
Exploring Google Page
Recommendation with PageRank,

Hyperlink-Induced Topic Search, and
Personalized PageRank

Exploration the linear algebra concepts behind the PageRank and HITS algorithm, their
implementation in Python, and further extensions involved Personalized PageRank

Michael Liu, Armaan Sidhu

I. Introduction

Introduction to PageRank

PageRank is an algorithm developed by Larry Page and Sergey Brin of Google used to rank
the importance of website pages. The fundamental idea of PageRank stems from the idea of
representing a network of websites as nodes of a directed graph and the edges to be links connecting
such nodes together. The importance of a website is determined by the number of websites that
link to each particular website and the importance of such websites, and the PageRank algorithm
determines the probability distribution that an arbitrary surfer will reach each website after a
series of random clicks. [3]

Introduction to HITS

The Hyperlink-Induced Topic Search HITS Algorithm was developed by Jon Kleinberg and is an
another link ranking algorithm that is also widely used. The way that this algorithm works is
that it computes two values for each page: the hub and the authority value. The higher that the
hub value for a page is, the more important pages it links to, and the higher the authority value
is, the more important pages link to it. To begin, the algorithm is run on a root set, which is the
set of most relevant pages to a search query. Then, this can potentially lead to a larger base set,
and the base set is formed by augmenting the root set with the web pages that are linked to and
from those pages. From here, HITS is used to rank such websites based on such two key values:
hub and authority. [2]

1

II. Linear Algebra Background and Applications

The fundamental idea of PageRank relies of the idea of probability vectors, Markov matrices,
Markov chains, and steady state vectors. We start by exploring such ideas.

Foremost, we describe a vector x ∈ Rn to be a probability vector if all entries of x, xi, ..., xn are
nonnegative and sum to 1. Furthermore, we describe a matrix M ∈ Mn×n(R) to be a Markov
matrix if all entries are non negative and each column sums to 1. A Markov matrix is used to
describe the transition between states based on varying probabilities. We let entry Mi,j represent
the probability to transition from state i to state j. From here, we define a Markov chain to
be a sequence x0, ...,xk = Mkx0, ... given a Markov matrix M and an initial probability vector
x0 ∈ Rn. We know that each vector xk is a probability vector.

When discussing PageRank, we consider it important to determine the probability vector at
which a Markov chain will converge. Such a probability vector is called a steady state vector.
Formally, we define x ∈ Rn to be a steady state vector such that Mx = x where M is a
Markov matrix. Importantly, by the Perron-Frobenius Theorem, we know that all positive Markov
matrices (meaning Markov matrices with all positive entries) will have a unique steady state
vector. Hence, we know that a regular Markov matrix (meaning at some power Mk, M is a
positive Markov matrix) must have a unique steady state vector. Usually, we would determine
such steady state vector by directly solving for the eigenvector of M associated with eigenvalue of
1, yet when considering PageRank, we will explore an iterative approach in the following sections.

Such ideas have a plethora of practical applications. For example, Markov chains can be used
to offer a rough prediction of stocks and inform trading strategies where the states represent if
a stock price will be up, down, or stable and the Markov matrix describes the probabilities of
transitioning from one state to another. In this project, we will focus on its use in PageRank
where each website will be represented as a state and the Markov matrix is the probability of
transitioning from one state to another based on links. We seek to determine the steady state
vector which represents the long run probability of being on each page. Hence, a page with a
higher probability in the steady state vector will receive a higher PageRank score.

Though we discuss these fundamental concepts, note that the PageRank algorithm differs from
theory due to the existence of ”dangling pages” (where there are no outlinks, hence making our
Markov matrix non positive), randomness, and other considerations in practical use. We explore
such caveats below.

2

III. PageRank Algorithm

Now, we discuss the details of the PageRank algorithm. Fundamentally, we set the PageRank
initially to be a uniform distributed probability vector in which we assume that a random surfer
will have an equally likely probability to be on any page. Then, we find the steady state vector
of the Google PageRank Markov matrix which represents the probabilities to transition from one
page to another based on how many outbound links each page has and a dampening factor(which
we will explore in more detail later). By iteratively multiplying this matrix by the PageRank
vector, we can determine a vector at which the PageRank vector will converge, hence being the
steady state vector representing the PageRank scores for each page. We formalize this process as
follows.

Initialization

Let there be n pages. Then we let PR(pi) represent the PageRank for an arbitrary page pi such
that 1 ≤ i ≤ n. Furthermore, we know that PR(pi) is between 0 and 1. For initialization, we
assume that a random surfer will have an equal chance of landing on any page, hence we uniformly
distribute the PageRank for each page as

PR(pi) =
1

n
s.t.

n∑
i=1

PR(pi) = 1

Iterative Step

After initialization, we seek to find the PageRank by iteratively updating for some number of
steps until convergence. At each step, we let the Pagerank of a page pi be determined by the
PageRank of the pages that link to it as well as the number of links from each of such links. In
this way, if a page links to many pages including page pi, it will be deemed a less important factor
to the PageRank of pi than a page that links to less pages. Therefore, we formalize this by letting
the B(pi) be the set of all pages that link to a page pi and letting L(v) be the number of links
from page v. Then, we let

PR(pi) =
∑

v∈B(pi)

PR(v)

L(v)

Dampening Factor

As explained in part II, the PageRank algorithm considers various considerations for practical
use. Two of such considerations is if the random surfer will stop clicking links or jump to a

3

random page. Hence, we introduce the dampening factor which is the probability that a random
surfer will continue clicking links. We set the dampening factor d to be around 0.85 in practice
according to research. Hence, we adjust the PageRank formula to be

PR(pi) =
1− d

n
+ d

∑
v∈B(pi)

PR(v)

L(v)

Note that d
∑

v∈B(pi)
PR(v)
L(v) scales the contributions of each page by a factor of d, causing the sum

of the PageRank of all our pages to no longer be a probability vector (as it will no longer be a
sum of 1 as required). Hence, we add the remaining factor to be 1−d

n which gives each page an
equally distributed possibility to be clicked, hence the randomness factor.

Putting It Together

From here, we represent this in terms of matrices and vectors. We let R be the PageRank vector
where

R =


PR(p1)
PR(p2)

...
PR(pn)

where R = f + dLR,

such that

f =


1−d
n

1−d
n
...

1−d
n

 and L =


ℓ(p1, p1) · · · ℓ(p1, pn)
ℓ(p2, p1) · · · ℓ(p2, pn)

...
...

...
ℓ(pn, p1) · · · ℓ(pn, pn)


where

ℓ(pi, pj) =

{
l
o , if page pj links to pi,

0, if page pj does not link to pi,

where l is the number of links from page pj to page pi and o is the number of outbound links from
page pj . Note that we generally treat there to be 1 link from pj to pi, hence l = 1. Furthermore,
every column of L must sum to 1. However, it is easily noticed that in the case that there is a
dangling node (where the page has no outgoing links) that it will not. Therefore, in practice, we
implement a technique where if a page is a dangling node and hence the column of that page in
L is all zeros, we will simply replace it with a uniformly distributed column of 1

n .

Now we will briefly discuss why this guarantees convergence. Note that R = f+dLR is equivalent
to R = GR where G is the Google matrix where G = (1 − d)L + dB such that L is the link
matrix after replacing dangling columns (where zero columns correspond to page that have no

4

outlinks) and B = 1
n11

⊤ (hence representing the matrix of dampening factors). This definition
of the Google matrix is that provided in lecture notes.

We can determine that they are equal intuitively by analyzing what GR represents. We know
that GR = (1− d)LR+ dBR. From here, the term (1− d)LR represents the contribution from
the probability of following each link regularly based on the PageRank of all the pages that link to
a page. By multiplying by 1− d, we are scaling this contribution by the weight that the random
surfer will actually follow a link instead of going to a random link. From here, we know that dBR
accounts for the contribution to the PageRank that the random surfer will go to a random page.
This is because BR = 1

n11
⊤R = 1

n because R is a probability vector and hence all entries sum
to 1. Hence, dBR = d 1

n as required.

Therefore, because G must be a positive Markov matrix because each entry must be greater than
or equal to 1

n , by our discussion of steady state vectors in part II, we know that we must have a
unique steady state vector R.

Computation

In this project, we will apply PageRank in an iterative approach. We iteratively compute Ri+1 =
f + dLRi as described above until |Ri+1 − Ri| < ϵ for some ϵ ∈ R. Here, we would deem the
vector Ri+1 to be close enough to the steady state vector, and we would hence let it represent
our PageRank vector. [6]

IV. HITS Algorithm

Initialization

First, let’s discuss how the authority and hub values are obtained for a website. These values
are defined recursively in terms of each other as follows: the hub value is obtained by using the
authority value of the pages that point from that page, and the authority value is obtained by
using the hub values of the pages that point to that page. This algorithm is run iteratively a large
number of times and each time, it will first update the authority value using the hub values that
link to it and then update the hub value with the authority values of the pages it links to. After
repeating this recursive process, the values are all normalized on each iteration and eventually
converge.

Suppose our network contains n pages. We initialize the hub and authority vectors by setting all
values to 1. Let a denote the authority vector and h denote the hub vector. Hence, we initialize

5

a =


a1
a2
...
an

 =


1
1
...
1

 and h =


h1
h2
...
hn

 =


1
1
...
1



Iterative Step

We update each page pi’s hub score by summing the authority scores of all pages that pi links to.
This is the same as just multiplying the adjacency matrix of outbound links with the authority
vector as follows.

hub(pi) =
∑

q∈S(pi)

auth(q) where S(pi) is the set of pages that pi links to

Let L represent the adjacency matrix of outbound links:

L =

ℓ(p1, p1) · · · ℓ(p1, pn)
...

. . .
...

ℓ(pn, p1) · · · ℓ(pn, pn)

 such that ℓ(i, j) =

{
1 if i has an outgoing link to j

0 if i does not link to j

We then update the initial hub vector hi to hn where

hn = Lai

At each iteration, we normalize the updated hub vector to keep it a probability vector as seen in
lecture by doing hn = hn

||hn|| .

Now, we consider the authority scores. As stated before, we do this through our recursive defini-
tion depending on the hub scores. Thus, we update each page pi’s authority score by summing
the hub scores of all pages pointing to pi. This can be done by multiplying the adjacency matrix
of inbound links with the hub vector as follows.

auth(pi) =
∑

q∈S(pi)

hub(q) where S(pi) is the set of pages linking to pi

We can simply use LT as the adjacency matrix of incoming links (since transposing the outbound
links matrix gives the inbound links matrix). Updating the initial authority vector a⃗i to an yields:

an = LThi

We then normalize the updated authority vector to keep it a probability vector as seen in lecture
by doing an = an

||an|| .

6

For some authority vector a and hub vector h, if we first update the hub vector to h = La, our
subsequent step updates the authority vector to:

a = LTh = LTLa

Since this process is mutually recursive, updating the hub vector yields:

h = La = LLTh

Therefore, we have established that ai+1 = LTLai and hi+1 = LLThi for any authority vector
ai and hub vector hi. We know that LTL and LLT must converge as they are both symmetric
matrices and they are both positive semi-definite. [5]

Computation

We apply HITS in an iterative approach similar to PageRank. We iteratively compute ai+1 =
LTLai and hi+1 = LLThi as described above until |ai+1−ai| < ϵ∧ |hi+1−hi| < ϵ for some ϵ ∈ R.
Hence, we would deem ai+1 to be an acceptable authority ranking.

V. PageRank Python Implementation

The following PageRank and HITS implementation code in Python can be accessed with this
link to our Google Colab notebook. We use the NumPy library to perform vector and matrix
calculations and Matplotlib to visualize iterations and convergence. In this section, we explore
our implementation in detail.

We define a kind of adjacency matrix representation for the pages in the network. We have n
pages in our network and we represent this in a list of lists where the ith index of the list is a list
of all the other j pages that page i has an outgoing link to. For example we let this array links

represent a network with the respective outlinks where n is the number of pages.

links = [

[1, 2, 3, 4], #p0 -> p1 , p2 , p3 , p4

[2, 4], #p1 -> p2 , p4

[3], #p2 -> p3

[], #p3 -> none (dangling)

[2, 0, 1], #p4 -> p2 , p0 , p1

]

n = len(links)

7

https://colab.research.google.com/drive/1zBK6WNx6u8cL8n5XZ9maEZbfqpRgDofB?usp=sharing

Intuitively, we expect the importance of p0 to be low because only p4 links to it. We would expect
p2 to be relatively important because it has many incoming links. Importantly, p3 would also be
very important because it is linked by an important page p2 where p2 only links to it (making it
very important) as well as being linked by p0 (though this contribution would be lower).

As explained earlier, we initialize the PageRank to be evenly distributed among each page. Hence,
we define the function initial pagerank which takes in this list of links and returns a Numpy
array (or vertex) of evenly distributed probabilities.

def initial_pagerank(links):

entry = 1/n

R = np.full(n, entry , dtype = float)

return R

From here, we define the iterative step by directly translating the equation R = f +dLR. Hence,

def iterate_pagerank(R, L, d):

f = np.full(n, (1-d)/n, dtype = float)

Ri = f + d * np.dot(L, R)

return Ri

However, we need to define a method to compute L which is the linking matrix as defined in
section III. Hence, we define the function

def compute_link_mat(links):

L = np.zeros ((n, n), dtype = float)

for i in range(n):

for j in range(n):

if len(links[j]) == 0:

L[i][j] = 1/n

elif i in links[j]:

o = len(links[j])

L[i][j] = 1/o

return L

In this function, we create a new n by n matrix and iterate through every entry. By our equation

ℓ(pi, pj) =

{
l
o , if page pj links to pi,

0, if page pj does not link to pi,

from earlier, we see if page i is in the list of outlinks for page j by checking if it is an element of
the list links[j]. If it is, then we know that page j links to page i, and hence, we populate it
with 1/o where o is the number out outlinks of j, hence the length of links[j] as required (note
we established earlier that we define l to be 1). Otherwise, it will just be the default value 0.
Note, we also implement the fix with dangling nodes as described above.

8

Now, we put it all together with the function pagerank. Note that the function in the Google
colab notebook is slightly different as it includes code for tracing and plotting, but we simplify it
here.

def pagerank(links , d = 0.85 , epsilon = 0.0001):

R0 = initial_pagerank(links)

L = compute_link_mat(links)

R1 = iterate_pagerank(R0, L, d)

itr = 1

while(np.sum(abs(R1 - R0)) > epsilon):

R0 = R1

R1 = iterate_pagerank(R0, L, d)

itr = itr + 1

print("iterations: " + str(itr))

return R1

Here, we simply compute the initial PageRank R0 with initial pagerank function, compute
the linking matrix L with out compute link mat function, and the first iteration R1 by iterating.
From here, we iteratively update R1 until the absolute difference is less than a desired epsilon

which we define as 0.0001.Now we analyze and discuss our results. By fully tracing, we get

initial pagerank: [0.2 0.2 0.2 0.2 0.2]

iteration 1: [0.12066667 0.16316667 0.24816667 0.2765 0.1915] diff = 0.24933

iteration 2: [0.13126333 0.156905 0.22625083 0.31358833 0.1719925] diff = 0.09537

iteration 3: [0.13204123 0.15993468 0.22661931 0.30351668 0.1778881] diff = 0.02014

iteration 4: [0.13199946 0.16005822 0.22803047 0.30228301 0.17762884] diff = 0.00307

iteration 5: [0.13171628 0.15976617 0.22779091 0.30326389 0.17746274] diff = 0.00196

iteration 6: [0.13183597 0.15982568 0.2277263 0.30316685 0.17744519] diff = 0.00036

iteration 7: [0.1318145 0.15982965 0.22775556 0.30312087 0.17747942] diff = 0.00013

iteration 8: [0.13181638 0.15982697 0.22775457 0.30313336 0.17746873] diff = 3e-05

total iterations: 8

Hence, our final PageRank indeed confirms out initial hypothesis. p0 had the lowest PageRank
while p3 had the highest followed by p2. Furthermore, we can notice that convergence is deter-
mined by the difference in PageRank between iterations. It is evident that such difference is great
at first but swiftly tapers down until convergence is determined (in which such difference is lower
than epsilon). In this way, we can conclude that PageRank convergence is generally logarithmic.
By using Matplotlib, we can plot this and get:

9

VI. HITS Python Implementation

Now, we implement the HITS algorithm following the same mock network we established in the
previous section about PageRank. We represent our test network as a list of lists, where each
index i contains the pages that page i links to as follows (it is the same network so we can compare
in a later section)

links = [

[1, 2, 3, 4], # p0 -> p1 , p2 , p3 , p4

[2, 4], # p1 -> p2 , p4

[3], # p2 -> p3

[], # p3 -> none (dangling)

[2, 0, 1], # p4 -> p2 , p0 , p1

]

n = len(links)

This representation allows us to easily construct the adjacency matrix and analyze link patterns.
Intuitively, we expect different results from HITS compared to PageRank because the main dif-
ference in the algorithms lies in the way that HITS scores websites based on two metrics, namely
the hub and authority scores. For instance, p0 links to many pages, so it may have a high hub
score, while p3 receives links from important pages like p2, so it may have a high authority score
even though it is a dangling node.

First, we construct the initial authority and hub vectors. Hence, we define the function as follows

10

def initial_hits(links):

auth = np.full(n, 1, dtype = float)

hub = np.full(n, 1, dtype = float)

return auth , hub

Next, we construct the outbound link adjacency matrix using the function compute link mat hits

using our linking matrix representation we established previously.

def compute_link_mat_hits(links):

L = np.zeros ((n, n), dtype = float)

for i in range(n):

for j in range(n):

if j in links[i]:

L[i][j] = 1

return L

Running build link matrix(links) on our example network produces:

L =


0 1 1 1 1
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0
1 1 1 0 0


Note that row i represents the outgoing links from page i. For example, row 0 has ones in columns
1, 2, 3, and 4, indicating that page 0 links to pages 1, 2, 3, and 4. Row 3 is all zeros, confirming
that page 3 is a dangling node with no outbound links. Then, as stated earlier, the transpose LT

gives us the incoming link matrix, where column j shows which pages link to page j:

LT =


0 0 0 0 1
1 0 0 0 1
1 1 0 0 1
1 0 1 0 0
1 1 0 0 0


We now implement the iterative HITS algorithm. The function takes the network as input and
returns both authority and hub vectors after convergence.

def hits(links , epsilon=1e-6):

L = compute_link_mat_hits(links)

A0 , H0 = initial_hits(links)

A1 , H1 = iterate_hits(A0 , H0 , L)

11

authority_diff = np.linalg.norm(A1 - A0)

hubs_diff = np.linalg.norm(H1 - H0)

itr = 1

while(authority_diff > epsilon or hubs_diff > epsilon):

itr += 1

A0 = A1

H0 = H1

A1 , H1 = iterate_hits(A0 , H0 , L)

authority_diff = np.linalg.norm(A1 - A0)

hubs_diff = np.linalg.norm(H1 - H0)

return A1, H1

By calling auth, hub = hits(links) and tracing, we get

iteration 1:

auth =[0.21320072 0.42640143 0.63960215 0.42640143 0.42640143]diff auth =1.31756809

hub =[0.7448453 0.41380294 0.16552118 0. 0.49656353]diff hub =1.53575196

iteration 2:

auth =[0.19185884 0.47964711 0.63952948 0.35174121 0.44767064]diff auth =0.09652518

hub =[0.74091015 0.41984908 0.13583353 0. 0.5062886]diff hub =0.03206205

iteration 3:

auth =[0.19549538 0.48158618 0.6437043 0.33854078 0.44820892]diff auth =0.01445527

hub =[0.73828583 0.4216146 0.13071894 0. 0.50998797]diff hub =0.00706034

iteration 4:

auth =[0.1969177 0.48198627 0.64478105 0.33554207 0.44786335]diff auth =0.00352904

hub =[0.737559 0.42189363 0.12956005 0. 0.5111034]diff hub =0.001787

iteration 5:

auth =[0.19734799 0.48213535 0.64503753 0.33481327 0.44768954]diff auth =0.00091352

hub =[0.73736669 0.42192533 0.12927858 0. 0.51142588]diff hub =0.00047032

iteration 6:

auth =[0.19747248 0.48218554 0.64509995 0.33463029 0.44762747]diff auth =0.00024341

hub =[0.73731552 0.42192544 0.12920792 0. 0.51151741]diff hub =0.00012644

iteration 7:

auth =[0.19750782 0.48220112 0.64511557 0.33458325 0.44760775]diff auth =6.586e-05

hub =[0.73730179 0.42192386 0.12918975 0. 0.5115431]diff hub =3.437e-05

iteration 8:

auth =[0.19751774 0.48220574 0.64511957 0.33457093 0.44760183]diff auth =1.796e-05

hub =[0.73729807 0.42192312 0.129185 0. 0.51155026]diff hub =9.39e-06

iteration 9:

auth =[0.1975205 0.48220707 0.64512062 0.33456766 0.44760011]diff auth =4.91e-06

12

hub =[0.73729707 0.42192286 0.12918373 0. 0.51155224]diff hub =2.57e-06

iteration 10:

auth =[0.19752127 0.48220745 0.64512089 0.33456678 0.44759963]diff auth =1.35e-06

hub =[0.73729679 0.42192278 0.1291834 0. 0.51155279]diff hub =7.1e-07

iteration 11:

auth =[0.19752148 0.48220755 0.64512097 0.33456655 0.44759949]diff auth =3.7e-07

hub =[0.73729672 0.42192276 0.1291833 0. 0.51155294]diff hub =1.9e-07

To produce final rankings from the HITS scores, we sort pages by their authority and hub values
separately.

def determine_hits_order(auth , hub):

auth_order = np.argsort(-auth)

hub_order = np.argsort(-hub)

for i in range(n):

print("rank " + str(i + 1) + ": page " + str(auth_order[i]))

return auth_order , hub_order

auth_order , hub_order = determine_hits_order(auth , hub)

print("auth order: " + str(auth_order))

print("hub order: " + str(hub_order))

Thus, we get

rank 1: page 2

rank 2: page 1

rank 3: page 4

rank 4: page 3

rank 5: page 0

auth order: [2 1 4 3 0]

hub order: [0 4 1 2 3]

Comparison with PageRank

Comparing HITS results to the PageRank scores from Section IV reveals interesting differences.
Recall that PageRank yielded final scores:

PageRank: [0.13181638, 0.15982697, 0.22775457, 0.30313336, 0.17746873]

We can This gives us the PageRank ranking: p3 > p2 > p4 > p1 > p0.

In contrast, HITS provides two separate rankings:

13

• HITS authority ranking: p2 > p1 ≈ p3 > p0 > p4

• HITS hub ranking: p0 ≈ p4 > p1 ≈ p2 > p3

From these results, we can see that PageRank gives us that p3 is the most likely to be clicked
on from a random click and that p0 is the least likely to be clicked on. Further, we see from the
HITS authority ranking that p2 has the most valuable content while p4 has the least valuable
content. Also, from the HITS hub ranking we see that p0 and p4 have the highest value of links
to other pages, while p3 has the lowest value of links to other pages.

These results show interesting patterns as we have that even though p3 is the most likely to be
clicked on, it actually only has the 2nd most valuable content and the least value of links to other
pages. Also, even though p0 is the least likely to be clicked on, it has the 2nd lowest valuable
content but the most value of links to other pages. These differences arise from the different ways
that each algorithm computes these rankings.

Further, the differences in how PageRank and HITS algorithms rank pages becomes apparent
and we can see that these can be helpful in different use cases. For example, if someone highly
values the content of a website and the other content it links to, HITS will provide much better
results, while for other users who don’t have as high of a priority for those things and are more
generally browsing, PageRank provides the generic probabilities of each site being clicked on.
Thus, whether or not we are using importance of the page itself and the other important pages
it links to as a key factor can affect the type of algorithm to be used.

Conversation on Dangling Nodes

A fundamental difference that can be noticed is that we do not explicitly handle dandling nodes
unlike in the PageRank implementation. This is because HITS does so naturally. Take p3 into
account for example. When computing the hub score where h = La, such pages with no outlinks
will have a row of zeros in L, hence resulting in a hub score of zero due to matrix vector multi-
plication. This is desired and makes sense intuitively as a page cannot be a hub if it doesn’t like
to any other pages.

However, dangling nodes can still have a high authority score. For example, p3 is a dangling
node and by definition does not have any outbound links. we established it has a hub score of 0.
However, because it is linked by pages p0 and p2, it receives a high authority score of 0.33456655.
This asymmetry between how dangling nodes affect authority and hub scores is a fundamental
difference between HITS and PageRank. As detailed above, PageRank forces us to directly handle
dangling nodes via the dampening factor and replacing columns in the linking matrix, while in
HITS, this is handled by design.

14

VII. Extension: Personalized PageRank

Motivation and Background

PageRank is a much more general algorithm that simply provides a general ranking that applies
to all users, so there is not personalized element in this. Personalized PageRank (PPR) gives
rankings that take into account certain personalized biases to offer a more tailored experience to
the user. These biases are in the form of sets of seed pages that are subsets of all of the pages
(essentially, only the ones that the user has an interest in). [4]

Initialization

From section III, we have that standard PageRank uses the formula R = f + dLR where f =[
1−d
n

1−d
n · · · 1−d

n

]T
distributes the teleportation probability uniformly across all pages.

In Personalized PageRank, we replace the uniform teleportation vector f with a personalized
teleportation vector v that encodes user preferences. Let S ⊆ {p1, p2, . . . , pn} be a set of seed
pages that the user is interested in. We define the personalization vector as

vi =

{
1−d
|S| if pi ∈ S

0 if pi /∈ S

Hence, we modify the basic PageRank formula and the Personalized PageRank formula becomes:

RPPR = v + dLRPPR

This way, the scores that the algorithm gives back are much more biased towards the user’s
preferences and interests rather than generic as PageRank normally is. [1]

Implementation

We implement Personalized PageRank by modifying our existing PageRank implementation to
accept a personalization vector instead of the original teleportation one, so the rest of the algo-
rithm remains the same except we create a new function to create the personalization vector as
shown above

def personalization_vector(seeds , d):

v = np.zeros(n, dtype=float)

for page in seeds:

v[page] = (1 - d) / len(seeds)

return v

15

We put it all together with the following function.

def personalized_pagerank(links , seed_pages , d = 0.85 , epsilon = 0.0001):

R0 = initial_pagerank(links)

L = compute_link_mat(links)

v = personalization_vector(seed_pages , d)

R1 = v + d * np.dot(L, R0)

diff = np.sum(abs(R1 - R0))

differences = [diff]

itr = 1

while(diff > epsilon):

itr = itr + 1

R0 = R1

R1 = v + d * np.dot(L, R0)

diff = np.sum(abs(R1 - R0))

differences.append(diff)

return R1

Examples

We test Personalized PageRank on our example network with different seed sets to demonstrate
how personalization affects the rankings.

Using a Single Seed page

First, we compute Personalized PageRank with p2 as the only seed page. We run the following

seed_pages_1 = [2]

R1 = personalized_pagerank(links , seed_pages)

Output:

Personalization vector (seed pages: [2]):

[0. 0. 0.15 0. 0.]

initial pagerank: [0.2 0.2 0.2 0.2 0.2]

iteration 1: [0.09066667 0.13316667 0.36816667 0.2465 0.1615] diff = 0.42933

iteration 2: [0.08766333 0.10693 0.31352583 0.37411333 0.1177675] diff = 0.25523

iteration 3: [0.09696673 0.11559518 0.31104043 0.34872468 0.12767297] diff = 0.05575

16

iteration 4: [0.09545721 0.11606263 0.31519059 0.34427299 0.12901658] diff = 0.01192

iteration 5: [0.09508111 0.11536576 0.31469238 0.34672306 0.12813768] diff = 0.0049

iteration 6: [0.0952486 0.11545333 0.31448378 0.34663618 0.1281781] diff = 0.00059

iteration 7: [0.09524528 0.11548561 0.31455327 0.34647969 0.12823614] diff = 0.00032

iteration 8: [0.09523512 0.11547474 0.31455613 0.34651145 0.12822255] diff = 7e-05

total iterations: 8

Hence, our personalized PageRank is

[0.09523512 0.11547474 0.31455613 0.34651145 0.12822255]

Now, we can create a helper function to show the difference between our PageRank and Person-
alized PageRank

def compare_personalized_pagerank(PR , PPR , seed_pages):

print("Page PageRank Personalized PR Difference")

for i in range(n):

seed_inf = ""

if(i in seed_pages):

seed_inf = " (seed)"

print("Page " + str(i) + ": " + str(round(PR[i], 8)) + " " + str(round

(PPR[i], 8)) + " " + str(

round((PPR[i] - PR[i]), 8)) + " " +

seed_inf)

compare_personalized_pagerank(pr , R1 , seed_pages_1)

Page PageRank Personalized PR Difference

Page 0: 0.13181638 0.09523512 -0.03658126

Page 1: 0.15982697 0.11547474 -0.04435222

Page 2: 0.22775457 0.31455613 0.08680156 (seed)

Page 3: 0.30313336 0.34651145 0.0433781

Page 4: 0.17746873 0.12822255 -0.04924618

We now analyze the changes. Page p2, our seed page, shows a dramatic increase in PageRank
from 0.2275457 to 00.31455613174. This makes sense because all teleportation probability is
now directed to p2. Additionally, pages that are closely connected to p2 maintain relatively high
scores since they somewhat relate to the page that the user is interested in. For example, page
p3, which is directly linked from p2, remains relatively important and actually increased as well
from 0.30313336 to 0.34651145. The remaining pages’ PageRank score decreased as desired.

17

Using Multiple Seed Pages

Next, we use multiple seed pages representing a user interested in pages p0 and p4:

seed_pages_2 = [0, 4]

R2 = personalized_pagerank(links , seed_pages_2 , trace = True , plot_diff = False)

Output:

Personalization vector (seed pages: [0, 4]):

[0.075 0. 0. 0. 0.075]

initial pagerank: [0.2 0.2 0.2 0.2 0.2]

iteration 1: [0.16566667 0.13316667 0.21816667 0.2465 0.2365] diff = 0.20233

iteration 2: [0.18391333 0.1441175 0.20071333 0.26255083 0.208705] diff = 0.0905

iteration 3: [0.17876673 0.14284831 0.20409825 0.25432156 0.21996516] diff = 0.02929

iteration 4: [0.18055813 0.14354606 0.20425659 0.2547061 0.21693313] diff = 0.00606

iteration 5: [0.17976442 0.14313303 0.2041401 0.25528674 0.21767571] diff = 0.00265

iteration 6: [0.18007353 0.14327347 0.20410501 0.25511777 0.21743022] diff = 0.0009

iteration 7: [0.17997525 0.14324088 0.2041321 0.2551249 0.21752687] diff = 0.00026

iteration 8: [0.18000385 0.14324859 0.20412596 0.25512826 0.21749335] diff = 8e-05

total iterations: 8

By using the same compare function, we run compare personalized pagerank(pr, R2, seed pages 2)

Page PageRank Personalized PR Difference

Page 0: 0.13181638 0.18000385 0.04818746 (seed)

Page 1: 0.15982697 0.14324859 -0.01657838

Page 2: 0.22775457 0.20412596 -0.02362861

Page 3: 0.30313336 0.25512826 -0.0480051

Page 4: 0.17746873 0.21749335 0.04002462 (seed)

We now analyze the changes. Page p0 increases from 0.13181638 to 0.18000385 and page p4
increases from 0.17746873 to 0.21749335. The ranking order changes significantly as page p4 goes
from third to second, while p0 goes from last place to second to last. These changes can be
attributed to how Personalized PageRank places a greater emphasis on the user’s interests. Pages
p1 and p2, which are linked from both seed pages, also are affected by this slightly as seen above
as they are penalized less than p3 and have a smaller decrease (since they are given more value
since they relate somehow to pages that the user is interested in). This makes sense because both
seed pages p0, p4 link to p1, p2 but p4 does not link to p3.

18

Comparison with Standard PageRank and HITS

Personalized PageRank extends the standard PageRank algorithm by introducing user-specific
or topic-specific biases through the teleportation distribution. Though HITS is closer to this
implementation since it takes into consideration value of the page and the other pages it links
to, Personalized PageRank provides a more user-based and tailored method of ranking the pages.
Thus, Personalized PageRank can be especially useful in user-focused use cases, such as person-
alized searches or a movie recommendation system.

References

[1] Polo Chau. What is PageRank? Why does it matter? How is it calculated? — Medium, Polo
Club of Data Science — Georgia Tech, 2023. [Online; accessed 05-December-2025].

[2] Raluca Tanase. HITS algorithm - hubs and authorities on the internet — cornell.edu, 2025.
[Online; accessed 05-December-2025].

[3] Raluca Tanase and Remus Radu. Lecture #3 — PageRank algorithm - the mathematics of
google search, 2009. [Online; accessed 05-December-2025].

[4] Stanford University. Topic-Specific PageRank — Stanford NLP IR Book, 2025. [Online;
accessed 05-December-2025].

[5] Wikipedia contributors. Hits algorithm — Wikipedia, the free encyclopedia, 2025. [Online;
accessed 29-November-2025].

[6] Wikipedia contributors. Pagerank —Wikipedia, the free encyclopedia, 2025. [Online; accessed
26-November-2025].

19

Appendix

A: Python Code

#import numpy for vector and matrix arithmetic and matplotlib for plotting

import numpy as np

import matplotlib.pyplot as plt

#intialize an list of lists where list at entry i represents the outlinks for

such page

links = [

[1, 2, 3, 4], #p0 -> p1 , p2 , p3 , p4

[2, 4], #p1 -> p2 , p4

[3], #p2 -> p3

[], #p3 -> none (dangling)

[2, 0, 1], #p4 -> p2 , p0 , p1

]

#size of network , number of links

n = len(links)

#return a uniform probablity vector where each pagerank for page i is set to 1/n

def initial_pagerank(links):

entry = 1/n

R = np.full(n, entry , dtype = float)

return R

#by the iterative equation , returns the pagerank vector Ri = f + dLR

def iterate_pagerank(R, L, d):

f = np.full(n, (1-d)/n, dtype = float)

Ri = f + d * np.dot(L, R)

return Ri

#creates an n by n linking matrix where the Li ,j entry is 1/o if

#page pj links to pi and 0 otherwise. note that o is the number of

#outbound links from pj. we implement the dangling node fix by

#replacing zero columns with a uniformly distributed column of entries

#1/n

def compute_link_mat(links):

L = np.zeros ((n, n), dtype = float)

for i in range(n):

for j in range(n):

if len(links[j]) == 0:

L[i][j] = 1/n

elif i in links[j]:

o = len(links[j])

L[i][j] = 1/o

return L

20

#iteratively determine pagerank until the difference is negligible.

#included code for plotting and tracing for comparisons

def pagerank(links , d = 0.85 , epsilon = 0.0001 , trace = True , plot_diff = True):

R0 = initial_pagerank(links)

L = compute_link_mat(links)

R1 = iterate_pagerank(R0, L, d)

diff = np.sum(abs(R1 - R0))

differences = [diff]

if trace:

print("initial pagerank: " + str(R0))

print("iteration 1: " + str(R1) + " diff = " + str(round(diff , 5)))

itr = 1

while(diff > epsilon):

itr = itr + 1

R0 = R1

R1 = iterate_pagerank(R0, L, d)

diff = np.sum(abs(R1 - R0))

differences.append(diff)

if trace:

print("iteration " + str(itr) + ": " + str(R1) + " diff = " + str(round(

diff , 5)))

if trace:

print("total iterations: " + str(itr))

if plot_diff:

plt.figure(figsize=(5, 5))

plt.title("difference between iterations")

plt.plot(differences , "-o")

plt.xlabel("iteration")

plt.ylabel("difference")

plt.grid(True)

plt.show()

plt.figure(figsize=(5, 5))

plt.title("difference between iterations (y scale log)")

plt.plot(differences , "-o")

plt.xlabel("iteration")

plt.ylabel("difference")

plt.yscale("log")

plt.grid(True)

plt.show()

return R1

21

pr = pagerank(links)

print("final pagerank: " + str((pr , 5)))

"""### HITS Implementation

"""

#compute the linking matrix L for HITS whre ethe Li ,j entry is 1 if

#page i has an outgoing link to page j and 0 otherwise

def compute_link_mat_hits(links):

L = np.zeros ((n, n), dtype = float)

for i in range(n):

for j in range(n):

if j in links[i]:

L[i][j] = 1

return L

#set the inital hits and authority vectors to all 1 as required

def initial_hits(links):

auth = np.full(n, 1, dtype = float)

hub = np.full(n, 1, dtype = float)

return auth , hub

#compute a = L^Th and h = La on each iteration

def iterate_hits(auth , hub , L):

auth = np.dot(L.T, hub)

auth = auth / np.linalg.norm(auth)

hub = np.dot(L, auth)

hub = hub / np.linalg.norm(hub)

return auth , hub

#iteratively determine the authority and hub score until the differences

#are negligible. included tracing code.

def hits(links , epsilon=1e-6, trace=True):

L = compute_link_mat_hits(links)

A0 , H0 = initial_hits(links)

A1 , H1 = iterate_hits(A0 , H0 , L)

authority_diff = np.linalg.norm(A1 - A0)

hubs_diff = np.linalg.norm(H1 - H0)

if trace:

print("iteration 1: \n auth =" + str(A1) + "diff auth =" + str(round(

authority_diff , 8)) +

"\n hub =" + str(H1) + "diff hub =" + str(round(hubs_diff , 8)))

itr = 1

while authority_diff > epsilon or hubs_diff > epsilon:

itr += 1

22

A0, H0 = A1 , H1

A1, H1 = iterate_hits(A0 , H0 , L)

authority_diff = np.linalg.norm(A1 - A0)

hubs_diff = np.linalg.norm(H1 - H0)

if trace:

print("iteration " + str(itr) + ": \n auth =" + str(A1) + "diff

auth =" + str(round(

authority_diff , 8)) +

"\n hub =" + str(H1) + "diff hub =" + str(round(hubs_diff , 8)))

return A1, H1

auth , hub = hits(links)

#determine the indicicies of the auth and hub verticies based

#increasing order of their entries

def determine_hits_order(auth , hub):

auth_order = np.argsort(-auth)

hub_order = np.argsort(-hub)

for i in range(n):

print("rank " + str(i + 1) + ": page " + str(auth_order[i]))

return auth_order , hub_order

auth_order , hub_order = determine_hits_order(auth , hub)

print("auth order: " + str(auth_order))

print("hub order: " + str(hub_order))

"""### Extension: Personalized PageRank

"""

#returns a vector for the personalization vector by dividing 1 - d by

#the number of seed pages as required.

def personalization_vector(seeds , d):

v = np.zeros(n, dtype=float)

for page in seeds:

v[page] = (1 - d) / len(seeds)

return v

#modifies the pagerank code above by computing Ri = v + dLR instead of

#Ri = f + dLR where v is now a biased vector which prioritizes pages

#that are considered seeds instead of being distributed uniformally.

def personalized_pagerank(links , seed_pages , d = 0.85 , epsilon = 0.0001 , trace =

True , plot_diff = True):

R0 = initial_pagerank(links)

L = compute_link_mat(links)

v = personalization_vector(seed_pages , d)

R1 = v + d * np.dot(L, R0)

23

diff = np.sum(abs(R1 - R0))

differences = [diff]

if trace:

print("personalization vector: " + str(v) + " \n")

print("initial pagerank: " + str(R0))

print("iteration 1: " + str(R1) + " diff = " + str(round(diff , 5)))

itr = 1

while(diff > epsilon):

itr = itr + 1

R0 = R1

R1 = v + d * np.dot(L, R0)

diff = np.sum(abs(R1 - R0))

differences.append(diff)

if trace:

print("iteration " + str(itr) + ": " + str(R1) + " diff = " + str(round(

diff , 5)))

if trace:

print("total iterations: " + str(itr))

if plot_diff:

plt.figure(figsize=(5, 5))

plt.title("difference between iterations")

plt.plot(differences , "-o")

plt.xlabel("iteration")

plt.ylabel("difference")

plt.grid(True)

plt.show()

plt.figure(figsize=(5, 5))

plt.title("difference between iterations (y scale log)")

plt.plot(differences , "-o")

plt.xlabel("iteration")

plt.ylabel("difference")

plt.yscale("log")

plt.grid(True)

plt.show()

return R1

#example with one seed page , p2

seed_pages_1 = [2]

R1 = personalized_pagerank(links , seed_pages_1 , trace = True , plot_diff = False)

#example with two seed pages , p0 and p4

24

seed_pages_2 = [0, 4]

R2 = personalized_pagerank(links , seed_pages_2 , trace = True , plot_diff = False)

#function to print the difference between pagerank scores in a

#visually understandable manner

def compare_personalized_pagerank(PR , PPR , seed_pages):

print("Page PageRank Personalized PR Difference")

for i in range(n):

seed_inf = ""

if(i in seed_pages):

seed_inf = " (seed)"

print("Page " + str(i) + ": " + str(round(PR[i], 8)) + " " + str(round

(PPR[i], 8)) + " " + str(

round((PPR[i] - PR[i]), 8)) + " " +

seed_inf)

#compare original pagerank and personalized pagerank with single seed [2]

compare_personalized_pagerank(pr , R1 , seed_pages_1)

#compare original pagerank and personalized pagerank with two seeds [0, 4]

compare_personalized_pagerank(pr , R2 , seed_pages_2)

25

