

Int old = *old_ptr;

*old_ptr = new;

return old

}

Void lock(lock_t *lock){

while(TestAndSet(&lock→flag, 1) == 1);

lock → flag = 1;

}

flag = 0

lock_t

CPU의 하드웨어 지원 기능
: 원자적 교체 명령어

이전 값을 검사하며 동시에
새로운 값을 설정하는 것이
원자적으로 처리된다

thread lock
lock의 구현: Compare-And-Swap을 사용한 spin lock

Int CompareAndSwap (int *ptr, int expected, int new){

Int original = *ptr;

if(original == expected) *ptr = new;

return original

}

Test-And-Set 과의 차이점?

CAS는 메모리 값을 예상한 값(lock 획득 가능한 상태인지)과 비교하고 업데이트
→ 조건부 갱신, 더 범용적으로 사용된다

TAS는 무조건적으로 값을 업데이트 하기 때문에, 주로 “누가 lock을 잡았는지＂에 사용

thread lock
spin lock의 성능

lock을 잡지 못한 thread는 계속해서 spin lock을 통해 while 문을 빙글빙글 돌 것이다
해당 thread가 CPU를 할당받아도 의미 없이 돌기만 할 것!

thread 3

우선순위 역전이 발생할 수 있음: 더 먼저 수행되어야 하는 thread가 빠르게 수행되지 못한다

Lock (&mutex)

thread 1

thread 2

thread lock
spin lock의 성능

상호 배제는 제대로 지원할 수 있지만, 모든 thread가 공정한 기회를 받지 못한다.

운이 나쁜 경우, while문을 계속하여 순회한 thread가
또 다시 밀려서 계속 의미 없는 반복을 진행하고 있을 수도 있다.

성능 또한 좋지 못하다.

n개의 thread가 하나의 lock을 위해 대기하고 있다고 할 때,
CPU를 할당 받아도 의미 있는 일을 하지 못한다.

thread 1 thread 2 thread 3

다만, CPU가 여러 개인 경우, thread가 기다리는 시간이 줄어들기 때문에
lock을 잡기 위해 낭비하는 비용이 많지 않다!

thread lock
lock의 구현: Load-Linked, Store-Conditional

Int StoreCondition (int *ptr, int value){

if(no update to *ptr){

*ptr = value;

return 1;

} else return 0;

}

Int LoadLinked (int *ptr){

return *ptr;

}

임계 영역 진입을 위한 명령어 쌍

동일한 주소에 다른 store 값이
없는 경우에만 저장 성공

저장이 성공한다면 LoadLinked가
탑재했던 답을 갱신한다

저장 성공 → return 1
저장 실패 → return 0

thread lock
lock의 구현: Load-Linked, Store-Conditional

lock 함수를 어떻게 구성할까?

먼저 LoadLinked 함수로
lock의 flag를 살피고,
1인 경우 돌면서 대기한다

저장 성공 → return 1
저장 실패 → return 0

Void lock(lock_t *lock){

while(1){

while(LoadLinked(&lock → flag) == 1)

;

}

if(StoreConditional(&lock → flag, 1) == 1)

return;

}

StoreConditional 함수를 통해
flag를 1로 업데이트한다

저장 성공했다면 완료(return)
실패했다면 처음부터 다시 시도

thread lock
lock의 구현: Fetch-And-Add을 사용한 ticket lock

Int FetchAndAdd (int *ptr){

int old = *ptr;

*ptr = old + 1;

return old;

}

ticket과 turn(차례) 조합으로 lock을 구성한다

FetchAndAdd함수로
thread의 차례를 반환 받는다

Void lock(lock_t *lock){

int myturn = FetchAndAdd(&lock → ticket);

while(lock → turn != myturn)

;

}

ticket = 0
turn = 0

lock_t

번호를 할당 받은 순서대로
thread가 lock 획득하도록

	슬라이드 1: CS 개념정리: thread와 lock
	슬라이드 2: process와 thread
	슬라이드 3: process와 thread
	슬라이드 4: process와 thread
	슬라이드 5: process와 thread
	슬라이드 6: process와 thread
	슬라이드 7: process와 thread
	슬라이드 8: process와 thread
	슬라이드 9: process와 thread
	슬라이드 10: process와 thread
	슬라이드 11: process와 thread
	슬라이드 12: process와 thread
	슬라이드 13: process와 thread
	슬라이드 14: process와 thread
	슬라이드 15: process와 thread
	슬라이드 16: process와 thread
	슬라이드 17: process와 thread
	슬라이드 18: process와 thread
	슬라이드 19: process와 thread
	슬라이드 20: process와 thread
	슬라이드 21: process와 thread
	슬라이드 22: thread lock
	슬라이드 23: thread lock
	슬라이드 24: thread lock
	슬라이드 25: thread lock
	슬라이드 26: thread lock
	슬라이드 27: thread lock
	슬라이드 28: thread lock
	슬라이드 29: thread lock
	슬라이드 30: thread lock
	슬라이드 31: thread lock
	슬라이드 32: thread lock
	슬라이드 33: thread lock
	슬라이드 34: thread lock
	슬라이드 35: thread lock
	슬라이드 36: thread lock

