
C++HDL
Hardware Description Language for rapid digital design

Mike Reznikov, 2025



Chipmakers boom

• Thousands companies are doing their own chips in 2025

• Most of them are doing AI applications

• Market already contains hundreds of AI accelerators of different size 
and speed

• GPU and CPU vendors are still fundamentally on AI market keeping 
their part

• Many countries try to develop their own chip and AI technologies to 
be independent and to satisfy growing demand

• Particular bottlenecks of the world chip making process appeared



Bottlenecks of chip making

• Production capacities and resources – few countries have technologies 
for semiconductor ICs production and big part of capacities and 
resources is already in game

• Human resources – large part of semiconductor professionals are 
already taken by large companies and having many zeroes ending 
salaries, making starting up extremely expensive and almost impossible

• Time – nobody still has 10 or 5 years to develop their devices. The 
most relaxed estimation is 2 years of Time-To-Market with 2 iterations 
or you lose 



Time consumptive processes

• Hiring, setup & management takes months, especially if you’re looking 
something below market prices

• Software development – usually time consumptive but can be 
compressed if you have large and professional team

• Hardware development – eats up to 90% of time of hardware 
vendors. Design. Verification. Physical design. Floorplanning. Tapeout. 
Each of these stages can take years for large and complex designs.

New vendors have two options: find their way to develop hardware faster 
or buy tools and components at million dollar prices.



Digital vs Analog

• Your chip design will contain both Digital and Analog part

• Analog part development is much slower and more complex than 
digital, but there are almost all components developed and 
achievable in libraries – this is your entrance price

• Complex digital filling of your chip, which usually takes 90% of crystal, 
is much harder part in comparison to small pieces of analog interfaces

• Digital algorithms operate up to 512, 1024 and larger bitwidths on 
frequencies up to 2GHz implementing such multistage blocks as RAM, 
CACHE, ALU, CPU, VECTOR UNIT, GEARBOX, multiplexers etc

• Digital part will eat 90% of your budget and years of development 
and simulation time



C++HDL and simulation

• Simulation eats hundreds and thousands years of CPU time for large 
RTL designs during development and testing (daily/weekly) stages

• RTL simulation tools are usually slow and extremely expensive (there 
are open source replacements like Verilator which require special 
skills like C++ programming)

• When average size company runs maximum 100-1000 RTL tests 
nightly, it needs to run 10k tests each night usually

• If test iteration after RTL changes takes 5-10 minutes of time, 
company already cant afford it (but probably is still not aware of this)

C++HDL runs tests and simulation 100x faster



C++HDL approach

• C++HDL approach is a C++ replacement for Verilog/SystemVerilog RTL

• C++HDL defines cycle accurate register-to-register aligned RTL, same 
way as SystemVerilog

• C++HDL allows building of a large C++ digital processing ecosystem 
(classes, types, templates, methods, inheritance, OOP state/behavior)

• C++HDL provides extremely fast simulation of blocking Verilog-style 
expressions during development and during testing

• C++HDL generates SystemVerilog output then which is 100% register 
to register reflection and can be converted backwards



C++HDL source code

• C++HDL author is Mike Reznikov (https://www.linkedin.com/in/mike-
reznikov)

• I’m using C++HDL in digital designs I’m developing for AI acceleration 
and hardware calculations in different projects

• I’m partially open sourcing C++HDL and some examples with MIT 
license https://github.com/mirekez/cpphdl

• If you need rapid digital development consider using C++ and try 
C++HDL to be able to easily convert the results to SystemVerilog

https://www.linkedin.com/in/mike-reznikov
https://github.com/mirekez/cpphdl

