- RSA Optimization

based on

- Chinese Remainder Theorem

Zoey Hou
5.10.2016




Review RSA: Choosing keys

1. Choose two large prime numbers p, g.
(e.g., 1024 bits each)

2. Compute n=pg, z=(p-1)(g-1)

3. Choose e (with e<n) that has no common factors
with z. (e, z are "relatively prime").

4. Choose d such that ed-1is exactly divisible by z.
(in other words: ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).



Review RSA: Encryp’rioh, decryption

0. Given (n,e) and (n,d) as computed above

1. To encrypt bit pattern, m, compute
c=m€mod n (i.e., remainder when m€ is divided by n)

2. To decrypt received bit pattern, ¢, compute
m=c9mod n (i.e., remainder when ¢4 is divided by n)



Review RSA: Problem

d

Equation like m = ¢ mod n takes too much time to implement

since d can be a large number.

For efficiency, many popular crypto libraries use the following
optimization for decryption and signing based on the Chinese

remainder theorem.
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» The following values are precomputed and stored as part of
the private key:

» pand q: the primes from the key generation
 dp=d(modp-1)

= dg =d(modq-1)

" Qiny = q"' (Mod p)



RSA Optimization

= These values allow the recipient to compute the
expohentiation m = ¢ (mod pg) more efficiently as follows:

= m, = ¢ (mod p)

= m, = c9Q (mod q)

* h = g, (M-m;) (mod p)

* (If my<m, ’rh(eqn some libraries compute h as

Qiny (M= ] p-m,) (modp))
P

" m=m, + hq (mod pq)
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= https://en.wiki

Security and practical considerations [edit ]

Using the Chinese remainder algorithm [edit]

For efficiency many popular crypto libraries (like OpenSSL, Java and .NET) use the following optimization for decryption and signing based on t

theorem. The following wvalues are precomputed and ztored az part of the priwvate kevw:
o ) and ff: the primes from the key generatiom,
*dp=d (mod p—1).
s dg=4d (mod g — 1) and
* Qinv = Q'_l (lllOd p)
Theze waluesz allow the recipient to compute the exponentiation @ = o imod pg) more efficiently asz follows:
« my = ¢ (mod p)
« my = @ (mod g)

{
« = Qinv(Tnl — ?T.',g) [:1110('1 p) {if 11y << Mg then some libravies compute # a8 (i, my + i P —my (1110('1 p})
P

= m =ms+ hg
Thiz iz more efficient than computing exponentiation by szquaring ewven though two modular exponentiations hawe to be computed. The reazon iz thad]

exponentiations both uze a smaller exponent and a smaller modulus.

Integer factorization and RSA problem [edit ]
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REPLACE x_l=x(mod p) AND x_2=x(mod q}
BY v_I=x(mod j*p) AND v_2=x(mad j*q)
d_t=d(mod phi(j*p)f AND d_2={mod phi(j*q))
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COMPUTE w_1=v, 1"d_1$mud i*p
w_2=v_2"d_2(mod j*p

\../_26

COMPUTE y_1=w_12mod p;
y_2=w_2{mod q

!

COMPUTE FINAL RESULT BY
CHINESE REMAINDER THEOREM

COMPUTE x™d mod j AS
w_1(mod j) AND w_ZHmod B

!

MIX w_1(mod j) AND w_2(mod j)

WITH y_1 AND y_2 N A
STRONG WAY
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Ronald Rives’r | Adi Shamir Leonard Adleman



RSA Op‘rimizd’rion Explanation

- ®(p)=p-1 cP1=1(mod p)
= d,=d (mod p - 1) d, +ki(p-1)=d

“mg = cdp = cd = Cdp+k1(P‘1)(mod p)
= &(q)=q-1 ci1=1(mod q)

+ dg = d (mod q - 1) do+ks(g-1)=d

= m, = cdQ = ¢cd = cdQ +k2(q-1) (mod q)



RSA Op‘rimizd’rion Explanation

(¢4 =m; (mod p) [ X =a; (mod py)

{ similar to {

cd = m, (mod q) x = a, (mod p,)
\_ %

p and q are two prime number, so p and g are coprime

cd=(me)=m=x (mod pq)



Suppose m;, ..., m, are positive integers that are pairwise coprime. Then, for

any given sequence of infegers q, ..., q;, there exists one intfeger x module m

= myms,.....m, solving the following system of simultaneous congruences.

 Xx=qgy(modm;) .. X = ay (mod m,)
* Provided that M, = my.....m. ym,;....m,, and M. is the inverse element of M.
module m..

x = M;Ma, + MuM,'a, + ... + MM/ a, (mod m)



RSA Op‘rimizd’rion Explanation //;M =

" M =g M;=p
* M{ =q!(mod p) M, =p!(modq)

= m; = c® (mod p)

= m, = ¢c9Q (mod q)

* h =g, (M-m;) (mod p)
= m = m; + hq (mod pq)
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RSA Op‘rimizd’rion Explanation Mﬂﬂ]ﬂ T

m=m, + hq (mod pq)
= My + iy, (My-M;) (Mod p) q  (mod pq)
=M, + Qi (M-My) @ (mod pq)

= Qi g My *+ (1 - Gy ) M (mod pq)



RSA Op‘rimizd’rion Explanation //;M =

q=M

-tp = 1 (mod q)
Giny = q ~ (Mod p) = M/ -t = p1(mod q)
Ginv = 9 ' (mod p) M, = p
Qiny q = 1 (mod p) M, = -t
Qv g =1+1p
1-qinwq=1-1-tp=-1p M M, =g, g
di,, IS an integer M, M, = tp=1-q,,q



RSA Op‘rimizd’rion Explanation //;M =

According to Chinese Remainder Theorem

x =M M/ a +M, M) a, (mod pq)
= Qiny 9 My + (1- Gy @) M2 (mod pq)
=m; + hq (mod pq)
-m '



RSA Op‘rimizd’rion Explanation

If m; < m, then some libraries compute h as

T (m1+|-q ] s (modp)
1P

q
Qinv (ml’[ .| p-mp) (mod p)
= Qinv (ml mZ) Q.nv[ -‘ (mod p)

Qiny: [ ‘ are all integers
= Qiny (Mg~ M) | (mod p)



RSA Op‘rimizd’rion Explanation

Giny (mv[-q ] p - Mp) >= Gy (M q/p * p - M)
m1+q/p*pp-mz=m1+q-mz

m, = c?(mod q) --> m; <= g

my+q-m;>0 Ginv> O

q
Qinv (m1+[_p .‘ p-my)>0



Conclusion

This is a very efficient way to implement, even more efficient
than computing exponentiation by squaring even though two

modular exponentiations have to be computed.

The reason is that these two modular exponentiations both use

a smaller exponent and a smaller modulus.



CRT Applica’ribns

= Sequence numbering

» Fast Fourier transform

= Encryption |

* Range ambiguity resolution
= Hermite interpolation

» Dedekind's theorem
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