Université Hassan 1"
Faculté des Sciences et Techniques - Settat

taly 8 ¥ga Lyl deal?

:l. r:|1'u'r!-1h‘1" :'_:"IIIIEi.III .‘ﬂlllr;il\ .":-l'uu.'uu'

TP Sécurité : Manipulation de la
Cryptographie en Python

MD5 — DES — AES - PBKDF2 — RSA — Fernet — Hashlib -

Secrets

Reéalisé par :
Abdeljalil BOUZINE

Encadrant :
HAMID GARMANI

Date : Décembre 2025

Table des matiéres

(Introductionl

(I Manipulations avec PyCryptodome|

(1.1 Hachage MD5 d'un fichier|
(.2 Chiffrement et déchiffrement DESI00 00000
(1.3 AES CBCsimplel o
.4 AES sur fichierl
1.5 2+ AESCBC
[1.6 RSA : génération, signature, vérification, chiffrement|

2 Manipulations avec le module cryptography]

2.1 Fernet : chiffrement de textel
2.2 Fernet : chiffrement de fichierl
2.3 2 + Fernet|
[2.4 AES bas niveau (Cipher, CBC)|

[3 Génération sécurisée et hachage|

[3.1 Génération d’'un mot de passe aléatoire sécurisé¢
3.2 Générer un token sécurisédl
(3.3 Hachage SHA-256 / SHA-512]
[3.4 Hachage d’un fichier|

[3.5 Vérification d’'intégrité]

Conclusion|

12
12
13
14
16

18
18
19
19
20
21

23

Introduction

Ce rapport présente I’ensemble des manipulations cryptographiques réalisées en Python
dans le cadre du TP de sécurité informatique. L’objectif est de comprendre et expérimenter
plusieurs primitives cryptographiques fondamentales : hachage, chiffrement symétrique,
dérivation de clé, chiffrement asymétrique, signature numérique, génération sécurisée et
vérification d’intégrité.
Les bibliothéques utilisées sont :

— PyCryptodome : DES, AES, PBKDF2, RSA

— cryptography : Fernet, PBKDF2HMAC, AES bas niveau

— hashlib : SHA-256, SHA-512

— secrets : mots de passe et tokens sécurisés
Chaque section contient : explications, code Python exécuté, zones pour résultats et cap-
tures.

© oo ~ (=]

10

11

12

13

14

15

16

17

18

Chapitre 1

Manipulations avec PyCryptodome

1.1 Hachage MDS5 d’un fichier

Objectif : générer I'empreinte MD5 d’un fichier et vérifier que le moindre changement
modifie 'empreinte.

Code Python

from Crypto.Hash import MD5b

def get_file_checksum(filename: str) -> str:
h = MD5.new ()
chunk_size = 8192

with open(filename, "rb") as f:
while True:
chunk = f.read(chunk_size)
if not chunk:
break
h.update (chunk)
return h.hexdigest ()

if __name__ == "__main__":
nom_fichier = "fichier_test.txt"
print ("Fichier,,:", nom_fichier)
print ("Somme de ,contr le_ MD5,:", get_file_checksum(nom_fichier

))

Explication du code

— Importation du module MD5 : La bibliothéque Crypto.Hash.MD5 fournit une
implémentation de l'algorithme de hachage MD5, permettant de générer une em-
preinte unique a partir d’'un contenu quelconque.

— Création d’un objet de hachage : h = MD5.new() initialise un nouvel objet
MD5. Cet objet maintient 1’état du calcul du hash au fur et & mesure que des
données lui sont ajoutées.

10

11

12

13

14

15

16

17

18

19

TP Sécurité — Python FST Settat

— Lecture du fichier par blocs : Le fichier est ouvert en mode binaire ("rb") afin
de lire exactement son contenu brut. Il est lu morceau par morceau via des blocs
de 8192 octets pour éviter de charger des fichiers trop volumineux en mémoire.

— Mise a jour progressive du hash : A chaque itération, h.update (chunk) ajoute
les données du bloc au calcul MD5. Cela permet de calculer le hash sur des flux de
données continus, méme trés grands.

— Condition d’arrét : Lorsque f.read() renvoie un bloc vide, cela signifie que le
fichier a été entiérement parcouru, et la boucle s’arréte.

— Reécupération du hash final : La méthode h.hexdigest () retourne ’empreinte
MD5 sous forme hexadécimale lisible. C’est cette valeur qu’on utilise pour vérifier
I'intégrité d'un fichier.

— Bloc principal : Le fichier fichier_test.txt est haché, puis le hash est affiché.
Si le fichier change, ne serait-ce qu'un seul caractére, 'empreinte MD5 devient
complétement différente.

— Usage : Ce hash permet de détecter toute modification accidentelle ou intention-
nelle d'un fichier, mais MDb5 n’est plus considéré comme sécurisé pour des usages
cryptographiques avancés.

(venv) (base) PS E:\Security\tpl-python> python checksum mds.py
>

Fichier : fichier test.txt

Somme de contrdle MD5 : 5c4c94c19e165218e46f12f@61c1347¢

((base) PS E:\Security\tpi-python> python checksum mds.py
>
Fichier : fichier test.txt
de contréle MD5 : bad66bl13d829a62af974c917987c87ab
(base) PS E:\Security\tpl-python> I

1.2 Chiffrement et déchiffrement DES

from Crypto.Cipher import DES
from Crypto.Util.Padding import pad, unpad

user_text = "user"
message_text = "message"
key = b"mycipher"

user = pad(user_text.encode(), DES.block_size)
message = pad(message_text.encode(), DES.block_size)

cipher = DES.new(key, DES.MODE_ECB)
cipher_user = cipher.encrypt(user)
cipher_message = cipher.encrypt(message)

decipher DES .new(key, DES.MODE_ECB)

dec_user unpad (decipher.decrypt (cipher_user), DES.block_size)

dec_message = unpad(decipher.decrypt(cipher_message), DES.
block_size)

print (dec_user, dec_message)

10

11

12

13

14

15

16

17

18

TP Sécurité — Python FST Settat

Explication du code

— Importation des modules : Le module DES permet de créer un chiffreur utilisant

I’algorithme DES. Le module pad/unpad sert & adapter la taille des données au
bloc DES.

— Préparation des textes : Les chaines "user" et "message" sont encodées en

bytes puis complétées (padding) pour atteindre une taille multiple de 8 octets, car
DES chiffre uniquement des blocs de 64 bits.

— Clé DES : La clé b"mycipher" contient 8 octets, ce qui correspond exactement a la

taille d’une clé DES (64 bits). Une clé de toute autre longueur rendrait ’algorithme
invalide.

— Création de ’objet de chiffrement : DES.new(key, DES.MODE_ECB) crée un

chiffreur en mode ECB (Electronic Code Book). Ce mode chiffre chaque bloc indé-
pendamment, ce qui est simple mais peu sécurisé.

— Chiffrement : Les fonctions cipher.encrypt() produisent un résultat binaire

chiffré pour user et message. Chaque sortie dépend de la clé et du texte d’entrée.

— Déchiffrement : Un second objet DES.new () est créé pour le déchiffrement (obli-

gatoire en PyCryptodome). Les données chiffrées sont déchiffrées puis unpad ()
retire le remplissage ajouté avant le chiffrement.

— Affichage final : Les textes obtenus aprés déchiffrement sont identiques aux textes

initiaux, ce qui confirme le bon fonctionnement du chiffrement DES.

(v ase) PS E:\Security\tpl-python> python des encrypt decrypt.py
>>

User chiffré HILRVELTAVEPAVE AV e RAVGES

Message chiffré: b'vixe2\x@4wT\x98\x87\x80"

User déchiffré : user

Message déchiffré: message
(venv) (base) PS E:\Security\tpi-python> I

1.3 AES CBC simple

from Crypto.Cipher import AES
from Crypto.Util.Padding import pad, unpad
import random, string

key_str = ’’.join(random.choice(string.ascii_letters + string.
digits) for _ in range (16))

key = key_str.encode ()

iv = b"Thisyisyan, IV-12"

encryptor = AES.new(key, AES.MODE_CBC, iv)
decryptor AES .new(key, AES.MODE_CBC, iv)

def aes_encrypt(plaintext):
return encryptor.encrypt(pad(plaintext, AES.block_size))

def aes_decrypt(ciphertext):
return unpad(decryptor.decrypt(ciphertext), AES.block_size)

plaintext = b"This, is, the secret message "

TP Sécurité — Python FST Settat

19 |ciphertext = aes_encrypt(plaintext)
20 |decrypted = aes_decrypt(ciphertext)

Explication du code

— Importation des modules : Les fonctions de chiffrement AES proviennent de
Crypto.Cipher, tandis que pad et unpad permettent de gérer le remplissage néces-
saire pour que les données aient une taille compatible avec le chiffrement en mode
bloc.

— Génération d’une clé AES : Une chaine de 16 caractéres aléatoires est créée,
puis convertie en bytes pour servir de clé AES. Une clé AES de 16 octets correspond
a AES-128 bits.

— Initialisation Vector (IV) : L’IV est une suite de 16 octets utilisée pour le
mode CBC (Cipher Block Chaining). Il garantit que deux messages identiques
ne produisent jamais le méme chiffrement, évitant les répétitions dans les blocs
chiffrés. Ici, I'IV est fixe pour simplifier le TP, mais en pratique il doit toujours
étre aléatoire.

— Création des objets de chiffrement et déchiffrement : AES.new(key, AES.MODE_CBC,
iv) instancie le chiffreur AES en mode CBC. Le méme IV et la méme clé doivent
étre utilisés pour chiffrer et déchiffrer.

— Fonction de chiffrement aes_encrypt() :

— Les données sont d’abord paddées pour atteindre un multiple de 16 octets, taille
obligatoire d’un bloc AES.
— Le chiffreur produit un texte chiffré binaire incompréhensible sans la clé.
— Fonction de déchiffrement aes_decrypt() :
— Les données chiffrées sont déchiffrées bloc par bloc.
— Le padding ajouté avant le chiffrement est retiré avec unpad pour retrouver le
texte original.

— Exécution finale : Le message "This is the secret message" est chiffré puis
déchiffré. Le résultat obtenu aprés déchiffrement doit étre identique au texte initial,
ce qui confirme la validité de la procédure AES CBC.

1.4 AES sur fichier

1 |from Crypto.Cipher import AES
2 |from Crypto.Random import get_random_bytes
3 |from Crypto.Util.Padding import pad, unpad

5 |def encrypt_file(key, input_file, output_file):

6 iv = get_random_bytes (16)

7 cipher = AES.new(key, AES.MODE_CBC, iv)
8

9 data = open(input_file, "rb").read()

10

11

12

13

14

15

16

17

18

19

20

21

TP Sécurité — Python FST Settat

def

ciphertext = cipher.encrypt(pad(data, AES.block_size))
open (output_file, "wb").write(iv + ciphertext)
decrypt_file(key, input_file, output_file):

file_data = open(input_file, "rb").read()

iv, ciphertext = file_datal[:16], file_data[16:]

cipher = AES.new(key, AES.MODE_CBC, iv)
plaintext = unpad(cipher.decrypt(ciphertext), AES.block_size)

open (output_file, "wb").write(plaintext)

Explication du code

— Importation des modules :

— AES pour le chiffrement symétrique,

— get_random_bytes pour générer un IV aléatoire,

— pad/unpad pour ajuster la taille des données.

Fonction encrypt_file() : Cette fonction chiffre tout le contenu d’un fichier.

— Un IV aléatoire de 16 octets est généré, ce qui est indispensable en mode
CBC pour garantir la sécurité.

— L’objet cipher est créé avec la clé AES et I'IV.

— Le fichier d’entrée est lu en mode binaire (rb) pour récupérer son contenu brut.

— Les données sont paddées pour atteindre une longueur multiple de 16 octets,
taille nécessaire pour AES.

— Le texte chiffré est écrit dans le fichier de sortie sous la forme :

IV || donneschif fres

Ce format permet de récupérer facilement I'IV lors du déchiffrement.

Fonction decrypt_file() : Cette fonction effectue l'opération inverse.

— Le fichier chiffré est lu intégralement en mémoire.

— Les 16 premiers octets correspondent a 'V, le reste correspond au texte
chiffré.

— Un nouvel objet cipher est instancié avec la méme clé et le méme IV qu’au
chiffrement.

— Le texte chiffré est déchiffré bloc par bloc.

— Le padding ajouté avant le chiffrement est retiré avec unpad() pour retrouver
les données originales.

— Le fichier déchiffré est écrit en clair dans le fichier de sortie.

Structure des fichiers chiffrés : Le choix d’écrire IV + ciphertext dans un

seul fichier est une pratique standard en cryptographie. L’IV n’est pas secret : seule

la clé doit rester confidentielle.

Conclusion : Ce programme permet de chiffrer et déchiffrer n’importe quel fichier

(texte, PDF, image. ..) en garantissant la confidentialité grace a AES-CBC.

10

11

12

13

14

15

16

17

TP Sécurité — Python FST Settat

W) (base) PS E:\Security\tpl—python)-python aes_file.py

Fichier chiffré : secret.enc
hier déchiffré : secret decrypted.txt
nv) (base) PS E:\Security\tpl-python> I

1.5 PBKDF2 4+ AES CBC

from Crypto.Protocol.KDF import PBKDF2
from Crypto.Cipher import AES

from Crypto.Random import get_random_bytes
from Crypto.Util.Padding import pad, unpad

password = "mypassword123"
salt = get_random_bytes (16)
key = PBKDF2(password, salt, dkLen=32)

iv = get_random_bytes (16)
cipher = AES.new(key, AES.MODE_CBC, iv)

plaintext = b"Message; secret protege par PBKDF2"
ciphertext = cipher.encrypt(pad(plaintext, AES.block_size))

decipher = AES.new(key, AES.MODE_CBC, iv)
decrypted = unpad(decipher.decrypt(ciphertext), AES.block_size)

Explication du code

— Objectif général : Ce code combine deux mécanismes cryptographiques impor-
tants :
— la dérivation de clé sécurisée PBKDF2,
— le chiffrement symétrique AES en mode CBC.
L’objectif est de transformer un mot de passe humain en une clé robuste, puis de
I'utiliser pour chiffrer un message.
— Mot de passe et sel (salt) :
— Le mot de passe "mypassword123" est volontairement simple pour le TP.
— get_random_bytes(16) génere un sel aléatoire de 16 octets.
— Le sel empéche I'utilisation de tables arc-en-ciel et garantit que deux utilisateurs
ayant le méme mot de passe obtiennent des clés différentes.

— Dérivation de clé PBKDF2 : PBKDF2(password, salt, dkLen=32) produit
une clé de 32 octets, soit une clé AES-256 bits. PBKDF2 applique de nombreuses
itérations de hachage interne pour rendre 'extraction de la clé trés cotiteuse pour
un attaquant.

— Génération de I'IV : get_random_bytes(16) génére un vecteur d’initialisation
unique pour AES-CBC. Comme toujours, 'IV n’a pas besoin d’étre secret, mais
doit étre imprévisible.

— Chiffrement du message :

— Les données sont paddées pour respecter la taille d’'un bloc AES (16 octets).

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

TP Sécurité — Python FST Settat

— cipher.encrypt () produit le texte chiffré (ciphertext), illisible sans la clé dé-
rivée.

— Déchiffrement :

— Un nouvel objet AES.new () est nécessaire car chaque objet ne peut servir qu’une
seule fois.

— Le message est déchiffré bloc par bloc.

— unpad () retire le remplissage pour retrouver le message original.

— Importance de cette approche : Cette méthode est beaucoup plus sécurisée

que d’utiliser directement un mot de passe comme clé AES, car :
— PBKDF?2 rend les attaques par force brute trés cotiteuses,

— le sel empéche les attaques par dictionnaire pré-calculé,

— AES-256 garantit un chiffrement robuste.

— Conclusion : Ce code montre une méthode standard et recommandée pour pro-

1.6

téger des données a partir d’'un mot de passe utilisateur.

aes_pbkdf2.py

aac91dic6342ace7e74d1e

RSA : génération, signature, vérification, chiffre-
ment

from
from
from
from

def

def

def

def

Crypto.PublicKey import RSA
Crypto.Signature import pkcsl_15
Crypto.Hash import SHA256
Crypto.Cipher import PKCS1_O0AEP

generate_keys () :

key = RSA.generate (2048)

open("private.pem","wb") .write(key.export_key())
open("public.pem","wb") . .write (key.publickey () .export_key())

sign_message ():

message = b"Voicijun message important"

h = SHA256 .new(message)

private_key = RSA.import_key(open("private.pem","rb").read())
signature = pkcsl_15.new(private_key) .sign(h)
open("signature.bin","wb").write(signature)

return message

verify_signature (message):

public_key = RSA.import_key (open("public.pem","rb").read())
signature = open("signature.bin","rb").read()

h = SHA256 .new(message)

pkcs1_15.new(public_key) .verify(h, signature)

rsa_encrypt () :
public_key = RSA.import_key(open("public.pem","rb").read())

27

28

29

30

31

32

33

34

35

TP Sécurité — Python FST Settat

def

cipher = PKCS1_O0OAEP.new(public_key)

ciphertext = cipher.encrypt(b"Bonjour, ceciest_ un message
secret")

open("cipher.bin","wb").write (ciphertext)

rsa_decrypt () :

private_key = RSA.import_key(open("private.pem","rb").read())
ciphertext = open("cipher.bin","rb").read ()

plaintext = PKCS1_0AEP.new(private_key).decrypt(ciphertext)
print (plaintext)

Explication du code

— Objectif général : Ce programme illustre les quatre opérations principales de la

cryptographie RSA :
1. la génération d’une paire de clés RSA (publique/privée),
2. la signature numérique d’un message,

3. la vérification de signature,
4. le chiffrement et déchiffrement RSA avec OAEP.

— Génération des clés RSA :

— RSA.generate(2048) crée une clé privée RSA de 2048 bits (taille recomman-
dée).

— La clé privée est enregistrée dans private.pem.

— La clé publique correspondante est enregistrée dans public.pem.

— Les fichiers PEM suivent un format standard utilisé en cryptographie.

— Signature d’un message :

— Le message est converti en hash SHA-256 : c¢’est ce hash qui est signé et non le
message complet.

— La clé privée est chargée depuis private.pem.

— pkcsl_15.new(private_key) .sign(h) applique l'algorithme standard PKCS#1
v1.5.

— La signature produite est enregistrée dans signature.bin.

— Le retour de la fonction permet de vérifier ensuite la signature sur le méme
message.

— Vérification de la signature :

— La clé publique est chargée depuis public.pem.

— La signature est relue depuis signature.bin.

— Le programme recalcule le hash du message.

— Si la vérification échoue (modification du message ou mauvaise clé), une excep-
tion serait déclenchée.

— Si aucune exception n’est levée, la signature est considérée comme valide.

— Chiffrement RSA (OAEP) :

— L’algorithme OAEP est utilisé car il est plus sécurisé que le chiffrement RSA
"brut".

— Le chiffrement s’effectue avec la clé publique (tout le monde peut chiffrer).

— Le message chiffré est sauvegardé dans cipher.bin.

— Déchiffrement RSA (OAEP) :

10

TP Sécurité — Python FST Settat

— Seule la clé privée peut déchiffrer le message (seul le destinataire peut lire).
— Le fichier chiffré cipher.bin est lu en mémoire.
— Le plaintext est récupéré et affiché.
— Cette opération confirme le bon fonctionnement du chiffrement RSA.
— Conclusion : Ce code illustre le principe fondamental de RSA :
— signature = clé privée, vérifiable avec la clé publique,
— chiffrement = clé publique, déchiffrable uniquement avec la clé privée.
Il s’agit d’une base solide pour comprendre I’authentification numérique et I’échange
de données sécurisé.

) (base) Ps E:\Security\tpi-python> python rsa_etape6.py

>>

--- Génération des clés RSA ---
-> Clés générées : private.pem et public.pem

--- Signature du message ---
-> Signature créée : signature.bin

--- Vérification de la signature ---
-> Signature VALIDE -

--- Chiffrement RSA ---
-> Message chiffré dans cipher.bin

--- Déchiffrement RSA ---
-> Message déchiffré : Bonjour, ceci est un message secret

Ftape 6 RSA terminée avec succes | ===
(base) PS E:\Security\tp1l-python> I

11

Chapitre 2

Manipulations avec le module cryptography

2.1 Fernet : chiffrement de texte

- w

© oo ~ =] w

from cryptography.fernet import Fernet

def generate_key():
key = Fernet.generate_key ()
open("fernet.key","wb") .write (key)
return key

key = generate_key ()
f = Fernet (key)

message = b'"Message secret avec Fernet"
token = f.encrypt(message)
plaintext = f.decrypt (token)

Explication du code

— Objectif général : Le module Fernet de la bibliothéque cryptography permet
d’effectuer un chiffrement symétrique moderne, sécurisé et facile a utiliser. Il ga-
rantit :

— la confidentialité (données chiffrées),
— l'intégrité (détection de modification),
— lauthenticité (clé unique nécessaire pour déchiffrer).
— Génération de la clé Fernet :
— Fernet.generate_key() crée une clé de 32 octets encodée en Base64.
— Cette clé contient ’ensemble des paramétres nécessaires au chiffrement : AES-
128 en CBC + HMAC-SHA256 pour vérifier I'intégrité.
— La clé est enregistrée dans le fichier fernet.key pour étre réutilisée.

— Création de ’objet Fernet : f = Fernet(key) instancie un objet chiffre/dé-
chiffre sécurisé. Cet objet encapsule automatiquement toutes les opérations cryp-
tographiques complexes.

— Chiffrement du message :

— Le message en clair est défini en bytes : b"Message secret avec Fernet"
— L’appel f.encrypt (message) génére un token comprenant :

12

10

11

12

13

14

15

16

17

18

19

20

TP Sécurité — Python FST Settat

— un timestamp,
— TV,
— le ciphertext,
— la signature HMAC.
— Ce token est stir a stocker ou transmettre : toute modification entrainerait une
erreur au déchiffrement.
— Déchiffrement :
— f.decrypt(token) vérifie d’abord l'intégrité via HMAC.
— Ensuite, Fernet déchiffre automatiquement le message AES-CBC.
— Le résultat retourné est exactement le texte original.
— Conclusion : Fernet facilite fortement le chiffrement symétrique tout en assurant
des propriétés cryptographiques avancées. C’est une solution idéale pour :
— chiffrer des messages sensibles,
— stocker des données de configuration sécurisées,
— protéger des informations dans des applications Python.

2.2 Fernet : chiffrement de fichier

from cryptography.fernet import Fernet

def load_key():
return open("fernet.key","rb").read ()

def encrypt_file(input_file, output_file, key):
f = Fernet (key)
data = open(input_file,"rb").read()
encrypted = f.encrypt(data)
open(output_file,"wb") .write(encrypted)

def decrypt_file(input_file, output_file, key):
f = Fernet (key)
encrypted = open(input_file,"rb").read()
decrypted = f.decrypt(encrypted)
open (output_file,"wb").write(decrypted)

key = load_key ()
encrypt_file("secret.txt","secret.fernet", 6 key)
decrypt_file("secret.fernet","secret_decoded.txt", key)

Explication du code
— Objectif général : Cette section montre comment utiliser ’algorithme Fernet

pour chiffrer et déchiffrer des fichiers complets (texte, PDF, image...). Fernet as-
sure simultanément :

13

TP Sécurité — Python FST Settat

— le chiffrement AES-CBC,

— lintégrité via un HMAC,

— une structure sécurisée du token.

Cela garantit que le fichier ne peut pas étre modifié ou lu sans la clé Fernet.

— Chargement de la clé Fernet : La fonction load_key() relit simplement la
clé stockée dans le fichier fernet.key. Cette clé doit étre la méme que celle uti-
lisée pour chiffrer et déchiffrer, ce qui fait de Fernet un systéme de chiffrement
symétrique.

— Fonction encrypt_file() : chiffrement du fichier
— L’objet Fernet est initialisé avec la clé fournie.

— Le fichier d’entrée (input_file) est lu en mode binaire pour récupérer son
contenu exact.

— f.encrypt(data) chiffre totalement le contenu du fichier et produit un token
sécurisé.

— Le fichier chiffré est écrit dans output_£file.

— Le format Fernet du résultat inclut automatiquement :
— un timestamp,
— un IV AES-CBC aléatoire,
— le ciphertext,
— une signature HMAC-SHA256.

— Fonction decrypt_file() : déchiffrement du fichier

— Le fichier chiffré est relu intégralement.
— La méthode f.decrypt() :
— veérifie d’abord I'authenticité et I'intégrité du fichier (HMAC),
— déchiffre ensuite le contenu AES-CBC.
— Le contenu original du fichier est récupéré et sauvegardé dans le fichier de sortie.

— Programme principal :

— La clé est chargée depuis le fichier fernet.key.

— Le fichier secret.txt est chiffré dans secret.fernet.

— Le fichier chiffré est ensuite déchiffré dans secret_decoded.txt.

— Le fichier final est identique au fichier original, preuve que le processus fonc-
tionne correctement.

— Intérét du chiffrement Fernet pour les fichiers :

— idéal pour protéger des données sensibles (mots de passe, configs, documents. . .),
— détection automatique de modification : le fichier ne peut pas étre altéré,
— simplicité d’utilisation avec une sécurité robuste sous-jacente.

(venv) (base) PS E:\Security\tpil-python> python fernet file.py
>>

Fichier chiffré : secret.fernet
Fichier déchiffré : secret decoded.txt

2.3 PBKDF2HMAC -+ Fernet

import base64, os

from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from cryptography.hazmat.primitives import hashes

from cryptography.fernet import Fernet

14

10

11

12

13

14

15

16

17

TP Sécurité — Python FST Settat

def derive_key_from_password(password, salt):
kdf = PBKDF2HMAC (
algorithm=hashes.SHA256 (),
length=32,
salt=salt,
iterations=100000,
)

return base64.urlsafe_b64encode (kdf.derive (password.encode()))

salt = os.urandom(16)
key = derive_key_from_password ("monSuperMotDePassel123", salt)
f = Fernet (key)

Explication du code

— Objectif général : Ce code montre comment dériver une clé cryptographique
sécurisée a partir d’un mot de passe en utilisant PBKDF2-HMAC, puis com-
ment l'utiliser avec Fernet pour chiffrer et déchiffrer des données. Cette technique
transforme un mot de passe classique en une clé robuste, résistante aux attaques
par force brute.

— Importation des modules :

— PBKDF2HMAC : algorithme de dérivation de clé sécurisé.
— hashes.SHA256 : fonction de hachage interne utilisée par PBKDF2.
— Fernet : module de chiffrement symétrique AES-+HMAC.
— base64 : permet de convertir la clé en format compatible Fernet.
— os.urandom : permet de générer un sel aléatoire sécurisé.
— Fonction derive_key_from_password() :
— Le KDF PBKDEF?2 est initialisé avec :
— l’algorithme de hachage SHA-256,
— une longueur de sortie de 32 octets (clé AES-256),
— un sel aléatoire de 16 octets,
— 100 000 itérations, rendant les attaques trés cotiteuses.
— La fonction derive () applique PBKDF2 au mot de passe fourni.
— La clé obtenue est encodée en Base64 URL-safe afin d’étre compatible avec
Fernet.
— Role du sel (salt) :
— os.urandom(16) génére 16 octets aléatoires imprévisibles.
— Le sel empéche 'utilisation de bases de données pré-calculées (rainbow tables).
— Deux utilisateurs avec le méme mot de passe obtiendront des clés différentes.

— Génération de la clé finale :

— Le mot de passe "monSuperMotDePassel123" est transformé en clé cryptogra-
phique solide.
— Cette clé peut ensuite servir au chiffrement symétrique sécurisé.

— Création de l’objet Fernet : f = Fernet(key) crée un chiffreur Fernet utili-
sant la clé dérivée. Cet objet permet ensuite de chiffrer /déchiffrer n’importe quelle
donnée sensible.

— Avantages de ’approche PBKDF2HMAC + Fernet :

15

TP Sécurité — Python FST Settat

— transformation d’un mot de passe simple en clé AES-256 robuste,

— protection contre les attaques par dictionnaire,

— compatibilité directe avec les mécanismes sécurisés de Fernet (AES-CBC -+
HMACQC),

— méthode recommandée pour stocker ou transmettre des données sensibles.

2.4 AES bas niveau (Cipher, CBC)

from cryptography.hazmat.primitives import padding

from cryptography.hazmat.primitives.ciphers import Cipher,
algorithms, modes

import os

def encrypt_aes(key, iv, data):

padder = padding.PKCS7(128) .padder ()
padded = padder.update(data) + padder.finalize()
cipher = Cipher (algorithms.AES(key), modes.CBC(iv))

return cipher.encryptor () .update (padded)

10

11

12

13

14

15

16

17

def decrypt_aes(key, iv, ciphertext):
cipher = Cipher (algorithms.AES(key), modes.CBC(iv))
padded = cipher.decryptor () .update(ciphertext)
return padding.PKCS7(128) .unpadder () .update (padded)

key = os.urandom(32)

iv os.urandom (16)

Explication du code

— Objectif général : Ce code montre comment effectuer un chiffrement AES ma-
nuellement en utilisant les primitives bas niveau du module cryptography. Contrai-
rement & Fernet (haut niveau), ici toutes les étapes sont explicitement gérées :
padding, mode CBC, génération des clés, chiffrement et déchiffrement.

— Importation des modules :

— padding.PKCS7 : ajoute/retire du remplissage pour obtenir une taille multiple
de 16 octets.

— Cipher, algorithms, modes : primitives cryptographiques bas niveau.

— os.urandom : utilisé pour générer des clés et IV sécurisés.

— Fonction encrypt_aes() : chiffrement AES

— Le padding PKCS#7 est appliqué pour ajuster la taille des données a un mul-
tiple de 128 bits (16 octets).

— Un objet Cipher est créé avec :
— l’algorithme AES,

16

TP Sécurité — Python FST Settat

— la clé secréte,
— le mode CBC et son IV.

— L’appel & encryptor () .update(padded) chiffre le message en blocs consécu-
tifs.

— La fonction retourne le ciphertext (texte chiffré).

— Fonction decrypt_aes() : déchiffrement AES

— Un nouvel objet Cipher est recréé (car chaque objet ne peut servir qu’une seule
fois).

— Le ciphertext est déchiffré bloc par bloc.

— Le résultat contient encore le padding, qui est retiré avec :

PKCST7(128).unpadder()

— La fonction retourne le texte original.
— Génération de la clé et de I'TV :
— key = os.urandom(32) génére une clé AES-256 bits (32 octets).
— iv = os.urandom(16) produit un IV unique de 16 octets, indispensable pour
le mode CBC.
— Importance de cette approche bas niveau : Elle permet :
— de comprendre le mécanisme interne d’AES,
— de gérer manuellement le padding, 'V, les flux d’encryption,
— de personnaliser les schémas de chiffrement non fournis par Fernet.
— Conclusion : Ce code illustre un schéma AES-CBC “manuel” fidéle aux standards
cryptographiques modernes. C’est une étape essentielle pour comprendre ce qui se
passe “sous le capot” des bibliothéques plus haut niveau comme Fernet.

vel.py

as5df28729b70aef91bdobbae767ba114d96627b2411f40efa4

17

Chapitre 3

Génération sécurisée et hachage

3.1 Génération d’un mot de passe aléatoire sécurisé

import secrets, string

alphabet = string.ascii_letters + string.digits + string.
punctuation

password = ’’.join(secrets.choice(alphabet) for _ in range (16))

print ("Mot, de_ passe,s curis :", password)

Explication du code

— Objectif général : Ce code permet de générer un mot de passe aléatoire et sécurisé
en utilisant le module secrets, qui fournit un générateur cryptographiquement sir,
plus robuste que le module random.

— Importation des modules :

— secrets : utilisé pour produire des valeurs aléatoires imprévisibles, adaptées a
la cryptographie.

— string : fournit les ensembles standard de caractéres (lettres, chiffres, ponc-
tuation).

— Construction de I’alphabet : alphabet = string.ascii_letters + string.digits

+ string.punctuation crée une chaine qui contient :

— toutes les lettres minuscules et majuscules (A-Z, a-z),

— les chiffres (0-9),

— les symboles et caractéres spéciaux.

Cela rend le mot de passe plus varié et plus difficile & deviner.
— Génération du mot de passe sécurisé : L’instruction :

>’.join(secrets.choice(alphabet) for _ in range(16))

sélectionne 16 caractéres aléatoires dans ’alphabet. Grace a secrets.choice(),
chaque caracteére :
— est tiré a partir d’un générateur sécurisé,
— est imprévisible méme par un attaquant disposant d’outils avancés.

— Affichage du mot de passe final : Le mot de passe généré est affiché directement.
Comme il contient lettres, chiffres et symboles, il respecte les bonnes pratiques en
matiére de robustesse.

18

TP Sécurité — Python FST Settat

— Conclusion : Ce code illustre une méthode standard pour générer des mots de
passe résistants aux attaques :
— force brute,
— dictionnaires,
— prédictions pseudo-aléatoires.
L’utilisation du module secrets est recommandée pour toute application nécessi-
tant de la sécurité (comptes utilisateurs, clés temporaires, tokens, etc.).

(venv) (base) PS E:\Security\tpl-python> python .\secrets password.py
Mot de passe sécurisé : tk!Oxl|aM8~HD\JU

) (base) PS E:\Security\tp1-python> I

3.2 Générer un token sécurisé

import secrets

token = secrets.token_urlsafe (32)
print ("Token,s curis :", token)

Explication du code

— Objectif : Générer un token aléatoire, long et sécurisé, utilisable pour des opéra-
tions sensibles comme ’authentification, le reset de mot de passe, ou la création
de liens temporaires.

— Module secrets : secrets utilise un générateur aléatoire cryptographiquement
stir, cong¢u pour résister aux attaques.

— Génération du token : secrets.token_urlsafe(32) produit :

— 32 octets aléatoires,
— encodés au format Base64 URL-safe,
— ce qui donne un token long, imprévisible et compatible avec les URLs.

— Utilité : Ce type de token est utilisé dans :

— systémes de confirmation d’email,
— liens de réinitialisation de mot de passe,
— API sécurisées,
— sessions temporaires.
(base) PS E:\Security\tpi-python> python .\secrets token.py

écurisé : DYpNF41BLXZg51nllcc76BZ3yEjxHLcntnoh6BIePTo
ttps://example.com/reset*token=DYpNF41BLXZq51n11cc76BZ3yEjxHLcntn9h6BI6PTO

v) (base) PS E:\Security\tpl-python> I

3.3 Hachage SHA-256 / SHA-512

import hashlib

password = "adminl123".encode ()
shab512_hash = hashlib.shabl12(password) .hexdigest ()

19

5

TP Sécurité — Python

FST Settat

sha256_hash = hashlib.sha256 (password) .hexdigest ()

Explication du code

— Objectif : Calculer 'empreinte cryptographique (hash) d’un mot de passe a I’aide

de deux fonctions de hachage sécurisées : SHA-256 et SHA-512.

— Encodage du mot de passe : Le texte "admin123" est converti en bytes grace

a encode (), car les fonctions de hachage travaillent uniquement sur des données
binaires.

— SHA-256 :

— produit un hash de 256 bits (64 caractéres hexadécimaux),
— largement utilisé pour l'intégrité des données et dans les blockchains,
— trés résistant aux collisions.

— SHA-512:

— version plus longue : 512 bits (128 caractéres hexadécimaux),
— encore plus robuste contre les attaques par force brute.

— Meéthode hexdigest() : Transforme le résultat binaire en une chaine hexadéci-

male lisible.

— Remarque importante : Le hachage est irréversible. Il ne permet pas de retrou-

ver le mot de passe original. Pour un stockage sécurisé réel, on utilise un hachage
salé (salt + hash), comme PBKDF2 ou berypt.

3.4 Hachage d’un fichier

import hashlib

with open("image.jpg", "rb") as f:
data = f.read()

h = hashlib.sha256(data).hexdigest ()
print ("Hash ,SHA256 ,du,fichier:", h)

Explication du code

— Objectif : Calculer 'empreinte SHA-256 d’un fichier (ici image.jpg) afin d’en

vérifier I'intégrité.

— Ouverture du fichier : Le fichier est ouvert en mode binaire ("rb"), indispensable

pour lire correctement des images ou tout autre contenu non textuel.

— Lecture des données : La totalité du fichier est chargée en mémoire dans la

variable data.

— Calcul du hash : La fonction hashlib.sha256 () regoit les données et génére un

condensat cryptographique de 256 bits, unique au contenu du fichier.

20

10

11

12

13

14

15

TP Sécurité — Python FST Settat

— Affichage : hexdigest () convertit le résultat binaire en une chaine hexadécimale
lisible (64 caractéres).
— Utilité : Ce hachage permet de :
— vérifier si un fichier a été modifié,
— détecter une corruption ou une altération volontaire,
— comparer deux fichiers de maniére fiable (intégrité).

nv) (base) PS E:\Security\tpi-python> python .\hash file.py
HA256 du fichier : @ce1d4f3613b8b1feb78c62a28db674107c084ba1b7615232922645faec20a8

(venv) (base) PS E:\Security\tpl-python> I

3.5 Vérification d’intégrité

import hashlib

def hash_file(path):
h = hashlib.sha256 ()
with open(path, "rb") as f:
h.update (f.read ())
return h.hexdigest ()

original = hash_file("original.jpg")
copy = hash_file("copie.jpg")

if original == copy:

print ("Fichier INT GRE D)
else:

print ("Fichier MODIFI ")

Explication du code

— Objectif : Vérifier si deux fichiers (un original et une copie) sont identiques en
comparant leurs empreintes SHA-256.
— Fonction hash_file(path) :
— crée un objet de hachage SHA-256,
— ouvre le fichier en mode binaire ("rb"),
— lit son contenu complet,
— met a jour le hachage avec les données lues,
— renvoie 'empreinte sous forme hexadécimale (64 caractéres).
— Calcul des deux empreintes :
— original contient le hash de original. jpg,
— copy contient le hash de copie. jpg.
— Comparaison : Si les deux empreintes sont strictement égales :
— le contenu des deux fichiers est identique, — affichage : Fichier INTEGRE
Sinon :
— le fichier a été modifié, altéré ou corrompu, — affichage : Fichier MODIFIE
— Pourquoi c’est fiable ? SHA-256 est cong¢u pour que :

21

TP Sécurité — Python FST Settat

— deux fichiers différents aient des empreintes totalement différentes,
— il soit impossible de retrouver le fichier original & partir du hash.
Ainsi, la comparaison des empreintes est un moyen stir de vérifier I'intégrité d’un

fichier.

Hash copie i @celd4f3613b8b1feb78¢62a28db674107¢084b01b76165232922645Faec20a8

Fichier INTEGRE
(venv) (base) PS E:\Security\tpi-python> |

22

Conclusion

Ce TP nous a permis de maitriser et de manipuler concrétement les principaux outils cryp-
tographiques utilisés en sécurité informatique. A travers I’ensemble des exercices réalisés,
nous avons pu explorer :

— le hachage cryptographique (MD5, SHA-256, SHA-512) et le contrdle d’intégrité
des données,

— le chiffrement symétrique avec DES et AES (incluant padding, IV, CBC),

— la dérivation de clés sécurisées via PBKDF2 et PBKDF2HMAC,

— le chiffrement et la signature RSA (génération de clés, signature, vérification,
OAEP),

— l'utilisation du module cryptography : Fernet, AES bas niveau, PBKDF2,

— la génération de mots de passe et de tokens sécurisés avec secrets,

— la vérification d’intégrité des fichiers par comparaison d’empreintes.

L’ensemble de ces manipulations nous a permis de consolider notre compréhension pra-
tique des mécanismes essentiels garantissant la confidentialité, I'intégrité et ’authenticité
des données. Ces compétences constituent une base solide pour des travaux avancés en
cybersécurité.

Enfin, afin de rendre ce travail reproductible et accessible, un dépoét GitHub dédié a été
créé. Il contient tous les scripts Python, les fichiers générés, les clés RSA et les
exemples utilisés au cours du TP. Le dépot est disponible a ’adresse suivante :

https://github.com/Jalil03/security-tp0l-python

Ce repository permet de retrouver facilement l'intégralité du code, de refaire les tests, et
de poursuivre les expérimentations cryptographiques de maniére autonome.

23

https://github.com/Jalil03/security-tp01-python

	Introduction
	Manipulations avec PyCryptodome
	Hachage MD5 d'un fichier
	Chiffrement et déchiffrement DES
	AES CBC simple
	AES sur fichier
	PBKDF2 + AES CBC
	RSA : génération, signature, vérification, chiffrement

	Manipulations avec le module cryptography
	Fernet : chiffrement de texte
	Fernet : chiffrement de fichier
	PBKDF2HMAC + Fernet
	AES bas niveau (Cipher, CBC)

	Génération sécurisée et hachage
	Génération d’un mot de passe aléatoire sécurisé
	Générer un token sécurisé
	Hachage SHA-256 / SHA-512
	Hachage d’un fichier
	Vérification d’intégrité

	Conclusion

