
Complete Implementation Guide: Adding Embedding Support for
Decoder-Only Models in CTranslate2

Bottom line: Adding embedding extraction for decoder-only models like Qwen3 requires

modifications across 12-15 files spanning Python converters, C++ runtime, and Python bindings.

The critical change is intercepting hidden states after final layer norm but before lm_head

projection in the decoder forward pass. Two implementation paths exist: extending the

Generator class or creating a dedicated DecoderEmbedder class.

The interception point for hidden states

The decoder's forward pass computes hidden states that are then projected to vocabulary logits.

Your embedding extraction must capture the tensor after _output_norm but before _proj :

The hidden states at this point represent the model's final contextualized representations—

exactly what embedding models extract.

File modifications organized by component

1. Python Conversion Layer (Delta from existing Qwen3Loader)

File: python/ctranslate2/converters/transformers.py

Add a new Qwen3EmbeddingLoader class that skips lm_head projection:

cpp

// Inside TransformerDecoder::operator() - the key modification point// Inside TransformerDecoder::operator() - the key modification point

_output_norm_output_norm((hiddenhidden,, hidden hidden));; // ← HIDDEN STATES AVAILABLE HERE (shape: [batch, seq, hidden_dim])// ← HIDDEN STATES AVAILABLE HERE (shape: [batch, seq, hidden_dim])

_proj_proj((hiddenhidden,, **logitslogits));; // ← This projects to vocab logits (shape: [batch, seq, vocab_size])// ← This projects to vocab logits (shape: [batch, seq, vocab_size])

python

classclass Qwen3EmbeddingLoaderQwen3EmbeddingLoader((ModelLoaderModelLoader))::

"""Loader for Qwen3 embedding models (without lm_head projection).""""""Loader for Qwen3 embedding models (without lm_head projection)."""

@property@property

defdef architecture_namearchitecture_name((selfself))::

returnreturn "Qwen3ForEmbedding""Qwen3ForEmbedding" # Custom architecture for embedding variant# Custom architecture for embedding variant

defdef get_model_specget_model_spec((selfself,, model model))::

 config config == self self.._config_config

Use TransformerDecoderModelSpec but mark as embedding model# Use TransformerDecoderModelSpec but mark as embedding model

 spec spec == transformer_spec transformer_spec..TransformerDecoderModelSpecTransformerDecoderModelSpec..from_configfrom_config((

 num_layers num_layers==configconfig..num_hidden_layersnum_hidden_layers,,

 num_heads num_heads==configconfig..num_attention_headsnum_attention_heads,,

 num_heads_kv num_heads_kv==getattrgetattr((configconfig,, 'num_key_value_heads''num_key_value_heads',, config config..num_attention_headsnum_attention_heads)),,

 pre_norm pre_norm==TrueTrue,,

 activation activation==common_speccommon_spec..ActivationActivation..SWISHSWISH,, # SiLU/SWISH for Qwen3# SiLU/SWISH for Qwen3

 rms_norm rms_norm==TrueTrue,,

 rotary_dim rotary_dim==00,, # Full rotary (applied to all dimensions)# Full rotary (applied to all dimensions)

 rotary_interleave rotary_interleave==FalseFalse,,

 rotary_base rotary_base==getattrgetattr((configconfig,, 'rope_theta''rope_theta',, 1000010000)),,

 ffn_glu ffn_glu==TrueTrue,,

qk_norm=True, # Qwen3-specific - requires C++ support# qk_norm=True, # Qwen3-specific - requires C++ support

))

Mark as embedding model in config# Mark as embedding model in config

 spec spec.._config_config..add_attributeadd_attribute(("model_purpose""model_purpose",, "embedding""embedding"))

 spec spec.._config_config..add_attributeadd_attribute(("pooling_method""pooling_method",, "last_token""last_token")) # Qwen3 Embedding uses last token# Qwen3 Embedding uses last token

returnreturn spec spec

defdef set_decoderset_decoder((selfself,, spec spec,, module module))::

"""Set decoder weights WITHOUT lm_head projection.""""""Set decoder weights WITHOUT lm_head projection."""

Embeddings# Embeddings

 self self..set_embeddingsset_embeddings((specspec..embeddingsembeddings,, module module..modelmodel..embed_tokensembed_tokens))

Transformer layers# Transformer layers

forfor layer_spec layer_spec,, layer layer inin zipzip((specspec..layerlayer,, module module..modelmodel..layerslayers))::

 self self.._set_decoder_layer_set_decoder_layer((layer_speclayer_spec,, layer layer))

Final layer norm# Final layer norm

Detection function to distinguish embedding vs generation models:

 self self..set_layer_normset_layer_norm((specspec..layer_normlayer_norm,, module module..modelmodel..normnorm))

CRITICAL: Skip lm_head for embedding models# CRITICAL: Skip lm_head for embedding models

spec.projection is left unset (OPTIONAL weight)# spec.projection is left unset (OPTIONAL weight)

defdef _set_decoder_layer_set_decoder_layer((selfself,, spec spec,, layer layer))::

Self-attention with Q/K/V projections# Self-attention with Q/K/V projections

 split_layers split_layers == [[common_speccommon_spec..LinearSpecLinearSpec(()) forfor _ _ inin rangerange((33))]]

 self self..set_linearset_linear((split_layerssplit_layers[[00]],, layer layer..self_attnself_attn..q_projq_proj))

 self self..set_linearset_linear((split_layerssplit_layers[[11]],, layer layer..self_attnself_attn..k_projk_proj))

 self self..set_linearset_linear((split_layerssplit_layers[[22]],, layer layer..self_attnself_attn..v_projv_proj))

 utils utils..fuse_linearfuse_linear((specspec..self_attentionself_attention..linearlinear[[00]],, split_layers split_layers))

 self self..set_linearset_linear((specspec..self_attentionself_attention..linearlinear[[11]],, layer layer..self_attnself_attn..o_projo_proj))

Qwen3 QK-norm (if C++ supports it)# Qwen3 QK-norm (if C++ supports it)

self.set_layer_norm(spec.self_attention.q_norm, layer.self_attn.q_norm)# self.set_layer_norm(spec.self_attention.q_norm, layer.self_attn.q_norm)

self.set_layer_norm(spec.self_attention.k_norm, layer.self_attn.k_norm)# self.set_layer_norm(spec.self_attention.k_norm, layer.self_attn.k_norm)

FFN with SwiGLU# FFN with SwiGLU

 self self..set_linearset_linear((specspec..ffnffn..linear_0linear_0,, layer layer..mlpmlp..gate_projgate_proj))

 self self..set_linearset_linear((specspec..ffnffn..linear_0_noactlinear_0_noact,, layer layer..mlpmlp..up_projup_proj))

 self self..set_linearset_linear((specspec..ffnffn..linear_1linear_1,, layer layer..mlpmlp..down_projdown_proj))

Layer norms# Layer norms

 self self..set_layer_normset_layer_norm((specspec..self_attentionself_attention..layer_normlayer_norm,, layer layer..input_layernorminput_layernorm))

 self self..set_layer_normset_layer_norm((specspec..ffnffn..layer_normlayer_norm,, layer layer..post_attention_layernormpost_attention_layernorm))

2. Model Specification Changes

File: python/ctranslate2/specs/transformer_spec.py

Extend TransformerDecoderModelSpec to support optional projection:

python

defdef detect_model_purposedetect_model_purpose((modelmodel,, config config))::

"""Detect if HuggingFace model is for embeddings or generation.""""""Detect if HuggingFace model is for embeddings or generation."""

 model_class model_class == typetype((modelmodel))..__name____name__

Check class name patterns# Check class name patterns

 embedding_indicators embedding_indicators == [['ForSequenceEmbedding''ForSequenceEmbedding',, 'Model''Model',, 'Encoder''Encoder']]

ifif anyany((ind ind inin model_class model_class forfor ind ind inin embedding_indicators embedding_indicators))::

returnreturn "embedding""embedding"

Check if lm_head exists and has weights# Check if lm_head exists and has weights

ifif notnot hasattrhasattr((modelmodel,, 'lm_head''lm_head')) oror model model..lm_head lm_head isis NoneNone::

returnreturn "embedding""embedding"

Check architecture field in config# Check architecture field in config

ifif hasattrhasattr((configconfig,, 'architectures''architectures'))::

forfor arch arch inin config config..architecturesarchitectures::

ifif 'Embed''Embed' inin arch arch oror 'Sentence''Sentence' inin arch arch::

returnreturn "embedding""embedding"

returnreturn "generation""generation"

File: python/ctranslate2/specs/attention_spec.py

Add QK-norm support for Qwen3:

python

classclass TransformerDecoderModelSpecTransformerDecoderModelSpec((model_specmodel_spec..LanguageModelSpecLanguageModelSpec))::

"""Describes a Transformer decoder model (e.g. GPT-2, Llama, Qwen3).""""""Describes a Transformer decoder model (e.g. GPT-2, Llama, Qwen3)."""

@classmethod@classmethod

defdef from_configfrom_config((clscls,, num_layers num_layers,, num_heads num_heads,,,,

 skip_output_projection skip_output_projection==FalseFalse,, # NEW PARAMETER# NEW PARAMETER

 pooling_method pooling_method=="none""none",, # NEW: none, mean, last_token, max# NEW: none, mean, last_token, max

****kwargskwargs))::

 spec spec == cls cls((

 TransformerDecoderSpec TransformerDecoderSpec((

 num_layers num_layers,, num_heads num_heads,,

 with_output_projection with_output_projection==notnot skip_output_projection skip_output_projection,, # Control projection# Control projection

****kwargskwargs

))

))

 spec spec.._config_config..add_attributeadd_attribute(("pooling_method""pooling_method",, pooling_method pooling_method))

returnreturn spec spec

python

classclass MultiHeadAttentionSpecMultiHeadAttentionSpec((model_specmodel_spec..LayerSpecLayerSpec))::

defdef __init____init__((selfself,, self_attention self_attention==FalseFalse,, relative_attention_bias relative_attention_bias==FalseFalse,,

 relative_position_keys relative_position_keys==FalseFalse,, relative_position_values relative_position_values==FalseFalse,,

 rotary_dim rotary_dim==NoneNone,, rotary_interleave rotary_interleave==TrueTrue,,

 qk_norm qk_norm==FalseFalse)):: # NEW PARAMETER# NEW PARAMETER

 self self..linear linear == [[common_speccommon_spec..LinearSpecLinearSpec(()) forfor _ _ inin rangerange((22))]]

 self self..layer_norm layer_norm == common_spec common_spec..LayerNormSpecLayerNormSpec(())

NEW: QK-norm for Qwen3# NEW: QK-norm for Qwen3

ifif qk_norm qk_norm::

 self self..q_norm q_norm == common_spec common_spec..LayerNormSpecLayerNormSpec(())

 self self..k_norm k_norm == common_spec common_spec..LayerNormSpecLayerNormSpec(())

3. C++ Layer Changes (Core Runtime)

File: include/ctranslate2/layers/decoder.h

Add parameter to return hidden states:

File: src/layers/decoder.cc

Modify TransformerDecoder::operator() to optionally return hidden states:

cpp

namespacenamespace ctranslate2 ctranslate2 {{

namespacenamespace layers layers {{

// New output struct for embedding extraction// New output struct for embedding extraction

structstruct DecoderForwardOutputDecoderForwardOutput {{

 StorageView logits StorageView logits;;

 StorageView hidden_states StorageView hidden_states;; // NEW: pre-projection hidden states// NEW: pre-projection hidden states

}};;

classclass DecoderDecoder :: publicpublic LayerLayer {{

publicpublic::

// Extended operator with hidden states output// Extended operator with hidden states output

virtualvirtual voidvoid operatoroperator(())((dim_t stepdim_t step,,

constconst StorageView StorageView&& ids ids,,

constconst StorageView StorageView** lengths lengths,,

 DecoderState DecoderState&& state state,,

 StorageView StorageView** logits logits == nullptrnullptr,,

 StorageView StorageView** attention attention == nullptrnullptr,,

 StorageView StorageView** hidden_states hidden_states == nullptrnullptr)) == 00;; // NEW PARAMETER// NEW PARAMETER

// Flag to skip output projection (for embedding models)// Flag to skip output projection (for embedding models)

boolbool has_output_projectionhas_output_projection(()) constconst {{ returnreturn _has_projection _has_projection;; }}

protectedprotected::

boolbool _has_projection _has_projection == truetrue;;

}};;

}}}}

cpp

voidvoid TransformerDecoderTransformerDecoder::::operatoroperator(())((dim_t stepdim_t step,,

constconst StorageView StorageView&& ids ids,,

constconst StorageView StorageView** lengths lengths,,

 DecoderState DecoderState&& state state,,

 StorageView StorageView** logits logits,,

 StorageView StorageView** attention attention,,

 StorageView StorageView** hidden_states hidden_states)) {{

// 1. Embedding lookup// 1. Embedding lookup

 StorageView hidden StorageView hidden;;

_embeddings_embeddings((idsids,, hidden hidden));;

// 2. Position encoding// 2. Position encoding

ifif ((_position_encoder_position_encoder))

((**_position_encoder_position_encoder))((hiddenhidden,, step step));;

// 3. Pass through transformer layers// 3. Pass through transformer layers

forfor ((constconst autoauto&& layer layer :: _layers _layers)) {{

((**layerlayer))((stepstep,, hidden hidden,, state state,, attention attention));;

}}

// 4. Final layer normalization// 4. Final layer normalization

ifif ((_output_norm_output_norm))

((**_output_norm_output_norm))((hiddenhidden,, hidden hidden));;

// NEW: Capture hidden states BEFORE projection// NEW: Capture hidden states BEFORE projection

ifif ((hidden_stateshidden_states)) {{

**hidden_states hidden_states == hidden hidden..copycopy(());; // Copy pre-projection hidden states// Copy pre-projection hidden states

}}

// 5. Project to vocabulary (skip for embedding models)// 5. Project to vocabulary (skip for embedding models)

ifif ((logits logits &&&& _proj _proj &&&& has_output_projectionhas_output_projection(()))) {{

((**_proj_proj))((hiddenhidden,, **logitslogits));;

}}

}}

4. C++ Model Layer Changes

File: include/ctranslate2/models/language_model.h

Add embedding extraction method:

File: src/models/language_model.cc

cpp

namespacenamespace ctranslate2 ctranslate2 {{

namespacenamespace models models {{

classclass LanguageModelLanguageModel :: publicpublic ModelModel {{

publicpublic::

// Existing methods...// Existing methods...

 std std::::vectorvector<<GenerationResultGenerationResult>> generategenerate((......));;

 StorageView StorageView forwardforward((constconst StorageView StorageView&& ids ids,,));;

// NEW: Embedding extraction methods// NEW: Embedding extraction methods

structstruct EmbeddingResultEmbeddingResult {{

 StorageView embeddings StorageView embeddings;; // Shape: [batch, hidden_dim] after pooling// Shape: [batch, hidden_dim] after pooling

 StorageView hidden_states StorageView hidden_states;; // Shape: [batch, seq_len, hidden_dim] raw// Shape: [batch, seq_len, hidden_dim] raw

}};;

 EmbeddingResult EmbeddingResult embedembed((constconst std std::::vectorvector<<stdstd::::vectorvector<<size_tsize_t>>>>&& tokens tokens,,

constconst std std::::stringstring&& pooling pooling == "last_token""last_token"));;

 EmbeddingResult EmbeddingResult embed_batchembed_batch((constconst std std::::vectorvector<<stdstd::::vectorvector<<size_tsize_t>>>>&& tokens tokens,,

constconst std std::::stringstring&& pooling pooling == "last_token""last_token",,

boolbool normalize normalize == truetrue));;

privateprivate::

// NEW: Pooling implementations// NEW: Pooling implementations

voidvoid pool_last_tokenpool_last_token((constconst StorageView StorageView&& hidden_states hidden_states,,

constconst StorageView StorageView&& lengths lengths,,

 StorageView StorageView&& pooled pooled));;

voidvoid pool_meanpool_mean((constconst StorageView StorageView&& hidden_states hidden_states,,

constconst StorageView StorageView&& lengths lengths,,

 StorageView StorageView&& pooled pooled));;

voidvoid pool_maxpool_max((constconst StorageView StorageView&& hidden_states hidden_states,,

 StorageView StorageView&& pooled pooled));;

}};;

}}}}

Implement embedding extraction:

cpp

LanguageModelLanguageModel::::EmbeddingResult EmbeddingResult LanguageModelLanguageModel::::embed_batchembed_batch((

constconst std std::::vectorvector<<stdstd::::vectorvector<<size_tsize_t>>>>&& tokens tokens,,

constconst std std::::stringstring&& pooling pooling,,

boolbool normalize normalize)) {{

 EmbeddingResult result EmbeddingResult result;;

// Prepare inputs// Prepare inputs

 StorageView ids StorageView ids == make_sequence_inputsmake_sequence_inputs((tokenstokens,, _device _device));;

 StorageView lengths StorageView lengths == compute_lengthscompute_lengths((tokenstokens,, _device _device));;

// Forward pass with hidden states capture// Forward pass with hidden states capture

 DecoderState state DecoderState state == _decoder _decoder->->initial_stateinitial_state(());;

 StorageView StorageView hidden_stateshidden_states((_decoder_decoder->->output_typeoutput_type(()),, _device _device));;

// Call decoder without requesting logits, only hidden states// Call decoder without requesting logits, only hidden states

((**_decoder_decoder))((/*step=*//*step=*/00,, ids ids,, &&lengthslengths,, state state,,

/*logits=*//*logits=*/nullptrnullptr,,

/*attention=*//*attention=*/nullptrnullptr,,

/*hidden_states=*//*hidden_states=*/&&hidden_stateshidden_states));; // NEW: Request hidden states// NEW: Request hidden states

 result result..hidden_states hidden_states == std std::::movemove((hidden_stateshidden_states));;

// Apply pooling// Apply pooling

 StorageView StorageView pooledpooled((_decoder_decoder->->output_typeoutput_type(()),, _device _device));;

ifif ((pooling pooling ==== "last_token""last_token")) {{

pool_last_tokenpool_last_token((resultresult..hidden_stateshidden_states,, lengths lengths,, pooled pooled));;

}} elseelse ifif ((pooling pooling ==== "mean""mean")) {{

pool_meanpool_mean((resultresult..hidden_stateshidden_states,, lengths lengths,, pooled pooled));;

}} elseelse ifif ((pooling pooling ==== "max""max")) {{

pool_maxpool_max((resultresult..hidden_stateshidden_states,, pooled pooled));;

}}

// Optional L2 normalization// Optional L2 normalization

ifif ((normalizenormalize)) {{

 ops ops::::L2NormL2Norm(())((pooledpooled,, pooled pooled));;

}}

 result result..embeddings embeddings == std std::::movemove((pooledpooled));;

returnreturn result result;;

}}

voidvoid LanguageModelLanguageModel::::pool_last_tokenpool_last_token((constconst StorageView StorageView&& hidden_states hidden_states,,

constconst StorageView StorageView&& lengths lengths,,

 StorageView StorageView&& pooled pooled)) {{

// hidden_states: [batch, seq_len, hidden_dim]// hidden_states: [batch, seq_len, hidden_dim]

// lengths: [batch] - actual sequence lengths// lengths: [batch] - actual sequence lengths

// pooled: [batch, hidden_dim]// pooled: [batch, hidden_dim]

constconst dim_t batch_size dim_t batch_size == hidden_states hidden_states..dimdim((00));;

constconst dim_t hidden_dim dim_t hidden_dim == hidden_states hidden_states..dimdim((22));;

 pooled pooled..resizeresize(({{batch_sizebatch_size,, hidden_dim hidden_dim}}));;

forfor ((dim_t b dim_t b == 00;; b b << batch_size batch_size;; ++++bb)) {{

 dim_t last_idx dim_t last_idx == lengths lengths..atat<<int32_tint32_t>>((bb)) -- 11;;

// Copy hidden_states[b, last_idx, :] to pooled[b, :]// Copy hidden_states[b, last_idx, :] to pooled[b, :]

 ops ops::::CopyCopy(())((hidden_stateshidden_states..indexindex(({{bb,, last_idx last_idx}})),, pooled pooled..indexindex(({{bb}}))));;

}}

}}

voidvoid LanguageModelLanguageModel::::pool_meanpool_mean((constconst StorageView StorageView&& hidden_states hidden_states,,

constconst StorageView StorageView&& lengths lengths,,

 StorageView StorageView&& pooled pooled)) {{

// Mean pooling over sequence dimension, respecting actual lengths// Mean pooling over sequence dimension, respecting actual lengths

constconst dim_t batch_size dim_t batch_size == hidden_states hidden_states..dimdim((00));;

constconst dim_t hidden_dim dim_t hidden_dim == hidden_states hidden_states..dimdim((22));;

 pooled pooled..resizeresize(({{batch_sizebatch_size,, hidden_dim hidden_dim}}));;

 pooled pooled..zerozero(());;

forfor ((dim_t b dim_t b == 00;; b b << batch_size batch_size;; ++++bb)) {{

 dim_t seq_len dim_t seq_len == lengths lengths..atat<<int32_tint32_t>>((bb));;

forfor ((dim_t s dim_t s == 00;; s s << seq_len seq_len;; ++++ss)) {{

// Accumulate: pooled[b] += hidden_states[b, s]// Accumulate: pooled[b] += hidden_states[b, s]

 ops ops::::AddAdd(())((pooledpooled..indexindex(({{bb}})),, hidden_states hidden_states..indexindex(({{bb,, s s}})),, pooled pooled..indexindex(({{bb}}))));;

}}

// Divide by length// Divide by length

5. Model Factory Changes

File: src/models/model_factory.cc

Register embedding model variant:

6. Python Binding Changes

File: python/cpp/generator.cc

Add embedding extraction method to Generator:

floatfloat scale scale == 1.0f1.0f // static_caststatic_cast<<floatfloat>>((seq_lenseq_len));;

 ops ops::::MulMul(())((pooledpooled..indexindex(({{bb}})),, scale scale,, pooled pooled..indexindex(({{bb}}))));;

}}

}}

cpp

stdstd::::unique_ptrunique_ptr<<ModelModel>> create_modelcreate_model((constconst std std::::stringstring&& path path,,)) {{

autoauto config config == read_configread_config((pathpath));;

 std std::::string model_spec string model_spec == config config[["model_spec""model_spec"]];;

// Check for embedding model variant// Check for embedding model variant

 std std::::string model_purpose string model_purpose == config config..valuevalue(("model_purpose""model_purpose",, "generation""generation"));;

ifif ((model_spec model_spec ==== "TransformerDecoderModelSpec""TransformerDecoderModelSpec")) {{

ifif ((model_purpose model_purpose ==== "embedding""embedding")) {{

// Load without expecting output projection weights// Load without expecting output projection weights

returnreturn std std::::make_uniquemake_unique<<LanguageModelLanguageModel>>((pathpath,, device device,, /*for_embedding=*//*for_embedding=*/truetrue));;

}} elseelse {{

returnreturn std std::::make_uniquemake_unique<<LanguageModelLanguageModel>>((pathpath,, device device,, /*for_embedding=*//*for_embedding=*/falsefalse));;

}}

}}

// ... other model types// ... other model types

}}

cpp

// Add to GeneratorWrapper class// Add to GeneratorWrapper class

EmbeddingOutput EmbeddingOutput embed_batchembed_batch((

constconst BatchTokens BatchTokens&& tokens tokens,,

constconst std std::::stringstring&& pooling pooling,,

boolbool normalize normalize,,

 size_t max_batch_size size_t max_batch_size)) {{

autoauto results results == execute_in_parallelexecute_in_parallel((

 _pool _pool,,

[[&&poolingpooling,, normalize normalize]]((GeneratorGenerator&& generator generator,,

constconst std std::::vectorvector<<stdstd::::vectorvector<<size_tsize_t>>>>&& batch batch)) {{

returnreturn generator generator..get_modelget_model(())..embed_batchembed_batch((batchbatch,, pooling pooling,, normalize normalize));;

}},,

 tokens tokens,,

 max_batch_size max_batch_size));;

returnreturn aggregate_embedding_resultsaggregate_embedding_results((resultsresults));;

}}

// Register in pybind11// Register in pybind11

..defdef(("embed_batch""embed_batch",, &&GeneratorWrapperGeneratorWrapper::::embed_batchembed_batch,,

 py py::::argarg(("tokens""tokens")),,

 py py::::kw_onlykw_only(()),,

 py py::::argarg(("pooling""pooling")) == "last_token""last_token",,

 py py::::argarg(("normalize""normalize")) == truetrue,,

 py py::::argarg(("max_batch_size""max_batch_size")) == 00,,

R"pbdoc(R"pbdoc(

 Extract embeddings from a batch of token sequences. Extract embeddings from a batch of token sequences.

 Arguments: Arguments:

 tokens: Batch of token sequences (list of lists). tokens: Batch of token sequences (list of lists).

 pooling: Pooling strategy - "last_token", "mean", or "max". pooling: Pooling strategy - "last_token", "mean", or "max".

 normalize: Whether to L2-normalize the embeddings. normalize: Whether to L2-normalize the embeddings.

 max_batch_size: Maximum batch size for processing. max_batch_size: Maximum batch size for processing.

 Returns: Returns:

 EmbeddingOutput with embeddings and optional hidden_states. EmbeddingOutput with embeddings and optional hidden_states.

)pbdoc")pbdoc"))

File: python/cpp/embedding_result.cc (NEW FILE)

Create bindings for embedding results:

File: python/cpp/module.cc

Register the new embedding result type:

7. Python API Wrapper

cpp

##includeinclude "module.h""module.h"

##includeinclude <pybind11/pybind11.h><pybind11/pybind11.h>

namespacenamespace py py == pybind11 pybind11;;

namespacenamespace ctranslate2 ctranslate2 {{

namespacenamespace python python {{

voidvoid register_embedding_resultregister_embedding_result((pypy::::modulemodule&& m m)) {{

 py py::::class_class_<<EmbeddingResultEmbeddingResult>>((mm,, "EmbeddingResult""EmbeddingResult",,

"Result of embedding extraction from a language model.""Result of embedding extraction from a language model."))

..def_property_readonlydef_property_readonly(("embeddings""embeddings",,

[[]]((constconst EmbeddingResult EmbeddingResult&& r r)) {{ returnreturn r r..embeddingsembeddings;; }},,

"Pooled embeddings with shape [batch_size, hidden_dim].""Pooled embeddings with shape [batch_size, hidden_dim]."))

..def_property_readonlydef_property_readonly(("hidden_states""hidden_states",,

[[]]((constconst EmbeddingResult EmbeddingResult&& r r)) {{ returnreturn r r..hidden_stateshidden_states;; }},,

"Raw hidden states with shape [batch_size, seq_len, hidden_dim].""Raw hidden states with shape [batch_size, seq_len, hidden_dim]."));;

}}

}}}}

cpp

// Add to PYBIND11_MODULE// Add to PYBIND11_MODULE

register_embedding_resultregister_embedding_result((mm));;

File: python/ctranslate2/__init__.py

Expose embedding functionality:

python

fromfrom ctranslate2 ctranslate2.._ext _ext importimport Generator Generator,, Encoder Encoder,, EmbeddingResult EmbeddingResult

Optional: Create dedicated Embedder class for cleaner API# Optional: Create dedicated Embedder class for cleaner API

classclass EmbedderEmbedder((GeneratorGenerator))::

"""Wrapper for using decoder models as embedding extractors.""""""Wrapper for using decoder models as embedding extractors."""

defdef encodeencode((selfself,, texts texts,, tokenizer tokenizer,, pooling pooling=="last_token""last_token",,

 normalize normalize==TrueTrue,, instruction instruction==NoneNone))::

""""""

 Extract embeddings from texts. Extract embeddings from texts.

 Args: Args:

 texts: List of input texts texts: List of input texts

 tokenizer: HuggingFace tokenizer tokenizer: HuggingFace tokenizer

 pooling: "last_token", "mean", or "max" pooling: "last_token", "mean", or "max"

 normalize: Whether to L2-normalize embeddings normalize: Whether to L2-normalize embeddings

 instruction: Optional instruction prefix (for Qwen3 Embedding) instruction: Optional instruction prefix (for Qwen3 Embedding)

 Returns: Returns:

 numpy array of embeddings [batch, hidden_dim] numpy array of embeddings [batch, hidden_dim]

 """ """

Prepend instruction if provided (Qwen3 Embedding style)# Prepend instruction if provided (Qwen3 Embedding style)

ifif instruction instruction::

 texts texts == [[f"Instruct: f"Instruct: {{instructioninstruction}}\nQuery: \nQuery: {{tt}}"" forfor t t inin texts texts]]

Tokenize# Tokenize

 tokens tokens == [[tokenizertokenizer..encodeencode((tt)) forfor t t inin texts texts]]

 token_strs token_strs == [[tokenizertokenizer..convert_ids_to_tokensconvert_ids_to_tokens((tt)) forfor t t inin tokens tokens]]

Extract embeddings# Extract embeddings

 result result == self self..embed_batchembed_batch((token_strstoken_strs,, pooling pooling==poolingpooling,, normalize normalize==normalizenormalize))

returnreturn np np..arrayarray((resultresult..embeddingsembeddings))

8. Attention Layer Changes (For QK-Norm Support)

File: include/ctranslate2/layers/attention.h

Add QK-norm members for Qwen3:

File: src/layers/attention.cc

Implement QK-norm in attention forward:

cpp

classclass MultiHeadAttentionMultiHeadAttention :: publicpublic LayerLayer {{

privateprivate::

// Existing members...// Existing members...

constconst Dense _linear_q Dense _linear_q;;

constconst Dense _linear_kv Dense _linear_kv;;

constconst Dense _linear_output Dense _linear_output;;

// NEW: QK normalization for Qwen3// NEW: QK normalization for Qwen3

 std std::::unique_ptrunique_ptr<<LayerNormLayerNorm>> _q_norm _q_norm;;

 std std::::unique_ptrunique_ptr<<LayerNormLayerNorm>> _k_norm _k_norm;;

publicpublic::

MultiHeadAttentionMultiHeadAttention((constconst Model Model&& model model,, constconst std std::::stringstring&& scope scope,,

 dim_t num_heads dim_t num_heads,, boolbool self_attention self_attention,,

boolbool qk_norm qk_norm == falsefalse));; // NEW PARAMETER// NEW PARAMETER

}};;

Complete file list summary

cpp

voidvoid MultiHeadAttentionMultiHeadAttention::::operatoroperator(())((constconst StorageView StorageView&& queries queries,,)) {{

// Project Q, K, V// Project Q, K, V

 StorageView q StorageView q,, k k,, v v;;

_linear_q_linear_q((queriesqueries,, q q));;

// ... K, V projection// ... K, V projection

// NEW: Apply QK normalization (Qwen3)// NEW: Apply QK normalization (Qwen3)

ifif ((_q_norm_q_norm)) {{

((**_q_norm_q_norm))((qq,, q q));;

}}

ifif ((_k_norm_k_norm)) {{

((**_k_norm_k_norm))((kk,, k k));;

}}

// Continue with scaled dot-product attention...// Continue with scaled dot-product attention...

}}

Category File Path Change Type

Python Converter python/ctranslate2/converters/

transformers.py

Add Qwen3EmbeddingLoader

Model Spec python/ctranslate2/specs/

transformer_spec.py

Add skip_output_projection,

pooling_method

Model Spec python/ctranslate2/specs/

attention_spec.py

Add qk_norm support

C++ Decoder

Header

include/ctranslate2/layers/decoder.h Add hidden_states parameter

C++ Decoder

Impl

src/layers/decoder.cc Return hidden states before projection

C++ Attention

Header

include/ctranslate2/layers/attention.h Add _q_norm, _k_norm members

C++ Attention

Impl

src/layers/attention.cc Apply QK-norm in forward

C++ Model

Header

include/ctranslate2/models/

language_model.h

Add embed_batch() method

C++ Model Impl src/models/language_model.cc Implement embedding + pooling

C++ Factory src/models/model_factory.cc Handle embedding model type

Python Bindings python/cpp/generator.cc Add embed_batch binding

Python Bindings python/cpp/embedding_result.cc NEW: EmbeddingResult class

Python Bindings python/cpp/module.cc Register embedding types

Python API python/ctranslate2/__init__.py Expose Embedder class

Build System CMakeLists.txt Add new source files

Key implementation decisions

Why extend Generator rather than create DecoderEmbedder? Reusing the Generator

infrastructure minimizes code duplication. The decoder forward pass is identical—only the

output handling differs. Adding embed_batch() to Generator allows the same model to be used

for both generation and embedding extraction.

Why last_token pooling for Qwen3? Qwen3 Embedding models are trained with last-token

pooling, where the final token's hidden state captures the full sequence representation. Mean

pooling is provided as an alternative for compatibility with other embedding approaches.

Why skip lm_head during conversion? Embedding models don't need vocabulary projection

weights, saving disk space and memory. The converter explicitly skips spec.projection

assignment, leaving it as an optional/unset weight.

Instruction-aware prompting is handled at the Python API level by prepending the instruction

template. This keeps the C++ runtime simple while supporting Qwen3 Embedding's instruction-

based approach.

Testing the implementation

After implementing these changes, verify with:

This implementation provides a clean delta from the existing Qwen3Loader for generation,

adding the specific infrastructure needed for embedding extraction while maintaining

compatibility with CTranslate2's architecture.

python

importimport ctranslate2 ctranslate2

Convert Qwen3 embedding model# Convert Qwen3 embedding model

ct2-transformers-converter --model Alibaba-NLP/gte-Qwen2-7B-instruct \# ct2-transformers-converter --model Alibaba-NLP/gte-Qwen2-7B-instruct \

--output_dir qwen3-embedding --quantization int8# --output_dir qwen3-embedding --quantization int8

Load and extract embeddings# Load and extract embeddings

embedder embedder == ctranslate2 ctranslate2..GeneratorGenerator(("qwen3-embedding""qwen3-embedding",, device device=="cuda""cuda"))

tokens tokens == [[[["▁Hello""▁Hello",, "▁world""▁world"]],, [["▁Test""▁Test",, "▁sentence""▁sentence"]]]]

result result == embedder embedder..embed_batchembed_batch((tokenstokens,, pooling pooling=="last_token""last_token",, normalize normalize==TrueTrue))

printprint((resultresult..embeddingsembeddings..shapeshape)) # [2, hidden_dim]# [2, hidden_dim]

printprint((resultresult..hidden_stateshidden_states..shapeshape)) # [2, seq_len, hidden_dim]# [2, seq_len, hidden_dim]

