
​import java.util.concurrent.atomic.AtomicInteger;​

​public class IQueue<T> {​
​private final AtomicInteger head = new AtomicInteger(0);​
​private final AtomicInteger tail = new AtomicInteger(0);​
​private final Object[] items;​

​public IQueue(int capacity) {​
​items = new Object[capacity];​

​}​

​public void enq(T x) throws FullException {​
​int slot;​
​do {​

​slot = tail.get();​
​if (slot - head.get() >= items.length) {​

​throw new FullException("Queue is full");​
​}​

​} while (!tail.compareAndSet(slot, slot + 1));​
​items[slot % items.length] = x;​

​}​

​@SuppressWarnings("unchecked")​
​public T deq() throws EmptyException {​

​T value;​
​int slot;​
​do {​

​slot = head.get();​
​if (tail.get() - slot <= 0) {​

​throw new EmptyException("Queue is empty");​
​}​
​value = (T) items[slot % items.length];​

​} while (!head.compareAndSet(slot, slot + 1));​
​return value;​

​}​

​public static class FullException extends Exception {​
​public FullException(String message) {​

​super(message);​
​}​

​}​

​public static class EmptyException extends Exception {​
​public EmptyException(String message) {​



​super(message);​
​}​

​}​
​}​




