
Welcome to the official Irony Mod Manager Wiki.
This documentation provides detailed information about Irony’s features, workflows, configuration options, and advanced
tools.

Irony Mod Manager is a high-performance mod manager for Paradox titles, offering deterministic mod ordering, conflict
analysis (game-dependent), mod merging, and deep integration with Stellaris, EU4, HOI4, CK3, V3, Imperator, and Star Trek:
Infinite.

This Wiki is organized into clear sections accessible through the sidebar.
If you are new to Irony, start with the New User Checklist.

If you're just beginning with Irony:

Begin with the New User Checklist

Learn how installed mods appear in Irony → Installed Mods

Understand how to create and manage a Collection → Collection Mods

Explore sorting, filtering, and basic UI elements → Mod Filter

Irony works on Windows, Linux and macOS, and supports portable operation on all platforms.

Irony offers:

Deterministic mod load ordering based on game-specific rules

Conflict Solver (Full for Stellaris, analysis for HOI4) → Conflict Solver Modes

Mod Merging with multiple merge strategies → Merge Viewer / Binary Merge Viewer

Patch Mod auto-generation when resolving conflicts

Searchable database view for advanced conflict inspection → Database Search

External merge tool integration

Custom ignore rules, override rules and patch instructions → Ignore Rules

Platform-specific rendering and performance options

Use the sidebar to navigate through:

Installed Mods

Installing New Mods

Collection Mods

Home

� Getting Started

� Key Features (Overview)

� Documentation Structure

User Workflow

Mod Filters

Conflicted Objects

Merge Viewer

Binary Merge Viewer

Ignore Rules

Reset Conflicts

Database Search

Custom Patches

Options

Keyboard Shortcuts

Adding Irony to Steam

FAQ

Privacy Policy

Credits

For release notes, downloads, and platform-specific installation steps, refer to the GitHub Releases page.

For interactive help, tutorials, and discussions, visit the Irony Discord community.

If you encounter issues:

Check the FAQ

Use the Troubleshooting section (in FAQ)

Or open a bug report on GitHub (with logs and minimal reproduction)

This Wiki is continuously maintained as Irony evolves.
Thank you for using Irony Mod Manager!

Welcome! This guide shows the essential steps to get started with Irony Mod Manager.
It uses real screenshots of the UI to help new users understand where everything is.

Irony manages collections, mod order, merging, and (game-dependent) conflict solving.
Follow the steps below to set up your first working collection.

Conflict Solver & Tools

Configuration

Reference

� Additional Resources

� Need Help?

New User Checklist

When Irony starts, you will see the game selection screen.
Choose the Paradox game you want to manage.

Irony will remember the selected game on next launch.

Collections define which mods are active and in which order.

Click Create New Collection (+ button).

Choose any name you like — for example “My Stellaris Setup” or “CK3 Mods”.

Click OK to create it.

On the bottom-left area, you will see your Installed Mods list
→ Installed Mods

Select the mods you want to include.

You can select multiple mods using Ctrl or Shift as needed.

Selected mods appear on the right side of the UI, under Collection Mods

1. Select a Game

2. Create a New Collection

3. Enter a Collection Name

4. Select Mods in the Installed Mods Area

5. Mods Will Appear Under “Collection Mods” (Right Side)

→ Collection Mods

This is your actual load order.

You can drag them up and down to change order.

Stellaris → Full conflict solver

HOI4 → Analysis only

Others → Not available

If available, you can inspect conflicts, apply merges or patches, and clean up the patch mod by re-running the solver.

You can merge mods via merge menu:

Basic Merge

Compress Merge

Merged mods appear as local mods and can be used in any collection.

Once everything looks good:

Press Apply to write the load order

Press Launch Game to start the game with your collection active

If something goes wrong:

Use Actions → Logs to open the log folder

Check the Troubleshooting section of the Wiki → FAQ

If reporting an issue, provide a minimal reproducible collection, not your entire setup

This checklist covers the basics needed to use Irony for the first time.
Once you're comfortable, explore advanced tools like Filtering, Database Search, Ignore Rules, Merge Viewer, and external

Optional: Run the Conflict Solver

Optional: Merge Mods

6. Apply or Launch Game

Troubleshooting

editor integration.

The Installed Mods panel lists all mods detected on your system.
This view does not decide whether a mod is enabled or disabled in the game -- it only shows what exists on disk.

Mods become active/inactive when they are added to or removed from a Collection:
→ See: Collection Mods

The Installed Mods panel allows you to:

View all installed mods (Steam, Paradox, local)

Filter and search using advanced syntax

Sort mods by any column

Move mods into or out of a Collection

Inspect and regenerate mod descriptors

Lock/unlock descriptors as readonly

Rescan for newly installed mods

This panel works independently from the Collection Mods panel.

See Filter Mods for the full syntax reference.

Filtering supports:

Mod name

Remote ID

All advanced operators and field filters

Click the X button in the textbox, or

Delete all text.

Click any column header to sort by that column.

Sort order and selected column are saved automatically.

Supported sort columns include:

Name

Version

Source

Installed Mods

1. Overview

2. Filtering Mods

Resetting the Filter

3. Sorting Mods

Achievement compatibility

Selection status

Remote ID

To activate a mod in-game:

1. Tick the Selected checkbox.

2. The mod appears in Collection Mods.

3. The game will load it as part of that collection.

To deactivate:

Untick the checkbox — the mod is removed from the Collection.

You can enable/disable many mods at once:

Click the checkbox in the column header

Together with filters, this affects only visible mods

Example workflow:

Filter: source:steam && achievements:no
Click header checkbox → toggles only these mods

Irony automatically remembers:

Sort column

Sort direction

Filter text

Settings persist instantly.

Next to each mod, Irony shows an icon:

Broken trophy → the mod is not achievement compatible

Intact trophy → the mod is achievement compatible

This integrates with filtering (achievements:yes/no).

Right-click a mod to access advanced actions:

4. Moving Mods to the Collection Mods panel

4.1 Bulk Selection

5. Saved Options

6. Determining Achievement Compatibility

7. Context Actions (Right-Click Menu)

Open Mod File/Directory
Opens the mod folder in your file explorer.

Open Mod Url
Opens the mod’s homepage in your browser.

Open in Steam
Opens the mod’s Workshop page in the Steam client.

Copy Mod Url
Copies the mod homepage URL.

Check New Mods
Rescans workshop and local mod folders and generates descriptors.

Delete And Reload
Deletes descriptor for the selected mod and regenerates it.

Delete All And Reload
Deletes descriptors for all visible mods and regenerates them.
Works well with filters.

Lock
Sets the readonly attribute on the descriptor file of the hovered mod.

Lock All
Locks descriptors for all visible mods.

Unlock / Unlock All
Removes the readonly attribute from descriptor files.

The Installed Mods panel does not control load order — Collections do.

Selection controls activation; this panel shows only what exists on disk.

Descriptor regeneration is safe and produces normalized files.

Irony Mod Manager does not install mods itself.
Mods must be installed through the game’s platform (Steam, Paradox Mods, manual folders), and Irony will detect them
automatically.

This page explains how mods are installed depending on the platform and how to ensure Irony sees them.

To install a mod from Steam:

1. Open the mod’s Steam Workshop page

2. Click Subscribe

3. Wait for Steam to download the mod

4. Launch the game once (optional but recommended)

5. Start Irony — the mod will appear under Installed Mods
→ Installed Mods

8. Notes

Installing New Mods

Steam Workshop Mods

No manual steps are required.
Irony will detect the mod as soon as Steam finishes downloading it.

To install a mod from Paradox Mods:

1. Go to the Paradox Mods page for your game

2. Click Subscribe

3. Launch the Paradox Launcher

4. It will download the mod into the Paradox Mods directory

5. Start Irony — the mod will appear under Installed Mods
→ Installed Mods

Local mods are mods placed manually in the game’s mod folder.

Examples of local mods:

Mods downloaded manually as ZIP or folder

Mods created using Irony’s merge features
→ Collection Mods

Mods exported from a collection
→ Collection Mods

Mods created by the conflict solver (patch mod)
→ Conflict Solver Modes

To install a local mod:

1. Extract the mod into the game’s local mod folder

2. Ensure it contains a valid .mod or .json descriptor file

3. Start Irony — the mod will appear under Installed Mods
→ Installed Mods

If you installed a mod and it does not appear immediately, use:

Right Click → Check New Mods
(Available in Installed Mods context menu.)

This forces Irony to rescan:

Steam Workshop directory

Paradox Mods directory

Local mod directory

Any new mods found will be added automatically.

→ See full list of actions under: Installed Mods

Paradox Mods

Local Mods

Forcing Irony to Detect Newly Installed Mods

A mod must contain:

A valid descriptor file (.mod or .json)

A content root (folder that matches the descriptor’s path)

If the descriptor is missing, corrupted, or incomplete, Irony will show a popup warning.

Steam → Subscribe → wait → Irony detects

Paradox Mods → Subscribe → Launcher downloads → Irony detects

Local mods → extract + valid descriptor → Irony detects

Use Check New Mods for rescanning

Irony never installs mods — it only detects what the system provides

This page covers everything related to installing mods for Irony.

The Collection Mods panel is where you manage the mods that will be enabled in the game.
Here you control your active mod list, load order, exports/imports, merging, and access advanced tools such as
hashing and conflict solving.

A collection must be selected before editing. If the dropdown list is empty, you must create a collection first.

The Collection Mods section (right side of the UI) allows you to:

Choose which mods are active in the collection

Reorder mods (load order)

Search and filter mods

Merge, export, or import collections

Apply the load order to the game

Launch or resume the game

Access the Conflict Solver → Conflicted Objects

Manage patch mods

Run hash verification for multiplayer sync

The dropdown above the Collection Mods list represents the currently selected collection.

Descriptor Requirements

Summary

Collection Mods

1. Overview

2. Collection Management (Dropdown Actions)

Create Collection

Click the + button next to the dropdown.
Enter a name and confirm.

Click the – button.
This permanently deletes the collection and its associated patch mod.

Creates a new copy following Windows file naming conventions (e.g., “Collection (2)”).

Click the rename button and enter a new name.
Both the collection and its patch mod (if present) are renamed.

Click the Export button to save a collection as a ZIP file.
Available export modes:

Exports:

1. Collection data (name, mod order)

2. Patch collection mod (if it exists)

Exports only the collection name and mod order.

Exports:

Patch mod

Load order

All mods in the collection

Useful for sharing exact setups.

Exports a load order in the older Paradox Launcher JSON format.

Exports for newer Paradox Launcher versions.

Note:
Paradox Launcher exports only non-local mods. Irony follows the same rule.

Click Import to load a previously exported Irony collection.

Delete Collection

Duplicate Collection

Rename Collection

3. Exporting Collections

Standard Export

Additional Export Options (... menu)
Export Order Only

Export Whole Collection

Export to Paradox Launcher JSON (< 2021.10)

Export to Paradox Launcher JSON (>= 2021.10)

4. Importing Collections

Imports:

1. Collection data

2. Patch collection mod (if any)

If a collection with the same name exists, Irony will prompt you to overwrite it.

Imports Paradoxos load orders.

Reads dlc_load.json and creates a new collection named “Paradox”.

Imports active playset from the Paradox Launcher SQLite database.

Same as above, but uses the launcher’s beta database.

Imports a Paradox Launcher JSON export (all supported formats accepted).

Select mods in Installed Mods → Installed Mods
and add them to the collection.
They will appear in the right-side list.

Search performs partial matching by mod name or remote ID.
Advanced syntax is supported:

term (partial match)

a && b (AND)

a || b (OR)

--a (NOT)

achievements:yes/no

selected:yes/no

source:steam/paradox/local

version:x.y.z

Use the up/down buttons next to the search box to navigate between matches.
(See full syntax: → Mod Filter)

Additional Import Options (... menu)
Import from Paradoxos

Import from the Game

Import from Paradox Launcher

Import from Paradox Launcher Beta

Import from Paradox Launcher JSON

5. Managing Mods Within a Collection

Adding Mods

Searching Mods

Sorting Mods

Click the mod name column header to sort alphabetically.

Load order controls override behavior — bottom mods override mods above them.

Reorder using:

Drag & drop

Numeric up/down buttons

Editing the position number directly

Irony remembers:

Sort order

Search text

Irony visually indicates when a patch mod exists.

Options available:

Toggle patch mod on/off

Delete patch mod fully

Patch mods are created by the Conflict Solver → Conflicted Objects

Clicking Conflict Solver opens the solver.
First-time use will prompt you to select a mode:

(Modes explained here → Conflict Solver Modes)

Important Notes:

Changing the collection requires rerunning the solver.

Large mod lists may take time and memory.

Solver always prompts before repeated runs.

Right-click inside Collection Mods to access:

Toggles automatic selection of moved items.

Copies mod names into clipboard for sharing/debugging.

Reordering Mods

Saved Options

6. Patch Mod Controls

7. Conflict Solver

8. Context Actions (Right-Click Menu)

Auto Focus

Copy Collection to Clipboard

Import Mod Order From Clipboard

Reads clipboard and sets mod order accordingly.

Exports file hashes for all mods in the collection.

Exports hashes for game installation files.

Validates the local files against a hash report.

Opens the mod folder in your file explorer.

Opens the mod’s homepage in your browser.

Opens the mod’s Workshop page in the Steam client.

Copies the mod’s homepage URL.

Writes the collection load order to the Paradox Launcher / game registry.

Note:
Changes done directly in Paradox Launcher do not sync back to Irony.

Applies the collection and runs the configured executable.
If Steam is required but not running, Irony will start Steam first.

Launches the game and loads the last saved game automatically.

Shown only when a valid continue_game.json exists.

Collections cannot switch mod versions (per Paradox limitations).

Paradox Launcher changes do not modify Irony collections.

Patch mods must be regenerated if the collection is changed.

Importing/exporting collections overwrites patch mods when names match.

This page documents all functionalities of the Collection Mods panel.

Export Collection Hashes

Export Game Hashes

Verify Hashes

Open Mod File/Directory

Open Mod URL

Open in Steam

Copy Mod URL

9. Apply & Launch

Apply

Launch Game

Resume Game

10. Notes & Limitations

The Filter Mods search box allows you to quickly find mods by name, ID, or advanced criteria.
Filtering supports partial matching, logical operators, negation, and field-specific queries.

This system is powerful and flexible, allowing both simple searches and complex filters.

Filtering is available in the Installed Mods panel:
→ Installed Mods

Typing any text will show all mods whose name or remote ID contains the search term.

Examples:

star → matches “Star Wars Mod”, “Starlane Improvements”

1234 → matches mods with remote ID containing 1234

Matching is partial and case-insensitive.

Use && to combine multiple filters:

my mod && source:steam

Use || to match either condition:

my mod || another mod

Use -- before a term or field:

--my mod
source:--local

Negation works on all supported fields.

You can filter mods using structured keywords:

achievements:yes
achievements:no
achievements:true
achievements:false

Mod Filter

Basic Filtering

Logical Operators
AND Operator

OR Operator

NOT Operator (Negation)

Field Filters

Achievements

Selected (in the current collection)

selected:yes
selected:no

source:steam
source:paradox
source:local

Supports OR syntax:

source:steam||paradox

Matches version fields declared in descriptors:

version:2.0
version:3.2.1
version:2.0||3.0

(Partial matching applies.)

my mod && achievements:yes && source:steam && selected:no && version:2.0

my mod || another mod && source:steam||paradox

--my mod && source:--local

Filtering in Irony allows:

Partial name or ID searches

Combining multiple criteria

Logical AND / OR

Negation

Filtering by achievements support

Filtering by selection state

Filtering by source (steam / paradox / local)

Filtering by version

Source

Version

Combined Examples
Match a specific mod from Steam that supports achievements:

OR operator example:

Negation example:

Summary

This system makes managing large mod lists fast and efficient.

The Conflicted Objects view shows all detected conflicts for the currently selected collection.
It presents a structured, game-logic hierarchy where you can inspect definitions, understand which mods touch the same
objects, and open them in the Merge Viewer for resolution → Merge Viewer.

Conflicted Objects are displayed in two parts:

A dropdown showing the full conflict hierarchy (folders → files → definitions)

A listbox showing the definitions inside the selected file or node

Selecting a definition opens the Merge Viewer, where differences between mods can be examined and resolved (if the
game supports full merging).
→ Merge Viewer

This view is the starting point for analyzing and fixing mod conflicts.

The dropdown displays all conflicted files and logic nodes Irony has detected.
Each entry expands the game’s internal structure, allowing you to drill down to the exact definition that has conflicting
contributors.

Example:

common

common/ship_behaviors

common/ship_behaviors/behavior_type_1.txt

Simply select a node to load its definitions in the listbox.

After selecting a node, the listbox shows all definitions inside that file that have conflicts.

Selecting a definition loads it into the Merge Viewer → Merge Viewer

Conflicted Objects

1. Overview

2. Navigating Conflicts

Conflict Hierarchy Dropdown

Definitions Listbox

Irony automatically resets conflicts when it detects that mod files have changed
(for example, a mod author updated a file after you previously resolved or ignored a conflict).

Reset indicators help highlight these cases:

Red border → previously resolved conflict has changed

Yellow border → previously ignored conflict has changed

These indicators appear directly in the definitions listbox.

You can filter to only show reset conflicts by enabling:
Conflict Filter → Show Only Reset Conflicts → Conflict Filter

Occasionally, Irony can detect invalid definitions.
This analysis is powered by CWTools.

Invalid items appear in a separate dropdown section labeled Invalid.

Selecting an invalid entry shows a detailed parsing error on the right-hand panel.

Invalid definitions often indicate:

Mistyped syntax

3. Reset Indicators

4. Invalid Objects

Broken scopes

Missing brackets

Misplaced keywords

These issues may prevent a mod from working correctly in-game.

Mod developers can instruct Irony how to treat certain files or definitions.

Irony supports three special comment directives:

Dear Irony please fallback to simple parser

Forces Irony to bypass CWTools parsing for this file and use a less strict parser.

Irony this is a placeholder file please ignore it

Irony will ignore duplicate detection inside this file.

Irony these are placeholder objects please ignore them: id1,id2

Only the listed definition IDs will be ignored.

If Irony detects that your placeholder object would win a conflict in a FIOS/LIOS scenario,
it may override your ignore directive to avoid giving placeholders unintended priority.

This is intentional to prevent mod load order issues.

Use placeholder ignore comments for prototype or empty files

Use fallback parser for files with non-standard syntax

Validate definitions inside CWTools errors to ensure compatibility

Use the Conflict Filter to focus on important conflicts → Conflict Filter

If you ran the Conflict Solver once and changed your collection, run it again to refresh patch mods → Conflict Solver
Modes

The Conflicted Objects view provides:

A hierarchical overview of all detected conflicts

Direct access to definitions that require attention

5. Developer Overrides

1. Fallback to Simple Parser

2. Ignore Entire File (placeholder)

3. Ignore Specific Definitions (placeholder objects)

Important Note

6. Tips for Modders

Summary

Visual reset indicators for changed items

Tools to inspect invalid definitions

Developer-side control via Irony directives

This section is the core of conflict analysis in Irony and the main entry point to the Merge Viewer and further conflict
resolution tools.

The Merge Viewer is the central tool used to inspect, compare, and resolve conflicts detected by the Conflict Solver →
Conflict Solver Modes.
It allows you to analyze differences between mods, understand which definition “wins,” and build a merged version using a
virtual definition.

The Merge Viewer opens when you select a conflicted definition inside Conflicted Objects → Conflicted Objects.
It presents:

All definitions contributing to the conflict

A virtual, editable definition

Comparison tools for navigating and understanding differences

The Merge Viewer may operate in editable or read-only mode depending on the capabilities of the underlying conflict data
for that specific definition.

The left side lists all definitions contributing to the conflict.

Example screenshot:

Each definition is color-coded:

This is the editable definition.
All merge actions apply to this virtual definition.

The virtual definition is created by copying the content of the orange definition, unless conflict history is available.

This is the definition that Irony believes the game will actually use if you do not resolve the conflict.

It may display labels such as:

FIOS

LIOS

Merge Viewer

1. Overview

2. Definitions Pane

� Green — Virtual Definition

� Orange — Chosen Game-Winning Definition

Load Order

Override

These labels indicate why this definition is expected to win in-game under the current load order and dependency rules.

Irony uses this definition as the starting point for the virtual definition, unless conflict history is available.

Non-virtual definitions are read-only.
You cannot edit their contents directly.

Available actions:

Moves to the next or previous difference.

Copies the entire definition to the clipboard.

Copies all code blocks from the selected definition into the virtual definition.

Copies only the selected code block into the virtual definition.

Inserts the selected block above the highlighted block in the virtual definition.

Inserts the selected block below the highlighted block in the virtual definition.

The virtual definition (green) is where all merging takes place.

Available actions:

If an external merge tool is configured in Options → Options,
Irony can launch it with the current conflict.
Irony waits for you to finish editing and save changes in the external tool before importing them back.

Switches between the new diff interface and the legacy viewer.

Navigates between conflict points inside the virtual definition.

Copies the virtual definition to the clipboard.

3. Merge Viewer Actions (Non-Virtual Definitions)

• Next / Prev conflict

• Copy text

• Copy all

• Copy this

• Copy this before line

• Copy this after line

4. Merge Viewer Actions (Virtual Definition)

• External Merge

• Toggle Diff Compare Mode

• Next / Prev conflict

• Copy text

• Edit

Allows direct editing of the virtual definition.

Moves the selected code block within the virtual definition.

Writes the virtual definition to the patch mod.
The conflict disappears from the Conflicted Objects view → Conflicted Objects

A conflict reappears if:

1. The mod collection changes

2. A mod affecting the definition is updated

3. You manually Reset Conflicts → Reset Conflicts

Marks the conflict as ignored.
It remains hidden until the underlying content changes again.

Returns to the main Irony interface without resolving or ignoring the conflict.
Edits to the virtual definition are preserved until the solver is closed or the collection changes.

Merge Viewer operates in read-only mode when:

The definition type cannot be auto-merged

The conflict is being analyzed only

The data structure does not support merge operations

You may still:

Navigate conflicts

Copy text

Inspect differences

…but you cannot modify or merge them.

The Merge Viewer provides:

A detailed comparison of all definitions involved in a conflict

A virtual definition for building a resolved version

Tools for selective merging and navigation

Optional integration with external merge tools

• Move up / down

5. Resolve & Ignore

Resolve

Ignore

6. Back

7. Read-Only Scenarios

Summary

Resolve/Ignore workflows

Support for both editable and read-only scenarios

It is the primary interface for analyzing and resolving conflicts in Irony.

The Binary Merge Viewer is used when Irony detects a conflict involving a binary file, such as a texture, model, sound, or
any non-text game asset.
Binary files cannot be diffed or merged like script files, so Irony provides a minimal, focused interface for selecting which
version of the binary file should be used in the final patch mod.

Binary Merge Viewer opens automatically whenever a conflicted file is not text-based.
Examples include:

.dds , .png , .tga textures

Audio files

Models

Any file format that cannot be parsed as text

Unlike the main Merge Viewer:

No virtual definition is created

Binary files cannot be edited inside Irony

The viewer only allows choosing which mod’s binary file should be used

See the main Merge Viewer documentation for general behavior:
→ Merge Viewer

The list of definitions behaves the same as in the main Merge Viewer, except for one important difference:

Binary conflicts do not have a virtual definition.

Every listed entry corresponds to the binary file as provided by a specific mod.

See the regular Merge Viewer page for how definitions work:
→ Merge Viewer

As of Irony 1.6, the Binary Merge Viewer attempts to show a preview for supported image formats.

If the file is a texture (DDS, PNG, TGA…), Irony displays its preview

If the image cannot be displayed, or the format is unsupported, a blank placeholder is shown

If an image should preview but doesn't, report:

Mod name

Definition name / file path

Binary Merge Viewer

1. Overview

2. Definitions

3. Preview (Images Only)

Other binary files (audio, models, etc.) cannot be previewed and are listed as binary blocks only.

Binary conflicts are resolved by choosing which version of the file should win.

Available actions:

Selects the left-side binary file as the output.

Selects the right-side binary file as the output.

Only one binary file can be chosen.

Once you select Left or Right, the Resolve button becomes available.

Clicking Resolve performs the following:

The selected binary file is written directly into the patch collection mod

The conflict disappears from the Conflicted Objects list → Conflicted Objects

It will reappear only if:
1. The collection changes

2. A mod updates the binary file

3. You reset conflicts manually → Reset Conflicts

Binary files cannot be merged—only selected.

Binary Merge Viewer does not support:

Editing

Text diff

Virtual definitions

Block-based merge actions

External merge tools

Fine-grained conflict resolution

Binary conflict resolution is binary in the literal sense:
choose left or choose right.

Binary Merge Viewer provides:

A simple interface for resolving conflicts involving binary assets

Image previews for supported textures

4. Choosing a Binary File (Take Left / Take Right)

• Take Left

• Take Right

5. Resolve

6. Limitations

Summary

Quick Left/Right selection

Patch-mod output identical to regular conflict resolution

This tool is essential for resolving asset overrides and ensuring the final game uses the correct binary resources.

The Conflict Solver offers multiple modes that determine how Irony detects, displays, and processes mod conflicts.
Each mode changes how strictly conflicts are interpreted and whether Irony is allowed to generate patch output.

Modes fall into three families:

Default

Advanced

Analyze Only

Each mode also has a No Localization variant.

When starting the Conflict Solver, Irony presents a mode selection dialog.
This determines:

How conflicts are interpreted

Whether dependency information is respected

Whether patch output is generated

Whether localization files are included

How much detail is shown

Irony will prompt for mode selection every time you run the solver unless conflict history and state allow an automatic
continuation.

The dialog provides:

A mode selector (Default / Advanced / Analyze Only)

A toggle to exclude localisation folders (“Without Localization”)

A short description of each mode

After choosing a mode, Irony loads and analyzes all affected definitions.

Default Mode is designed for normal use and hides noise from expected overriding behavior.

Respects .mod descriptor dependencies

If Mod A supersedes Mod B via dependencies, Irony suppresses conflicts coming from B

Shows only meaningful conflicts

Conflict Solver Modes

1. Overview

2. Mode Selector Dialog

3. Default Mode

Behavior:

Reduces noise for typical playset management

Produces patch output when conflicts are resolved

Recommended for all non-modders and for regular modlist maintenance.

Same behavior as Default Mode, but excludes localization files entirely.

Skips all localisation/ folders

Useful when localization overrides are irrelevant or intentionally noisy

Advanced Mode bypasses dependency pruning entirely.

Ignores dependencies

Shows all conflicts, including:

Overrides normally hidden due to “A replaces B” relationships

Hidden conflicts masked by load order

Provides maximum detail

Generates patch output when conflicts are resolved

Useful for mod developers

Full visibility for debugging, creating compatibility patches, or validating large overhauls.

Same as Advanced Mode, but excludes all localization files.

Full conflict detail

No localisation noise

Faster analysis in localization-heavy modlists

Analyze Only Mode loads conflicts but never produces patch output.

Fully read-only

All conflict information is visible

Use case:

4. Default (No Localization)

Behavior:

5. Advanced Mode

Behavior:

Use case:

6. Advanced (No Localization)

Behavior:

7. Analyze Only

Behavior:

Same UI as full modes (except editing is disabled)

Useful for debugging or checking overrides without altering anything

Debugging large modsets

Verifying mod interactions without creating a patch mod

Cross-checking mod compatibility before making changes

Same as Analyze Only, but excludes localization folders.

Read-only

No localisation noise

Faster analysis for content-focused debugging

Irony tracks the internal state of each conflict.
Even after selecting a mode, Irony will ask again under these conditions:

Conflict state changed

New conflicts were introduced

Automatic reset happened

The collection changed (mod added/removed)

A mod updated a file (hash mismatch)

Irony does not automatically invalidate or delete patch output.
Instead:

An updated mod or a collection change triggers a state mismatch

The affected definition receives a yellow or red border depending on previous state

Irony displays a notification such as “Please rerun Conflict Solver”

Patch output remains intact until the user resolves again or manually resets.

More info:
→ Reset Conflicts

Irony automatically scans mod structure in the background:

File hashes

Folder structure

Definition hashes

Use case:

8. Analyze Only (No Localization)

Behavior:

9. When Irony Prompts Again

✔ Irony marks the patch as “dirty”

10. Background Change Detection

Contributor presence

If anything changes, Irony flags conflicts that may need attention.

Patch files are not removed automatically unless the conflict becomes irrelevant (no contributors), in which case Irony cleans
old output silently.

Normal gameplay

Regular modlists

Minimal noise

Fastest workflow

Debugging tricky mods

Creating compatibility patches

Investigating override chains

Verifying mod interactions

Multiplayer consistency checks

Validating modset without touching patch output

When localization overrides generate unnecessary noise

When working only with gameplay files

Conflict Solver Modes define how Irony interprets and displays conflicts:

Default respects dependencies

Advanced shows everything

Analyze Only is read-only

“No Localization” variants exclude localization folders

Irony warns about changes with visual indicators and prompts, but never removes patch data unless it becomes
irrelevant

Choosing the right mode ensures the best balance between precision, clarity, and performance.

Ignore Rules allow you to hide specific conflicts from the Conflict Solver based on path patterns, mod names, or filtering
conditions.
They are useful when you want Irony to skip certain folders, definitions, or entire mods that you know are safe to ignore.

11. When to Use Each Mode

Use Default Mode

Use Advanced Mode

Use Analyze Only

Use “No Localization”

12. Summary

Ignore Rules

Ignore Rules are different from simply clicking Ignore on a single conflict.

Ignore (button) hides one specific conflict until the underlying files change.

Ignore Rules define persistent patterns that automatically hide all matching conflicts every time the Conflict Solver runs.

Use Ignore Rules when you consistently want Irony to exclude certain files or mods from the conflict list.

Read more about the Conflict Solver here:
→ Conflicted Objects
→ Conflict Filter

In the Conflict Solver window, the Ignore Rules button is located next to the Ignore button.

Clicking it opens a text editor where you can define rules using a simple syntax.

After saving, the Conflict Solver automatically refreshes with your updated rules applied.

Ignore Rules support several syntax types.
Each rule must be on its own line. A line is either a rule or a comment, but never both.

Start a line with # to write a comment:

This is a comment explaining why a rule was added.

Comments are ignored by Irony but useful for documenting your rules.

A rule matches conflicts if the file path starts with the text you provide:

events

This hides all conflicts under the events folder.

You can specify full or partial folder paths:

common\defines

Forward slashes are also supported:

1. Overview

2. Opening Ignore Rules

3. Syntax

3.1 Comments

3.2 Basic Path Prefix Matching

3.3 Subfolder Rules (Backslashes)

3.4 Linux-Style Paths (Forward Slashes)

common/defines

Both styles are equivalent.

You can allow exceptions using the ! prefix:

!common\defines\subfolder

This tells Irony to include that subfolder, even if the main rule hides everything else under common\defines .

You can exclude all conflicts coming from a specific mod:

modname:Some Mod Name

This hides conflicts where the contributing definition originates from that mod.

As of Irony 1.25, you can combine mod exclusion rules with a count condition:

modname:Some Mod Name--count:3

This means:

If the conflict involves fewer than 3 definitions, the mod is excluded.

If the conflict involves 3 or more definitions, it is not excluded.

This interacts with the Conflict Filter’s “count settings.”

→ Conflict Filter

Wildcards allow matching file name patterns:

localisation*l_german.yml

This hides all German localisation files, regardless of subfolder depth.

Irony processes rules as follows:

Paths are matched using starts-with logic.

Rules apply before conflicts are displayed.

Exceptions (!path) override earlier path rules.

Mod exclusions always apply (subject to count rules).

3.5 Negation (Allowing Subfolders)

3.6 Excluding Mods by Name

3.7 Count-Based Exclusion (Advanced)

3.8 Wildcards

4. How Irony Applies Ignore Rules

Wildcards allow simple pattern matching for filenames.

Ignore Rules work alongside the Conflict Filter.

If multiple rules overlap, the most specific rule applies.

Click Save in the Ignore Rules editor and Irony will immediately:

1. Re-run the conflict evaluation

2. Apply all matching rules

3. Refresh the Conflict Solver interface

No restart is required.

To remove a rule, simply delete its line and save again.

You can share your Ignore Rules configurations or see examples from other users in the community discussion:

https://github.com/bcssov/IronyModManager/discussions/156 (https://github.com/bcssov/IronyModManager/discussions/156)

Use comments to document why a rule exists.

Prefer folder-level ignores to long lists of specific files.

Avoid ignoring definitions unless you're sure they are harmless.

Use negation rules (!) to fine-tune large folder ignores.

Use count-based rules for reducing noise in complex modlists.

Ignore Rules give you full control over how Irony filters conflicts, allowing a cleaner and more focused conflict-solving
workflow.

The Reset Conflicts tool allows you to manually reset the state of conflicts that were previously resolved or ignored,
returning them to a fresh unresolved state.
This tool works alongside Irony's automatic reset and cleanup system, which is triggered when underlying mod data
changes.

1. Open the Conflict Solver

2. Click the Reset Conflicts button

3. Choose the conflict type:
Resolved

Ignored

5. Saving & Refreshing

6. Sharing Ignore Rules

7. Best Practices

Reset Conflicts

1. How to Use Reset Conflicts

https://github.com/bcssov/IronyModManager/discussions/156

4. Select the folder containing the conflict

5. Select one or more definitions

6. Click Reset

Multi-select is supported using Shift / Ctrl.

Related pages:
→ Conflicted Objects
→ Conflict Filter

Manual reset clears Irony's stored decision for that conflict.

The previously generated resolved output is removed from the patch mod

The “resolved” state marker is cleared

The conflict appears again as new/unresolved the next time the solver loads (if it still exists)

Use this when you want to redo a merge manually.

No patch files are affected

The “ignored” marker is cleared

The conflict appears again as new/unresolved

Use this when you want to review a previously ignored conflict.

Irony automatically resets conflicts when it detects that the underlying data has changed.
This includes:

A mod update changed a file

The definition hash no longer matches the stored resolved state

The conflict history no longer matches

The collection structure changed (mod added/removed), affecting relevance

A resolved output no longer has any contributing mod (no longer referenced)

In these cases:

Irony automatically discards the old resolution

The conflict is shown again so the user is aware something changed

A border indicator appears (see below)

Automatic reset ensures that outdated resolves or ignores do not silently remain in the patch mod.

2. What Manual Reset Does

Resetting a Resolved Conflict

Resetting an Ignored Conflict

3. Automatic Reset (Irony’s Smart System)

4. Automatic Cleanup (No Conflict Remaining)

If the underlying conflict disappears completely — for example:

a mod is removed

the file or definition no longer exists

no mods contribute the conflicted object anymore

Irony will automatically remove the resolved output from the patch mod, because it is no longer relevant.

In this scenario:

No conflict is shown

No border indicator appears

Patch output is silently cleaned up

This behavior prevents “dangling overrides” in the patch collection.

In the Conflicted Objects listbox:

Red border → automatically reset previously resolved conflict

Yellow border → automatically reset previously ignored conflict

These indicators appear only when Irony performs an automatic reset.

Manual reset does not show any border.

Use manual Reset Conflicts when:

You want to redo a merge by choice

You want to clear a specific resolved entry from the patch mod

You previously ignored a conflict and now want to handle it

You want a clean manual starting point before merging

You want to reset only selected conflicts (not all)

Do not use manual reset to handle mod updates — Irony already handles these automatically.

5. Visual Indicators (Automatic Reset Only)

6. When to Use Manual Reset

7. Screenshot

Reset Conflicts provides a precise, selective way to clear outdated decisions, while Irony’s automatic system ensures merge
consistency whenever mods or definitions change.

The Database Search tool allows you to search through Irony’s internal metadata database built during the mod scanning
phase.
This system is extremely fast because Irony indexes only IDs, not full file contents.

Database Search is ideal for quickly finding which mods define or override specific scripted objects.

When Irony parses your mod collection, it builds a metadata database containing:

Definition IDs
Examples:

anomaly.502

anomaly.555

my_scripted_effect

start_screen_event.20

Definition names (if available)

File paths where the definitions were found

Mod source for each definition

This information is collected from all supported script formats Irony can parse.

Irony does not index full code bodies or arbitrary text.
It indexes only IDs extracted from parsed definitions.

Database Search

1. What Irony Indexes

� Important

Database Search is perfect for answering questions like:

“Which mod defines event anomaly.555 ?”

“Which mods contain a scripted effect named my_effect ?”

“Are multiple mods overriding the same ID?”

“Where is this definition located across the entire load order?”

“Which mod introduces this specific object into the game?”

This is extremely useful when analyzing conflicts, creating compatibility patches, or checking if a mod unexpectedly overwrites
something.

1. Open the Database Search tool

2. Type the ID or partial ID you want to find

3. Irony displays a list of all matching items

The search is nearly instant, regardless of how many mods are installed.

Exact ID

Partial ID (prefix or substring)

Case-insensitive matching

Each result typically displays:

ID

File path

Mod name

Source type (local, workshop, paradox)

This allows you to quickly identify:

Where a definition comes from

Which mods override the same object

Whether you have duplicates

Which mod “wins” based on load order

Database Search:

Shows all IDs, even if no conflict exists

2. What Database Search Is Used For

3. How to Use Database Search

Supported search patterns:

4. Search Results

5. How It Differs From Conflict Solver

Is not tied to patch generation

Is not affected by dependencies or conflict modes

Does not show conflicts — only presence and location

Conflict Solver:

Shows only true definition-level conflicts

Is affected by modes, dependencies, and ignores

Is used for merging and patch generation

Together, they form a complete analysis toolkit.

Database Search is especially useful for:

Debugging unexpected gameplay behavior

Finding duplicate IDs across mods

Detecting scripted effects or events reused in multiple mods

Checking if a mod actually contains what you think it contains

Locating definitions for manual custom patching

Validating mod structure when troubleshooting

Example:
Searching for:

anomaly.555

…shows every mod that defines or overrides that event.

Only IDs are indexed

Full-text code search is not supported

Malformed or invalid files may not provide extractable IDs

Database Search is a powerful, fast, ID-based index of your entire mod collection.
It allows you to instantly find which mods define or override specific objects without manually inspecting files.

It is essential for diagnosing overrides, locating definitions, and understanding mod interactions.

The Conflict Filter is a feature inside the Conflict Solver.
It controls which mods and which conflict types are shown, helping you focus only on what matters.

You can access it by toggling the Mod Filter button inside the Conflict Solver:
→ Conflicted Objects

6. Use Cases

7. Limitations

Summary

Conflict Filter

Mod Filter allows you to temporarily hide conflicts coming from specific mods, based on the filter settings.

Example:
If a conflict involves 2 mods, and your filter is configured to only show conflicts involving 3 or more mods, then Irony will not
display that conflict.

This is useful when reducing noise, especially in large mod lists.

These options allow you to refine which conflicts are visible.

If enabled (default), Irony hides conflicts coming from base game files.

If disabled, Irony will show conflicts involving game definitions.
This significantly increases the number of visible conflicts.

Useful for:

Updating an outdated mod to a newer game version

Auditing changes between major patches (e.g., migrating a Stellaris mod from 3.2 → 3.3)

Shows conflicts within the same mod.

Some mods declare the same object multiple times (intentional or accidental).
Turning this on helps detect those internal conflicts.

Shows only conflicts that:

were reset, or

will be reset

(depending on the Conflict Solver mode)

All other Mod Filter settings are ignored when this option is active.

If nothing was reset, this option behaves as if it is turned off.

What Mod Filter Does

Mod Filter Options

1. Ignore Game Conflicts (ON by default)

2. Show Self Conflicts (OFF by default)

3. Show Only Reset Conflicts (OFF by default)

Screenshot

Conflict Filter helps you:

Reduce noise by hiding irrelevant conflicts

Show only conflicts that match the chosen criteria

Include or exclude base game conflicts

Detect self-conflicts inside a single mod

Focus only on resettable conflicts when needed

It is a valuable tool for mod maintainers and advanced users working on large load orders or resolving complicated conflicts.

Custom Patches allow you to add your own manual fixes directly into the Irony Patch Mod.
They are intended for small, targeted corrections that you want Irony to respect during conflict analysis without creating a
separate standalone mod.

This feature is ideal when you want to override or repair a definition quickly and locally.

See also:
→ Conflict Solver
→ Invalid Objects

Custom Patches let you:

Inject your own code overrides into the Irony Patch Mod

Summary

Custom Patches

1. What Custom Patches Are For

Apply quick fixes without building a separate mod

Override definitions that Irony would not normally merge

Fix invalid definitions detected by CWTools

Adjust or correct problematic lines in a mod author’s file

Make temporary or experimental adjustments

They give you full control when you need a small fix now, without waiting for a mod update.

Use Custom Patches when:

A mod contains a broken or malformed definition

Irony marks something as Invalid but you know how to fix it

You want to override a small piece of data for your own playthrough

The change is too minor to justify creating a separate mod

You want Irony to treat your custom override as part of the analysis

For larger edits or long-term maintenance, it is recommended to create a dedicated external mod instead.

Custom Patches fully support overriding Invalid definitions.

Steps:

1. Locate the invalid definition in the “mod folder” selector

2. Write your corrected version in the Custom Patch editor

3. Save the patch

4. Rerun the Conflict Solver

Irony will then:

Prefer your custom override over the broken definition

Treat your patched version as the active definition during conflict analysis

When you save a Custom Patch:

Irony writes your override into the Irony Patch Mod

The custom file is treated like any other resolved definition

During analysis, Irony uses your version instead of the original

The patch persists until manually edited or removed

Custom patches do not get auto-resolved or auto-reset like normal conflicts — they exist only because you created them.

2. Recommended Use Cases

3. Custom Patches and Invalid Definitions

4. How Custom Patches Integrate With Irony Patch Mod

5. Important Notes

After creating or editing a Custom Patch, you must rerun the Conflict Solver

Custom Patches override the original mod’s data during analysis and merging

They are intended for small-scale adjustments, not full modding

If the underlying mod updates, your patch may need revisiting

Custom Patches are stored inside Irony’s patch mod, not as a separate mod

Custom Patches provide a lightweight way to fix or override definitions directly inside the Irony Patch Mod.
They are perfect for quick corrections, invalid definition fixes, and small personal tweaks — without needing to build a
standalone mod.

Use them for precision fixes, and use external mods for large-scale changes.

The Options panel contains all global and game-specific settings for Irony Mod Manager.
These settings control language, themes, game paths, editor integration, update behavior, and advanced conflict solver
options.

Selects the application UI language.

Choose between available visual themes for the Irony UI.

Changes the currently active game.
All game-specific settings below apply only to the selected game.

Provides quick access to useful tools:

Open DLC Manager

Open Irony Wiki

Open Irony Logs Directory

Open Selected Game’s error.log

Allows enabling or disabling DLCs for the selected game.

After adjusting DLC checkboxes, press Close to apply.

Summary

Options

1. General Options

Language

Themes

Game

Actions

2. DLC Manager

3. Options Screen Overview

The options screen is divided into several categories:

Game Options

External Editor Options

Conflict Solver Options

Mod Merge Options

Update Options

Each section is described below.

Automatically detects game paths and settings when you select the root installation folder.

Irony attempts to determine:

1. Game executable

2. Game data directory (e.g. Documents/Paradox Interactive/Stellaris)

3. Launch arguments

Note: Irony does not require selecting the exact root folder.
If you select a deeper folder (e.g. .../Stellaris/common), Irony walks upward until it finds a valid game structure.

Path to the file Irony should launch when “Launch Game” is pressed.

Additional command-line arguments to pass to the game executable.

Location where the game stores:

settings

save files

mods

launcher data

Example (Stellaris):
Documents/Paradox Interactive/Stellaris

Adds an extra folder from which Irony will load mods.
If enabled, this folder also becomes the location for:

merged mods

4. Game Options

Configure All

Game Executable

Game Args

Data Directory

Custom Mod Directory

patch mods

Before launching the game, Irony:

deletes existing mod descriptors

regenerates them cleanly

Useful for stale or partially written .mod files.

If enabled, Irony closes automatically after launching the game.
If disabled, it remains open.

Used in the Conflict Solver to open the virtual definition in a third-party merge/diff tool.

Path to the external editor binary (e.g. winmerge.exe , code.exe).

Arguments passed when launching the external editor.

Working examples may be shared here:
https://github.com/bcssov/IronyModManager/discussions/176 (https://github.com/bcssov/IronyModManager/discussions/176)

Enable/disable parsing of specific localization languages.

Disabling unused languages (e.g. German, Spanish) improves performance.

Customize colors used in the new diff viewer.

Naming format for individually compressed-merge mods.
Must include:

{Name}

{Merged}

Refresh Descriptors Before Playing

Close After Launching Game

5. External Editor Options

Editor Executable

Editor Args

6. Conflict Solver Options

Allowed Languages

New Diff Viewer Colors

(Does not affect the legacy merge viewer.)
7. Mod Merge Options

Mod Template

Collection Template

https://github.com/bcssov/IronyModManager/discussions/176

Naming format for merged collections.
Must include:

{Name}

{Merged}

Automatically checks Irony's update feed each time the application starts.

If enabled, Irony may update to:

alpha

beta

rc

stable

If disabled, only stable releases are used.

Begins the update process when a new version is available.

On first run, Irony displays:

If allowed, Irony checks the feed:

https://bcssov.github.io/IronyModManager/appcast.xml

Which lists available releases.

8. Update Options

Check for Updates at Startup

Update to Prerelease Versions

Download and Install

9. Understanding the Update Process

When updates are found:

Update packages are stored in:

%AppData%/Mario/IronyModManager-Updates

Files are signature-verified and then installed depending on installation type.

Zip is unpacked

Console updater is launched

Irony closes

Updater copies new files into the install directory

Irony restarts

On macOS/Linux: executable permissions restored (chmod +x)

Zip is unpacked

Setup installer is launched

Update applies via installer UI

Update files remain for ~3 days before automatic cleanup.

The Options screen centralizes all configuration for paths, editor tools, updates, conflict solver behavior, and merge
templates.

Download Behavior

10. Installation Types

1. Portable Installation

2. Installer Installation

Summary

Most users configure it once; advanced users may fine-tune tools and parsing behavior to suit their workflow.

Irony provides a wide range of keyboard shortcuts to speed up navigation, conflict resolution, and mod ordering.
Shortcuts react to the currently active window and often to the hovered item.

Shortcuts apply to the mod currently hovered or selected in the Collection Mods list.

Hotkey Action

CTRL + UP Move mod up

CTRL + DOWN Move mod down

CTRL + SHIFT + UP Move mod to top

CTRL + SHIFT + DOWN Move mod to bottom

CTRL + Z Undo last change

CTRL + Y Redo undone change

* Movement operations update the collection order immediately.

These shortcuts apply inside the Conflict Solver, including the Merge Viewer.

Hotkey Action

CTRL + UP Jump to previous conflict

CTRL + DOWN Jump to next conflict

CTRL + LEFT Previous conflict (skip empty/imaginary lines)

CTRL + RIGHT Next conflict (skip empty/imaginary lines)

SHIFT + UP Select next conflict in the tree

SHIFT + DOWN Select previous conflict in the tree

CTRL + SHIFT + UP Scroll Merge Viewer up

CTRL + SHIFT + DOWN Scroll Merge Viewer down

Hotkey Action

CTRL + 1–0 Select definition for the left side (1 = first definition)

CTRL + SHIFT + 1–0 Select definition for the right side (1 = first definition)

Keyboard Shortcuts

1. Main Screen

Collection Mods Area

2. Conflict Solver

Navigation

Definition Selection (Merge Viewer)

Hotkey Action

CTRL + I Ignore conflict

CTRL + R Resolve conflict

CTRL + E Enter edit mode for the virtual definition

CTRL + X Launch external editor (if configured)

Hotkey Action

CTRL + T Copy text from the left side

CTRL + SHIFT + T Copy text from the right side

CTRL + C Copy selected block (“Copy This”)

CTRL + V Insert block before selected line

CTRL + B Insert block after selected line

Hotkey Action

CTRL + Z Undo

CTRL + Y Redo

Irony’s keyboard shortcuts are designed to streamline mod ordering, conflict navigation, and merge editing.
Learning just a handful of these dramatically speeds up workflow — especially when resolving a large number of conflicts.

You can add Irony Mod Manager to Steam as a Non-Steam Game.
This is useful if you want:

Quick access from your Steam library

Big Picture Mode support

Steam Deck integration

Steam overlay behavior (Windows)

Automatic game pre-selection when launching Irony

Irony works as a native app on Windows, Linux, and macOS.
On Linux, Proton is NOT required because Irony provides a native Linux binary.

Conflict Actions

Text / Block Copy Actions

Conflict Solver Undo / Redo

Summary

Add Irony To Steam

1. Add Irony as a Non-Steam Game

1. Open Steam

2. Go to Games → Add a Non-Steam Game to My Library…

3. Select Irony Mod Manager from the list,
or click Browse… and locate the executable:

Windows: IronyModManager.exe

Linux/macOS: IronyModManager

4. Click Add Selected Programs

Irony will now appear in your Steam library.

Steam allows you to customize the launch command so Irony opens directly on the chosen game tab.

1. In your Steam Library, right-click Irony Mod Manager

2. Select Properties…

3. Rename it to the game you want (optional).

4. In Launch Options, enter:

-g Stellaris

2. Set Irony to Launch With a Specific Game Selected

This tells Irony to start with Stellaris pre-selected.

Replace Stellaris with one of these identifiers:

CK3

EU4

HOI4

IR

Stellaris

STInfinite

Vic3

EU5

Example for Hearts of Iron IV:

-g HOI4

Example for Crusader Kings III:

-g CK3

3. Supported Game Launch Flags

4. Linux / Steam Deck Notes

Irony has a native Linux executable, so do not enable Proton.

Add Irony exactly like any other Linux-native program.

Steam Deck can run Irony in Desktop Mode without compatibility tools.

Adding Irony to Steam improves workflow and lets you launch Irony directly into the game you're modding.
Just add it as a Non-Steam Game and optionally set a -g <game> launch flag for automatic game selection.

This page answers common questions about load order, conflict solver behavior, mod metadata, Linux/macOS issues,
updates, and troubleshooting.

Irony uses the same load order as the Paradox Launcher v2.
Changes you make in Irony are applied directly to the game’s mod registry in a launcher-compatible format.

Not yet. Multi-select drag-and-drop is planned.
You can track the feature request here:
https://github.com/bcssov/IronyModManager/issues/12 (https://github.com/bcssov/IronyModManager/issues/12)

You don't need to do anything manually.

If you rerun the Conflict Solver, Irony will automatically clean outdated patch entries.

You can also temporarily disable or delete the patch mod inside the Collection Mods panel.

Only Stellaris has full conflict solver support.

HOI4 supports Analysis Only mode

All other supported games use merging only

See the Supported Games page for details.

Some definitions are extremely complex.
You can configure an external merge tool in Options → External Editor (e.g., WinMerge, KDiff, VS Code) and use:

Right-click → External Merge

The external tool will open the virtual definition and allow full editing.

Summary

FAQ

1. Load Order & Mod Manager Behavior

Q: What load order does Irony use?

Q: Does drag-and-drop support multiple items?

Q: I modified the collection — how do I clean up the patch mod?

2. Conflict Solver & Merging

Q: The conflict solver is missing for my game — why?

Q: Editing some conflicts is difficult. Any tips?

https://github.com/bcssov/IronyModManager/issues/12

Invalid definitions are detected using CWTools.
They usually indicate malformed syntax or unsupported structures in a mod.

You can:

Inspect errors in the Invalid folder inside Conflict Solver

Provide custom overrides via Custom Patches

Fix your own mods directly

If you believe Irony incorrectly flagged something, you can report it.

Yes. Inside the file, add one of the following comments on a line by itself:

Dear Irony please fallback to simple parser

or

Irony this is a placeholder file please ignore it

or specify placeholder IDs:

Irony these are placeholder objects please ignore them: id1,id2

These prevent the definition from being used in conflict evaluation.

Some distros do not set XDG_DATA_HOME .
Irony depends on this path to locate Paradox game directories.

Setting this variable or launching the game once usually resolves the problem.

Possible causes:

Avalonia UI bugs on certain distros

Wayland incompatibility

Tooltips causing UI deadlocks

You can fix this by editing appSettings.json :

"Tooltips": { "Disable": true }

Or enable Wayland support:

3. Mod Metadata & Invalid Definitions

Q: Irony reports "invalid definitions". Is this a problem?

Q: My mod is flagged incorrectly. Can I tell Irony to ignore a file?

4. Linux, macOS & Technical Environment

Q: Irony does not detect Stellaris (or another game) on Linux.

Q: Irony freezes or shows black windows on Linux.

"LinuxOptions": { "DisplayServer": "wayland" }

Ensure xwayland is installed if using X11 fallback.

See:
https://github.com/bcssov/IronyModManager/issues/119 (https://github.com/bcssov/IronyModManager/issues/119)

This is related to Apple’s notarization and quarantine system.

macOS has a very low ulimit (256), limiting how many file handles Irony can use.

Workaround:

1. Copy appSettings.json → appSettings.override.json

2. Set "UseFileStreams": true under "OSXOptions"

3. Open Terminal → run:
ulimit -n 200000

4. Launch Irony via Terminal:
./IronyModManager

You must repeat step 3 for each Terminal session unless you make the limit permanent.

Most commonly caused by:

Antivirus blocking Irony

Incomplete downloads

System-level restrictions

Digitally signed binaries would prevent false positives, but code signing is expensive.

Install the Microsoft Visual C++ 2017 Redistributable:

x86: https://aka.ms/vs/16/release/vc_redist.x86.exe (https://aka.ms/vs/16/release/vc_redist.x86.exe)

x64: https://aka.ms/vs/16/release/vc_redist.x64.exe (https://aka.ms/vs/16/release/vc_redist.x64.exe)

No. Irony is a mod manager and conflict solver only.
It cannot upload or publish Workshop mods.

Q: Irony fails to launch on macOS Catalina.

Q: I run out of RAM when exporting/merging on macOS.

5. Updates & Crashes

Q: Irony crashes unexpectedly or auto-update fails.

Q: Irony is crashing on startup on Windows.

6. Workshop & Distribution Behavior

Q: Can Irony upload mods to the Steam Workshop?

https://github.com/bcssov/IronyModManager/issues/119
https://aka.ms/vs/16/release/vc_redist.x86.exe
https://aka.ms/vs/16/release/vc_redist.x64.exe

Options:

1. Merge → Compress

2. Merge → Basic

3. Duplicate a collection → Export → Whole Collection → re-import later

This ensures all mods exist locally in their exact state.

Fix options:

1. Install xwayland

2. Change "DisplayServer" to "wayland" or "auto" in appSettings.json

Some distros (e.g., Arch) offer community packages like irony-mod-manager-bin ,
but they are not officially maintained.
Report issues to the package maintainers, not Irony.

The FAQ covers common questions about load order, conflicts, metadata, Linux/macOS issues, updates, and mod
management behavior.
If something is not covered here, check GitHub Discussions or open a new issue.

This document explains what data Irony Mod Manager does—and does not—collect.
Irony is designed with privacy in mind and does not transmit any personal data.

Irony Mod Manager does not collect, store, or transmit:

personal information

hardware identifiers

usage analytics

system information

mod list data

configuration files

Irony only makes network requests when checking for updates, and these requests do not send any personal data.

Q: How do I "freeze" my game state?

7. Wayland / Linux Issues

Q: Irony shows only a black window under Wayland.

Q: Is there a Wayland-ready package in my distro’s repository?

Summary

Privacy Policy

1. Software Privacy

What is transmitted?

The only information visible to remote servers is your IP address, which is standard for any HTTP request and handled
directly by GitHub’s infrastructure.
None of this information is collected by the Irony developer.

Irony performs only two types of online requests:

1. Update check (GET request):

https://bcssov.github.io/IronyModManager/appcast.xml

2. Version download (if you choose to update):

https://github.com/bcssov/IronyModManager/releases/download/v{version}/{filename}

These endpoints are hosted by GitHub.
No additional tracking or telemetry is performed.

Automatic update checks can be disabled at any time in:

Options → Update Options → Check for updates at startup

Manual update checks are user-triggered and optional.

The Irony website and documentation pages (GitHub Pages, GitHub Wiki, GitHub Releases) do not collect any information on
behalf of the Irony developer.

Any data gathered (such as IP logs or analytics) is collected solely by GitHub, according to GitHub’s own privacy policies.

The Irony developer does not receive, access, or process any of this information.

If you wish to uninstall Irony:

Simply delete the folder where you extracted Irony.

Open Add/Remove Programs, locate:

Irony Mod Manager v{version}

and choose Uninstall.

Irony stores settings and downloaded updates in:

Update-related requests

Turning off update checks

2. Website Privacy

3. Removing Irony & Clearing Local Data

Step 1 — Determine your installation type
Portable Version

Installer Version (Windows)

Step 2 — Remove local settings & update cache (optional)

%AppData%\Mario

Deleting that folder will remove:

user settings

UI preferences

update cache files

This step is optional but recommended for a clean removal.

If you want to remove generated patch mods:

1. Open your game's mod directory

2. Delete any folders and .mod descriptors prefixed with:

IronyModManager

This will remove Irony-created patch collections without affecting other mods.

Irony Mod Manager does not collect or transmit personal data.
The only network actions performed are update checks and downloads from GitHub, both of which expose only standard
HTTP request metadata (e.g., IP address) to GitHub—not to the developer.

Removing Irony is straightforward, and all user data can be deleted locally.

Step 3 — Remove Irony patch mods (optional)

Summary

	Home
	🔰 Getting Started
	🧩 Key Features (Overview)
	📚 Documentation Structure
	User Workflow
	Conflict Solver & Tools
	Configuration
	Reference

	🔍 Additional Resources
	📩 Need Help?

	New User Checklist
	1. Select a Game
	2. Create a New Collection
	3. Enter a Collection Name
	4. Select Mods in the Installed Mods Area
	5. Mods Will Appear Under “Collection Mods” (Right Side)
	Optional: Run the Conflict Solver
	Optional: Merge Mods
	6. Apply or Launch Game
	Troubleshooting

	Installed Mods
	1. Overview
	2. Filtering Mods
	Resetting the Filter

	3. Sorting Mods
	4. Moving Mods to the Collection Mods panel
	4.1 Bulk Selection

	5. Saved Options
	6. Determining Achievement Compatibility
	7. Context Actions (Right-Click Menu)
	8. Notes

	Installing New Mods
	Steam Workshop Mods
	Paradox Mods
	Local Mods
	Forcing Irony to Detect Newly Installed Mods
	Descriptor Requirements
	Summary

	Collection Mods
	1. Overview
	2. Collection Management (Dropdown Actions)
	Create Collection
	Delete Collection
	Duplicate Collection
	Rename Collection
	3. Exporting Collections

	Standard Export
	Additional Export Options (... menu)
	Export Order Only
	Export Whole Collection
	Export to Paradox Launcher JSON (< 2021.10)
	Export to Paradox Launcher JSON (>= 2021.10)
	4. Importing Collections

	Additional Import Options (... menu)
	Import from Paradoxos
	Import from the Game
	Import from Paradox Launcher
	Import from Paradox Launcher Beta
	Import from Paradox Launcher JSON
	5. Managing Mods Within a Collection

	Adding Mods
	Searching Mods
	Sorting Mods
	Reordering Mods
	Saved Options
	6. Patch Mod Controls
	7. Conflict Solver
	8. Context Actions (Right-Click Menu)
	Auto Focus
	Copy Collection to Clipboard
	Import Mod Order From Clipboard
	Export Collection Hashes
	Export Game Hashes
	Verify Hashes
	Open Mod File/Directory
	Open Mod URL
	Open in Steam
	Copy Mod URL
	9. Apply & Launch

	Apply
	Launch Game
	Resume Game
	10. Notes & Limitations

	Mod Filter
	Basic Filtering
	Logical Operators
	AND Operator
	OR Operator
	NOT Operator (Negation)

	Field Filters
	Achievements
	Selected (in the current collection)
	Source
	Version

	Combined Examples
	Match a specific mod from Steam that supports achievements:
	OR operator example:
	Negation example:

	Summary

	Conflicted Objects
	1. Overview
	2. Navigating Conflicts
	Conflict Hierarchy Dropdown
	Definitions Listbox
	3. Reset Indicators
	4. Invalid Objects
	5. Developer Overrides

	1. Fallback to Simple Parser
	2. Ignore Entire File (placeholder)
	3. Ignore Specific Definitions (placeholder objects)
	Important Note
	6. Tips for Modders
	Summary

	Merge Viewer
	1. Overview
	2. Definitions Pane
	🟢 Green — Virtual Definition
	🟠 Orange — Chosen Game-Winning Definition
	3. Merge Viewer Actions (Non-Virtual Definitions)
	• Next / Prev conflict
	• Copy text
	• Copy all
	• Copy this
	• Copy this before line
	• Copy this after line
	4. Merge Viewer Actions (Virtual Definition)
	• External Merge
	• Toggle Diff Compare Mode
	• Next / Prev conflict
	• Copy text
	• Edit
	• Move up / down
	5. Resolve & Ignore

	Resolve
	Ignore
	6. Back
	7. Read-Only Scenarios
	Summary

	Binary Merge Viewer
	1. Overview
	2. Definitions
	3. Preview (Images Only)
	4. Choosing a Binary File (Take Left / Take Right)
	• Take Left
	• Take Right
	5. Resolve
	6. Limitations
	Summary

	Conflict Solver Modes
	1. Overview
	2. Mode Selector Dialog
	3. Default Mode
	Behavior:
	Use case:
	4. Default (No Localization)
	Behavior:
	5. Advanced Mode
	Behavior:
	Use case:
	6. Advanced (No Localization)
	Behavior:
	7. Analyze Only
	Behavior:
	Use case:
	8. Analyze Only (No Localization)
	Behavior:
	9. When Irony Prompts Again
	✔ Irony marks the patch as “dirty”
	10. Background Change Detection
	11. When to Use Each Mode
	Use Default Mode
	Use Advanced Mode
	Use Analyze Only
	Use “No Localization”
	12. Summary

	Ignore Rules
	1. Overview
	2. Opening Ignore Rules
	3. Syntax
	3.1 Comments
	3.2 Basic Path Prefix Matching
	3.3 Subfolder Rules (Backslashes)
	3.4 Linux-Style Paths (Forward Slashes)
	3.5 Negation (Allowing Subfolders)
	3.6 Excluding Mods by Name
	3.7 Count-Based Exclusion (Advanced)
	3.8 Wildcards
	4. How Irony Applies Ignore Rules
	5. Saving & Refreshing
	6. Sharing Ignore Rules
	7. Best Practices

	Reset Conflicts
	1. How to Use Reset Conflicts
	2. What Manual Reset Does
	Resetting a Resolved Conflict
	Resetting an Ignored Conflict
	3. Automatic Reset (Irony’s Smart System)
	4. Automatic Cleanup (No Conflict Remaining)
	5. Visual Indicators (Automatic Reset Only)
	6. When to Use Manual Reset
	7. Screenshot

	Database Search
	1. What Irony Indexes
	❗ Important
	2. What Database Search Is Used For
	3. How to Use Database Search
	Supported search patterns:
	4. Search Results
	5. How It Differs From Conflict Solver
	6. Use Cases
	7. Limitations
	Summary

	Conflict Filter
	What Mod Filter Does
	Mod Filter Options
	1. Ignore Game Conflicts (ON by default)
	2. Show Self Conflicts (OFF by default)
	3. Show Only Reset Conflicts (OFF by default)

	Screenshot
	Summary

	Custom Patches
	1. What Custom Patches Are For
	2. Recommended Use Cases
	3. Custom Patches and Invalid Definitions
	4. How Custom Patches Integrate With Irony Patch Mod
	5. Important Notes
	Summary

	Options
	1. General Options
	Language
	Themes
	Game
	Actions
	2. DLC Manager
	3. Options Screen Overview
	4. Game Options

	Configure All
	Game Executable
	Game Args
	Data Directory
	Custom Mod Directory
	Refresh Descriptors Before Playing
	Close After Launching Game
	5. External Editor Options

	Editor Executable
	Editor Args
	6. Conflict Solver Options

	Allowed Languages
	New Diff Viewer Colors
	(Does not affect the legacy merge viewer.)
	7. Mod Merge Options

	Mod Template
	Collection Template
	8. Update Options

	Check for Updates at Startup
	Update to Prerelease Versions
	Download and Install
	9. Understanding the Update Process
	When updates are found:
	Download Behavior
	10. Installation Types

	1. Portable Installation
	2. Installer Installation
	Summary

	Keyboard Shortcuts
	1. Main Screen
	Collection Mods Area
	2. Conflict Solver

	Navigation
	Definition Selection (Merge Viewer)
	Conflict Actions
	Text / Block Copy Actions
	Conflict Solver Undo / Redo
	Summary

	Add Irony To Steam
	1. Add Irony as a Non-Steam Game
	2. Set Irony to Launch With a Specific Game Selected
	3. Supported Game Launch Flags
	4. Linux / Steam Deck Notes
	Summary

	FAQ
	1. Load Order & Mod Manager Behavior
	Q: What load order does Irony use?
	Q: Does drag-and-drop support multiple items?
	Q: I modified the collection — how do I clean up the patch mod?
	2. Conflict Solver & Merging
	Q: The conflict solver is missing for my game — why?
	Q: Editing some conflicts is difficult. Any tips?
	3. Mod Metadata & Invalid Definitions
	Q: Irony reports "invalid definitions". Is this a problem?
	Q: My mod is flagged incorrectly. Can I tell Irony to ignore a file?
	4. Linux, macOS & Technical Environment
	Q: Irony does not detect Stellaris (or another game) on Linux.
	Q: Irony freezes or shows black windows on Linux.
	Q: Irony fails to launch on macOS Catalina.
	Q: I run out of RAM when exporting/merging on macOS.
	5. Updates & Crashes
	Q: Irony crashes unexpectedly or auto-update fails.
	Q: Irony is crashing on startup on Windows.
	6. Workshop & Distribution Behavior
	Q: Can Irony upload mods to the Steam Workshop?
	Q: How do I "freeze" my game state?
	7. Wayland / Linux Issues
	Q: Irony shows only a black window under Wayland.
	Q: Is there a Wayland-ready package in my distro’s repository?
	Summary

	Privacy Policy
	1. Software Privacy
	What is transmitted?
	Update-related requests
	Turning off update checks
	2. Website Privacy
	3. Removing Irony & Clearing Local Data

	Step 1 — Determine your installation type
	Portable Version
	Installer Version (Windows)

	Step 2 — Remove local settings & update cache (optional)
	Step 3 — Remove Irony patch mods (optional)
	Summary

