Complete Implementation Guide: Adding Embedding Support for
Decoder-Only Models in CTranslate2

Bottom line: Adding embedding extraction for decoder-only models like Qwen3 requires
modifications across 12-15 files spanning Python converters, C++ runtime, and Python bindings.
The critical change is intercepting hidden states after final layer norm but before Im_head
projection in the decoder forward pass. Two implementation paths exist: extending the

Generator class or creating a dedicated DecoderEmbedder class.

The interception point for hidden states

The decoder's forward pass computes hidden states that are then projected to vocabulary logits.
Your embedding extraction must capture the tensor after but before (_proj):

4 1

cpp

// Inside TransformerDecoder::operator() - the key modification point
// «— HIDDEN STATES AVAILABLE HERE (shape: [batch, seq, hidden_din
// <= This projects to vocab logits (shape: [batch, seq, vocab size])

N J

The hidden states at this point represent the model's final contextualized representations—

exactly what embedding models extract.

File modifications organized by component

1. Python Conversion Layer (Delta from existing Qwen3Loader)

File: [python/ctranslateZ/converters/transformers.pyj

Add a new (Qwen3EmbeddingLoader) class that skips Im_head projection:

python

class Qwen3EmbeddingLoader(ModelLoader):
"""Loader for Qwen3 embedding models (without Im_head projection)."""

@property
def architecture_name(self):

return "Qwen3ForEmbedding" # Custom architecture for embedding variant

def get_model spec(self, model):
config = self._config
Use TransformerDecoderModelSpec but mark as embedding model
spec = transformer_spec. TransformerDecoderModelSpec.from_config(
num_layers=config.num_hidden_layers,
num_heads=config.num_attention_heads,
num_heads_kv=getattr(config, 'num_key_value_heads', config.num_attention_heads),
pre_norm=True,
activation=common_spec.Activation.SWISH, # SiLU/SWISH for Qwen3
rms_norm=True,
rotary _dim=0, # Full rotary (applied to all dimensions)
rotary_interleave=False,
rotary_base=getattr(config, 'rope_theta', 10000),
ffn_glu=True,
qk_norm=True, # Qwen3-specific - requires C++ support
)
Mark as embedding model in config
spec._config.add_attribute("model_purpose", "embedding")
spec._config.add_attribute("pooling_method", "last_token") # Qwen3 Embedding uses last token
return spec

def set_decoder(self, spec, module):
""Set decoder weights WITHOUT Im_head projection,"""
Embeddings
self.set_embeddings(spec.embeddings, module.model.embed_tokens)

Transformer layers
for layer_spec, layer in zip(spec.layer, module.model.layers):
self._set_decoder_layer(layer_spec, layer)

Final layer norm

self.set_layer norm(spec.layer_norm, module.model.norm)

CRITICAL. Skip Im_head for embedding models
spec.projection is left unset (OPTIONAL weight)

def _set_decoder_layer(self, spec, layer):
Self-attention with Q/K/V projections
split_layers = [common_spec.LinearSpec() for _in range(3)]
self.set_linear(split_layers[0], layer.self_attn.q_proj)
self.set_linear(split_layers[1], layer.self attn.k proj)
self.set_linear(split_layers[2], layer.self attn.v_proj)
utils.fuse_linear(spec.self_attention.linear[0], split_layers)
self.set_linear(spec.self_attention.linear[1], layer.self attn.o_proj)

Owen3 QK-norm (if C++ supports it)
#self.set_layer_norm(spec.self attention.q_norm, layer.self attn.q_norm)
#self.set_layer_norm(spec.self attention.k_norm, layer.self attn.k_norm)

FFN with SwiGLU

self.set_linear(spec.ffn.linear_0, layer.mlp.gate_proj)
self.set_linear(spec.ffn.linear_0_noact, layer.mlp.up_proj)
self.set_linear(spec.ffn.linear 1, layer.mlp.down_proj)

Layer norms
self.set_layer_norm(spec.self attention.layer norm, layer.input_layernorm)
self.set_layer_norm(spec.ffn.layer_norm, layer.post_attention_layernorm)

-

Detection function to distinguish embedding vs generation models:

python

Check class name patterns

Check if Im_head exists and has weights

Check architecture field in config

2. Model Specification Changes

File: [python/ctranslateZ/specs/transformer_spec.py)

Extend (TransformerDecoderModelSpec) to support optional projection:

python

class TransformerDecoderModelSpec(model_spec.LanguageModelSpec):
"""Describes a Transformer decoder model (e.g. GPT-2, Llama, Qwen3)."""

@classmethod
def from_config(cls, num_layers, num_heads, ...,
skip_output_projection=False, # NEW PARAMETER
pooling_method="none", # NEW: none, mean, last_token, max
**kwargs):
spec = cls(
TransformerDecoderSpec(
num_layers, num_heads,
with_output_projection=not skip_output_projection, # Control projection

*kkwargs

)
spec._config.add_attribute("pooling_method", pooling_method)

return spec

N

File: (python/ctranslate2/specs/attention_spec.pyj

Add QK-norm support for Qwen3:

p
python

class MultiHeadAttentionSpec(model_spec.LayerSpec):
def __init__ (self, self attention=False, relative_attention_bias=False,
relative_position_keys=False, relative_position_values=False,
rotary_dim=None, rotary_interleave=True,
gk _norm=False): # NEW PARAMETER
self.linear = [common_spec.LinearSpec() for _ in range(2)]

self.layer_norm = common_spec.LayerNormSpec()

NEW: OK-norm for Qwen3

if gk_norm:
self.q_norm = common_spec.LayerNormSpec()
selfk_norm = common_spec.LayerNormSpec()

3. C++ Layer Changes (Core Runtime)

File: (include/ctranslate2/layers/decoder.h)

Add parameter to return hidden states:

-

cpp

// New output struct for embedding extraction

// NEW: pre-projection hidden states

// Extended operator with hidden states output

// NEW PARAMETER

// Flag to skip output projection (for embedding models)

&

File: (src/layers/decoder.cc)

Modify (TransformerDecoder::operator()) to optionally return hidden states:

cpp

void TransformerDecoder::operator()(dim_t step,

const StorageView& ids,
const StorageView™ lengths,
DecoderState& state,
StorageView* logits,
StorageView* attention,
StorageView* hidden_states) {

// 1. Embedding lookup

StorageView hidden;

_embeddings(ids, hidden);

// 2, Position encoding
if (_position_encoder)
(*_position_encoder)(hidden, step);

// 3. Pass through transformer layers
for (const auto& layer : _layers) {
(*layer)(step, hidden, state, attention);

// 4. Final layer normalization
if (_output_norm)
(*_output_norm)(hidden, hidden);

// NEW: Capture hidden states BEFORE projection
if (hidden_states) {
*hidden_states = hidden.copy(); /# Copy pre-projection hidden states

//' 5. Project to vocabulary (skip for embedding models)
if (logits && _proj && has_output_projection()) {
(*_proj)(hidden, *logits);

4. C++ Model Layer Changes

File: [include/ctranslate2/models/language_model.h)

Add embedding extraction method:

cpp

namespace ctranslate2 {
namespace models {

class LanguageModel : public Model {

public:
// Existing methods...
std::vector<GenerationResult> generate(...);
StorageView forward(const StorageView& ids, ...);

// NEW: Embedding extraction methods

struct EmbeddingResult {
StorageView embeddings; // Shape. [batch, hidden_dim] afier pooling
StorageView hidden_states; // Shape: [batch, seq_len, hidden_dim] raw

|5

EmbeddingResult embed(const std::vector<std::vector<size t>>& tokens,

const std::string& pooling = "last_token");

EmbeddingResult embed_batch(const std::vector<std::vector<size t>>& tokens,
const std::string& pooling = "last_token",
bool normalize = true);

private:
// NEW: Pooling implementations
void pool_last_token(const StorageView& hidden_states,
const StorageView& lengths,
StorageView& pooled);
void pool_mean(const StorageView& hidden_states,
const StorageView& lengths,
StorageView& pooled);
void pool_max(const StorageView& hidden_states,
StorageView& pooled);

|5

b

&

File: (src/models/language_model.cc]

Implement embedding extraction:

cpp

LanguageModel::EmbeddingResult LanguageModel::embed_batch(
const std::vector<std::vector<size_t>>& tokens,
const std::string& pooling,
bool normalize) {

EmbeddingResult result;

// Prepare inputs
StorageView ids = make_sequence_inputs(tokens, _device);
StorageView lengths = compute_lengths(tokens, _device);

// Forward pass with hidden states capture
DecoderState state = _decoder->initial_state();
StorageView hidden_states(_decoder->output_type(), _device);

// Call decoder without requesting logits, only hidden states
(*_decoder)(/*step="/0, ids, &lengths, state,

/*logits="*/nullptr,

/*attention="*/nullptr,

/*hidden_states="/&hidden_states): // NEW: Request hidden states

result.hidden_states = std::move(hidden_states);

// Apply pooling

StorageView pooled(_decoder->output_type(), _device);

if (pooling == "last_token") {
pool_last_token(result.hidden_states, lengths, pooled);

} else if (pooling == "mean") {
pool_mean(result.hidden_states, lengths, pooled);

} else if (pooling == "max") {
pool_max(result.hidden_states, pooled);

// Optional L2 normalization
if (normalize) {
ops::L2Norm()(pooled, pooled);

result.embeddings = std::move(pooled);
return result;

void LanguageModel::pool_last_token(const StorageView& hidden_states,
const StorageView& lengths,
StorageView& pooled) {
// hidden_states. [batch, seq_len, hidden_dim]
// lengths. [batch] - actual sequence lengths
// pooled: [batch, hidden_dim]

const dim_t batch_size = hidden_states.dim(0);
const dim_t hidden_dim = hidden_states.dim(2);

pooled.resize({batch_size, hidden_dim});

for (dim_t b =0; b < batch_size; ++b) {
dim_t last_idx = lengths.at<int32_t>(b) - 1,
// Copy hidden_states[b, last_idx, .] to pooled[b, :]
ops::Copy()(hidden_states.index({b, last_idx}), pooled.index({b}));

void LanguageModel::pool_mean(const StorageView& hidden_states,
const StorageView& lengths,
StorageView& pooled) {
// Mean pooling over sequence dimension, respecting actual lengths
const dim_t batch_size = hidden_states.dim(0);
const dim_t hidden_dim = hidden_states.dim(2);

pooled.resize({batch_size, hidden_dim});
pooled.zero();

for (dim_t b =0; b <batch_size; ++b) {
dim_t seq_len = lengths.at<int32_t>(b);
for (dim_t s =0; s <seq_len; ++s) {
// Accumulate: pooled[b] += hidden_states[b, s]
ops::Add()(pooled.index({b}), hidden_states.index({b, s}), pooled.index({b}));

}
// Divide by length

5. Model Factory Changes

File: (src/models/model_factory.cc)

Register embedding model variant:

e
cpp
// Check for embedding model variant
// Load without expecting output projection weights
// ... other model types
N\

/*for_embedding="*/

/*for_embedding="*/

6. Python Binding Changes

File: [python/cpp/generator.cc)

Add embedding extraction method to Generator:

cpp

// Add to GeneratorWrapper class
EmbeddingOutput embed_batch(
const BatchTokens& tokens,
const std::string& pooling,

bool normalize,
size_t max_batch_size) {

auto results = execute_in_parallel(
_pool,
[&pooling, normalize](Generator& generator,
const std::vector<std::vector<size_t>>& batch) {
return generator.get_model().embed_batch(batch, pooling, normalize);
b
tokens,
max_batch_size);

return aggregate_embedding_results(results);

// Register in pybind1l
.def("embed_batch", &GeneratorWrapper::embed_batch,
py::arg("tokens"),
py::kw_only(),
py::arg("pooling") = "last_token",
py::arg("normalize") = true,
py::arg("max_batch_size") =0,
R"pbdoc(
Extract embeddings from a batch of token sequences.

Arguments:
tokens: Batch of token sequences (list of lists).
pooling: Pooling strategy - "last_token", "mean", or "max".
normalize: Whether to L2-normalize the embeddings.
max_batch_size: Maximum batch size for processing.

Returns:
EmbeddingOutput with embeddings and optional hidden_states.
)pbdoc")

N

File: [python/cpp/embedding_result.cc) (NEW FILE)

Create bindings for embedding results:

Ve

cpp

&

File: [python/cpp/module.cc)

Register the new embedding result type:

cpp

// Add to PYBIND1] MODULE

7. Python API Wrapper

File: (python/ctranslateZ/_init_.py)

Expose embedding functionality:

-

python

from ctranslate2._ext import Generator, Encoder, EmbeddingResult

Optional: Create dedicated Embedder class for cleaner API
class Embedder(Generator):
"""Wrapper for using decoder models as embedding extractors."""

def encode(self, texts, tokenizer, pooling="last_token",
normalize=True, instruction=None):

Extract embeddings from texts.

Args:
texts: List of input texts
tokenizer: HuggingFace tokenizer
pooling: "last_token", "mean", or "max"
normalize: Whether to L2-normalize embeddings
instruction: Optional instruction prefix (for Qwen3 Embedding)

Returns:

numpy array of embeddings [batch, hidden_dim]
Prepend instruction if provided (Owen3 Embedding style)
if instruction:

texts = ['Instruct; {instruction}\nQuery: {t}" for t in texts]

Tokenize
tokens = [tokenizer.encode(t) for t in texts]

token_strs = [tokenizer.convert_ids_to_tokens(t) for t in tokens]

Extract embeddings
result = self.embed_batch(token_strs, pooling=pooling, normalize=normalize)

return np.array(result.embeddings)

8. Attention Layer Changes (For QK-Norm Support)

File: (include/ctranslate2/layers/attention.h)

Add QK-norm members for Qwen3:

-

cpp

// Existing members...

// NEW: QK normalization for Qwen3

// NEW PARAMETER

.

File: (src/layers/attention.cc)

Implement QK-norm in attention forward:

cpp

// Project O, K, V

/... K, V projection

// NEW: Apply OK normalization (Qwen3)

// Continue with scaled dot-product attention...

Complete file list summary

Category

File Path

Change Type

Python Converter

[python/ ctranslate2/converters/

transformers.py

Add Qwen3EmbeddingLoader

Model Spec [python/ctranslate2/specs/ Add skip_output_projection,
transformer_spec.py] pooling_method

Model Spec [python/ctranslateZ/ specs/ Add gk _norm support
attention_spec.py)

C++ Decoder (include/ctranslateZ/layers/decoder.h] Add hidden_states parameter

Header

C++ Decoder [src/layers/decoder.ccj Return hidden states before projection

Impl

C++ Attention

Header

(include/ctranslate2/layers/attention.h)

Add q norm, k norm members

C++ Attention

[src/layers/attention.cc]

Apply QK-norm in forward

Impl

C++ Model [include/ctranslate2/models/ Add embed_batch() method
Header language_model.hj

C++ Model Impl (src/models/language_model.cc] Implement embedding + pooling

C++ Factory

(src/models/model_factory.cc)

Handle embedding model type

Python Bindings [python/cpp/ generator.cc) Add embed batch binding
Python Bindings (python/cpp/ embedding_result.ccj NEW: EmbeddingResult class
Python Bindings [python/cpp/module.cc) Register embedding types
Python API (python/ctranslate2/_init_.py) Expose Embedder class

Build System Add new source files

Key implementation decisions

Why extend Generator rather than create DecoderEmbedder? Reusing the Generator
infrastructure minimizes code duplication. The decoder forward pass is identical—only the
output handling differs. Adding to Generator allows the same model to be used
for both generation and embedding extraction.

Why last_token pooling for Qwen3? Qwen3 Embedding models are trained with last-token
pooling, where the final token's hidden state captures the full sequence representation. Mean

pooling is provided as an alternative for compatibility with other embedding approaches.

Why skip Im_head during conversion? Embedding models don't need vocabulary projection

weights, saving disk space and memory. The converter explicitly skips
assignment, leaving it as an optional/unset weight.

Instruction-aware prompting is handled at the Python API level by prepending the instruction
template. This keeps the C++ runtime simple while supporting Qwen3 Embedding's instruction-
based approach.

Testing the implementation

After implementing these changes, verify with:

python

Convert Qwen3 embedding model
ct2-transformers-converter --model Alibaba-NLP/gte-OQwen2-7B-instruct \

--output_dir gwen3-embedding --quantization int§

Load and extract embeddings

/2, hidden_dim]
/2, seq len, hidden_dim]

&

This implementation provides a clean delta from the existing Qwen3Loader for generation,
adding the specific infrastructure needed for embedding extraction while maintaining
compatibility with CTranslate2's architecture.

