G-Portugol

Manual da versao v1.0

Thiago Silva

thiago.silva@kdemail.net

8 de abril de 2006

Sumario

1 Introducao

2 Caracteristicas Gerais
2.1 Tiposdedados
2.2 Estruturasdecontrole e
2.3 Subprogramas (fungdes)

3 Programando em G-Portugol
3.1 OlAMUNdO e
3.2 Varidveis e e
3.2.1 Variaveis primitivas
3.2.2 Vetores e matrizes (conjuntos)
3.3 Estruturas condicionais
3.4 EstruturasderepetiCdo e
3.4.1 Aestrutura“enquanto” L e
3.4.2 Aestrutura“para”
3.5 FUNCOES e
3.5.1 Fungbesinternas

4 Implementacao da linguagem G-Portugol
4.1 IntrodUGBO o e e
4.2 AlINQUAgEM . . . e
421 Diretrizes paraodesigndalinguagem
4.3 Formato Estrutural e e
4.3.1 Declaragdodoalgoritmo
4.3.2 Declaragdo devariaveisglobais Lo o
4.3.3 Bloco Principal e
4.3.4 Atribuigbes e
4.4 FUNGOES o e
4.5 Funglesinternas e
4.5.1 Afuncao “Imprima” e e
4.5.2 Afuncdo “leia” e

5 O programa GPT
51 IntruduGlo
5.2 OpGOES QEraiS . . . v i i i e e e
5.3 Tratamentodeerros e
5.4 EXECUGAO e Programas v v v v it e e e e e e e e
5.4.1 Compilagéo e geragao de cédigo executavel
5.4.2 TradugdoparaalinguagemC
5.4.3 Interpretacdode cOdigo e
5.4.4 Processando algoritmos divididos em multiplos arquivos

A Gramatica da linguagem G-Portugol
A1 Termos IéXiCOS o e
A2 Gramatica e e

Resumo

Esse ndo é um livro que ensina programacao, algoritmos ou l6gica. Seu objetivo é servir de manual
para a linguagem G-Portugol e ferramentas relacionadas. Portanto, ele assume que o leitor seja versado
em linguagens de programacao e desenvolvimento de software.

Capitulo 1

Introducao

G-Portugol é um dialeto da linguagem/pseudo-cédigo portugol (ou portugés estruturado), que é muito
usada para descrever algoritmos em portugués, de forma livre e espontanea. Em geral, livros dedicados
ao ensino de algoritmos, l6gica e estruturas de dados utilizam alguma forma dessa linguagem.

A proposta de G-Portugol é disponibilizar uma implementacéo da linguagem portugol, fornecendo fer-
ramentas que oferecam recursos de edicdo, compilagdo, execucédo e depuragdo de programas escritos
nessa linguagem, de forma a favorecer estudantes que dao os primeiros passos no aprendizado de de-
senvolvimento de softwares, bem como professores que ensinam disciplinas relacionadas a computagao.
Portanto, seu foco é primariamente didatico.

Se encontram disponiveis atualmente um compilador, tradutor e interpretador para a linguagem (GPT)
e um ambiente visual simples (GPTEditor) que permite a edigcdo, execucdo e depuracdo de programas
escritos em G-Portugol.

A seguir é apresentado os assuntos abordados nos capitulos seguintes:

e Capitulo 2: pretende discutir as caracteristicas gerais da linguagem.

e Capitulo 3: aborda a programacado em G-Portugol, suas estruturas e recursos, utilizando exemplos
ilustrativos e comparando com linguagens populares. Embora o capitulo trate da programacao, ele
nao tem como objetivo explicar programagao em si ou a teoria/historia por traz das estruturas abor-
dadas.

e Capitulo 4: trata da implementagao da linguagem. Discute as decisdes de design e recursos ofereci-
dos por G-Portugol.

e Capitulo 5: descreve o programa GPT.

No apéndice deste livro pode ser encontrado a gramatica da linguagem G-Portugol.

G-Portugol 1

Capitulo 2

Caracteristicas Gerais

A linguagem em si ndo difere fundamentalmente ou apresenta novidades em relagdo ao uso popular de
portugol. Semelhante a linguagens como Pascal e C, é uma linguagem imperativa, com comandos de
controle de fluxo, manipulacado de dados e recursos de entrada e saida basicos. A linguagem em case
sensitive, 0 que significa que, por exemplo, uma fungao chamada “leia” é diferente de uma fun¢do chamada
“Leia”.

2.1 Tipos de dados

Tipos primitivos como inteiro e literal sdo suportados. Literais séo tipos integrais, e néo, tipos construidos
pelo usuario. A tabela 2.1 apresenta os tipos com respectivos exemplos de dados:

Tipos primitivos
Tipo Exemplos
inteiro 19
real 2.5
caractere | 'a’
literal “‘uma frase”
l6gico verdadeiro

Tabela 2.1: Tipos de dados primitivos

Com esses tipos, pode-se criar conjuntos como vetores ou matrizes “n” dimensionais. Tipos mais
complexos ndo sao suportados.

2.2 Estruturas de controle

O conjunto de estruturas de controle sdo os mais primitivos. Uma estrutura condicional (se/senao) e duas
estruturas de repeticdo (enquanto/para) sdo suportadas. Embora a estrutura “para” seja uma especiali-
zagao de um lago simples como o “enquanto”, ela foi implementada, visto que uma variedade de livros e
muitos professores os discutem.

G-Portugol 2

Capitulo 2. Caracteristicas Gerais

Estruturas de controle
Estrutura Tipo
se/entdo/sendo/ | condicional
enquanto repeticao
para repeticao

Tabela 2.2: Estruturas de repeticao

2.3 Subprogramas (funcoes)

Subprogramas sdo como fungdes em C. Podem receber qualquer nimero de parametros, sejam tipos primi-
tivos ou vetores/matrizes, e podem retornar apenas valores primitivos. Entretanto, ndo é permitido declarar
funcdes aninhadas ou fungdes com parametros variaveis. Vale ressaltar que passagem de parametros é
sempre feita por valor.

G-Portugol 3

Capitulo 3

Programando em G-Portugol

A proposta desse capitulo é mostrar os elementos da linguagem G-Portugol usando programas como
exemplos. Nao é um capitulo sobre como programar, nem tem como intuito ensinar algoritmos. Portanto,
€ esperado que o leitor seja familiarizado com programacao.

3.1 Ola Mundo

Mantendo a tradigdo, vamos criar nosso primeiro programa. O proposito dele sera exibir na tela o texto
"Ola mundo". Crie um arquivo chamado "olamundo.gpt"com o seguinte conteddo:

Programa 1 “Ola Mundo” em G-Portugol.
/%
Nosso primeiro programa

*/

algoritmo olamundo;

inicio
imprima("0l4 mundo!");
fim

Apods salvar o arquivo, digite o seguinte na linha de comando:

No linux:
$ gpt -o olamundo olamundo.gpt
No Windows:
\> gpt -o olamundo.exe olamundo.gpt

Esse comando compila o algoritmo e salva o arquivo binario resultante como “olamundo” (ou “ola-
mundo.exe”) no diretorio atual. Se a opgdo “-0 <arquivo>" nao for informada, o GPT criara o executavel
usando o nome do algoritmo. Ap6s executar o programa criado, é exibido o texto “Ola mundo!” na tela.

Como j& deve ter assumido, comentérios ao estilo C (/**/) e C++ (/) sdo permitidos e o que estiver entre
aspas duplas (") é tratado como uma string ou constante literal. Escapes s@o permitidos como EOL (\n),
tabulacéo (\t) dentre outros. N&o é permitido a concatenagdo em multiplas linhas como na linguagem C:

G-Portugol 4

Capitulo 3. Programando em G-Portugol

imprima("Isso & uma "
"Concatenacg8o"); //erro!

Outro detalhe é a pontuag@o. Da mesma forma que em C, o “;” é utilizado como finalizador de enuncia-
dos.

3.2 Variaveis

A declaracao de variaveis deve ser feita dentro de um bloco especifico, que deve aparecer logo apdés a
declaragéo do algoritmo. O bloco é iniciado pela palavra-chave “variaveis” (sim, com acento) e termina
com a palavra chave “fim-varidveis”. Pelo menos uma varidvel deve ser declarada dentro do bloco (embora
0 bloco em si seja opcional) e apenas um bloco em escopo global deve ser declarado. Eis um exemplo
para estudo:

Programa 2 Declaragdo de varidveis globais.
algoritmo teste_variaveis;

variaveis
X : inteiro;
nome : literal;
fim-variaveis

inicio
fim

3.2.1 Variaveis primitivas

Variaveis primitivas sdo declaradas seguindo o seguinte modelo:

<identificador> [, identificador]* : <tipo>;

Isso €, um ou mais identificadores separados por virgula, seguido de um “:”, seguido de um tipo, se-
guido, finalmente, de “;”. Como pode-se notar, € parecido com Pascal. Assim que um programa € execu-
tado, todas as variaveis, primitivas ou vetores/matrizes, declaradas sao iniciadas com um valor nulo ou “0”
automaticamente. Vale ressaltar que constantes (const, final, etc) ndo sao suportados. Os tipos primitivos
suportados encontram-se na tabela 2.1

A fim explorar melhor os aspectos da declaragcédo, seguem-se alguns comentarios a respeito do Ultimo
exemplo (programa 2)

e Observe que o nome do algoritmo (“teste_variaveis”) ndo tem acento. Se declarar o algoritmo como
“teste_variaveis” e tentar compilar o cédigo, o seguinte erro sera exibido:

Linha: 1 - “teste_variaveis” nao pode ter caracteres especiais.

Portanto, identificadores (nomes de variaveis, fungbes e do algoritmo) ndo podem ter acentos ou
caracteres especiais como $, #, etc. A definicdo de um identificador em G-Portugol é equivalente ao
das linguagens populares: uma letra (a-z ou A-Z) seguido de qualquer nimero de letras ou niume-
ros. Finalmente, underlines sdo permitidos. Cedilhas, portanto, também nao formam identificadores
validos.

e O segundo ponto, é a palavra-chave “variaveis”: ela tem acento, e isso é permitido e obrigatério.

G-Portugol 5

Capitulo 3. Programando em G-Portugol

e O terceiro, é a definicdo do bloco e sua (falta de) semelhanca com o Pascal. Todas os blocos em
G-Portugol tentam seguir o formato “nome/fim-nome”, em favor da uniformidade e em detrimento de
excecgoes linguisticas que confundem os estudantes.

¢ E, finalmente, o quarto ponto é a auséncia de cédigo entre “inicio” e “fim”. O programa nao € obrigado
a ter enunciados ou comandos.

Para maiores detalhes, veja o capitulo 4, sobre a implementagao da linguagem.

3.2.2 Vetores e matrizes (conjuntos)

Vetores e matrizes “n” dimensionais de tipos primitivos sdo suportados. Um exemplo de declaragcdo de
uma matriz:

variaveis
bitset : matriz[10] de légicos;
quadr : matriz[4][4] de inteiros;
fim-variaveis

O tipo do vetor ou matriz é dado pelo nome do tipo no plural (“inteiros” para tipo inteiro, “literais” para
tipo literal, etc). Os subscritos na declaragao (delimitados por “[]”) indicam o tamanho da matriz, e sua
dimensao é informada pelo numero de subscritos. Portanto, “bitset” é um vetor de 10 valores légicos,
enquanto “quadr” é uma matriz bidimensional, onde as duas dimensées tem tamanho 4.

E importante observar que matrizes sdo “0 based”, isso &, iniciam no indice 0 e seus indices sdo sempre
inteiros positivos. Logo, a matriz “bitset” pode ser usada do indice 0 até o indice 9 (inclusive). Seu indice
10 ndo é valido e seu uso podera acarretar em erros de execugao (runtime errors). Matrizes, assim como
varigveis de tipos primitivos, sdo inicializadas com o valor “0” ou “nulo” em todas as suas posigdes. Quando
usadas como argumentos de fun¢des, matrizes sédo passadas por valor.

“O mundo é divido em dois grupos: aqueles que comegam a contar a partir do "0“, e aqueles
que ndo.”

— Anbnimo

3.3 Estruturas condicionais

Por enquanto, apenas a estrutura se/entdo/sendo é suportada. Essa e as demais estruturas utilizam
expressoes, que sao avaliadas para que uma decisdo seja tomada (repetir execugao, selecionar bloco
de instrugdes, etc). Qualquer expressao pode ser avaliada como expressao légica. Expressées numéricas
de valor “0” sdo avaliadas como falso. Demais valores numéricos sédo avaliados como verdadeiro. Valores
literais nulos, da mesma forma, sdo avaliados como falso, e demais textos, como verdadeiro. Para maiores
detalhes sobre expressodes, veja a secao 4.3.3.

enquanto x faga //depende do valor de x
enquanto "nome" = "nome" faga //avalia como verdadeiro
enquanto verdadeiro faga //avalia como verdadeiro
enquanto 3+5 faca //avalia 8 como verdadeiro
enquanto "nome" faga //avalia como verdadeiro
enquanto 0 faga //avalia 0 como falso
enquanto "" facga //avalia como falso
enquanto ’’ faga //avalia como falso

O programa 3 ilustra um algoritmo simples que verifica se o0 usudario € maior de idade.

Alguns pontos a serem considerados:

G-Portugol 6

Capitulo 3. Programando em G-Portugol

Programa 3 Exemplo de programa que utiliza estrutura condicional.

algoritmo idade;

variaveis

idade : inteiro;
nome : literal;

fim-variaveis
inicio
imprima("Digite seu nome:");
nome := leia();
imprima(nome, ", digite sua idade:");

idade := leia();

se idade >= 18 entdo

se idade < 60 entdo
imprima("adulto!");
sendo
imprima("ancifo", ’!7);
fim-se

sendo

imprima("menor", "!");

fim-se

fim

O nome do algoritmo é “idade”, assim como o nome de uma variavel. Nao ha conflitos.

i

O operador de atribuicéo é o pascal-like “:=".
A funcgéo interna “leia” pode ser usada por variaveis primitivas de qualquer tipo.

A fungéo “imprima” recebe um numero de argumentos variaveis, que podem ser constantes literais
(nimeros, textos entre aspas, caracteres entre aspas simples,...), variaveis primitivas ou indices de
vetores/matrizes. Os valores sdo concatenados e adicionados de um caractere EOL (end of line, ou
fim de linha).

Ja vimos que strings/literais constantes sao denotados por texto entre aspas duplas ("). Tal qual em
C, um caractere entre aspas simples (') € um caractere constante que, também, permite escapes
para representar caracteres como EOL (\n’).

LIS

Assim como a palavra-chave “varidveis”, “entdo” e “sendo” devem ser acentuadas.
Paréntesis ao redor da expressao da estrutura “se/entdo” sao opcionais.

Como em “variaveis/fim-variaveis”, blocos “se” tem seus respectivos e obrigatorios “fim-se”. Nao ha a
opcao de ignorar a definigdo do bloco quando apenas um enunciado é usado, como na linguagem C

onde o uso de “{}” é opcional. Também, ndo ha imposicdes sobre a indentacdo. O programa 4 ilustra
esse assunto.

G-Portugol 7

Capitulo 3. Programando em G-Portugol

Programa 4 Uso incorreto de estrutura condicional.
//cddigo invalido: faltando fim-se
algoritmo se_invalido;

inicio
se x = 2 entéo
imprima("ok");
imprima("estou dentro ou fora do bloco \"se\"7");
fim

3.4 Estruturas de repeticao

3.4.1 A estrutura “enquanto”

A estrutura “enquanto” é a mais basica e comum das estruturas de repeticdo. Seu funcionamento é o
mesmo que em outras linguagens populares, onde um conjunto de instrugdes é executado repetidamente
enquanto o valor I6gico de uma dada expressao for avaliado como “verdadeiro”.

Programa 5 Exemplo de programa que utiliza a estrutura “enquanto”.
algoritmo fatorial;

variaveis
res : inteiro;
fat : inteiro;
X : inteiro;
fim-variaveis

inicio
imprima("Digite um nimero:");
x := leiaQ);

fat := x;
res := 1;

enquanto x <> 0 faga
res := res * x;
X = x - 1;
fim-enquanto

imprima("fatorial de ",fat," & igual a ",res);
fim

]

Assim como na estrutura “se/entao”, parénteses em volta da expressédo sao opcionais e as expressdes
seguem as mesmas regras.

3.4.2 A estrutura “para”

A estrutura “para” é uma especializacdo da estrutura “enquanto”, e costuma ser ensinada em cursos de
programagédo. Sua sintdxe € semelhante ao que se vé em literatura sobre algoritmos e estruturas de dados,
entretanto, € uma sintaxe diferente de linguagens populares como C e Java.

G-Portugol 8

Capitulo 3. Programando em G-Portugol

A estrutura “para” tem a seguinte forma:

para <variavel> de <express&o> até <expressfo> [passo <inteiro>] faga
[lista de comandos]
fim-para

Onde:

e “varigvel” deve ser uma variavel numérica;

e “‘expressdo” deve ser uma expressao que tem seu valor avaliado como numérico;
e “passo”, se existir, deve ser seguido por um inteiro constante.

As expressdes de/até controlam os valores que a variavel numérica tera no inicio e no fim do lago,
respectivamente. Tanto o controle da frequéncia, quanto a decisdo de incrementar ou decrementar a
variavel de controle é feita pelo termo opcional “passo”, e seu valor padrao é 1. Por exemplo, para iterar o
valor de uma varidvel numérica “x” de 0 até 10, escreve-se:

para x de 0 até 10 faca
//comandos. . .
fim-para

Da mesma forma, para uma iteracao decrescente, de 2 em 2, escreve-se:

para x de 10 até O passo -2 faga
//comandos. ..
fim-para

Programa 6 Exemplo de programa que utiliza a estrutura "para“.
algoritmo fatorial;

variaveis
res : inteiro;
fat : inteiro;
X : inteiro;
fim-variaveis

inicio
imprima("Digite um namero:");
fat := leia();

res := 1;

para x de fat até 1 passo -1 faga
res := res * X;

fim-para

imprima("fatorial de ",fat," & igual a ",res);
fim

Em comparagéo com a estrutura “for” de linguagens com sintaxe baseadas em C, ha diferencas nao so
de sintaxe, mas de implementacédo. Um “for” que itera sobre uma variavel numérica de 0 até (incluindo) 10,

G-Portugol 9

Capitulo 3. Programando em G-Portugol

ao sair do laco, o valor dessa variavel sera 11. Em G-Portugol, a variavel terd o valor 10 ao sair do laco.
Essa diferenga acontece porque a sintaxe do “para” induz a esse comportamento, diferente da sintaxe do
“for”, que tem um aspecto de mais baixo nivel.

//cddigo em C
for(x = 0; x <= 10; x++);
printf ("%d", x); //imprime ¢¢11°’

//cddigo equivalente em G-Portugol
para x de 0 até 10 faca
fim-para

imprima(x); //imprime ‘€107’

Ademais, da mesma forma que o “for”, é possivel que a variavel de controle tenha seu valor alterado
pelos comandos aninhados. Isso permite que o lago seja encerrado prematuramente, como também ¢é
comum em estruturas como “enquanto”. A utilidade dessa técnica esta no fato de G-Portugol nao incorpo-
rar mecanismos para refinar o controle de lagos (como “break” e “continue”, encontrados em linguagens
populares).

3.5 Funcoes

Subprogramas em G-Portugol sdo implementados no modelo de fung¢des, que podem ter zero ou mais
parametros de qualquer tipo, tanto primitivos quanto complexos (vetores e matrizes). Opcionalmente, elas
podem definir valores de retorno, que deve ser de tipo primitivo. Tanto o retorno de dados como a passagem
de argumentos sao feitos por valor.

Para retorno prematuro ou retorno de dados, a palavra chave “retorne” é usada. Para fungbes que
retornam dados, “retorne” deve ser seguido de um operando, que € uma expressao cujo valor deve ser
compativel com o tipo da funcéo. J& fungdes que nao declaram um tipo de retorno expliticamente (equiva-
lente a fungbes de retorno “void” em C), “retorne” deve ser usado sem operando.

3.5.1 Funcgoes internas

Como ja foi visto em exemplos anteriores, G-Portugol oferece duas fungdes internas: “leia” e “imprima”,
que permitem uso basico de entrada e saida, respectivamente.

A fungéo “leia” ndo recebe argumentos e retorna o valor lido da entrada padréo (“STDIN”), o que signi-
fica, geralmente, ler os dados que o usuario digitar no teclado, seguido do caractere “nova linha” (em geral,
associado a tecla “Enter” no teclado). O tipo de dado retornado por “leia” € implicitamente convertido para
o tipo primitivo exigido no contexto em que ela é usada.

A fungao “imprima” recebe um ndmero variavel de argumentos de qualquer tipo primitivo, sendo que
pelo menos um argumento deve ser passado. Os valores passados como argumentos sdo convertidos
para texto, concatenados na ordem definida e enviados para “STDOUT” (em geral, associado ao display
ou monitor). Nao ha retorno de valor para esta fungéo.

G-Portugol 10

Capitulo 3. Programando em G-Portugol

Programa 7 Exemplo de algoritmo que utiliza fungdes.
algoritmo fatorial_recursivo;

variaveis
X : inteiro;
fim-variaveis

inicio

imprima("Digite um namero:");

x := leia(Q);

imprima("fatorial de ",x," & igual a ",fatorial(x));
fim

fungdo fatorial(z:inteiro) : inteiro
inicio
se z = 1 entéo
retorne 1;
senéo
retorne z * fatorial(z-1);
fim-se
fim

Programa 8 Exemplo de usos das fun¢des internas “leia” e “imprima”.
algoritmo io;

variaveis
c: caractere;
i: inteiro;
r: real;
1l: literal;
z: loégico;

mat: matriz[2] de inteiros;
fim-variaveis

inicio
imprima("digite um caractere");
c := leia();
imprima("Digite um nimero inteiro");
i := leia();
imprima("Digite um ndmero real:");
r := leia();
imprima("Digite um texto:");
1 := leia();
imprima("Digite um valor 1égico (\"verdadeiro\" ou \"falso\"), um ndmero ou um texto:");
z := leia();

",c,", inteiro: ",i, ", real: " " !

imprima("caractere: ,r,", texto: ",1, ", loégico: ", z,"\n");

fim

G-Portugol 11

Capitulo 4

Implementacao da linguagem
G-Portugol

4.1 Introducao

Ao definir uma linguagem de programacao voltada para o ensino de l6gica e algoritmos, varios aspectos
devem ser considerados. Ao contrario de linguagens de produgédo, ndo ha preocupagcdes como o poder
expressivo da linguagem, dicionario em inglés, acesso a recursos de sistema, etc. A preocupacgao central
estd em oferecer uma ferramenta que:

o reflita os processos computacionais, exigindo o minimo de conhecimento e experiéncia do estudante;
e evidencie os processos relacionados com o desenvolvimento de softwares;

e estimule a abstracao e raciocinio légico do estudante.

4.2 A linguagem

O ponto fundamental que guia as diretrizes da linguagem G-Portugol é seu propésito educacional: ela deve
expressar processos computacionais de forma que um leigo os compreenda sem enfatizar a si mesma.
Isso é, a linguagem em si deve chamar o minimo de atengao possivel, fazendo com que a compreensao
dos processos computacionais seja tao natural quanto ler sua descrigéo informal, ou ndo-estruturada.

Esse objetivo encontra restricées, quando se leva em consideragao a natureza das linguagens artificiais
e o uso e forma popular atual da linguagem portugol, principalmente em literaturas. E de interesse que
G-Portugol ofereca compatibilidade com essas formas, o que pode gerar conflitos quanto a decisdes de
design e restringir suas caracteristicas. Portanto, embora as diretrizes marquem a base do design, muitas
vezes, elas devem ser sacrificadas ou ajustadas para incorporar formas populares.

E interessante ressaltar que criar uma linguagem totalmente nova, que utiliza outros paradigmas como,
por exemplo, orientacdo a objeto, possa ser interessantes e, talvez, mais eficientes como ferramentas de
ensino, mas G-Portugol esta, no momento, comprometida com a compatibilidade.

A seguir, alguns topicos serao comentados quanto as diretrizes por traz das formas Iéxicas e gramati-
cais da linguagem G-Portugol.

4.2.1 Diretrizes para o design da linguagem
A linguagem deve ser totalmente em portugués e deve respeitar acentuacoes

Linguagens de programacao, em geral, ndo se utilizam de caracteres especiais (ex. caracteres acentuados,
cedilhas, e outros que ndo pertencem ao alfabeto inglés) para definicdo de seu dicionario, visto que sao
baseadas na lingua inglesa. Portanto, letras acentuadas ndo séo consideradas.

G-Portugol 12

Capitulo 4. Implementagao da linguagem G-Portugol

A decisao de incorporar palavras que respeitam a lingua portuguesa é importante, visto que modificar
a linguagem de forma a se afastar de sua lingua natural (o portugués) pode evidenciar excessdes as quais
forcariam os usuarios (estudantes e professores) a se ater mais com o estudo da linguagem do que com o
estudo da disciplina em questao. Isso é, a auséncia de acentos, por exemplo, obriga o usuario a aprender
seus termos excepcionais. Além do mais, 0 uso de termos como “nao”, chama a atengao constante do
usuario para o fato de a palavra nao estar acentuada, o que costuma desviar atencdo do estudo.

Consequentemente, o uso de acentos permite que a linguagem seja o mais préximo do portugués
quanto for possivel, apoiando a regra de nao chamar atengao para si. Ademais, o cédigo fica mais legivel
e permite uma leitura mais agradavel.

Além dos acentos, é exigido que as palavras-chave usadas sejam completas ou por extenso, sem
permitir abreviacdes (ex. “proc”, “func”, “char”, “int”, ...), o que dificulta a leitura de programas por um leigo.

Ha também decisdes quanto a forma verbal de comandos e fungdes. Em geral, na literatura, os verbos
nos algoritmos sdo expressos no imperativo, visto que a linguagem é caracterizada como imperativa. Por
outro lado, vale notar que, mesmo em linguagens imperativas, € comum ver programas que utilizam termos
em portugués usando verbos no infinitivo.

Mesmo com essa perspectiva em vista, G-Portugol se utiliza de verbos no imperativo para seus termos,
de forma a se aproximar das formas utilizadas nas literaturas sobre algoritmos.

“Programas devem ser escritos para pessoas lerem e, apenas incidentalmente, para maqui-
nas executarem.”

— Abelson e Sussman

A linguagem deve ser simples, uniforme e coerente

Essa diretriz diz respeito a evitar excessdes entre as formas gramaticais e comportamentos semanticos na
medida do possivel. Isso significa ndo sé que as estruturas e comandos devem ser simples, claros e ébvios,
como também, sua forma e comportamento devem ter um principio em comum, evidenciando um formato
uniforme. Naturalmente, a linguagem portugol ja detém uma parcela relevante de caracteristicas que se
acomodam nessas diretrizes, no entanto, alguns detalhes ainda merecem atencéo, como a representacao
de blocos estruturais.

A simplicidade implica em evitar construgdes e recursos que desviam a atengao do propdsito original
para detalhes da linguagem. Isso €, apenas recursos essenciais devem fazer parte de seu nudcleo. Por-
tanto, em um primeiro momento, ndo é interessante equipar a linguagem com recursos como alocagao
dindmica de memoria, controle de threads, etc.

Deve ser configuravel naquilo que diz respeito a diferentes abordagens de ensino e estilo do pro-
fessor

Essa diretriz diz respeito a permitir que a linguagem mude em certos aspectos (ou disponibilizar meios
simples para realizar essas mudangas) de acordo com o gosto do professor, ou como modo de adapatar
a forma de portugol de uma dada literatura. Dialetos e formas da linguagem portugol variam de literatura
para literatura, e pode ser interessante permitir que a linguagem se adapte ou oferecer diferentes formas
da linguagem.

Entre os aspectos que podem ser adaptados com facilidade se encontram os termos Iéxicos (palavras-
chave, operadores,etc), e algumas formas de expressar estruturas, como algumas declara¢des e enuncia-
dos.

Por exemplo, pode ser interessante que, para se declarar uma variavel, ndo se use um bloco iniciado
por “variaveis” e terminado por “fim-variaveis”, mas como um bloco parecido com a declaragéo de variaveis
em Pascal, ou até em C (que sequer exige delimitacdo de bloco de variaveis).

Isso pode ser interessante quando se quer, por exemplo, ensinar uma linguagem especifica como
Pascal, fazendo com que G-Portugol possa usar estruturas e operadores semelhantes a esta linguagem,
de forma a oferecer uma transicdo mais direta e que aproveita melhor os conhecimentos do estudante.

Atualmente, o programa GPT nao implementa mecanismos para esse tipo de mudanca, sendo nesces-
sario modificar seu codigo fonte e recompila-lo.

G-Portugol 13

Capitulo 4. Implementagao da linguagem G-Portugol

4.3 Formato Estrutural

Um programa escrito em G-Portugol tem o seguinte formato:
e declaragéo do algoritmo
e declaragdo de variaveis globais
e bloco principal
e declaracao de fungdes

A seguir, alguns pontos serao discutidos a respeito do formato da linguagem.

4.3.1 Declaracao do algoritmo

A declaracdo do algoritmo nao influencia o programa ou sua execucao, visto que é apenas uma sessao
informativa no codigo que, embora ndo seja um comentario, tem 0 mesmo efeito pratico. A adogao dessa
declaragao pode ser discutida, e foi escolhida por ser bastante utilizada em literaturas.

4.3.2 Declaracao de variaveis globais
Como visto no capitulo 2, essa declaracdo é opcional, e seu formato pode ser visto no exemplo a seguir:

variaveis
X : inteiro;
fim-variaveis

Esse formato difere de linguagens como Pascal e C. Em Pascal, o bloco ndo tem um delimitador final
(como “fim-varidveis”) e em C, ndo existe qualquer delimitador.

Delimitar o bloco permite maior consisténcia com outras formas gramaticais como os blocos de co-
mando e estruturas de controle, e torna o codigo mais claro e explicito, embora adicione construgcdes
redundantes.

Os tipos primitivos englobam os tipos mais basicos das linguagens populares. No momento, agregados
heterogéneos como, por exemplo, estruturas/registros (“struct” em C) ndo sdo suportados. Para uma lista
dos tipos suportados, veja a tabela 2.1.

4.3.3 Bloco Principal

As linguagens de programacéo devem, de alguma forma, oferecer um “entry point” (ponto de entrada), de
onde se inicia a execugao do programa. O ponto de entrada pode ser uma fung@o ou um bloco anénimo.
Na literatura, em geral, o bloco principal é delimitado pelos termos “inicio”’e “fim” e G-Portugol segue essa
convengdo. Essa decisdo mantém um nivel satisfatorio de coeréncia com o bloco de varidveis globais e
estruturas de controle, embora ndo sejam intimamente relacionados.

Vale ressaltar que nao se faz imposicao sobre a identagao do codigo. Esse recurso pode ser vantajoso
no ensino, promovendo a clareza de c6digo, portanto, sua implementacéo pode ser discutida para versdes
futuras.

Estruturas de Controle

Estruturas de controle sao formadas por um cabecgalho seguido por um bloco de comandos e terminados
por um delimitador final. Embora os delimitadores do bloco ndo sejam “inicio” e “fim”, ha um grau de se-
melhanca mantido: o delimitador inicial € omitido (uma vez que o cabecalho é entendido como delimitador
inicial) e o delimitador final é o termo “fim-" seguido do nome da estrutura.

No cabecalho das estruturas como “enquanto” e “se”, as expressdes nao precisam ser delimitadas por
paréntesis.

G-Portugol 14

Capitulo 4. Implementagao da linguagem G-Portugol

Expressoes

Expressdes sdo operagdes que sintetizam, ao final, um valor. Em geral constituem valores ou operagdes
aritiméticas com um ou mais termos que podem ser variaveis, constantes ou chamadas a fungdes e sao

usadas em atribuicoes, estruturas de controle e subscritos de matrizes e vetores.

Enunciados (como

atribuicées) ndo podem ser avaliados como expressoes.
Constantes séo valores inline, e cada tipo de dado tem uma forma de ser representada.

Inteiros: Podem ser representados em base decimal, hexadecimal, octal e binaria. Representa-
¢bes decimais sao formadas, opcionalmente, por um sinal (“+” ou “-”) seguido de um mais algaris-
mos(ex.“120”, “+5”, e “-2”). Representacdes hexadecimais sdo representadas com o prefixo “Ox” ou “
0X”, seguido de algarismos entre “0” e “9” e letras entre “a” e “f” ou “A” e “F” (ex. “OxF1A5”). Repre-
sentacdes octais sdo representadas com o prefixo “0c” ou “0C”, seguido de algarismos entre “0” e “7”
(ex. “0c61”). Finalmente, representacdes binarias sdo formadas pelo prefixo “Ob” ou “0B”, seguido

de algarismos “0” e “1” (ex. “0b101”).

Reais: sa@o representados por, opcionalmente, um sinal (“+ ou -“), seguido de algarismos separados
por um “” como “-1.2345".

Caracteres: séo representados por um unico simbolo entre aspas simples. Alguns caracteres espe-
ciais sdo representados com escape (“\”) seguido de simbolo identificador. Esses caracteres séo o
LF (“\n”), CR (“\r") e barra invertida (“\\”). A auséncia de simbolos entre as aspas simples indica um
caractere “nulo”. Internamente, caracteres sao representados como nimeros inteiros, o que permite
sua compatibilidade numérica.

Literais: sdo representados por um conjunto de caracteres entre aspas duplas. Eles podem conter
caracteres especiais como “\n” e devem ser definidos em apenas uma linha de cédigo. Valores literais
s30 0s Unicos que ndo tem uma representacdo numérica, impedindo sua participagdo em expressoes
com operadores aritméticos (soma, divisdo, etc). Comparagdes de igualdade para valores literais
sdo feitas caractere por caractere em case sensitive. Portanto, a expressao “portugol” = “Portugol”
€ avaliada como falsa. Ja comparacdes de grandeza sao feitos calculando o nimero de caracteres
que compdem os valores literais. Entao, a expressao “maria” > “josé” é avaliada como verdadeira.

Légicos: sdo representados pelas palavras “verdadeiro” e “falso”. Numericamente, qualquer valor
diferente de “0” representa o valor verdadeiro e “0” representa o valor falso.

A precedéncia de operadores é mostrada na tabela 4.1 (da menor precedéncia para a maior) e pode
ser explicicamente modificada com o uso de paréntesis.

Precedéncia de Operadores
Operador Nome
ou OR logico
e AND légico
| OR bit-a-bit
) XOR bit-a-bit
& AND bit-a-bit
=, <> operadores igual e diferente
>, >=, <, <= | operadores relacionais maior, maior ou igual, menor, menor ou igual
+, - operadores aritméticos soma e subtragdo
* 1, % operadores aritméticos multiplicagao, divisdo, modulo
+, -, , nao, () | operadores unarios positivo, negativo, NOT binario, NOT logico, paréntesis

Tabela 4.1: Precedéncia de Operadores

Em G-Portugol, néo ha coergéo ou casting de tipos expliticamente. Todos os tipos numericos (in-

teiro,

real, l6gico e caractere) sdo compativeis entre si. E importante ressaltar que expressdes envolvendo

G-Portugol

15

Capitulo 4. Implementagao da linguagem G-Portugol

igualdade ou diferenca de valores reais ndo sao apropriadas dado a forma como esses valores séo repre-
sentados internamente. Tais comparagdes podem ter resultados imprevisiveis, e até diferentes, ao serem
executados nos modos compilado, interpretado ou traduzido.

Existem dois casos em que ocorre uma coergao implicita. O primeiro caso ocorre durante a avaliagao
de uma expressao que tem operandos de tipos diferentes (mas compativeis entre si), onde nao ha perda de
dados e um dos termos é promovido para o tipo do seu termo complementar. Por exemplo, na expressao
“2 +1.5”, o termo “2” é promovido para o tipo “real”, tendo o valor “2.0” antes que a soma seja processada.
Da mesma forma, sendo “x” uma variavel de tipo real, a expressao “x := 5/ 2” atribuira a “x” o valor “2.00".
Esse comportamento ndo muito 6bvio é similar ao da linguagem C, onde “5 / 2” é avaliado como uma
diviséo de inteiros, onde apenas o valor inteiro final é relevante. Para obter o resultado real, a expressao
deve ser “5.0 / 27, para informar ao compilador que a divisdo usara valores reais, produzindo a promogao
de tipos mencionada anteriormente.

O segundo caso em que ocorre uma coercao implicita € discutido na segéo 4.3.4.

4.3.4 Atribuicoes

Atribuigbes permitem a manipulacdo de valores na memoéria. Em G-Portugol, como ja foi visto, é usado
0 operador “:=", onde o termo a esquerda ou “/value” deve ser uma variavel primitiva ou indice de uma
matriz/vetor, e o termo a direita, uma expressdo que, quando avaliada, tem seu tipo compativel com o
value.

Pode haver coercdo de tipos durante a atribuicdo, quando o resultado da expressao é de um tipo dife-
rente (mas compativel) do tipo de Ivalue. E possivel que dados sejam comprometidos, por exemplo, tendo
uma expressao avaliada como real sendo atribuida a uma variavel de tipo inteiro (o valor sera truncado).

Matrizes ndo séo aceitas como Ivalue, como pode ser visto no programa 9.

Programa 9 Uso incorreto de matrizes.
algoritmo atribuicao_de_matrizes;

variaveis
ml : matriz[2] de inteiros;
m2 : matriz[2] de inteiros;
fim-variaveis

inicio
ml := m2; //erro
imprima(ml); //erro
fim

4.4 Funcoes

Funcbes sdo os subprogramas de G-Portugol. S&o definidas apds o bloco principal e podem receber
argumentos e retornar valores. Em tempo de execugdo, as fungdes criam um novo escopo sobreposto
ao escopo principal. Isso permite recursos como recursdo e possibilita que variaveis locais (no escopo
da fungdo) tenham o mesmo nome que variaveis globais, onde essas ultimas ficam “escondidas”, isso &,
incapazes de serem acessadas enquanto o escopo durar. Ressalta-se que ndo ha suporte para fungdes
aninhadas, isso é, funcdes declaradas dentro de fungdes.

O retorno de dados é feito por meio da instrugéo “retorne” e o valor de retorno (se houver) deve ser
compativel com o tipo da funcéo. Esse tipo ndo pode ser um tipo agregado como matrizes e vetores.

Tanto a passagem de argumentos quanto o retorno € feito por valor, isso é, a copia do valor é feita, ao
invez de a copia de endereco ou passagem por referéncia.

G-Portugol 16

Capitulo 4. Implementagao da linguagem G-Portugol

As variaveis locais de uma funcéo sao formadas por seus parametros e pelas variaveis declaradas em
seu escopo. A declaragao de variaveis locais é feita entre o cabecalho da funcao e a palavra-chave “inicio”,
portanto, ndo é uniforme em relagéo a declaragio global, onde se usa as palavras-chave “variaveis” e
“fim-variaveis”.

A declaracédo dos parametros da fungédo também néo segue estritamente o formato de declaracdo de
variaveis. O programa 10 ilustra a declaragcao de uma funcao.

Programa 10 Exemplo de usos de fungdes.
algoritmo exemplo_funcao;

inicio
imprima(soma(2,2));
fim

func¢8o soma(x: inteiro, y: inteiro) : inteiro
res : inteiro;

inicio
res := x + y;
retorne res;
fim

4.5 Funcoes internas

G-Portugol oferece duas fungdes internas para manipulacao basica de entrada e saida. Ambas as fungoes
tem comportamentos excepcionais quando comparadas com as fungdes de usuario. Essas fungdes sao
discutidas na sessao a seguir.

4.5.1 A funcao “imprima”

A fungéo imprima tem como objetivo imprimir texto no dispositivo de saida. Ela recebe um namero variavel
de argumentos (pelo menos um), onde cada argumento deve ser um valor primitivo, € os imprime em
sequencia. Ao final, € impresso um caractere de nova linha (LF) e a fungao retorna.

Essa funcao se comporta de forma excepcional visto que ndo é possivel declarar fungdes em G-
Portugol que recebem um numero variavel de argumentos.

4.5.2 A funcao “leia”

A funcao “leia” espera por uma entrada do teclado seguida do caractere LF (em geral, associado a tecla
“Enter”) e retorna o valor lido. Esse valor é convertido implicitamente para o tipo do Ivalue. A tabela 4.2
apresenta conversdes implicitas processadas pela fungao “leia” para o enunciado de exemplo “x := leia()”.

Nota: nameros reais sao arredondados, se nescessario, e exibidos no formato .xx (com duas casas
decimais). Portanto, o nimero “250.0” ou “250” seria impresso como “250.00” e “1.449” seria impresso
como “1.45”. Se o parametro for uma variavel, seu valor ndo sera modificado.

Essa fungao se comporta de forma excepcional visto que seu tipo de retorno ndo é absoluto (overloa-
ded, depende do tipo de /value) e, no momento, € restrita expressdes isentas de operadores. Isso €, néo é
permitido aplici-la como um termo em uma expressdo com multiplos operandos (ex. “x :=y + leia()"), em-
bora seja possivel utiliza-la em subscritos de vetores e matrizes, assim como em expressdes de estruturas
de controle.

Em principio, pode-se levar em conta duas formas de implementar uma fungao de leitura em alto nivel.
A primeira, e mais simples é o uso de fungbes sobrecarregadas, que nao retornam valor e recebem um

G-Portugol 17

Capitulo 4. Implementagao da linguagem G-Portugol

Conversbes da funcao “leia”
Tipo do LValue “x” | Texto lido Valor final de “x”
inteiro 123 123
inteiro 123 456 123
inteiro abc 0
inteiro 123s 123
l6gico falso falso
I6gico “0” falso
l6gico falso 12wtc | verdadeiro
l6gico 0 umdois3 | verdadeiro

Tabela 4.2: Conversdes implicitas da fungao “leia”

parametro de um dado tipo (inteiro, real, etc), que é alimentado com o valor lido. Essa forma exige que a
passagem seja feita por referéncia. A outra forma, é a implementada em G-Portugol, onde a fungéo nao

recebe paradmetros e retorna o valor lido.

As duas formas exigem comportamentos excepcionais, visto que G-Portugol ndo tem suporte para

sobrecarga de funcoes (por parametro ou retorno) ou passagem de parametros por referéncia.

G-Portugol

18

Capitulo 5

O programa GPT

5.1 Intruducao

GPT ¢ a ferramenta principal da linguagem G-Portugol. Entre suas fungdes principais estao:

e Compilar algoritmos;
e Traduzir algortimos para outras linguagens;

e Executar algoritmos.

Na versao atual é possivel compilar algoritmos para sistemas Windows e Unices que suportam o for-
mato ELF e o assembler NASM. Também, ha suporte apenas para a traducao de algoritmos para a lingua-
gem C. O resultado € um codigo em C 100% equivalente ao algoritmo.

E possivel, também, executar algoritmos sem gerar cédigo ou arquivos extra, de forma interpretada.
Também, com a interpretagao, é possivel depurar passo a passo o algoritmo com o uso de uma ferramenta
auxiliar (um cliente de depuragao).

Vale ressaltar que, qualquer que seja o0 modo de uso do algoritmo (compilado, interpretado ou tra-
duzido), se espera que eles tenham sempre comportamentos equivalentes. Isso é, o resultado de uma
execucao interpretada deve ser 0 mesmo se a execugao fosse feita por meio de um binario compilado.

5.2 Opcoes gerais
Ao executar o programa “gpt” com o argumento “-h”, é mostrado:

Modo de uso: gpt [opgBes] arquivos

Opgdes:
-v mostra versdo do programa
-h mostra esse texto

-o <arquivo> compila e salva executavel como <arquivo>

-t <arquivo> salva o cddigo em linguagem C como <arquivo>

-s <arquivo> salva o cdédigo em linguagem assembly como <arquivo>
-1 interpreta

-d exibe dicas no relatério de erros

Maiores informag¢des no manual.

As opcbes sao comentadas a seguir.

G-Portugol 19

Capitulo 5. O programa GPT

v: Exibe a versao do programa “gpt”, assim como informacdes de copyright;

h: exibe todas as opc¢bes suportadas pelo programa “gpt”;

0 <arquivo>: Ao compilar um algoritmo, salva o executavel com o nome de <arquivo>. Se essa opgao
for omitida na compilacdo, o nome do algoritmo sera usado para criar 0 arquivo executavel.

t <arquivo>: Traduz o algoritmo para C, salva o codigo fonte com o nome de <arquivo>;

s <arquivo>: Compila o algoritmo mas nao cria codigo executavel. Salva o cédigo em assembly com
0 nome de <arquivos;

i: Executa o algoritmo diretamente, sem compilar ou criar arquivos. Opgao conhecida como “inter-
preta¢do” ou “scripting”.

d: Exibe mais informacdes no relatério de erros, como dicas de como proceder para solucionar errors
de sintaxe.

A Ultima opgao (“arquivos”) é uma lista de arquivos contendo o codigo fonte em G-Portugol, embora
seja mais comum utilizar um arquivo apenas para cada algoritmo.

5.3 Tratamento de erros

Em geral, as ferramentas de diversas linguagens de programacao oferecem o minimo de informacdes a
cerca de erros de compilacao, as vezes, tendo uma forma “criptica” dificultando seu entendimento e poste-
rior corregdo. Comum, também a possibilide de que determinados erros sejam reportados em localizagdes
distantes de onde o erro efetivamente se encontra no codigo fonte. Ademais, é importante notar que
nessas linguagens, os erros sao reportados em inglés.

O tratamento de erros é um aspecto importante do programa GPT. A reportagem de erros deve ser o
mais claro possivel e ter um formato uniforme, informando o local exato onde o erro foi localizado. Deve,
também, fornecer dicas de como proceder para corrigir 0 erro, em alguns casos.

No momento, o analisador do GPT percorre o cédigo fonte a procura de erros e, mesmo que encontre,
continua a andlise a procura de mais erros. Uma outra abordagem, seria interromper a analise assim que
um erro fosse encontrado.

5.4 Execucao de programas

5.4.1 Compilacao e geracao de coédigo executavel

O programa GPT é capaz de gerar codigo executavel para arquiteturas compativeis com x86 e em dois
formatos: ELF (Executable and linking format) e PE (Portable Executable). Sistemas Unix, em geral,
suportam o formato ELF, e o formato PE é conhecido nos sistemas Microsoft Windows. Apds o processo
de anadlise, o compilador gera cédigo em assembly para, entdo, usar o NASM (Netwide Assembler) como
backend para montar e criar um executavel valido. Consequentemente, ndo existe etapa de linkagem. A
fase de otimizacao de codigo também néo foi implementada.

Para usar esse recurso, é nescessario que o NASM esteja instalado no sistema. Ele pode ser encon-
trado em http://www.sf.net/projects/nasm.

5.4.2 Traducao para a linguagem C

E possivel usar o GPT para traduzir algoritmos escritos em G-Portugol para linguagem C. O cédigo resul-
tante, entretanto, ndo é criado com o intuito de ser facilmente lido, visto que a traducao nao é direta. Isso é,
o comportamento esperado pelo algoritmo deve refletir o comportamento que o cddigo em C. Sendo assim,

G-Portugol 20

Capitulo . O programa GPT

cédigos extras sdo adicionados no arquivo resultante, para, por exemplo, permitir passagem de matrizes
por valor, inicializagdo automatica de variaveis e outras abstragoes.

A tradugdo para C é limitada no que diz respeito a nomes e identificadores. E possivel, por exemplo,
declarar uma variavel em G-Portugol com o nome de printf. Ao traduzir para C e tentar compilar o c6digo
resultante, o compilador pode emitir avisos e erros, visto que printf € uma funcao da biblioteca padrao,
usada no cédigo C resultante. Da mesma forma, identificadores com underlines antes ou depois em
seus nomes (como “__leia_texto”) devem ser evitados, pois muitos identificadores internos utilizam essas
convengbes de nomeagao, e seu uso pode acarretar em conflitos durante a tradugao.

5.4.3 Interpretacao de cédigo

O programa GPT permite que o algoritmo seja executado sem gerar cédigo binario. Esse modo é conhecido
como “interpretagcao” e linguagens como Perl, PHP e Ruby utilizam esta técnica.

Esse modo permite depurar algoritmos passo a passo (por meio de um client debugger como o GPTE-
ditor) e inspecionar variaveis e a pilha de fungdes enquanto o algoritmo esta em execugao.

A unica diferenca na execucao de algoritmos em modo interpretado em relagdo a outros modos é que
as matrizes/vetores tem seus subscritos checados (“bound checking”). lIsso é, erros de execucdo sao
emitidos se um indice ndo existir em uma matriz/vetor.

Depuracao interativa

A depuragéo interativa é feita em modo “interpretacdo”, portanto ndo gera codigo binario, executando o
algoritmo diretamente. Para depurar interativamente um algoritmo é nescessario um programa extra: o
client debugger. Atualmente, o programa GPTEditor suporta a depuracao interativa.

Entre os recursos disponiveis, pode-se citar a execugao passo a passo em 3 modos (comumente co-
nhecidas como “step into”, “step over” e “step out”), inspecao de variaveis locais/globais e pontos de parada
(“breakpoints”).

A depuracgéo ocorre tendo o programa GPT se comunicando via socket com o cliente (ex: GPTEditor),
iniciando transmissdo de dados entre esses dois pontos. As informacdes enviadas pelo GPT (variaveis,
breakpoints, etc) usam o formato baseado em XML, enquanto o cliente envia comandos simples (o0 que
evita que o programa GPT nescessite de um XML parser).

Por exemplo, a pilha de fungdes pode ser representada da seguinte forma:

<stackinfo>
<entry id="0" function="@global" line="10"/>
<entry id="1" function="funcTeste" line="18"/>
</stackinfo>

5.4.4 Processando algoritmos divididos em multiplos arquivos

A partir da versao 1.0, o GPT suporta processar algoritmos divididos em multiplos arquivos. Esse recurso
é possivel utilizando duas formas:

e Passando os arquivos como opg¢des na linha de comando;

e Utilizando a variavel de ambiente GPT_INCLUDE.

A primeira forma é explicada na sessao 5.2. A segunda forma pretende facilitar a utilizacao de fungdes
que devem estar disponiveis por padrdao a cada execugao/compilagdo dos algoritmos. Pode-se definir
a variavel de ambiente GPT_INCLUDE contendo varios caminhos de arquivos separados por “”. Em
sistemas Unix, por exemplo, pode-se criar a essa variavel da seguinte forma (utilizando Bash):

$ export GPT_INCLUDE="/usr/local/lib/gpt/base.gpt:/usr/local/lib/gpt/util.gpt"

G-Portugol 21

Capitulo . O programa GPT

Onde “base.gpt” e “util.gpt” sdo arquivos contendo fungdes escritas em G-Portugol.

Os arquivos passados pela linha de comando e/ou que se encontram na variavel GPT_INCLUDE sao
concatenados e processados como se 0 algoritmo estivesse em apenas um arquivo. Portanto, arquivos
extras nao devem ter declaragao de algoritmo, bloco de variaveis globais ou bloco principal.

G-Portugol 22

Apéndice A

Gramatica da linguagem G-Portugol

A.1 Termos léxicos

A seguir é apresentado as convengdes léxicas usadas em G-Portugol.

Regras para identificar literais numéricos
T_INT_LIT : T_OCTAL_LIT | T_HEX_LIT | T_BIN_LIT | T_DEC_LIT
T_DEC_LIT : [0-9]+
T_OCTAL_LIT : ’0’ (°c’|’C’) [0-8]+
T_HEX_LIT : 0’ (Cx’[’X’) [0-9a-fA-F]+
T_BIN_LIT : ’0’ (°b’[’B?) [01]+
T_REAL_LIT : T_DEC_LIT+ ’.° T_DEC_LIT+
Regras para identificar caracteres e cadeias de caracteres
T_CARAC_LIT : 222 (~(222[7\?) [’\? .)7 7%
T_STRING_LIT : >"> (~C " | »\? | CR | LF) | >\? .)% '
Regras para identificar comentéarios
SL_COMMENT : "//" ["LFl* (’\n’)?
ML_COMMENT : "/*" (“(2%2) | %> 73/7 Jx "x/"
Regra para identificar nomes de variaveis, funcgdes, etc.

T_IDENTIFICADOR : [a-zA-Z_] [a-zA-Z0-9_]1%

A tabela A.1 contém as palavras-chave padréo da linguagem G-Portugol.

A.2 Gramatica

A seguir é apresentado a gramatica da linguagem G-Portugol.

G-Portugol

23

Capitulo A. Gramatica da linguagem G-Portugol

Palavras-chave de G-Portugol
fim-varidveis algoritmo varigveis inteiro real
caractere literal l6gico inicio verdadeiro
falso fim ou e nao
se senao entdo fim-se enquanto
faca fim-enquanto para de até
fim-para matriz inteiros reais caracteres
literais l6gicos funcao retorne passo

Tabela A.1: Palavras-chave de G-Portugol

algoritmo
: declaracao_algoritmo (var_decl_block)? stm_block (func_decls)* EOF

declaracao_algoritmo
"algoritmo" T_IDENTIFICADOR ";"

var_decl_block
"variaveis" (var_decl ";")+ "fim-varidveis"

var_decl
: T_IDENTIFICADOR ("," T_IDENTIFICADOR)* ":" (tp_primitivo | tp_matriz)

tp_primitivo
"inteiro"
llrealll

|

| "caractere"
| "literal"

| "légico"

s

tp_matriz
"matriz" ("[" T_INT_LIT "]")+ "de" tp_prim_pl

tp_prim_pl
: "inteiros"
"reais"
"caracteres"

|
|
| "literais"
| "légicos"

>

stm_block
"inicio" (stm_list)* "fim"

stm_list
stm_attr

G-Portugol

Capitulo A. Gramatica da linguagem G-Portugol

| fcall "™
| stm_ret
| stm_se
| stm_enquanto
| stm_para

5
stm_ret

"retorne" expr? ";"

lvalue
: T_IDENTIFICADOR ("[" expr "]")*

stm_attr
lvalue ":=" expr ";"
5
stm_se
"se" expr "ent#o" stm_list ("sen#o" stm_list)? "fim-se"

stm_enquanto
"enquanto" expr "faga" stm_list "fim-enquanto"

stm_para
"para" lvalue "de" expr "até" expr passo? "faca" stm_list "fim-para'

passo

"passo" ("+"|"-")? T_INT_LIT
expr

expr ("ou"|"||") expr

expr ("e"|"&&") expr

expr "|[" expr

expr """ expr

expr "&" expr

expr ("="|"<>") expr

expr (Il>ll | ny=n | ngn | ll<=ll) expr
expr (||+u I u_u) expr

eXpI‘ (Il/ll I ll*ll I ll%ll) eXpr

(u+u I n_n I n~ar | "néo")? termo

termo
fcall
| 1value
| literal
| " (Il expr l|)|l

s

G-Portugol

25

Capitulo A. Gramatica da linguagem G-Portugol

fcall
T_IDENTIFICADOR " (" fargs? ")"

fargs
: expr ("," expr)*

literal
T_STRING_LIT
T_INT_LIT
T_REAL_LIT
T_CARAC_LIT
T_KW_VERDADEIRO
T_KW_FALSO

func_decls
"fung&o" T_IDENTIFICADOR " (" fparams? ")" (":" tb_primitivo)?
fvar_decl
stm_block

fvar_decl
(var_decl ";")*

fparams
: fparam ("," fparam)*

fparam
: T_IDENTIFICADOR ":" (tp_primitivo | tp_matriz)

G-Portugol

26

	1 Introdução
	2 Características Gerais
	2.1 Tipos de dados
	2.2 Estruturas de controle
	2.3 Subprogramas (funções)

	3 Programando em G-Portugol
	3.1 Olá Mundo
	3.2 Variáveis
	3.2.1 Variáveis primitivas
	3.2.2 Vetores e matrizes (conjuntos)

	3.3 Estruturas condicionais
	3.4 Estruturas de repetição
	3.4.1 A estrutura ``enquanto''
	3.4.2 A estrutura ``para''

	3.5 Funções
	3.5.1 Funções internas

	4 Implementação da linguagem G-Portugol
	4.1 Introdução
	4.2 A linguagem
	4.2.1 Diretrizes para o design da linguagem

	4.3 Formato Estrutural
	4.3.1 Declaração do algoritmo
	4.3.2 Declaração de variáveis globais
	4.3.3 Bloco Principal
	4.3.4 Atribuições

	4.4 Funções
	4.5 Funções internas
	4.5.1 A função ``imprima''
	4.5.2 A função ``leia''

	5 O programa GPT
	5.1 Intrudução
	5.2 Opções gerais
	5.3 Tratamento de erros
	5.4 Execução de programas
	5.4.1 Compilação e geração de código executável
	5.4.2 Tradução para a linguagem C
	5.4.3 Interpretação de código
	5.4.4 Processando algoritmos divididos em multiplos arquivos

	A Gramática da linguagem G-Portugol
	A.1 Termos léxicos
	A.2 Gramática

