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What scalar invariants exist?

Christoffel proved in 1869 that scalars constructed from the metric and its
derivatives must be functions of the metric itself and the Riemann tensor
and its covariant derivatives.

The first examples to spring to mind are scalar polynomial invariants,
SPIs, such as RabR

ab or CabcdC
cdef Cef

ab. Often when people just say
“invariant” they mean “s.p. invariant”.

Indeed that occurs in the title of one of Seno’s papers:
“On the existence of horizons in spacetimes with vanishing curvature
invariants” (JHEP, 2003(11), 046)

However, these are not the only, and in my view not the best, choice.
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Cartan invariants

An important alternative is to use ideas due to Élie Cartan, as follows. As
a side benefit, in my view an important one, Cartan invariants require less
calculation, in general.

Let F (M) denote a “suitable” frame bundle over a spacetime M (i.e.
take the set of all frames at each point) and Rq be the set
{Rabcd , Rabcd ;f , . . . ,Rabcd ;f1f2···fq} of the components of the Riemann
tensor and its covariant derivatives up to the qth in a frame.

Choose from F (M) in a canonical and invariant way, e.g. use the principal
null directions of the Weyl tensor. The resulting
{Rabcd , Rabcd ;f , . . . ,Rabcd ;f1f2···fq} are called the Cartan invariants. They
are scalars, because the frames are invariantly defined, e.g. Rijkla

ibjckd l

where a, b, c and d are basis vectors of the chosen frame. This is like
characterizing a symmetric bilinear map (matrix) by its eigenvalues.
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Calculating invariants

The SPIs are at least quadratic in curvature tensor components and the
contractions involved may hide very large numbers of individual terms. It is
therefore very useful to adopt a method that reduces the number of terms.

Example: consider multiplying two univariate polynomials of degree 10.
Each has 11 terms. The end result has degree 20, 21 terms.

A simple alternative is to use Cartan invariants instead, with the
advantage they are linear in the curvature components. In principle this
can be messy because of the nature of the formulae for solution of
quartics, but in practice it is often manageable.
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Are SPIs good enough to characterize spacetimes?

Until 2009, I would have said definitely not. Note that pp waves and flat
space both have all scalar polynomial invariants, of all orders, equal to
zero. In fact all vacuum type N and III metrics with ρ = 0 have this
property (Pravda and Bicak 2001 and earlier). There are also metrics
which have equal non-zero s.p. invariants (e.g. Siklos 1996, Pravda 1999,
Hervik 2004).

These ambiguities are associated with the indefiniteness of the metric and
the non-compactness of the Lorentz group (Schmidt 1998).
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Are s.p. invariants good enough? Yes, usually!

Coley et al (CQG 26, 025013 (2009)) gave an argument that all
spacetimes are completely characterized by their SPIs, except for
spacetimes in the Kundt class. Their proof seemed to me to have a gap
and I have not yet been able to see if it is filled by their later work.
Nevertheless the result seems correct.

In particular they have followed up by a substantial number of papers,
which I will not have time to discuss today. These consider not only 4D
spacetimes, but higher dimensional spaces and various signatures.
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Classification of singularities
One can characterize singularities by the behaviour of the Riemann tensor
components along a curve of finite length ending at the singularity in a
parallelly-propagated frame, or in other frames.

Quasiregular singularities. In these cases the Riemann tensor
components remain bounded along the curve.

Intermediate curvature singularities or “whimper singularities”
(Ellis and King 1974) For these the components are bounded in some
frame(s) but unbounded in a parallely-propagated frame.

Essential Curvature singularities. Here the Riemann tensor
components are unbounded in all tetrads.

Quasiregular singularities are locally extendible in the sense that every
curve ending at one has a neighbourhood isometric to a neighbourhood in
a regular complete spacetime. Such singularities are common on the axes
in axisymmetric solutions, where they may be described as struts between
particles or bodies.
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SPIs and singularities

I used my own choice of names yesterday. In the literature, the ’essential’
case are called SP curvature singularities, because an SPI is unbounded
along the incomplete curve as it reaches its end. (To avoid the long
circumlocution, I’ll say ’at the singularity’, although we don’t know how to
locate the singularities themselves.) The ’intermediate’ class are then
called non-SP curvature singularities.

Note that no SPI blows up in the non-SP case. (People sometimes assume
SPIs must be unbounded at singularities.)

In the non-SP curve the existence of unboundedness in some frame and
boundedness in parallally-propagated frames must be because the Lorentz
transformation between a frame with bounded components and the
parallelly-propagated frame has components that are unbounded along the
curve. The frame with bounded components could be a frame defining
Cartan invariants.
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Applying the criteria

The nasty part is that we cannot usually calculate the geodesics explicitly.
So what is usually done is calculate invariants in some frame, not at all
shown to be a frame parallely propagated along an incomplete geodesic,
and see where they become unbounded, and then argue that causal curves
going through that region will see unbounded Riemann components.

We can for example calculate some set of Cartan invariants.
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Cartan invariants and singularities
Since all SPIs can be written as polynomials in Cartan invariants, at least
one Cartan invariant must be unbounded at an SP singularity in any
frame. So we anyway do not have to calculate the parallelly-propagated
frame to check.

If all Cartan invariants are bounded, so are all SPIs and we can only have a
quasi-regular singularity.

The awkward case is when we find unbounded Cartan invariants. Then we
do have a curvature singularity but it’s not trivial to tell if it’s SP or
non-SP. We can of course in principle calculate the SPIs.

To do better we wuld need to know more about how the SPIs fix the
Cartan invariants. Then assuming the Coley et al result is correct, we
might be able to just check if the solution is the Kundt class, and if not we
could deduce that we have an SP singularity. If we are in the Kundt class
it’s straightforward.
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Singularities

Unboundedness of an SPI implies a singularity. However:

An “infinite” Riemann tensor does not imply a singularity. Geodesics can
be continued across a delta function curvature modelling a thin shell or an
impulsive gravitational wave.

An invariant blowing up does not imply a singularity. For example
(MacCallum 2006) the invariant 1/Rabcd ;eR

abcd ;e blows up at the
Schwarzschild horizon, but the horizon is not singular.

At non-SP singularities Riemann tensor components are OK. But an
invariant involving first derivatives is unbounded (Siklos 1978). An
example was studied by Podolsky and Belan (2004).

Question: when does blow up of higher derivative invariants imply a
singularity?
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A conjecture on singularities

These arguments lead to a conjecture as follows.

Geodesic continuation needs a C 2− metric. In invariantly-defined frames
the connection coefficients are typically expressible as ratios of first
derivative Cartan invariants to zeroth derivative ones. We know that there
are “intermediate” or “whimper” singularities where SPIs of the Riemann
tensor do not blow up, while SPIs of the first derivatives of the Riemann
tensor do. Hence:

Conjecture: Spacetime singularities are either locally extendible or at
least one Cartan invariant in R1 has an infinite limit along any curve
approaching the singularity.
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“Directional singularities”

Another application of invariants is to “directional” singularities, where, a
singular point apparently has directionally dependent limits. Szekeres and
Scott showed that the directional singularity of the Curzon metric hid
more extended regions at whose boundary the original coordinates broke
down. My student Taylor showed (2005) that such cases could be
appropriately “unravelled” by using level surfaces of Cartan invariants to
define new coordinates. Lake (2003) used the Weyl tensor SPIs to show
that the Kerr singularity was not directional.
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“Kinematic singularities”

Here the world lines of a perfect fluid with w sufficiently large cannot be
extended beyond a finite time although density and pressure remain finite.
These were found in spatially-homogeneous cosmologies, where the fluid
accelerates so that asymptotically it has the speed of light.

Here the geodesics orthogonal to the surfaces of homogeneity are complete
and the Ricci tensor vanishes as one follows the fluid congruence: either
the Weyl tensor or the kinematic variables of the congruence may become
unbounded. In the latter case, if µ+ p is not 0 and has a non-zero limit,
there can be unbounded scalars in the covariant derivatives of the
curvature, though not in the curvature itself.

In the example I studied with Coley and others, given an integer p, the
Cartan (and hence s.p.) scalars can be finite up to the p-th derivative, but
not the (p + 1)-th.
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Newman-Penrose method
The cosmic censorship hypothesis (proved in some circumstances) says
that singlarities cannot be ’naked’, i.e. must be hidden behind horizons. So
I’ll now talk about horizons. But to do so, I need a very brief introduction
to the Newman-Penrose technique.

I’ll leave aside the spinorial version and think of the null tetrad version. A
null tetrad uses two real null vectors and two complex conjugate vectors,
{la, na,mam̄a} such that lala = nana = mama = m̄am̄a = 0 and
−lan

a = 1 = mam̄a. (The spacetime stays real.) In this frame each
connection component is parametrized by a Greek letter. It turns out the
Weyl tensor is represented by 5 complex quantities Ψ0 to Ψ4. If we make
a so-called null rotation:

l̂ = l , n̂ = n + zm + z̄m̄ − 1

2
zz̄ l , m̂ = m − zl

then the “principal null directions” are given by the roots of

Σ(
4

i
)Ψiz

i = 0
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Black hole and other horizons
Karlhede et al (1982) first noted that Rabcd ;eR

abcd ;e = 0 at the
Schwarzschild horizon (so a prudent space traveller might monitor that).
Skea in his thesis noted that this is not true for other horizons (a point
rediscussed by Saa (2007) for higher-dimensional static cases: he also
found points where Rabcd ;eR

abcd ;e = 0 which are not horizons). Lake
(2003) continued the work on Kerr by considering first derivative
invariants, and found their vanishing characterized the horizons.

Moffat and Toth (2014) considered the relation of the “Karlhede
invariant” (i.e. Rabcd ;eR

abcd ;e) to discussions of a “firewall” at the horizon.

In 2006 I suggested a test for horizons in Petrov type D spacetimes using
the NP variable ρ in the canonical frame. This has a well-understood
geometric interpretation: since the horizon is a marginally trapped surface,
the outgoing null vector ℓ must be surface-forming and non-expanding
implying that ρ = 0 there. For these metrics ρ is a ratio of Cartan
invariants.
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found points where Rabcd ;eR

abcd ;e = 0 which are not horizons). Lake
(2003) continued the work on Kerr by considering first derivative
invariants, and found their vanishing characterized the horizons.

Moffat and Toth (2014) considered the relation of the “Karlhede
invariant” (i.e. Rabcd ;eR

abcd ;e) to discussions of a “firewall” at the horizon.

In 2006 I suggested a test for horizons in Petrov type D spacetimes using
the NP variable ρ in the canonical frame. This has a well-understood
geometric interpretation: since the horizon is a marginally trapped surface,
the outgoing null vector ℓ must be surface-forming and non-expanding
implying that ρ = 0 there. For these metrics ρ is a ratio of Cartan
invariants.
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Black hole and other horizons (cont)
More recently Lake and Abdelqader (2015) have given an invariant
characterization of the Kerr horizon, and, prompted by that, Page and
Shoom (2015) have given a more general one for stationary black holes.

In a paper last year, with Coley, McNutt and some students, we showed
this can be more neatly rewritten in Cartan invariants, and found simple
invariants giving the ergosphere also for the Kerr case. I want now to
briefly describe those results.

In the published version we considered the following examples in 4 and 5
dimensions:
the Kerr-Newman-NUT-(Anti)-de Sitter metric in 4D
the Reissner-Nordström-(Anti)-de Sitter metric in 5D
the Kerr-NUT-(Anti)-de Sitter metric in 5D. In the arXiv version we also
considered:
the Tangherlini metric (analogue of Schwarzschild in 5D)
the simply rotating Myers-Perry metric (an analogue of Kerr in 5D)
and wrote up separately some subcases of the other metrics.
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The SPIs used
The SPIs used by the Abdelqader and Lake and Page and Shoom papers
can be denoted by I1, . . . , I7, and are:

I1 = C abcdCabcd , I2 = C ∗abcdCabcd , I3 = C abcd ;eCabcd ;e , (1)

I4 = C ∗abcd ;eCabcd ;e , I5 = (I1);a(I1)
;a, I6 = (I2);a(I2)

;a, I7 = (I1);a(I2)
;a,

where Cabcd is the Weyl tensor and C ∗
abcd is its dual, and a semicolon

denotes a covariant derivative.

Note that in a vacuum I3 is the Karlhede invariant. From the invariants
above, Abdelqader and Lake then defined the dimensionless invariants

Q1 =
(I 21 − I 22 )(I5 − I6) + 4I1I2I7

3
√
3(I 21 + I 22 )

9
4

, (2)

Q2 =
I5I6 − I 27

27(I 21 + I 22 )
5
2

, Q3 =
I5 + I6

6
√
3(I 21 + I 22 )

5
4

where I1 to I7 are given by (1).
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The 4D main example

The 4D Kerr-Newman-NUT-(Anti)-de Sitter metric is given by

ds2 = − Q

R2

[
dt −

(
a sin2 θ + 4l sin2

θ

2

)
dϕ

]2
+

R2

Q
dr2

+
P

R2

[
adt −

(
r2 + (a+ l)2

)
dϕ

]2
+

R2

P
sin2 θdθ2 (3)

where R ≡ R(r , θ), P ≡ P(θ) and Q ≡ Q(r) are functions of cos θ and r ,
containing the parameters m, e, g , a, l , and Λ which are, respectively, mass,
the electric and magnetic charges, a rotation parameter, a NUT parameter
in a de Sitter or anti-de Sitter background, and the cosmological constant:

R2 = r2 + (l + a cos θ)2 (4)

P = sin2 θ(1 + (3l + a cos θ)(l + a cos θ)Λ/3), (5)

Q = (a2 − l2 + e2 + g2)− 2mr + r2 − Λ[(3l2 + a2)r2 + r4]/3. (6)
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Cartan approach
We would like to have an extended Cartan invariant that detects the event
horizon. Looking at ∇Ψ20′ we find that

ρ = µ = − 1√
2

√
Q[r − i(a cos θ + l)]

R3
. (7)

Computing the roots of Q(r) for arbitrary a, l ,m, e, g and Λ is not a
pleasant task. However, for this extended Cartan invariant we do not need
to compute them, as it is clear that the zeros of ρ are exactly the zeros of
Q(r).

The ergosurface can be detected by combining ρ with another Cartan
invariant,

τ = π =
1√
2

a
√
P[r − i(a cos θ + l)]

R3
, (8)

to produce the following extended Cartan invariant:

ρ2 − τ2 =
(Q − a2P)[r − i(a cos θ + l)]2

2R6
. (9)
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Relation to SPIs

We can now easily compute the Qi which are

Q1 =
2R[(Ψ̄2

2(∇Ψ2.∇Ψ2)]

9(Ψ2Ψ̄2)5/2
, Q2 =

−2||∇Ψ̄2 ∧∇Ψ2||2

182(Ψ2Ψ̄2)3
, (10)

Q3 =
∇Ψ2.∇Ψ̄2

18(Ψ2Ψ̄2)3/2
,

where R denotes the real part.

Q2 vanishes at the horizon, on the axis and at points where
1 + (3l + a cos θ)(l + a cos θ)Λ/3 = 0. (However, from (7), ρ vanishes only
on the horizon and at the origin even when there is a Maxwell field.)

Since the numerator of Q1 equals (9), Q1 will detect the ergosurface for
the Kerr solution.
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An example
In [?] the author derives a Kerr-Schild solution based on a Hopf fibering in
the form

ds2 = −2dudv + dx2 + dy2 + Hkµkνdx
µdxν (11)

in coordinates (u, v , x , y), with constants b and N and

labelHaradakµ =

(
1,

x2 + y2

2(u2 + b2)
,−ux + by

u2 + b2
,−uy − bx

u2 + b2

)
,H =

Nu

u2 + b2
.

(12)
Harada also shows it is of Petrov type D. Since all Petrov type D vacuum
solutions are known [?, ?] this must be a known solution, not new as
claimed. The issue is to identify which of the known solutions it is.

In the exact solutions book, the result of [?] is cited. It shows that
Kerr-Schild spacetimes with a geodesic, diverging, and shearfree kµ can be
written (swapping the names u and v) as

ds2 = 2(dζ dζ̄ − du dv)− 2S(Y dζ + Y dζ̄ + YY du + dv)2 (13)

with ζ = x + iy . This is of the same form as (??) if Y = −ζ/(u + ib), and
S = Nu

u2+b2
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Identifying the Harada solution

The solution (??) is easily checked by CLASSI to be a vacuum Petrov type
D solution but the classification routines say it has 4 Killing vectors, not
just the two found by Harada. Using CLASSI’s facilities

The known Petrov D solutions were the first solutions to be clssified using
the technique just discussed: see [?, ?]. The files for all of then are freely
available.
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