import java.util.concurrent.atomic.Atomiclnteger;

public class IQueue<T> {
private final Atomiclnteger head = new Atomiclnteger(0);
private final Atomiclnteger tail = new Atomiclnteger(0);
private final Object[] items;

public IQueue(int capacity) {
items = new Object[capacity];

}

public void enq(T x) throws FullException {
int slot;
do{
slot = tail.get();
if (slot - head.get() >= items.length) {
throw new FullException("Queue is full");
}
} while ('tail.compareAndSet(slot, slot + 1));
items[slot % items.length] = x;

}

@SuppressWarnings("unchecked")
public T deq() throws EmptyException {
T value;
int slot;
do {
slot = head.get();
if (tail.get() - slot <= 0) {
throw new EmptyException("Queue is empty");
}
value = (T) items][slot % items.length];
} while (thead.compareAndSet(slot, slot + 1));
return value;

}

public static class FullException extends Exception {
public FullException(String message) {
super(message);
Y
}

public static class EmptyException extends Exception {
public EmptyException(String message) {



}

}

}

(B

super(message);

class IQueue<T> {
AtomicInteger head = new AtomicInteger(0);
AtomicInteger tail = new AtomicInteger(0);
T[] items = (T[]) new Object[Integer.MAX VALUE];
public void eng(T x) {
int slot;
do {
slot = tail.get();
} while (!tail.compareAndSet(slot, slot+l));

N\a

items[slot] = x;

}
public T deq() throws EmptyException {

T value;
int slot;
do {

slot = head.get();

value = items[slot]; ¢

if (value == null)

throw new EmptyException();’

} while (!head.compareAndSet(slot, slot+l));
return value;






