
RSA Optimization
based on

Chinese Remainder Theorem

Zoey Hou
5.10.2016

Review RSA: Choosing keys

1. Choose two large prime numbers p, q.
(e.g., 1024 bits each)

2. Compute n = pq, z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
with z. (e, z are “relatively prime”).

4. Choose d such that ed-1 is exactly divisible by z.
(in other words: ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).

Review RSA: Encryption, decryption

0. Given (n,e) and (n,d) as computed above

1. To encrypt bit pattern, m, compute
c = m mod ne (i.e., remainder when m is divided by n)e

2. To decrypt received bit pattern, c, compute
m = c mod nd (i.e., remainder when c is divided by n)d

Review RSA: Problem

Equation like m = c mod n takes too much time to implement

since d can be a large number.

For efficiency, many popular crypto libraries use the following

optimization for decryption and signing based on the Chinese

remainder theorem.

d

RSA Optimization

▪ The following values are precomputed and stored as part of
the private key:

▪ p and q : the primes from the key generation

▪ dP = d (mod p - 1)

▪ dQ = d (mod q – 1)

▪ qinv = q-1 (mod p)

RSA Optimization

▪ These values allow the recipient to compute the
exponentiation m = cd (mod pq) more efficiently as follows:

▪ m1 = cdp (mod p)

▪ m2 = cdQ (mod q)

▪ h = qinv (m1-m2) (mod p)

▪ (If m1 < m2 then some libraries compute h as

qinv (m1+ p - m2) (mod p))

▪ m = m2 + hq (mod pq)

┏ q
┃━
┃ p

┓
┃
┃

RSA Optimization

▪ https://en.wikipedia.org/wiki/RSA_(cryptosystem)

RSA Optimization

RSA Optimization

Ronald Rivest AdiShamir Leonard Adleman

RSA Optimization Explanation

▪ Φ (p) = p – 1 cp-1 = 1 (mod p)

▪ dp = d (mod p – 1) dp + k1 (p – 1) = d

▪ m1 = cdp = cd = cdp + k1(p - 1) (mod p)

▪ Φ (q) = q – 1 cq-1 = 1 (mod q)

▪ dQ = d (mod q – 1) dQ + k2 (q – 1) = d

▪ m2 = cdQ = cd = cdQ + k2 (q - 1) (mod q)

RSA Optimization Explanation

cd = m1 (mod p)

cd = m2 (mod q)
similar to

x = a1 (mod p1)

x = a2 (mod p2)

p and q are two prime number, so p and q are coprime

cd = (me)d = m = x (mod pq)

Review Chinese Remainder Theorem

▪ Suppose m1, ..., mk are positive integers that are pairwise coprime. Then, for

any given sequence of integers a1, ..., ak, there exists one integer x module m

= m1m2……mk solving the following system of simultaneous congruences.

▪ x = a1 (mod m1) …… x = ak (mod mk)

▪ Provided that Mi = m1……mi-1mi+1……mk, and Mi’ is the inverse element of Mi

module mi.

▪ x = M1M1’a1 + M2M2’a2 + …… + MkMk’ak (mod m)

RSA Optimization Explanation

▪ M1 = q M2 = p

▪ M1’ = q-1 (mod p) M2’ = p-1 (mod q)

▪ m1 = cdP (mod p)

▪ m2 = cdQ (mod q)

▪ h = qinv (m1-m2) (mod p)

▪ m = m2 + hq (mod pq)

RSA Optimization Explanation

m = m2 + hq (mod pq)

= m2 + qinv (m1-m2) (mod p) q (mod pq)

= m2 + qinv (m1-m2) q (mod pq)

= qinv q m1 + (1 - qinv q) m2 (mod pq)

RSA Optimization Explanation

q = M1

qinv = q -1 (mod p) = M1’

qinv = q -1 (mod p)

qinv q = 1 (mod p)

qinv q = 1 + tp

1 - qinv q = 1 – 1 - tp = - tp

qinv is an integer

-tp = 1 (mod q)

-t = p-1 (mod q)

M2 = p

M2’ = -t

M1 M1’ = qinv q

M2 M2’ = -tp = 1 - qinv q

RSA Optimization Explanation

According to Chinese Remainder Theorem

x = M1 M1’ a1 + M2 M2’ a2 (mod pq)

= qinv q m1 + (1- qinv q) m2 (mod pq)

= m2 + hq (mod pq)

= m

RSA Optimization Explanation

If m1 < m2 then some libraries compute h as
qinv (m1+ p - m2) (mod p)

qinv (m1+ p - m2) (mod p)

= qinv (m1- m2) + qinv p (mod p)

qinv, are all integers

= qinv (m1- m2) (mod p)

┏ q
┃━
┃ p

┓
┃
┃

┏ q
┃━
┃ p

┓
┃
┃ ┏ q

┃━
┃ p

┓
┃
┃┏ q

┃━
┃ p

┓
┃
┃

RSA Optimization Explanation

qinv (m1+ p - m2) >= qinv (m1+ q/p * p - m2)

m1+ q/p * p – m2 = m1 + q – m2

m2 = cd (mod q) --> m2 <= q

m1 + q – m2 > 0 qinv > 0

qinv (m1+ p - m2) > 0

┏ q
┃━
┃ p

┓
┃
┃

┏ q
┃━
┃ p

┓
┃
┃

Conclusion

This is a very efficient way to implement, even more efficient

than computing exponentiation by squaring even though two

modular exponentiations have to be computed.

The reason is that these two modular exponentiations both use

a smaller exponent and a smaller modulus.

CRT Applications

▪ Sequence numbering

▪ Fast Fourier transform

▪ Encryption

▪ Range ambiguity resolution

▪ Hermite interpolation

▪ Dedekind's theorem

