Programming Lego Robots
using NQC

(Version 3.04, Feb 14, 2002)

by Mark Overmars
(revisions by John Hansen)

Department of Computer Science
Utrecht University

P.O. Box 80.089, 3508 TB Utrecht
the Netherlands

Preface

The Lego MindStorms, CyberMaster, and Spybotics robots are wonderful new toys from which awide variety of
robots can be constructed, that can be programmed to do all sorts of complicated tasks. Unfortunately, the
software that comes with the robots is, although visually attractive, rather limited in functionality. Hence, it can
only be used for simple tasks. To unleash the full power of the robots, you need a different programming
environment. NQC is a programming language, written by Dave Baum, which was especially designed for the
Lego robots. If you have never written a program before, don't worry. NQC is really easy to use and this tutorial
will tell you all about it. Actually, programming the robotsin NQC isalot easier than programming a normal
computer, so thisis a chance to become a programmer in an easy way.

To make writing programs even easier, there is the Bricx Command Center. This utility helps you to write your
programs, to send them to the robot, and to start and stop the robot. Bricx Command Center works almost like a
text processor, but with some extras. This tutorial will use Bricx Command Center (version 3.3 or higher) as
programming environment. Y ou can download it for free from the web at the address

pttp://members.aol.com/johnbinder/bricxce.htm|

Bricx Command Center runs on Windows PC's (95, 98, ME, NT, 2K, XP). The language NQC can also be used
on other platforms. Y ou can download it from the web at address

http://www.baumfamily.org/ngc/index.html |

Most of thistutorial also appliesto the other platforms (assuming you use NQC version 2.0 or higher), except
that you loose some of the tools and the color-coding.

Inthistutorial | assume that you have the MindStorms (RCX) robot. Most of the contents also applies to the
CyberMaster, Scout, and Spybot robots although some of the functionality is not available for those robots. Also
the names of e.g. the motors are different so you will have to change the examples allittle bit to make them work.

Acknowledgements

I would like to thank Dave Baum for developing NQC. Also many thanks to Kevin Saddi for writing afirst
version of thefirst part of thistutorial.

http://members.aol.com/johnbinder/bricxcc.htm
http://www.baumfamily.org/nqc/index.html

Contents

|Preface 2
Acknowledgements 2
Contents 3|
I. Writing your first program 5|
Building a robot 5
Starting Bricx Command Center 5
Vriting the program 6
Running the program 7
Errors in your program 7
5hangi ng the speed 8
Summary 8

I1. A moreinteresting program 9
Making turns 9
Repeating commands 9
\dding comment 10
Summary 11

I11. Using variables 12
oving in aspiral 12
andom numbers 13
Summary 13

1V. Control structures 14
fhe if statement 14

he do statement 15]
mmary 15

V. Sensors 16
Waiting for a sensor 16
A\cting on a touch sensor 16
_ight sensors 17|
Summary 18

V1. Tasks and subroutines 19
Tasks 19
Subroutines 20
nline functions 20
efining macro’s 21
Summary 22
MII. Making music 23
Euilt-in sounds 23
aying music 23
Summary 24
VI1I. More about motors 25
Stopping gently 25

A\ dvanced commands 25

V arying motor speed 26
Summary 26

I X. More about sensors 27
sor mode and type 27

he rotation sensor 28

tting multiple sensors on one Input 28

M aking a proximity sensor 29

Bummary 30|

X. Parallel tasks 31
wrong program ?&
opping and restarting tasks 31

sing semaphores 32
mmary 33

XI. Communication between robots 34
5iving orders 34
Electing aleader 35
Cautions 35
Summary 36
XI1. More commands BZI
Timers 37

he display 37

Datal ogging 38
XI11. Final remarks 39

|. Writing your first program

In this chapter | will show you how to write an extremely simple program. We are going to program a robot to
move forwards for 4 seconds, then backwards for another 4 seconds, and then stop. Not very spectacular but it
will introduce you to the basic idea of programming. And it will show you how easy thisis. But before we can
write a program, we first need a robot.

Building a robot

The robot we will use throughout this tutorial is a simple version of the top-secret robot that is described on page
39-46 of your constructopedia. We will only use the basis chassis. Remove the whole front with the two arms
and the touch sensors. Also, connect the motors dightly different such that the wires are connected to the RCX at
the outside. Thisisimportant for your robot to drive in the correct direction. Y our robot should look like this:

Also make sure that the infra-red port is correctly connected to your computer and that it is set to long range.
(Y ou might want to check with the RIS software that the robot is functioning well.)

Starting Bricx Command Center

We write our programs using Bricx Command Center. Start it by double clicking on the icon BricxCC. (I assume
you already installed Bricx Command Center. If not, download it from the web site (see the preface), and install
itinany directory you like.) The program will ask you where to locate the robot. Switch the robot on and press
OK. The program will (most likely) automatically find the robot. Now the user interface appears as shown below
(without a window).

% Brick Command Center =10l x|

File Edit Search Miew Compile Tools Window Help
B EEE oo [E S e 087 @]
vdyERZI8|TECEEN 2 E A E

EI = i
3 Funchions = 1_simple.ngc _|EI|£|
----- £ Subroutines task mainf) (=
F-E3 Tasks {

OnFud (00T _4) ;
OnFud (00T _E) :

Wait(400)
OnRew (0UT_&+00T_Ej ;
Wait(400) ;
QEE(0UT_&+0UT_Ej » b
} -
4] M
FH | |n|:| potk |Insert | o

The interface looks like a standard text editor, with the usual menu’s, and buttons to open and save files, print
files, edit files, etc. But there are also some special menus for compiling and downloading programs to the robot
and for getting information from the robot. Y ou can ignore these for the moment.

We are going to write a new program. So press the New File button to create a new, empty window.

Writing the program
Now typein the following program:

task nain()

OnFwd(OUT_A) ;
OnFwd(QUT_C) ;

Wi t (400) ;
OnRev(QUT_A+QUT_C);
Wi t (400) ;

O f (OQUT_A+QUT_C);

It might look a bit complicated at first, so let us analyzeit. Programsin NQC consist of tasks. Our program has
just one task, named nmai n. Each program needs to have atask called mai n which is the one that will be
executed by the robot. Y ou will learn more about tasks in Chapter E A task consists of a number of commands,
also caled statements. There are brackets around the statements such that it is clear that they all belong to this
task. Each statement ends with a semicolon. In thisway it is clear where a statement ends and where the next
statement begins. So atask looks in general as follows:

task main()

{

statenment 1;
st at ement 2;

}

Our program has six statements. Let us ook at them one at the time:

OnFwd(OUT_A) ;

This statement tells the robot to start output A, that is, the motor connected to the output labeled A on the RCX,
to move forwards. It will move with maximal speed, unless you first set the speed. We will see later how to do
this.

OnFwd(QUT_O) ;
Same statement but now we start motor C. After these two statements, both motors are running, and the robot
moves forwards.

Vi t (400);

Now it istime to wait for awhile. This statement tells us to wait for 4 seconds. The argument, that is, the number
between the parentheses, gives the number of “ticks’. Each tick is 1/100 of a second. So you can very precisely
tell the program how long to wait. So for 4 seconds, the program does do nothing and the robot continues to
move forwards.

OnRev(OQUT_A+QUT_C);

The robot has now moved far enough so wetell it to move in reverse direction, that is, backwards. Note that we
can set both motors at once using OUT_A+QUT_C as argument. We could also have combined the first two
statements this way.

Vi t (400);
Again we wait for 4 seconds.

O f (QUT_A+QUT_O);
And finally we switch both motors off.

That is the whole program. It moves both motors forwards for 4 seconds, then backwards for 4 seconds, and
finally switches them off.

Y ou probably noticed the colors when typing in the program. They appear automatically. The colors and styles
used by the editor when it performs syntax highlighting are customizable.

Running the program

Once you have written a program, it needs to be compiled (that is, changed into code that the robot can
understand and execute) and send to the robot using the infrared link (called “downloading” the program). There
isabutton that does both at once (see the figure above). Press this button and, assuming you made no errors
when typing in the program, it will correctly compile and be downloaded. (If there are errorsin your program
you will be notified; see below.)

Now you can run your program. To this end press the green run button on your robot or, more easily, pressthe
run button on your window (see the figure above). Does the robot do what you expected? If not, the wires are
probably connected wrong.

Errors in your program

When typing in programs there is a reasonable chance that you make some errors. The compiler notices the
errors and reports them to you at the bottom of the window, like in the following figure:

& 1_ermors.ngc

task maini()

i

OnFud (00T D) ;

OnFud (OUT_C) ;
Wait(400);

OnFew (OUT_&+00T _C) ;
Wait(400)

QO£ (OUT_&+0UT_C) -

line 3: Error: undefined wariable '00T L'

It automatically selects the first error (we mistyped the name of the motor). When there are more errors, you can
click on the error messages to go to them. Note that often errors at the beginning of the program cause other
errors at other places. So better only correct the first few errors and then compile the program again. Also note
that the syntax highlighting helps alot in avoiding errors. For example, on the last line we typed O rather than
Of f . Because thisis an unknown command it is not highlighted.

There are also errors that are not found by the compiler. If we had typed OUT_B this would have gone unnoticed
because that motor exists (even though we do not useit in the robot). If your robot exhibits unexpected behavior,
there is most likely something wrong in your program.

Changing the speed
As you noticed, the robot moved rather fast. Default the robot moves as fast asit can. To change the speed you

can use the command Set Power () . The power isanumber between 0 and 7. 7 is the fastest, O the slowest (but
the robot will still move). Hereis a new version of our program in which the robot moves slow:

task main()
{
Set Power (QUT_A+QUT_C, 2);
OnFwd(QUT_A+QUT_QO) ;
Wi t (400);
OnRev(OQUT_A+QUT_C);
Wi t (400);
O f (OQUT_A+QUT_O);

Summary

In this chapter you wrote your first program in NQC, using Bricx Command Center. Y ou should now know how
to type in a program, how to download it to the robot and how to let the robot execute the program. Bricx
Command Center can do many more things. To find out about them, read the documentation that comes with it.
Thistutorial will primarily deal with the language NQC and only mention features of Bricx Command Center
when you really need them.

Y ou also learned some important aspects of the language NQC. First of all, you learned that each program has
one task named mai n that is always executed by the robot. Also you learned the four most important motor
commands; OnFwd() , OnRev(), Set Power () and O f () . Finally, you learned about the Wai t () statement.

Il. A more interesting program

Our first program was not very spectacular. So let ustry to make it more interesting. We will do thisin a number
of steps, introducing some important features of our programming language NQC.

Making turns

Y ou can make your robot turn by stopping or reversing the direction of one of the two motors. Hereis an
example. Typeit in, download it to your robot and let it run. It should drive a bit and then make a 90-degree right
turn.

task main()

{
OnFwd(QUT_A+QUT_O) ;
Wai t (100);
OnRev(OUT_O);
Wit (85);
O f(OQUT_A+QUT_O);

}

Y ou might have to try some dightly different numbers than 85 in the second Wai t () command to make a
precise 90-degree turn. This depends on the type of surface on which the robot runs. Rather than changing thisin
the program it is easier to use a name for this number. In NQC you can define constant values as shown in the
following program.

#defi ne MOVE_TI ME 100
#define TURN_TI ME 85

task nain()

{
OnFwd(OUT_A+QUT_C) ;
Wai t (MOVE_TI ME) ;
OnRev(OQUT_O);
WAi t (TURN_TI ME) ;
O f (OQUT_A+QUT_C);

}

The first two lines define two constants. These can now be used throughout the program. Defining constantsis
good for two reasons: it makes the program more readable, and it is easier to change the values. Note that Bricx
Command Center gives the define statements its own color. Aswe will see in Chapter \myou can aso define
things other than constants.

Repeating commands

Let us now try to write a program that makes the robot drive in a square. Going in a square means. driving
forwards, turning 90 degrees, driving forwards again, turning 90 degrees, etc. We could repeat the above piece of
code four times but this can be done alot easier with ther epeat statement.

#defi ne MOVE_TI ME 100
#define TURN_TI ME 85

task main()
repeat (4)
OnFwd(QUT_A+QUT_O) ;
Wi t (MOVE_TI ME) ;
OnRev(OQUT_O);
Vi t (TURN_TI ME) ;

}
O f (OUT_A+OUT_C) ;
}

The number behind ther epeat statement, between parentheses, indicates how often something must be
repeated. The statements that must be repeated are put between brackets, just like the statementsin atask. Note
that, in the above program, we also indent the statements. This is not necessary, but it makes the program more
readable.

Asafinal example, let us make the robot drive 10 timesin a square. Here is the program:

#define MOVE_TIME 100
#define TURN_TI ME 85

task main()
r epeat (10)
repeat (4)
OnFwd(OUT_A+QUT_C) ;
Wi t (MOVE_TI ME) ;
OnRev(OQUT_O);

Wi t (TURN_TI VE) ;
}

}
O f (OUT_A+OUT_C) ;
}

There is now one repeat statement inside the other. We call thisa“nested” repeat statement. Y ou can nest repeat
statements as much as you like. Take a careful look at the brackets and the indentation used in the program. The
task starts at the first bracket and ends at the last. The first repeat statement starts at the second bracket and ends
at the fifth. The second, nested repeat statement starts at the third bracket and ends at the fourth. As you see the
brackets always come in pairs, and the piece between the brackets we indent.

Adding comment

To make your program even more readable, it is good to add some comment to it. Whenever you put// ona
ling, therest of that lineisignored and can be used for comments. A long comment can be put between / * and
*/ . Comments are syntax highlighted in the Bricx Command Center. The full program could look as follows:

/* 10 SQUARES
by Mark Overmars

Thi s program make the robot run 10 squares
*/

#define MOVE_TIME 100 /1 Time for a straight nove
#define TURN_TI ME 85 /1 Time for turning 90 degrees

task main()
r epeat (10) /1 Make 10 squares
repeat (4)
OnFwd(QUT_A+QUT_QO) ;
Wi t (MOVE_TI ME) ;
OnRev(OQUT_O);

Wi t (TURN_TI VE) ;
}

}
O f(OUT_A+QUT_O); /1 Now turn the motors off
}

-10-

Summary

In this chapter you learned the use of ther epeat statement and the use of comment. Also you saw the function
of nested brackets and the use of indentation. With all you know so far you can make the robot move along all
sorts of paths. It isa good exercise to try and write some variations of the programs in this chapter before
continuing with the next chapter.

-11 -

lll. Using variables

Variables form a very important aspect of every programming language. Variables are memory locationsin
which we can store a value. We can use that value at different places and we can change it. Let me describe the
use of variables using an example.

Moving in a spiral

Assume we want to adapt the above program in such away that the robot drivesin a spiral. This can be achieved
by making the time we sleep larger for each next straight movement. That is, we want to increase the value of
MOVE_TI ME each time. But how can we do this? MOVE_TI ME is a constant and constants cannot be changed. We
need a variable instead. Variables can easily be defined in NQC. Y ou can have 32 of these, and you can give
each of them a separate name. Here isthe spiral program.

#define TURN.TIME 85

int move_tine; // define a variable

task main()

{

nmove_time = 20; // set the initial val ue
r epeat (50)
{

OnFwd(OUT_A+QUT_C) ;

Wai t (nmove_tine); /1 use the variable for sleeping
OnRev(OQUT_O);

Vi t (TURN_TI ME) ;

nmove_time += 5; /'l increase the variable

}
O f (QUT_A+QUT_O);
}

The interesting lines are indicated with the comments. First we define a variable by typing the keyword i nt
followed by a name we choose. (Normally we use lower-case letters for variable names and uppercase | etters for
constants, but this is not necessary.) The name must start with aletter but can contain digits and the underscore
sign. No other symbols are alowed. (The same applied to constants, task names, etc.) The strange word i nt
stands for integer. Only integer numbers can be stored init. In the second interesting line we assign the value 20
to the variable. From this moment on, whenever you use the variable, it stands for 20. Now follows the repeat
loop in which we use the variable to indicate the time to dleep and, at the end of the loop we increase the value of
the variable with 5. So the first time the robot sleeps 20 ticks, the second time 25, the third time 30, etc.

Besides adding values to a variable we can also multiply a variable with a number using * =, subtract using - =
and divide using / =. (Note that for division the result is rounded to the nearest integer.) Y ou can also add one
variable to the other, and write down more complicated expressions. Here are some examples:

int aaa;
int bbb, ccc;
task nain()
{
aaa = 10;
bbb = 20 * 5;
ccc = bbb;
ccc /= aaa;
ccc -= 5;
aaa = 10 * (ccc + 3); // aaa is now equal to 80
}

Note on the first two lines that we can define multiple variables in one line. We could also have combined all
three of them in oneline.

-12 -

Random numbers

In all the above programs we defined exactly what the robot was supposed to do. But things get alot more
interesting when the robot is going to do things that we don’t know. We want some randomness in the motions.
In NQC you can create random numbers. The following program uses thisto let the robot drive around in a
random way. It constantly drives forwards for a random amount of time and then makes arandom turn.

int move_time, turn_time;
task nain()
{
whi | e(true)
{
nmove_tinme = Randon{(60);
turn_time = Randon(40);
OnFwd(QUT_A+QUT_Q) ;
Wi t (nmove_tine);
OnRev(QUT_A) ;
Wait (turn_tinme);
}
}

The program defines two variables, and then assigns random numbers to them. Randon(60) means arandom
number between 0 and 60 (it can also be 0 or 60). Each time the numbers will be different. (Note that we could
avoid the use of the variables by writing e.g. Wai t (Randon(60)) .)

Y ou also see a hew type of loop here. Rather that using the repeat statement we wrotewhi | e(t r ue) . The while
statement repeats the statements below it as long as the condition between the parentheses istrue. The specia
word t r ue is always true, so the statements between the brackets are repeated forever, just as we want. Y ou will
learn more about the while statement in Chapter

Summary

In this chapter you learned about the use of variables. Variables are very useful but, due to restrictions of the
robots, they are a bit limited. Y ou can define only 32 of them and they can store only integers. But for many
robot tasks this is good enough.

Y ou also learned how to create random numbers, such that you can give the robot unpredictable behavior.
Finally we saw the use of the while statement to make an infinite loop that goes on forever.

-13-

V. Control structures

In the previous chapters we saw the repeat and while statements. These statements control the way the other
statements in the program are executed. They are called “control structures’. In this chapter we will see some
other control structures.

The if statement

Sometimes you want that a particular part of your program is only executed in certain situations. In this case the
if statement is used. Let me give an example. We will again change the program we have been working with so
far, but with a new twist. We want the robot to drive along a straight line and then either make a left or aright
turn. To do this we need random numbers again. We pick a random number between 0 and 1, that is, it iseither O
or 1. If the number is O we make aright turn; otherwise we make aleft turn. Here is the program:

#define MOVE_TIME 100
#define TURN_TI ME 85

task nmain()

whi | e(true)

{
OnFwd(QUT_A+QOUT_C) ;
Vi t (MOVE_TI MVE) ;
i f (Randon(1l) == 0)

OnRev(OQUT_O);
}

el se
OnRev(OUT_A) ;

}

Wi t (TURN_TI ME) ;

}
}

Theif statement looks a bit like the while statement. If the condition between the parentheses is true the part
between the brackets is executed. Otherwise, the part between the brackets after the word el se is executed. Let
us look a bit better at the condition we use. It reads Randon(1) == 0. Thismeansthat Randon(1) must be
equal to 0 to make the condition true. Y ou might wonder why we use == rather than =. The reasonisto
distinguish it from the statement that put avalue in avariable. Y ou can compare valuesin different ways. Here
are the most important ones:

== equal to

< smaller than

<= smaller than or equal to
> larger than

>= larger than or equal to
I= not equal to

Y ou can combine conditions use &&, which means “and”, or | | , which means“or”. Here are some exampl es of
conditions:

true alwaystrue
fal se never true
ttt '= 3 true when ttt is not equal to 3

(ttt >= 5) & (ttt <= 10) truewhentttliesbetween5and 10
(aaa == 10) || (bbb == 10) trueif either aaa or bbb (or both) are equal to 10

Note that the if statement has two parts. The part immediately after the condition, which is executed when the

condition istrue, and the part after the else, which is executed when the condition is false. The keyword else and
the part after it are optional. So you can leave them away if there is nothing to do when the condition is false.

-14-

The do statement
There is another control structure, the do statement. It has the following form:

do
{

st at enent s;

}
while (condition);

The statements between the brackets after the do part are executed as long as the condition is true. The condition
has the same form as in the if statement described above. Here is an example of a program. The robot runs
around randomly for 20 seconds and then stops.

int nove_time, turn_tinme, total _tine;
task main()
{
total _tine = 0;
do
{
move_time = Randon{100);
turn_time = Randon(100);
OnFwd(OUT_A+QUT_C) ;
Wai t (nove_tinme);
OnRev(OQUT_O);
Wait (turn_tinme);
total _tine += nove_tinme; total _tine += turn_tine;
}
while (total _tine < 2000);
Of (OQUT_A+QUT_C);
}

Note in this example that we placed two statements on one line. Thisis allowed. Y ou can place as many
statements on aline as you like (as long as there are semicolons in between). But for readability of the program
thisis often not a good idea.

Note also that the do statement behaves almost the same as the while statement. But in the while statement the
condition is tested before executing the statements, while in the do statement the condition is tested at the end.
For the while statement, the statements might never be executed, but for the do statement they are executed at
least once.

Summary

In this chapter we have seen two new control structures: the if statement and the do statement. Together with the
repeat statement and the while statement they are the statements that control the way in which the program is
executed. It is very important that you understand what they do. So better try some more examples yoursel f
before continuing.

We also saw that we can place multiple statements on aline.

-15-

V. Sensors

One of the nice aspects of the Lego robots s that you can connect sensors to them and that you can make the
robot react to the sensors. Before | can show how to do this we must change the robot a bit by adding a sensor.
To thisend, build the sensor construction shown in figure 4 on page 28 of the constructopedia. Y ou might want
to make it dightly wider, such that your robot looks as follows:

Connect the sensor to input 1 on the RCX.

Waiting for a sensor
Let us start with avery simple program in which the robot drives forwards until it hits something. Here it is:

task nmain()
{
Set Sensor (SENSOR_1, SENSOR_TOUCH) ;
OnFwd(OUT_A+QUT_C) ;
until (SENSOR 1 == 1);
O f (OQUT_A+QUT_O);
}

There are two important lines here. Thefirst line of the program tells the robot what type of sensor we use.
SENSOR _1 isthe number of the input to which we connected the sensor. The other two sensor inputs are called
SENSOR_2 and SENSOR_3. SENSOR_TOUCH indicates that thisis atouch sensor. For the light sensor we would
use SENSOR_LI GHT. After we specified the type of the sensor, the program switches on both motors and the
robot starts moving forwards. The next statement is a very useful construction. It waits until the condition
between the bracketsis true. This condition says that the value of the sensor SENSOR 1 must be 1, which means
that the sensor is pressed. Aslong as the sensor is not pressed, the value is 0. So this statement waits until the
sensor is pressed. Then we switch off the motors and the task is finished.

Acting on a touch sensor

Let us now try to make the robot avoid obstacles. Whenever the robot hits an object, we let it move back a bit,
make aturn, and then continue. Here is the program:

-16 -

task nmain()

{
Set Sensor (SENSCOR_1, SENSOR_TOUCH) ;
OnFwd(OUT_A+QUT_C) ;
while (true)

if (SENSOR 1 == 1)

OnRev(OUT_A+QUT_C); Wi t (30);
OnFwd(QUT_A) ; Wai t (30) ;
OnFwd(OUT_A+QUT_O) ;

}
}
}

Asin the previous example, we first indicate the type of the sensor. Next the robot starts moving forwards. In the
infinite while loop we constantly test whether the sensor is touched and, if so, move back for 1/3 of a second,
turn right for 1/3 of a second, and then continue forwards again.

Light sensors

Besides touch sensors, you also get alight sensor with your MindStorms system. The light sensor measures the
amount of light in a particular direction. The light sensor also emits light. In thisway it is possible to point the
light sensor in a particular direction and make a distinction between the intensity of the object in that direction.
Thisisin particular useful when trying to make arobot follow aline on the floor. Thisiswhat we are going to
do in the next example. We first need to attach the light sensor to the robot such that it isin the middle of the
robot, at the front, and points downwards. Connect it to input 2. For example, make a construction as follows:

We also need the race track that comes with the RIS kit (This big piece of paper with the black track onit.) The
idea now isthat the robot makes sure that the light sensor stays above the track. Whenever the intensity of the
light goes up, the light sensor is off the track and we need to adapt the direction. Here is avery simple program
for thisthat only works if we travel around the track in clockwise direction.

-17 -

#defi ne THRESHOLD 40

task main()

{
Set Sensor (SENSCOR_2, SENSOR_LI GHT) ;
OnFwd(QUT_A+QOUT_C) ;
while (true)

if (SENSOR 2 > THRESHOLD)

OnRev(OUT_O);
until (SENSOR 2 <= THRESHOLD);
OnFwd(QUT_A+QUT_C) ;
}
}

}

The program first indicates that sensor 2 is alight sensor. Next it sets the robot to move forwards and goesinto
an infinite loop. Whenever the light value is bigger than 40 (we use a constant here such that this can be adapted
easily, because it depends alot on the surrounding light) we reverse one motor and wait till we are on the track

again.

Asyou will see when you execute the program, the motion is not very smooth. Try adding aWai t (10)
command before the until command to make the robot move better. Note that the program does not work for
moving counter-clockwise. To enable motion along arbitrary path a much more complicated program is required.

Summary

In this chapter you have seen how to work with touch sensors and light sensors. We also saw the until command
that is useful when using sensors.

| recommend you to write a number of programs yourself at his stage. Y ou have all the ingredients to give your
robots pretty complicated behavior now. For example, try to put two touch sensors on your robot, one on the left
front and the other on the right front, and make the robot move away from the obstacles it hits. Also, try to make
arobot that stays within an areaindicated by athick black border line on the floor.

-18 -

VI. Tasks and subroutines

Up to now all our programs consisted of just one task. But NQC programs can have multiple tasks. It isalso
possible to put pieces of code in so-called subroutines that you can use at different placesin your program. Using
tasks and subroutines makes your programs easier to understand and more compact. In this chapter we will 1ook
at the various possibilities.

Tasks

An NQC program consists of at most 10 tasks. Each task has a name. One task must have the name mai n, and
this task will be executed. The other tasks will only be executed when a running tasks tells them to be executed
using a start command. From this moment on both tasks are running simultaneously (so the first task continues
running). A running task can also stop another running task by using the stop command. Later this task can be
restarted again, but it will start from the beginning; not from the place where it was stopped.

Let me demonstrate the use of tasks. Put your touch sensor again on your robot. We want to make a programin
which the robot drives around in squares, like before. But when it hits an obstacle it should react to it. It is
difficult to do thisin one task, because the robot must do two things at the same moment: drive around (that is,
switching on and off motors at the right moments) and watch for sensors. So it is better to use two tasks for this,
one task that drives the squares; the other that reacts to the sensors. Here is the program.

task main()

Set Sensor (SENSOR_1, SENSOR_TOUCH) ;
start check_sensors;
start nove_squar e;

}

task nmove_square()
while (true)

OnFwd(OUT_A+OUT_C); Wit (100);
OnRev(QUT_C); Wit (85);
}
}

task check_sensors()
while (true)

if (SENSOR_ 1 == 1)

{
st op nove_square;
OnRev(QUT_A+QUT_C); Wit (50);
OnFwd(OUT_A); Wit (85);
start nove_square;

}

}

}

The main task just sets the sensor type and then starts both other tasks. After this, task main is finished. Task
nmove_squar e moves the robot forever in squares. Task check_sensor s checks whether the touch sensor is
pushed. If so it takes the following actions: First of al it stopstask nove_squar e. Thisisvery important.
check_sensor s now takes control over the motions of the robot. Next it moves the robot back a bit and makes
it turn. Then it can start nove_squar e again to let the robot again drive in squares.

It isvery important to remember that tasks that you start are running at the same moment. This can lead to
unexpected results. Chapter K|exp|ai ns these problems in detail and gives solutions for them.

-19-

Subroutines

Sometimes you need the same piece of code at multiple placesin your program. In this case you can put the
piece of code in a subroutine and give it a name. Now you can execute this piece of code by simply calling its
name from within atask. NQC (or actually the RCX) allows for at most 8 subroutines. Let uslook at an
example.

sub turn_around()

OnRev(OUT_C): Wit (340);
OnFwd(OUT_A+OUT Q) ;
}

task main()

{
OnFwd(OUT_A+QUT_C) ;
Vi t (100) ;
turn_around();
Vi t (200) ;
turn_around();
Vi t (100) ;
turn_around();
O f (OQUT_A+QUT_O);

}

In this program we have defined a subroutine that makes the robot rotate around its center. The main task calls
the subroutine three times. Note that we call the subroutine by writing down its name with parentheses behind it.
So it looks the same as many of the commands we have seen. Only there are no parameters, so there is nothing
between the parentheses.

Some warnings are in place here. Subroutines are a bit weird. For example, subroutines cannot be called from
other subroutines. Subroutines can be called from different tasks but thisis not encouraged. It very easily leads
to problems because the same subroutine might actually be run twice at the same moment by different tasks. This
tends to give unwanted effects. Also, when calling a subroutine from different tasks, due to alimitation in the
RCX firmware, you cannot use complicated expressions anymore. So, unless you know precisely what you are
doing, don’t call a subroutine from different tasks!

Inline functions

Asindicated above, subroutines cause certain problems. The nice part is that they are stored only once in the
RCX. This saves memory and, because the RCX does not have so much free memory, thisis useful. But when
subroutines are short, better use inline functions instead. These are not stored separately but copied at each place
they are used. This costs more memory but problems like the ones with using complicated expressions, are no
longer present. Also thereisno limit on the number of inline functions.

Defining and calling inline functions goes exactly the same way as with subroutines. Only use the keyword void

rather than sub. (The word void is used because this same word appears in other languages like C.) So the above
example, using inline functions, looks as follows:

-20-

voi d turn_around()

OnRev(QUT_C); Wit (340);
OnFwd(OUT_A+OUT_C) ;
}

task main()

{
OnFwd(QUT_A+QUT_QO) ;
Wai t (100);
turn_around();
Wai t (200);
turn_around();
Wai t (100);
turn_around();
O f (OUT_A+QUT_O);

}

Inline functions have another advantage over subroutines. They can have arguments. Arguments can be used to
pass avalue for certain variables to an inline function. For example, assume, in the above example, we can make
the time to turn an argument of the function, as in the following examples:

void turn_around(int turntine)

OnRev(QUT_C); Wait(turntine);
OnFwd(OUT_A+QUT_C) ;
}

task main()

{
OnFwd(QUT_A+QUT_O) ;
Wai t (100);
turn_around(200);
Wai t (200);
turn_around(50);
Wai t (100);
turn_around(300);
O f (OUT_A+QUT_O);

}

Note that in the parenthesis behind the name of the inline function we specify the argument(s) of the function. In
this case we indicate that the argument is an integer (there are some other choices) and that its name is turntime.
When there are more arguments, you must separate them with commas.

Defining macros

There is yet another way to give small pieces of code a name. Y ou can define macrosin NQC (not to be
confused with the macros in Bricx Command Center). We have seen before that we can define constants, using
#define, by giving them a name. But actually we can define any piece of code. Here is the same program again
but now using a macro for turning around.

#define turn_around OnRev(OUT_C); Wai t (340); OnFwd(QUT_A+QUT_C) ;
task main()

OnFwd(QUT_A+QUT_QO) ;
Wai t (100);
turn_around;

Wai t (200);
turn_around;

Wai t (100);
turn_around;

O f(OQUT_A+QUT_O);

-21-

After the #define statement the word turn_around stands for the text behind it. Now wherever you type
turn_around, thisis replaced by this text. Note that the text should be on one line. (Actually there are ways of
putting a #define statement on multiple lines, but thisis not recommended.)

Define statements are actually alot more powerful. They can also have arguments. For example, we can put the
timeto turn as an argument in the statement. Here is an example in which we define four macro’s; one to move
forwards, one to move backwards, one to turn left and one to turn right. Each has two arguments: the speed and
thetime.

#define turn_right(s,t) SetPower(OQUT_A+OUT_C, s); OnFwd(QUT_A) ; OnRev(QUT_C); Wit (t);
#define turn_left(s,t) Set Power (OUT_A+QUT_C, s) ; OnRev(QUT_A) ; OnFwd(OUT_C) ; i t (t);
#define forwards(s,t) Set Power (OUT_A+QUT_C, s) ; OnFwd(OUT_A+QUT_C) ; Wit (t);
#defi ne backwards(s,t) Set Power (OUT_A+QUT_C, s) ; OnRev(OUT_A+QUT_C) ; Wit (t);

task main()

forwards(3, 200);
turn_left(7,85);
forwards(7,100);
backwar ds(7, 200) ;
forwards(7,100);
turn_right(7,85);
forwards(3, 200);
O f(OQUT_A+QUT_O);
}

It isvery useful to define such macros. It makes your code more compact and readable. Also, you can more
easily change your code when you e.g. change the connections to the motors.

Summary

In this chapter you saw the use of tasks, subroutines, inline functions, and macros. They have different uses.
Tasks normally run at the same moment and take care of different things that have to be done at the same
moment. Subroutines are useful when larger pieces of code must be used at different placesin the same task.
Inline functions are useful when pieces of code must be used a many different placesin different tasks, but they
use more memory. Finally macros are very useful for small pieces of code that must be used a different places.
They can also have parameters, making them even more useful.

Now that you have worked through the chapters up to here, you have al the knowledge you need to make your

robot do complicated things. The other chaptersin this tutorial teach you about other things that are only
important in certain applications.

-22-

VII. Making music

The RCX has a built-in speaker that can make sounds and even play simple pieces of music. Thisisin particular
useful when you want to make the RCX tell you that something is happening. But it can also be funny to have
the robot make music while it runs around.

Built-in sounds
There are six built-in soundsin the RCX, numbered from 0 to 5. They sound as follows:

Key click

Beep beep

Decreasing frequency sweep
Increasing frequency sweep
‘Buhhh’ Error sound

Fast increasing sweep

gabhwdNhEFO

Y ou can play them using the commands Pl ay Sound() . Hereisa small program that plays al of them.

task main()

Pl aySound(0); Wait(100);

Pl aySound(1); Wait(100);

Pl aySound(2); Wait(100);

Pl aySound(3); Wit (100);

Pl aySound(4); Wait(100);

Pl aySound(5); Wit (100);
}

Y ou might wonder why there are these wait commands. The reason is that the command that plays the sound
does not wait for it to finish. It immediately executes the next command. The RCX has alittle buffer in which it
can store some sounds but after awhile this buffer get full and sounds get lost. Thisis not so serious for sounds
but it is very important for music, as we will see below.

Note that the argument to Pl ay Sound() must be a constant. Y ou cannot put a variable here!

Playing music

For more interesting music, NQC has the command Pl ay Tone() . It has two arguments. The first isthe
frequency, and the second the duration (in ticks of 1/200h of a second, like in the wait command). Hereisatable
of useful frequencies:

Sound 1 2 3 4 5 6 7 8
G# 52 104 208 415 831 1661 3322
G 49 98 196 392 784 1568 3136
F# 46 92 185 370 740 1480 2960
F 44 87 175 349 698 1397 2794
E 41 82 165 330 659 1319 2637
D# 39 78 156 311 622 1245 2489
D 37 73 147 294 587 1175 2349
C# 35 69 139 277 554 1109 2217
C 33 65 131 262 523 1047 2093 4186
B 31 62 123 247 494 988 1976 3951
A# 29 58 117 233 466 932 1865 3729
A 28 55 110 220 440 880 1760 3520

Aswe noted above for sounds, also here the RCX does not wait for the note to finish. So if you use alot in arow
better add (slightly longer) wait commands in between. Here is an example:

-23-

task main()

{
Pl ayTone(262, 40); Wit (50);
Pl ayTone(294, 40); Wit (50);
Pl ayTone(330, 40); Wit (50);
Pl ayTone(294, 40); Wit (50);
Pl ayTone(262, 160); Wit (200);

}

Y ou can create pieces of music very easily using the Brick Piano that is part of the Bricx Command Center.

If you want to have the RCX play music while driving around, better use a separate task for it. Here you have an
example of arather stupid program where the RCX drives back and forth, constantly making music.

task music()
while (true)

Pl ayTone(262, 40); Wit (50);
Pl ayTone(294, 40); Wit (50);
Pl ayTone(330, 40); Wit (50);
Pl ayTone(294, 40); Wit (50);

}
}
task nain()
{
start nusic;
whi | e(true)
OnFwd(QUT_A+QUT_C); Wi t (300);
OnRev(OQUT_A+QUT_C); Wit (300);
}
}
Summary

In this chapter you learned how to let the RCX make sounds and music. Also you saw how to use a separate task
for music.

-24 -

VIIl. More about motors

There are anumber of additional motor commands that you can use to control the motors more precisely. In this
chapter we discuss them.

Stopping gently

When you usethe Of f () command, the motor stops immediately, using the brake. In NQC it is also possible to
stop the motorsin a more gentle way, not using the brake. For this you use the FI oat () command. Sometimes
thisisbetter for your robot task. Here is an example. First the robot stops using the brakes; next without using
the brakes. Note the difference. (Actually the difference is very small for this particular robot. But it makes a big
difference for some other robots.)

task main()

OnFwd(OUT_A+QUT_C) ;
Vi t (200) ;

O f (OQUT_A+QUT_C);
Vi t (100) ;

OnFwd(OUT_A+QUT_C) ;
Vi t (200) ;

Fl oat (QUT_A+QUT_O);

}

Advanced commands

The command OnFwd() actually does two things: it switches the motor on and it sets the direction to forwards.
The command OnRev() also does two things: it switches the motor on and sets the direction to reverse. NQC
also has commands to do these two things separately. If you only want to change one of the two things, it is more
efficient to use these separate commands; it uses less memory in the RCX, it isfaster, and it can result in
smoother motions. The two separate commands are Set Di r ect i on() that sets the direction (QUT_FWD,
OUT_REV or QUT_TOGGLE which flips the current direction) and Set Qut put () that setsthe mode (QUT_ON,
QUT_OFF or QUT_FLQAT). Here is a simple program that makes the robot drive forwards, backwards and
forwards again.

task nain()

{
Set Power (OQUT_A+QUT_C, 7) ;
Set Direction(QUT_A+QUT_C, QUT_FWD) ;
Set Qut put (OUT_A+QUT_C, QUT_ON) ;
Wi t (200);
Set Di recti on(QUT_A+QUT_C, QUT_REV) ;
Wi t (200);
Set Di recti on(OUT_A+QOUT_C, OQUT_TOGCLE) ;
Wi t (200);
Set Qut put (OUT_A+QUT_C, QUT_FLQAT) ;

}

Note that, at the start of every program, all motors are set in forward direction and the speed isset to 7. So in the
above example, the first two commands are not necessary.

There are a number of other motor commands, which are shortcuts for combinations of the commands above.
Hereisacomplete list:

On(‘nmotors’) Switches the motors on

O f(‘nmotors’) Switches the motors off

Fl oat (‘ notors’) Switches the motors of smoothly

Fwd(‘ not ors’) Switches the motors forward (but does not make them drive)
Rev(‘notors’) Switches the motors backwards (but does not make them drive)
Toggl e(‘ motors’) Toggles the direction of the motors (forward to backwards and back)
OnFwd(‘ notors’) Switches the motors forward and turns them on

OnRev(‘nmotors’) Switches the motors backwards and turns them on

-25-

OnFor(‘rmotors’,’ticks’)

Set Qut put (‘ motors’, ' node’)
SetDirection(‘mtors’, dir’)
Set Power (‘ notors’, ' power’)

Switches the motors on for ticks time

Sets the output mode (OUT_ON, OUT_OFF or OUT_FLOAT)

Sets the output direction (OUT_FWD, OUT_REV or OUT_TOGGLE)
Sets the output power (0-9)

Varying motor speed

As you probably noticed, changing the speed of the motors does not have much effect. The reason is that you are
mainly changing the torque, not the speed. Y ou will only see an effect when the motor has a heavy load. And
even then, the difference between 2 and 7 is very small. If you want to have better effects the trick is to turn the
motors on and off in rapid succession. Here is a simple program that does this. It has one task, called run_motor
that drives the motors. It constantly checks the variable speed to see what the current speed is. Positiveis
forwards, negative backwards. It sets the motors in the right direction and then waits for some time, depending
on speed, before switching the motors off again. The main task simply sets speeds and waits.

int speed, __ speed;

task run_notor ()

while (true)

{
__sSpeed = speed;
if (__speed > 0) {OnFwd(OUT_A+QUT_O);}
if (__speed < 0) {OnRev(OUT_A+QUT_QC);
Wai t (__speed);
O f (OQUT_A+QUT_O);

__sSpeed = -__speed;}

}

}

task main()

{
speed = 0;
start run_notor;
speed = 1; Wi t (200);
speed = -10; Wit (200);
speed = 5; Wi t (200);
speed = -2; Wit (200);

stop run_notor;
O f (OQUT_A+QUT_O);
}

This program can be made much more powerful, allowing for rotations, and also possibly incorporating a
waiting time after the O f () command. Experiment yourself.

Summary

In this chapter you learned about the extra motor commands that are available: Fl oat () that stops the motor
gently, SetDirection() that setsthe direction (QUT_FWD, OUT_REV or OUT_TOGGLE which flips the current
direction) and Set Qut put () that setsthe mode (OUT_ON, OUT_OFF or QUT_FLQOAT). Y ou saw the complete list
of motor commands available. Y ou also learned atrick to control the motor speed in a better way.

-26 -

IX. More about sensors

In Chapter Elwe discussed the basic aspects of using sensors. But there isalot more you can do with sensors. In
this chapter we will discuss the difference between sensor mode and sensor type, we will see how to use the
rotation sensor (atype of sensor that is not provided with the RIS but can be bought separately and is very
useful), and we will see some tricks to use more than three sensors and to make a proximity sensor.

Sensor mode and type

The Set Sensor () command that we saw before does actually two things: it sets the type of the sensor, and it
sets the mode in which the sensor operates. By setting the mode and type of the a sensor separately, you can
control the behavior of the sensor more precisely, which is useful for particular applications.

The type of the sensor is set with the command Set Sensor Type() . There are four different types:
SENSOR_TYPE_TOUCH, which is the touch sensor, SENSOR_TYPE_L| GHT, which is the light sensor,
SENSOR_TYPE_TEMPERATURE, which is the temperature sensor (this type of sensor is not part of the RIS but can
be bought separately), and SENSOR_TYPE_ROTATI ON, which is the rotation sensor (also not part of the RIS but
available separately). Setting the type sensor isin particular important to indicate whether the sensor needs
power (like e.g. for the light of the light sensor). | know of no uses for setting a sensor to a different type than it
actudly is.

The mode of the sensor is set with the command Set Sensor Mode() . There are eight different modes. The most
important one is SENSOR_MODE_RAW In this mode, the value you get when checking the sensor is a number
between 0 and 1023. It is the raw value produced by the sensor. What it means depends on the actual sensor. For
example, for atouch sensor, when the sensor is not pushed the value is close to 1023. When it is fully pushed, it
iscloseto 50. When it is pushed partially the value ranges between 50 and 1000. So if you set a touch sensor to
raw mode you can actually find out whether it is touched partially. When the sensor is alight sensor, the value
ranges from about 300 (very light) to 800 (very dark). This gives a much more precise value than using the

Set Sensor () command.

The second sensor mode is SENSOR_MODE_BOOL. In this mode the valueis 0 or 1. When the raw value is above
about 550 the value is 0, otherwise it is 1. SENSOR_MODE_BOQL is the default mode for atouch sensor. The
modes SENSOR_MODE_CELSI US and SENSOR_MODE_FAHRENHEI T are useful with temperature sensors only and
give the temperature in the indicated way. SENSOR_MODE_PERCENT turns the raw value into a value between 0
and 100. Every raw value of 400 or lower is mapped to 100 percent. If the raw value gets higher, the percentage
slowly goes down to 0. SENSOR_MODE_PERCENT is the default mode for alight sensor.

SENSOR_MODE_ROTATI ON seems to be useful only for the rotation sensor (see below).

There are two other interesting modes: SENSOR_MODE_EDGE and SENSOR_MODE_PUL SE. They count transitions,
that is changes from alow to a high raw value or opposite. For example, when you touch a touch sensor this
causes atransition from high to low raw value. When you release it you get a transition the other direction.
When you set the sensor mode to SENSOR_MODE_PUL SE, only transitions from low to high are counted. So each
touch and release of the touch sensor counts for one. When you set the sensor mode to SENSOR_MODE_EDGE,
both transitions are counted. So each touch and release of the touch sensor counts for two. So you can use thisto
count how often atouch sensor is pushed. Or you can use it in combination with alight sensor to count how
often a (strong) lamp is switched on and off. Of course, when you are counting things, you should be able to set
the counter back to 0. For this you use the command Cl ear Sensor () . It clears the counter for the indicated
sensor(s).

Let uslook at an example. The following program uses a touch sensor to steer the robot. Connect the touch

sensor with along wire to input one. If touch the sensor quickly twice the robot moves forwards. It you touch it
once it stops moving.

-27 -

task main()

{
Set Sensor Type(SENSCR_1, SENSOR_TYPE_TOUCH) ;
Set Sensor Mode(SENSOR 1, SENSOR_MODE_PULSE) ;
whi | e(true)

Cl ear Sensor (SENSOR 1) ;
until (SENSOR_1 >0);
Wai t (100);
if (SENSOR 1 == 1) {Of(OUT_A+OUT_O);}
if (SENSOR 1 == 2) {OnFwd(OUT_A+OUT_OC);}
}
}

Note that we first set the type of the sensor and then the mode. It seems that thisis essential because changing
the type al so effects the mode.

The rotation sensor

The rotation sensor isavery useful type of sensor that is unfortunately not part of the standard RIS. It can though
be bought separately from Lego. The rotation sensor contains a hole through which you can put an axle. The
rotation sensor measures the amount the axle is rotated. One full rotation of the axleis 16 steps (or —16 if you
rotate it the other way). Rotation sensors are very useful to make the robot make precisely controlled

movements. Y ou can make an axle move the exact amount you want. If you need finer control than 16 step, you
can always use gears to connect it to an axle that moves faster, and use that one for counting steps.

One standard application isto have two rotation sensors connected to the two wheels of the robot that you
control with the two motors. For a straight movement you want both wheels to turn equally fast. Unfortunately,
the motors normally don’t run at exactly the same speed. Using the rotation sensors you can see that one wheel
turns faster. Y ou can then temporarily stop that motor (best using Fl oat ()) until both sensors give the same
value again. The following program does this. It simply lets the robot drive in a straight line. To useit, change
your robot by connecting the two rotation sensors to the two wheels. Connect the sensorsto input 1 and 3.

task main()

Set Sensor (SENSOR_1, SENSOR_ROTATI ON) ; C ear Sensor (SENSOR_1) ;
Set Sensor (SENSOR_3, SENSOR_ROTATI ON) ; C ear Sensor (SENSOR_3) ;
while (true)

if (SENSOR_1 < SENSCR 3)
{OnFwd(QUT_A); Float(QUT_QO);}
else if (SENSOR_1 > SENSOR_3)
{OnFwd(QUT_C); Float (QUT_A);}
el se
{OnFwd(QUT_A+QUT_C); }

}

The program first indicates that both sensors are rotation sensors, and resets the values to zero. Next it start an
infinite loop. In the loop we check whether the two sensor readings are equal. If they are the robot simply moves
forwards. If oneislarger, the correct motor is stopped until both readings are again equal.

Clearly thisis only avery simple program. Y ou can extend this to make the robot drive exact distances, or to let
it make very precise turns.

Putting multiple sensors on one input

The RCX has only three inputs so you can connect only three sensors to it. When you want to make more
complicated robots (and you bought some extra sensors) this might not be enough for you. Fortunately, with
some tricks, you can connect two (or even more) sensors to one input.

The easiest isto connect two touch sensors to one input. If one of them (or both) is touched, the valueis 1,

otherwise it is 0. Y ou cannot distinguish the two but sometimes thisis not necessary. For example, when you put
one touch sensor at the front and one at the back of the robot, you know which one is touched based on the

-28-

direction the robot is driving in. But you can also set the mode of the input to raw (see above). Now you can get
alot more information. If you are lucky, the value when the sensor is pressed is not the same for both sensors. If
thisisthe case you can actually distinguish between the two sensors. And when both are pressed you get a much
lower value (around 30) so you can also detect this.

Y ou can also connect a touch sensor and a light sensor to one input. Set the type to light (otherwise the light
sensor won't work). Set the mode to raw. In this case, when the touch sensor is pushed you get araw value
below 100. If it is not pushed you get the value of the light sensor which is never below 100. The following
program uses this idea. The robot must be equipped with alight sensor pointing down, and a bumper at the front
connected to atouch sensor. Connect both of them to input 1. The robot will drive around randomly within a
light area. When the light sensor sees adark line (raw value > 750) it goes back a bit. When the touch sensor
touches something (raw value below 100) it does the same. Here is the program:

int ttt,tt2;

task noverandom()

while (true)
{
ttt = Randon(50) + 40;
tt2 = Randon(1);
if (tt2 > 0)
{ OnRev(QUT_A); OnFwd(OQUT_C); Vait(ttt); }
el se

{ OnRev(QUT_C); OnFwd(OUT_A); Wait(ttt); }
ttt = Randon(150) + 50;
OnFwd(QUT_A+QUT_CO); Wai t (ttt);
}
}

task main()

{
start nover andom
Set Sensor Type(SENSOR_1, SENSOR_TYPE_LI GHT) ;
Set Sensor Mbde(SENSCR_1, SENSOR_MODE_RAW ;
while (true)

if ((SENSOR_1 < 100) || (SENSOR 1 > 750))

{
st op nover andom
OnRev(OQUT_A+QUT_C) ; Wai t (30);
start noverandom

}

}
}

| hope the program is clear. There are two tasks. Task nover andommakes the robot move around in arandom
way. The main task first starts nover andom sets the sensor and then waits for something to happen. If the
sensor reading gets too low (touching) or too high (out of the white area) it stops the random moves, backs up a
little, and start the random moves again.

It isalso possible to connect two light sensors to the same input. The raw value isin some way related to the
combined amount of light received by the two sensors. But thisis rather unclear and seems hard to use.
Connecting other sensors with rotation or temperature sensors seems not to be useful.

Making a proximity sensor

Using touch sensors, your robot can react when it hits something. But it would be alot nicer when the robot
could react just before it hits something. It should know that it is near to some obstacle. Unfortunately there are
no sensors for this available. There isthough atrick we can use for this. The robot has an infra-red port with
which it can communicate with the computer, or with other robots. (We will see more about the communi cation
between robots in Chapter @) It turns out that the light sensor that comes with the robot is very sensitive to
infra-red light. We can build a proximity sensor based on this. The ideais that one tasks sends out infra-red

-29-

messages. Another task measures fluctuationsin the light intensity that is reflected from objects. The higher the
fluctuation, the closer we are to an object.

To usethisidea, place the light sensor above the infra-red port on the robot, pointing forwards. In thisway it
only measures reflected infra-red light. Connect it to input 2. We use raw mode for the light sensor to see the
fluctuations as good as possible. Here is a simple program that lets the robot run forwards until it gets near to an
object and then makes a 90 degree turn to the right.

int |astlevel; /1 To store the previous |evel
task send_signal ()

whi | e(true)
{SendMessage(0); Wit (10);}
}

task check_signal ()
whi | e(true)

| astl evel = SENSOR 2;
i f(SENSOR 2 > | astlevel + 200)
{OnRev(QUT_C); WAit(85); OnFwd(OQUT_A+QUT_O);}
}

}

task main()

Set Sensor Type(SENSOR_2, SENSOR_TYPE_LI GHT) ;
Set Sensor Mbde(SENSOR_2, SENSOR_MODE_RAW ;
OnFwd(QUT_A+QUT_O) ;

start send_signal;

start check_signal;

}

Thetask send_si gnal send out 10 IR signals every seconds, using the command SendMessage(0) . The task
check_si gnal repeatedly savesthe value of the light sensor. Then it checks whether it (slightly later) has
become at least 200 higher, indicating a large fluctuation. If so, it lets the robot make a 90-degree turn to the
right. The value of 200 is rather arbitrary. If you make it smaller, the robot turns further away from obstacles. If
you make it larger, it gets closer to them. But this also depends on the type of material and the amount of light
available in the room. Y ou should experiment or use some more clever mechanism for learning the correct value.

A disadvantage of the techniqueisthat it only works in one direction. Y ou probably still need touch sensors at
the sidesto avoid collisions there. But the technique is very useful for robots that must drive around in mazes.
Another disadvantage is that you cannot communicate from the computer to the robot because it will interfere
with the infra-red commands send out by the robot. (Also the remote control on your television might not work.)

Summary

In this chapter we have seen a number of additional issues about sensors. We saw how to separately set the type
and mode of a sensor and how this could be used to get additions information. We learned how to use the
rotation sensor. And we saw how multiple sensors can be connected to one input of the RCX. Finally, we saw a
trick to use the infrared connection of the robot in combination with a light sensor, to create a proximity sensor.
All these tricks are extremely useful when constructing more complicated robots. Sensors always play a crucial
role there.

-30-

X. Parallel tasks

As has been indicated before, tasksin NQC are executed simultaneoudly, or in parallel as people usually say.
Thisis extremely useful. In enables you to watch sensors in one task while another task moves the robot around,
and yet another task plays some music. But parallel tasks can also cause problems. One task can interfere with
another.

A wrong program

Consider the following program. Here one task drives the robot around in squares (like we did so often before)
and the second task checks for the touch sensor. When the sensor is touched, it moves a bit backwards, and
makes a 90-degree turn.

task main()

{
Set Sensor (SENSCR_1, SENSOR_TOUCH) ;
start check_sensors;
while (true)

OnFwd(OUT_A+OUT_C); Wit (100);
OnRev(QUT_C); Wit (85);

}
}
task check_sensors()
while (true)
if (SENSOR 1 == 1)
{
OnRev(QUT_A+QUT_C);
Wai t (50);
OnFwd(OUT_A) ;
Wit (85);
OnFwd(QUT_C) ;
}
}

}

This probably looks like a perfectly valid program. But if you execute it you will most likely find some
unexpected behavior. Try the following: Make the robot touch something while it isturning. It will start going
back, but immediately moves forwards again, hitting the obstacle. The reason for thisis that the tasks may
interfere. The following is happening. The rabot is turning right, that is, the first task isin its second sleep
statement. Now the robot hits the sensor. It start going backwards, but at that very moment, the main task is
ready with sleeping and moves the robot forwards again; into the obstacle. The second task is sleeping at this
moment so it won't notice the collision. Thisis clearly not the behavior we would like to see. The problemis
that, while the second task is sleeping we did not realize that the first task was still running, and that its actions
interfere with the actions of the second task.

Stopping and restarting tasks

One way of solving this problem is to make sure that at any moment only one task is driving the robot. Thiswas
the approach we took in Chapter El Let me repeat the program here.

-31-

task nmain()

Set Sensor (SENSCOR_1, SENSOR_TOUCH) ;
start check_sensors;
start nove_square;

}

task nmove_square()
while (true)

OnFwd(QUT_A+QUT_C); Wi t (100);
OnRev(OQUT_C); Wit (85);
}
}

task check_sensors()
while (true)

if (SENSOR 1 == 1)

{
stop nove_square;
OnRev(QUT_A+QUT_C); Wit (50);
OnFwd(QUT_A); Wit (85);
start nove_square;

}

}
}

The crux isthat thecheck_sensor s task only moves the robot after stopping the nove_squar e task. So this
task cannot interfere with the moving away from the obstacle. Once the backup procedureis finished, it starts
nmove_squar e again.

Even though thisis a good solution for the above problem, there is a problem. When we restart move_squar e, it
starts again at the beginning. Thisis fine for our small task, but often thisis not the required behavior. We would
prefer to stop the task where it is and continue it later from that point. Unfortunately this cannot be done easily.

Using semaphores

A standard technique to solve this problem isto use a variable to indicate which task isin control of the motors.
The other tasks are not allowed to drive the motors until the first task indicates, using the variable, that it is
ready. Such avariable is often called a semaphore. Let sembe such a semaphore. We assume that a value of 0
indicates that no task is steering the motors. Now, whenever a task wants to do something with the motors it
executes the following commands:

until (sem == 0);

sem = 1;

/1 Do sonething with the notors
sem = 0;

So we first wait till nobody needs the motors. Then we claim the control by setting semto 1. Now we can control
the motors. When we are done we set semback to 0. Here you find the program above, implemented using a
semaphore. When the touch sensor touches something, the semaphore is set and the backup procedureis
performed. During this procedure the task nove_squar e must wait. At the moment the back-up is ready, the
semaphoreis set to 0 and nove_squar e can continue.

-32-

int sem

task main()
{
sem = O;
start nove_square;
Set Sensor (SENSCOR_1, SENSOR_TOUCH) ;
while (true)

if (SENSOR 1 == 1)

{
until (sem== 0); sem= 1,
OnRev(QUT_A+QUT_C); Wit (50);
OnFwd(QUT_A) ; Wit (85);
sem = O;

}

}
}

task nove_square()

while (true)

{
until (sem == 0); sem= 1;
OnFwd(QUT_A+QOUT_C) ;
sem = O;
Wai t (100);
until (sem == 0); sem= 1;
OnRev(OQUT_O);
sem = O;
Wi t (85);

}

}

Y ou could argue that it is not necessary in nove_squar e to set the semaphore to 1 and back to 0. Still thisis
useful. The reason is that the OnFwd() command isin fact two commands (see Chapter 111}, Y ou don’t want
this command sequence to be interrupted by the other task.

Semaphores are very useful and, when you are writing complicated programs with parallel tasks, they are almost
aways required. (Thereis till a slight chance they might fail. Try to figure out why.)

Summary

In this chapter we studied some of the problems that can occur when you use different tasks. Always be very
careful for side effects. Much unexpected behavior is due to this. We saw two different ways of solving such
problems. The first solution stops and restarts tasks to make sure that only one critical task is running at every
moment. The second approach uses semaphores to control the execution of tasks. This guaranteesthat at every
moment only the critical part of onetask is executed.

-33-

XI. Communication between robots

If you own more than one RCX this chapter isfor you. The robots can communicate with each other through the
infra-red port. Using this you can have multiple robots collaborate (or fight with each other). Also you can build
one big robot using two RCXs, such that you can have six motors and six sensors (or even more using the tricks
in Chapter [X].

Communication between robots works, globally speaking, asfollows. A robot can use the command
SendMessage() to send avalue (0-255) over the infra-red port. All other robots receive this message and store
it. The program in arobot can ask for the value of the last message received using Message() . Based on this
value the program can make the robot perform certain actions.

Giving orders

Often, when you have two or more robots, one isthe leader. We call him the master. The other robots are slaves.
The master robot sends orders to the slaves and the slaves execute these. Sometimes the slaves might send
information back to the master, for example the value of a sensor. So you need to write two programs, one for
the master and one for the dlave(s). From now on we assume that we have just one slave. Let us start with avery
simple example. Here the dave can perform three different orders: move forwards, move backwards, and stop.
Its program consists of asimple loop. In thisloop it sets the value of the current message to 0 using the

Cl ear Message() command. Next it waits until the message becomes unequal to 0. Based on the value of the
message it executes one of the three orders. Here is the program.

task main() /'l SLAVE
while (true)
{

Cl ear Message() ;
until (Message() != 0);
if (Message() == 1) {OnFwd(QUT_A+QUT_O);}
if (Message() == 2) {OnRev(OQUT_A+QUT_CO);}
if (Message() == 3) {Of(QUT_A+QUT_CO);}
}
}

The master has an even simpler program. It simply send the messages corresponding to orders and then waits a
bit. In the program below it orders the slave to move forwards, then, after two seconds, backwards, and then,
again after two seconds, to stop.

task main() /1 NMASTER

SendMessage(1); Wit (200);
SendMessage(2); Wit (200);
SendMessage(3) ;

}

After you have written these two program, you need to download them to the robots. Each program must go to
one of the robots. Make sure you switch the other one off in the meantime (see also the cautions below). Now
switch on both robots and start the programs: first the one in the slave and then the one in the master.

If you have multiple slaves, you have to download the slave program to each of them in turn (not
simultaneously; see below). Now all daveswill perform exactly the same actions.

To let the robots communicate with each other we defined, what is called, a protocol: We decided that a 1 means
to move forwards, a 2 to move backwards, and a 3 to stop. It is very important to carefully define such protocols,
in particular when you are dealing with lots of communications. For example, when there are more slaves, you
could define a protocol in which two numbers are sent (with a small sleep in between): the first number is the
number of the dave, and the second is the actual order. The slave than first check the number and only perform
the action if it is his number. (This requires that each slave has its own number, which can be achieved by letting
each dave have a dightly different program in which e.g. one constant is different.)

Electing a leader

As we saw above, when dealing with multiple robots, each robot must have its own program. It would be much
easier if we could download just one program to al robots. But then the question is: who is the master? The
answer is easy: let the robots decide themselves. Let them elect aleader which the others will follow. But how
do we do this? Theideaisrather simple. We let each robot wait a random amount of time and then send a
message. The one that sends a message first is the leader. This scheme might fail if two robots wait exactly the
same amount of time but thisis rather unlikely. (Y ou can build more complicated schemes that detect this and
try asecond election in such acase.) Here is the program that doesiit:

task nain()

{
Cl ear Message() ;
Wi t (200); /1 make sure all robots are on
Wai t (Randon(400)) ; /1l wait between 0 and 4 seconds
if (Message() > 0) /1 somebody el se was first
start sl ave;
}
el se
SendMessage(1); /1 1 amthe naster now
Wi t (400); /'l make sure everybody el se knows
start master;
}
}

task master()

SendMessage(1); Wit (200);
SendMessage(2); Wit (200);
SendMessage(3) ;

}

task slave()

while (true)
{
Cl ear Message() ;
until (Message() != 0);
if (Message() == 1) {OnFwd(OQUT_A+QUT_CO);}
if (Message() == 2) {OnRev(QUT_A+QUT_O);}
if (Message() == 3) {Of(QUT_A+QUT_CO);}
}

}

Download this program to all robots (one by one, not at the same moment; see below). Start the robots at about
the same moment and see what happens. One of them should take command and the other(s) should follow the
orders. In rare occasions, hone of them becomes the leader. As indicated above, this requires more careful
protocols to solve.

Cautions

Y ou have to be a bit careful when dealing with multiple robots. There are two problems: If two robots (or arobot
and the computer) send information at the same time this might be lost. The second problem is that, when the
computer sends a program to multiple robots at the same time, this causes problems.

Let us start with the second problem. When you download a program to the robot, the robot tells the computer
whether it correctly receives (parts of) the program. The computer reacts on that by sending new pieces or by
resending parts. When two robots are on, both will start telling the computer whether they correctly receive the
program. The computer does not understand this (it does not know that there are two robots!). As aresult, things
go wrong and the program gets corrupted. The robots won’t do the right things. Always make sure that, while
you are downloading programs, only one robot is on!

-35-

The other problem is that only one robot can send a message at any moment. If two messages are being send at
roughly the same moment, they might get lost. Also, arobot cannot send and receive messages at the same
moment. Thisisno problem when only one robot sends messages (there is only one master) but otherwise it
might be a serious problem. For example, you can imagine writing a program in which a slave sends a message
when it bumps into something, such that the master can take action. But if the master sends an order at the same
moment, the message will get lost. To solve this, it isimportant to define your communication protocol such
that, in case a communication fails, thisis corrected. For example, when the master sends a command, it should
get an answer from the dave. If is does not get an answer soon enough, it resends the command. This would
result in a piece of code that looks like this:

do

SendMessage(1);
Cl ear Message() ;
Vi t (10);

}
while (Message() != 255);

Here 255 is used for the acknowledgement.

Sometimes, when you are dealing with multiple robots, you might want that only a robot that is very close by
receives the signal. This can be achieved by adding the command Set TxPower (TX_PONER _LO) to the program
of the master. In this case the IR signal send is very low and only a robot close by and facing the master will
“hear” it. Thisisin particular useful when building one bigger robot out of two RCXs. Use

Set TxPower (TX_POVWER _HI) to set the robot again in long range transmission mode.

Summary

In this chapter we studied some of the basic aspects of communication between robots. Communication uses the
commands to send, clear, and check messages. We saw that isisimportant to define a protocol for how the
communication works. Such protocols play a crucial rolein any form of communication between computers. We
also saw that there are a number of restrictions in the communication between robots which makes it even more
important to define good protocols.

-36-

XIl. More commands

NQC has a number of additional commands. In this chapter we will discuss three types: the use of timers,
commands to control the display, and the use of the datalog feature of the RCX.

Timers

The RCX hasfour built-in timers. These timerstick in increments of 1/10 of a second. The timers are numbered
from 0 to 3. You can reset the value of atimer with the command Cl ear Ti ner () and get the current value of
the timer with Ti mer () . Here is an example of the use of atimer. The following program lets the robot drive
sort of random for 20 seconds.

task main()

Cl earTiner(0);

do

{
OnFwd(QUT_A+QUT_O) ;
Wi t (Randon{100));
OnRev(OUT_O);
Wi t (Randon{100));

}
whi | e (Ti mer (0)<200);
O f (OUT_A+QUT_C)

}

Y ou might want to compare this program with the one given in Chapter hat did exactly the same task. The
one with timersis definitely simpler.

Timers are very useful as areplacement for avai t () command. You can sleep for a particular amount of time
by resetting a timer and then waiting till it reaches a particular value. But you can also react on other events (e.g.
from sensors) while waiting. The following simple program is an example of this. It lets the robot drive until
either 10 seconds are past, or the touch sensor touches something.

task main()
{
Set Sensor (SENSOR_1, SENSOR_TOUCH) ;
Cl ear Ti mer (3);
OnFwd(QUT_A+QUT_Q) ;
until ((SENSCR 1 == 1) || (Timer(3) >100));
O f (OUT_A+QUT_O) ;
}

Don't forget that timers work in ticks of 1/10 of a second, while e.g. the wait command uses ticks of 1/100 of a
second.

The display

It is possible to control the display of the RCX in two different ways. First of all, you can indicate what to
display: the system clock, one of the sensors, or one the motors. Thisis equivalent to using the black view button
onthe RCX. To set the display type, use the command Sel ect Di spl ay() . The following program shows all
seven possibilities, one after the other.

-37-

task nmain()

{
Sel ect Di spl ay(DI SPLAY_SENSOR 1); WAit(100); // Input 1
Sel ect Di spl ay(DI SPLAY_SENSOR 2); Wait(100); // Input 2
Sel ect Di spl ay(DI SPLAY_SENSOR 3); Wait(100); // Input 3

Sel ect Di spl ay(DI SPLAY_OUT_A) ; Wait (100); // Qutput A
Sel ect Di spl ay(DI SPLAY_CUT_B) ; Wait(100); // Qutput B
Sel ect Di spl ay(DI SPLAY_QUT_C) ; Wait (100); // Qutput C
Sel ect Di spl ay(DI SPLAY_WATCH) ; WAi t (100); // System clock

}

Note that you should not use Sel ect Di spl ay(SENSOR_1) .

The second way you can control the display is by controlling the value of the system clock. Y ou can use thisto
display e.g. diagnostic information. For this use the command Set Wat ch() . Hereis atiny program that uses
this:

task main()

{
SetWatch(1,1); Wit (100);
Set Watch(2, 4); WAait(100);
Set t ch(3,9); Wit (100);
Set Wat ch(4, 16); Wit (100);
Set Wat ch(5, 25); Wit (100);

}

Note that the argumentsto Set Wat ch() must be constants.

Datalogging

The RCX can store values of variables, sensor readings, and timers, in a piece of memory called the datalog. The
values in the datal og cannot be used inside the RCX, but they can be read by your computer. Thisis useful to
e.g. check what is going on in your robot. Bricx Command Center has a special window in which you can view
the current contents of the datal og.

Using the datalog consists of three steps: First, the NQC program must define the size of the datalog, using the
command Cr eat eDat al og() . Thisalso clears the current contents of the datalog. Next, values can be written in
the datalog using the command AddToDat al og() . The values will be written one after the other. (If you look at
the display of the RCX you will see that one after the other, four parts of a disk appear. When the disk is
complete, the datalog is full.) If the end of the datalog is reached, nothing happens. New values are no longer
stored. The third step is to upload the datalog to the PC. For this, choose in Bricx Command Center the
command Datalog in the Tools menu. Next press the button labelled Upload Datalog, and all the values appear.
Y ou can watch them or save them to afile to do something el se with them. People have used this feature to e.g.
make a scanner with the RCX.

Here is asimple example of arobot with alight sensor. The robot drives for 10 seconds, and five times a second
the value of the light sensor is written into the datalog.

task main()
{
Set Sensor (SENSOR_2, SENSOR _LI GHT) ;
OnFwd(QUT_A+QUT_C) ;
Cr eat eDat al 0og(50) ;
repeat (50)

AddToDat al og(SENSCR_2) ;
Wai t (20);

}
O f (QUT_A+QUT_O);

-38-

XII. Final remarks

If you have worked your way through this tutorial you can now consider yourself an expert in NQC. If you have
not done this up to now, it istimeto start experimenting yourself. With creativity in design and programming
you can make Lego robots do the most wonderful things.

Thistutorial did not cover all aspects of the Bricx Command Center. Y ou are recommended to read the
documentation at some stage. Also NQC is till in development. Future version might incorporate additional
functionality. Many programming concepts were not treated in this tutorial. In particular, we did not consider
learning behavior of robots or other aspects of artificial intelligence.

It isalso possible to steer a Lego robot directly from a PC. This requires you to write a program in alanguage
like Visual Basic, Java or Delphi. It is also possible to |et such a program work together with an NQC program
running in the RCX itself. Such a combination is very powerful. If you are interested in this way of
programming your robot, best start with downloading the spirit technical reference from the Lego MindStorms
web site.

pttp://www.| egomindstorms.con |

The web is a perfect source for additional information. Some other important starting points are on LUGNET,
the LEGO® Users Group Network (unofficial):

pttp://www.lugnet.com/ |

A lot of information can also be found in the newsgroup lugnet.robotics and lugnet.robotics.rex.nqc at
news.lugnet.com.

-39-

http://www.legomindstorms.com/
http://www.lugnet.com/

	Preface
	
	Acknowledgements

	Contents
	Writing your first program
	
	Building a robot
	Starting Bricx Command Center
	Writing the program
	Running the program
	Errors in your program
	Changing the speed
	Summary

	A more interesting program
	
	Making turns
	Repeating commands
	Adding comment
	Summary

	Using variables
	
	Moving in a spiral
	Random numbers
	Summary

	Control structures
	
	The if statement
	The do statement
	Summary

	Sensors
	
	Waiting for a sensor
	Acting on a touch sensor
	Light sensors
	Summary

	Tasks and subroutines
	
	Tasks
	Subroutines
	Inline functions
	Defining macros
	Summary

	Making music
	
	Built-in sounds
	Playing music
	Summary

	More about motors
	
	Stopping gently
	Advanced commands
	Varying motor speed
	Summary

	More about sensors
	
	Sensor mode and type
	The rotation sensor
	Putting multiple sensors on one input
	Making a proximity sensor
	Summary

	Parallel tasks
	
	A wrong program
	Stopping and restarting tasks
	Using semaphores
	Summary

	Communication between robots
	
	Giving orders
	Electing a leader
	Cautions
	Summary

	More commands
	
	Timers
	The display
	Datalogging

	Final remarks

