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Abstract

Transformers typically rely on normalization layers to stabilize training and pre-
vent activation scale from compounding across depth. Recent work has explored
intrinsically stable alternatives, including architectural modifications that enforce
Lipschitz bounds on transformer blocks, as well as geometry-aware optimizers
like Muon and Manifold Muon that adapt parameter updates to the geometry of
each layer and constrain weight matrices to specific manifolds during optimiza-
tion. In this paper, we examine whether these techniques can effectively replace
normalization in deep autoregressive Transformers. Using a controlled in-context
learning least-squares task, we evaluate models trained without RMS normaliza-
tion and compare the stability and convergence properties of AdamW, Muon, and
Manifold Muon under Lipschitz architectural modifications. Our findings show
that Lipschitz constraints alone are sufficient for stable norm-free training at small
scale, while Manifold Muon exhibits superior robustness under extreme learning-
rate perturbations, suggesting potential benefits for large-scale regimes where sta-
bility is the primary bottleneck.

1 Introduction

Stability remains one of the central challenges in training deep Transformers. As signals propagate
through many residual layers, activation scales can grow unpredictably, leading to sensitivity to
hyperparameters and unstable training. In practice, normalization layers such as RMSNorm are
used to bandage over these activation scales, and their presence has become deeply embedded in the
standard Transformer architecture.

Recent work in geometry-aware optimization and Lipschitz-motivated architectural design suggests
that explicit normalization layers may not be fundamentally required for stable training. Con-
straining weight matrices to structured manifolds and modifying attention and MLP blocks to have
bounded sensitivity provide intrinsic mechanisms for limiting activation growth. These strategies
aim to stabilize deep Transformers through their underlying geometry and architecture, rather than
relying on normalization as an external corrective mechanism.

In this work, using an in-context learning least-squares regression task, we investigate whether
a deep Transformer can be trained stably without any normalization layers. We examine how
Lipschitz-inspired architectural modifications affect stability, and we evaluate how the training dy-
namics of geometry-aware optimizers Manifold Muon and Muon and the explicit manifold weight
constraints of Manifold Muon compare to AdamW.



Our study is guided by two questions:

(1) Can intrinsic architectural constraints and manifold-aware optimization reliably replace explicit
normalization layers in deep Transformers?

(2) Do these mechanisms improve training stability across hyperparameter regimes?

We find that Lipschitz-inspired architectural constraints alone are sufficient for stable norm-free
training under AdamW and Muon at small scale, while Manifold Muon—despite slower conver-
gence—exhibits strong robustness under extreme hyperparameters. These results provide evidence
that explicit normalization is not strictly required for stability in controlled settings and suggest that
geometric constraints may offer a viable stabilization mechanism for larger models. Finally, we ob-
serve that geometry-aware optimizers such as Muon and Manifold Muon display training dynamics
reminiscent of grokking as seen by A. Power et al. [11], with extended plateaus followed by delayed
improvement, hinting at potential benefits for generalization.

2 Related Work

Recent work on intrinsically stable deep learning has developed a unified framework connecting ar-
chitectural Lipschitz constraints with geometry-aware optimization. The Modular Norm framework
introduced a way to bound the sensitivity of deep networks by analyzing how individual modules
compose, motivating architectural interventions such as residual reparameterization and attention
scaling that later appeared in Lipschitz Transformers. Modular Duality extended this perspective
by formalizing how gradients should be mapped from dual space back into parameter space under
the appropriate geometry, laying the foundation for geometry-aligned optimizers. Building on this
theory, optimizers such as Muon and Manifold Muon adapt parameter updates according to operator-
norm geometry or by constraining weights to lie on matrix manifolds, respectively. Together, these
approaches represent a coherent research direction aimed at achieving intrinsic training stability
without relying on explicit normalization layers.

2.1 Geometry-Aware Optimization

Muon (2024). The Muon optimizer proposes a distinct mechanism for stabilizing training by con-
trolling the induced rms—-rms norm of updates and shaping update geometry through normalized,
often orthogonalized, gradient directions. By regulating the magnitude and orientation of parame-
ter updates, Muon aims to prevent updates from disproportionately amplifying certain directions in
weight space. This approach offers a conceptual alternative to architectural stabilizers by attempting
to maintain favorable geometric properties of weights throughout training.

Scalable Optimization in the Modular Norm (2024). This work treats a neural network as a
sequence of modules, where each module has its own norm and sensitivity that depend on its position
within the network and how its outputs feed into subsequent modules. By composing these position-
dependent module norms, the authors define the modular norm, a single norm on updates to the entire
network that reflects how perturbations propagate through all downstream computations. This global
perspective allows them to derive depth-aware scaling rules that keep the overall network update
well-conditioned, preventing modules at different depths from receiving disproportionately large or
small updates. The result is an optimization framework that stabilizes training purely through the
structure and composition of the network’s modules.

Modular Duality in Deep Learning (2025). This work develops a framework in which each layer
of a neural network is associated with a primal space, a dual space, and a geometry-specific duality
map that converts gradients from the dual space back into valid parameter updates in the primal
space. The authors show that standard optimization implicitly assumes a Euclidean duality map,
which can be inappropriate for layers whose natural geometry is non-Euclidean. By identifying
the correct duality map for each module—effectively a “type check” on gradient flow—they derive
update rules that are consistent with the module’s underlying geometry. This perspective leads
directly to the Muon optimizer, which applies geometry-aware updates by using the appropriate
duality map for each layer.

Training Transformers with Enforced Lipschitz Bounds (2025). This work investigates whether
Transformers can be trained effectively when their Lipschitz constants are explicitly bounded



throughout training. The authors study the tradeoff between enforcing small Lipschitz bounds and
maintaining model performance, showing how stricter control of operator norms affects expressiv-
ity and stability. To enforce these bounds adaptively, they introduce two weight-norm constraint
methods-spectral soft cap and spectral hammer—which limit the singular values of linear layers
without fully projecting onto a spectral norm ball.

Manifold Muon / Modular Manifolds (2025). Manifold Muon extends this approach by con-
straining optimization to the Stiefel manifold, thereby maintaining orthonormal columns in weight
matrices throughout training. The work introduces a dual ascent procedure to enforce these mani-
fold constraints efficiently. By preserving orthonormality, the method seeks to avoid conditioning
pathologies that otherwise accumulate in deep models. While the authors discuss how such geomet-
ric constraints may reduce the need for some architectural stabilizers, this idea remains primarily
theoretical, with limited empirical validation in settings where stabilizers are intentionally removed.
Our work contributes empirical evidence in this direction.

Fantastic Pretraining Optimizers & Where to Find Them (2025). This study evaluates optimizer
performance across large-scale pretraining regimes and finds that matrix-based or geometry-inspired
optimizers exhibit diminishing relative advantages as model size increases. Although not focused on
stability specifically, the findings underscore that optimizer behavior interacts strongly with model
scale and architecture. Because our experiments evaluate geometry-aware optimizers in a controlled
small-scale setting, this work provides useful context for understanding how optimizer structure may
interact with model structure when stabilizers are limited or absent.

2.2 Transformer Architectural Components

GLU Variants Improve Transformer (2021). This work introduces gated linear units and demon-
strates that GLU-style activations can improve the expressivity and optimization behavior of trans-
former feedforward networks. The key idea is to modulate one transformed pathway with another
through elementwise gating, providing smoother control over activation magnitudes than non-gated
activations such as ReLU or GELU. GLU and its variants (e.g., SwiGLU) are now widely adopted
in modern transformers, including the LLaMA family. Their gating mechanism has been shown to
improve gradient flow and parameter efficiency, which indirectly contributes to more stable opti-
mization. Because our architectures adopt SwiGLU feedforward layers, this work underlies one of
the core activation choices in our experimental setup.

RoFormer / RoPE (2023). Rotary Position Embedding (RoPE) introduces a method of encod-
ing positional information by applying complex-plane rotations to query and key vectors in atten-
tion mechanisms. Unlike absolute positional encodings added to embeddings, RoPE incorporates
positional information directly into the vector geometry, preserving the inner-product structure of
attention while enabling relative position handling. This formulation allows attention patterns to
naturally incorporate directional relationships without modifying activation magnitudes or relying
on large positional embeddings. RoPE has become a standard design choice in contemporary LLMs
due to its simplicity and strong empirical performance, and is used in our architecture as well.

Llama Family Overview (2024). This survey summarizes architectural patterns used in the LLaMA
models, highlighting components such as pre-layer normalization, SwiGLU activations, RoPE po-
sition embeddings, and grouped-query attention. Importantly, the LLaMA models employ pre-layer
normalization, a widely adopted technique for improving optimization stability in deep transform-
ers by normalizing activations before each sublayer rather than after. This design is closely tied to
stable and efficient training. Because our Typel architecture includes these standard stabilizing com-
ponents, while Type2 removes them entirely, the LLaMA configuration provides a modern reference
point for what “stabilized” transformer training looks like in practice.

3 Background

In this section, we go over background information necessary for the rest of the paper.



3.1 Manifold Muon

The Manifold Muon optimizer, as first proposed by Jeremy Bernstein, constrains the weight matrices
W to have orthonormal columns, existing on the Stiefel manifold V}, ,,, and performs each step by
minimizing the loss approximation subject to orthonormality and a step-size constraint. This is
solved by introducing a Lagrange multiplier A (here found via Online Dual Ascent) which defines
a spectrally restricted descent direction A. Finally, the new weights are projected back onto the
manifold using a Retraction (the matrix sign function) to preserve the constraints, which ultimately
introduce architectural stability by enforcing spectral norm bounds.

The algorithm of a manifold muon optimizer step is outlined below:
1) Start with the gradient G, the current orthonormal weights W, and Lagrange Multiplier A.

2) Direction Calculation (Dual Problem Solution): Solve for A. Use A to calculate the descent
direction A, by taking the matrix sign function of G + 2WA.

A = msign(G + 2WA)

3) Primal Update and Retraction: Calculate the intermediate weights W, = W — nA. Then,
Retract W, back onto the Stiefel manifold using the matrix sign function, ensuring the new
weights W, 1 maintain the orthonormality constraint W7, 1 Wi =1L

W1 = msign(Wienp)
The full algorithm can be found in Appendix

3.2 Lipschitz bounds.

A function f is said to be L-Lipschitz if its output cannot change faster than L times the change in
its input. Formally, under a norm || - ||, the function f is L-Lipschitz if

If(x) = fWl < Lz -yl forallz,y.

The constant L measures the worst-case sensitivity of the function; small Lipschitz constants prevent
the amplification of perturbations, while large ones allow outputs to change rapidly with small input
differences. In deep networks, uncontrolled growth of Lipschitz constants across layers can lead to
exploding activations and instability.

In this work, we focus on Lipschitz bounds with respect to the || - ||, rvs norm, which measures
the maximum RMS activation magnitude across tokens. For simple linear layers in our network the
token-wise RMS norm is simply a scaled version of the standard ¢ norm. Consequently, if a weight
matrix is constrained to lie on the Stiefel manifold (having orthonormal columns), it preserves the
£5 norm of each token vector and therefore preserves its RMS norm as well. Taking the maximum
across tokens implies that such token-wise linear projections are exactly 1-Lipschitz under the || -
||corMs nOrm.

We emphasize that this argument applies only to the token-wise linear components of the network.
Operations such as attention, which mix information across tokens, require separate Lipschitz anal-
yses that can be found in Large et al. [7]

4 Methods

This section describes the architecture, dataset, training setting, and optimizers. Our code can be
found at https://github.com/RahulBirCodes/bluey.git.

4.1 Task and Dataset

The goal for the model is to solve least squares regression problems of where the dimension of the
Xand Yare D = 5.

For each batch, we generate X & REXTX5 where B is the batch size and T is the number of
(x,7) pairs per sequence. For every batch element b we sample X; € R7*®, where each row



Tyt € R? is sampled with i.i.d. standard normal entries. We resample X, until its condition number
is below a fixed threshold K.y = 103, ensuring that each least-squares problem is numerically
well-conditioned. We also sample a matrix W), € R®*® with entries ~ AN(0,1/5) and define
Yot = Wpxp e such thatY = XW forY € RBXTX5 and W € RB*5x5,

Each training sequence is then constructed by interleaving x- and y-tokens for a given batch ele-
ment. For a sequence with T pairs we create 27 positions and assign the (x¢, y;) pairs either in the
order x1,y1, 2,2, - .-, T,y or in the order y1, x1, Y2, T2, ..., Yy, T, With the choice made in-
dependently and uniformly at random for each sequence. This random swapping of the (z, y) order
for each pair removes trivial positional symmetries.

Each token is a vector in R'3. The layout of a single token is

[X*ﬂag7yfﬂag7'x17 e Ty Y1, -4 5 Y5, 1}

where:

 x_flag € {0, 1} is 1 if the token encodes an z-input and 0 otherwise,

« y_flag € {0, 1} is 1 if the token encodes a y-target and 0 otherwise,

* the next five coordinates store = € R® when x_flag = 1 and are 0 otherwise,

* the following five coordinates store y € R5 when y_flag = 1 and are 0 otherwise,

* the final coordinate is always 1 and acts as an explicit bias feature.

Thus the batch of input tokens has shape tokens € RB*2Tx13,

During training we add small Gaussian noise to the input x-coordinates to encourage robustness.
For each z-token we sample €, ; ~ N(0, 0.01215) and replace the stored xp, ¢ by 23+ + €3+ in the
token. The underlying targets Y and the y-coordinates used for supervision remain noise-free; the
noise is purely an input perturbation for the model.

The model is trained over the full sequence, but we only use its outputs at positions where the input
token is an x-token. This relationship is summarized as follows:

Given p,; € R, the model predicts § = fp(z), and the training objective is the mean-squared error

L(0) = ||fo(x) = yv.ell3-

For every epoch, the matrices X, Y, and W, as well as the sequence orderings and the input noise,
are freshly resampled.

4.2 Model Architecture

We construct a modern autoregressive, decoder transformer network with:

¢ SwiGLU feedforward blocks,

* ROPE positional encodings.

Our model is a 15-layer Transformer with a hidden size of 256. Each layer consists of a Multi-Head
Attention module with 8 heads, followed by an MLP with hidden size 256. No explicit normalization
is used in any part of the network. The MLP employs a SwiGLU activation.

We use a custom initialization for the embedding matrix and randomly sample each entry i.i.d from
~ N(0,1/7) to ensure that our initial embeddings are RMS norm 1. A proof of this can be found in

Appendix

4.3 Lipschitz-Inspired Architectural Modifications

Following the Lipschitz Transformer design of Newhouse et al. [14], we incorporate several ar-
chitectural modifications that bound the sensitivity of each block under the || - ||co,rMs norm (the
maximum RMS norm across tokens). These changes aim to prevent uncontrolled amplification of
activations in the absence of normalization layers.



Convex Residual Reparameterization. The standard residual update « + block(z) can double
the Lipschitz constant at every layer, even when the block itself is 1-Lipschitz. To mitigate this
compounding effect, we adopt the convex residual parameterization introduced by Large et al. [7]:

N-1 1
z < ———x + — block(z
N N ( ))
where N is the total number of layers. If the block is 1-Lipschitz under the || - || oo, RMs NOrm, then
the reparameterized residual connection is also 1-Lipschitz. While this bound is not strict in deep
networks once activation norms deviate from 1, the transformation substantially limits Lipschitz
growth across depth and empirically stabilizes training in the absence of normalization.

Attention Scaling. We also follow the Lipschitz attention formulation proposed by Large et al.

In contrast to the standard Transformer’s 1/+/d scaling, functional attention becomes 1-Lipschitz
under the || - ||oo,RMs norm when the dot-product is scaled by 1/d:

KT
SOftmaX(Qd )V.

To ensure unit sensitivity when attention is viewed as a function of the triplet (Q, K, V'), Large
et al. multiply the output by an additional factor of 1/3. We adopt the same 1/3 scaling in our
implementation.

SwiGLU Scaling (Empirical Lipschitz Control). Rather than deriving an explicit Lipschitz
bound for the SwiGLU activation and computing the exact scaling needed to make it 1-Lipschitz,
we instead introduce a simple empirical scaling factor of % that worked well in our experiments.

Orthogonal Initialization. To avoid initial numerical instability that can propagate catastrophi-
cally through a deep norm-free network, we initialize all linear weight matrices (except the embed-
ding and unembedding layers) with orthonormal matrices.

4.4 Optimizers and Respective Hyperparameter Values Compared

We evaluate three optimizers, each with slightly different sets of hyperparameters

Table 1: Hyperparameter search ranges for each optimizer.

Optimizer Learning rate (81, B2) - Fixed Weight decay Batch size
AdamW {1074,1073,1072} (0.9, 0.999) {0.0, 0.01, 0.1} {64, 256}
Muon {1074,1073,1072}  (0.95, 0.999)  {0.0, 0.01, 0.1} {64, 256}
Manifold Muon {0.1, 0.2} (0.95, 0.999) 0.01 256

Rationale Behind Hyperparameter Decisions. For AdamW, we use a standard grid of learning
rates, weight decays, and batch sizes commonly adopted in Transformer training, following the
recommendations of Loshchilov and Hutter [10]. These settings provide a familiar and well-studied
baseline for adaptive optimization.

For Muon, we reuse the same grid to maintain a controlled comparison with AdamW. Prior work
on Muon [1] and its large-scale extensions [9] recommends fixing the momentum parameter at
£1 = 0.95 and using a fixed number of Newton—Schulz steps; we follow these conventions.

For Manifold Muon, we acknowledge that we do not conduct a full hyperparameter sweep. Due to
compute constraints, and motivated by the Modular Manifolds framework [2]—which emphasizes
the optimizer’s stability at relatively large learning rates—we restrict our exploration to a small set of
higher learning rates rather than performing an exhaustive search. Additionally, because Manifold
Muon often exhibits prolonged plateau phases resembling grokking, we train it for substantially
longer (20k steps) than AdamW and Muon (3k steps), which typically converge or plateau much



Table 2: Best Optimizer Hyperparameters under Lipschitz Modifications and No Normalization

Optimizer Learning rate  Batch size  Weight Decay Loss
AdamW le-3 256 0.01 0.16656
Muon le-3 256 0.01 0.75127
Manifold Muon 0.1 256 N/A 1.96396
Training Loss vs Step: AdamW, Muon Train loss vs step: Manifold Muon
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Figure 1: Optimal AdamW/Muon Optimizers Outperform Manifold Muon, as Seen in Table 2]

earlier in our experiments. While this results in unequal training horizons across optimizers, it
ensures that each method is evaluated in a regime where its characteristic behavior is observable,
enabling a fair qualitative comparison of stability and convergence dynamics.

5 Results

Under carefully chosen hyperparameters, we are able to train a deep autoregressive Transformer
without any normalization layers or logit capping, relying solely on the intrinsic Lipschitz archi-
tectural constraints introduced in Section l] AdamW and Muon train stably and converge rapidly
in this norm-free setting, indicating that Lipschitz modifications alone are sufficient to prevent acti-
vation blow-up at this scale (Figure[I). In contrast, Manifold Muon performs suboptimally on our
small algorithmic task: although it eventually converges, it does so significantly slower than the
unconstrained optimizers (Figure|[T).

Although AdamW exhibits small activation RMS norms in our experiments, we attribute this pri-
marily to its rapid convergence: the model reaches a low-loss regime so quickly that activations
have little opportunity to accumulate scale. In contrast, Muon—whose loss decreases much more
slowly—shows significantly larger activation norms, suggesting that norms can grow substantially
during extended optimization when weights are not explicitly constrained (Figure [3). This pattern
indicates that while explicit manifold constraints may be unnecessary for small models trained to
convergence quickly, they could become important at larger scales or longer training horizons, where
activation growth is more likely to compound. Consistent with this view, Manifold Muon displays
exceptional resilience to large learning rates, remaining stable in settings where AdamW and Muon
diverge immediately. Although its convergence is slower, this robustness may make it valuable in
regimes where stability is the primary bottleneck.

5.1 The ”Norm-Free” Barrier

We observe that removing RMSNorm from the network layers leads to immediate training insta-
bility, regardless of whether AdamW, Muon, or Manifold Muon is used. In the absence of nor-
malization, training runs diverge catastrophically, with the loss reaching NaN immediately on the
very first loss calculation. This failure mode arises because the residual stream is no longer scale-
controlled: without normalization, activation variance compounds across depth, and even small de-
viations in scale can grow exponentially, eventually causing numerical overflow in the forward pass.
We therefore confirm that enforcing these per-block Lipschitz constraints is a necessary condition
for achieving stable training in the norm-free setting.



Training Loss vs Step: AdamW, Muon with Higher Learning Rate Train Loss vs Step: Manifold Muon with High Learning Rate
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Figure 2: AdamW/Muon are Unstable at Learning Rate 0.01, but Manifold Muon Remains Stable
even at Learning Rate 1
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Figure 3: RMS Norms on Activations after the Final SwiGLU Layer. Muon has significantly larger
activation norms than both AdamW and Manifold Muon

5.2 Stable Training Across Learning-Rates with Manifold Constraint

Although Manifold Muon converges more slowly, its training dynamics remain stable in the norm-
free setting even when the learning rate is increased by large factors. In contrast, both vanilla
AdamW and unconstrained Muon exhibit rapid activation blow-up under the same conditions, re-
flecting the absence of any structural control on their weight matrices. The stability of Manifold
Muon suggests that enforcing manifold constraints yields robustness across wider hyperparame-
ter regimes and reduces the need for delicate tuning—an appealing property for scaling to larger
models, where training stability often becomes the primary bottleneck. As shown in Figure [I] all
optimizers admit a set of well-behaved hyperparameters under careful tuning; however, when we
scale each optimizer’s best-performing learning rate by a factor of 10 (Figure [2), almost all runs
diverge immediately. The sole exception is Manifold Muon, which continues to train stably even
under this aggressive perturbation. This illustrates that geometric constraints impart significantly
higher robustness compared to unconstrained optimizers.

5.3 Geometry Aware Optimizers and Grokking

During early experiments, we observed an initially puzzling behavior: Manifold Muon runs of-
ten plateaued for long durations, remaining nearly flat across most of the training horizon, while
AdamW and Muon continued to decrease in loss. These dynamics closely resembled the multi-
phase grokking patterns documented by Power et al. [11] and by Liu et al. [12]. Motivated by
this similarity, we extended Manifold Muon training to 20k steps and found that, after a prolonged
plateau, the loss eventually began a delayed descent. We speculate that, given a sufficiently long
training schedule, Manifold Muon would converge to a regime comparable to AdamW and Muon.

A plausible explanation is that the Stiefel manifold constraint in Manifold Muon acts like very strong
weight decay: by restricting weights to lie on the manifold, the optimizer limits the model’s ability
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Figure 4: AdamW, Muon, and Manifold Muon with Smaller Batch Sizes (64)

to memorize via unconstrained parameter growth, forcing it to search for more efficient internal
circuits before improving. This constraint may also underlie Manifold Muon’s heightened sensitivity
to batch size, discussed further below.

Interestingly, Muon exhibits a similar—though faster and less pronounced—plateau-and-descent
pattern. This suggests that geometry-aware update rules more broadly, even without a hard manifold
constraint, bias the optimization trajectory toward smoother, more generalized solutions, leading to
grokking-like behavior.

5.4 Batch Size Interactions with Geometry Aware Optimizers

We observed that batch size plays a large role in the behavior of geometry-aware optimizers such as
Muon and Manifold Muon. For Manifold Muon, reducing the batch size causes the loss to plateau
for nearly the entire run, whereas larger batch sizes produce steady improvement (Figure ). Muon
shows a similar effect: small-batch runs plateau or even diverge, while larger batches converge
reliably. In contrast, AdamW remains largely insensitive to batch size within the ranges we tested

(Figure [).

We do not have a definitive explanation for this phenomenon. However, one possibility is that the
orthogonalized updates used in both Muon and Manifold Muon may take disproportionately large
steps in noisy gradient directions when the batch size is small, reducing the effective learning signal
and causing optimization to stall. A more detailed investigation of this effect is left for future work.

6 Ablation

To disentangle the contribution of architectural constraints versus optimization geometry, we per-
formed a series of ablations isolating the effects of attention and MLP scaling, manifold gain param-
eters, and input augmentation.

6.1 The Necessity of Attention and MLP Lipschitz Scaling

During early experiments with higher Manifold Muon learning rates, we observed a recurring failure
mode: activation RMS norms remained stable for many steps and then abruptly exploded at the
grokking transition, causing immediate divergence to NaN. Upon investigating, we discovered that
we had omitted the 1/3 scaling on the attention output introduced by Large et al. [7], as well as the
analogous scaling required on the output of the SwiGLU block (Shazeer et al. [3]). Reintroducing
both scalings restored stability.

Importantly, keeping only the attention scaling while removing the MLP scaling was insuffi-
cient—activations still diverged. Both forms of architectural scaling were necessary for stable train-
ing. This supports our central hypothesis: manifold constraints on the optimization trajectory are
not enough on their own; they must be paired with architectural modifications that ensure each block
remains Lipschitz-bounded.
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Figure 5: Manifold Muon Converges Faster with a Gain Cap of 5, to a Loss of 0.2 after 2,000 Steps

6.2 Adding a Diagonal Gain to our Stiefel Constraint

In early Manifold Muon runs, we noticed extended plateaus and suspected that the model lacked
sufficient expressivity under the strict Stiefel-manifold constraint. Following Newhouse et al. [13],
we RMS-normalized the embedding matrix to enforce unit-norm inputs, but we did not apply a
similar normalization to the unembedding due to the regression nature of our task.

We hypothesized that forcing all singular values of every linear map to remain equal (a consequence
of remaining on the Stiefel manifold) restricted the model’s ability to create directional amplifica-
tion. To relax this, we introduced a trainable 1D gain vector, expanded into a diagonal matrix in the
forward pass and multiplied with each Stiefel-constrained linear map. The gains were capped by a
tunable hyperparameter.

This modification accelerated convergence (Figure [5), but at a cost: Manifold Muon became sig-
nificantly more sensitive to hyperparameters, losing its characteristic stability in high—learning-rate
regimes. Moreover, the loss plateau persisted unless we also removed the RMS normalization we
had been applying to the embedding matrix on each optimization step. These findings suggest a
nuanced trade-off: diagonal gains improve expressivity but weaken the stability benefits of strict
manifold optimization. In our final results, we remove RMS normalization on the embedding ma-
trix.

6.3 Input Augmentation and Noise

To investigate whether limited expressivity contributed to Manifold Muon’s slower convergence, we
tested two additional modifications. First, we appended a constant 1 to each input vector, giving the
model access to an implicit bias term despite our no-bias architecture. Second, we injected small
noise into the input in the hope that, during the retraction step of Manifold Muon, any “noise” com-
ponent of the update would be preferentially discarded, preserving meaningful signal and potentially
accelerating training.

Although our main experiments were run with both augmentations enabled, neither modification
produced a meaningful change in convergence speed in later experiments.

7 Conclusion

We set out to test whether geometry-aware optimization and intrinsic Lipschitz constraints can re-
place explicit normalization layers in deep Transformers. In a controlled in-context least-squares
setting, we demonstrated that a 15-layer autoregressive Transformer can be trained stably with-
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out any normalization or logit capping, so long as each block is modified to be approximately 1-
Lipschitz under simple architectural scalings. Under these conditions, standard optimizers such as
AdamW and Muon train reliably and reach low loss, indicating that explicit weight normalization is
not strictly necessary for stability at this scale.

Our results also highlight a complementary role for manifold-based optimization. Although Man-
ifold Muon converges more slowly, it exhibits remarkable robustness to aggressive learning-rate
increases that cause AdamW and Muon to diverge immediately. This suggests that constraining
weight geometry can enlarge the basin of stable hyperparameters, trading off convergence speed for
substantially greater resilience in the norm-free regime.

Taken together, our findings support a view in which architectural Lipschitz constraints supply the
primary mechanism preventing activation blow-up, while manifold-constrained optimization pro-
vides additional robustness to hyperparameter choices and long training horizons by explicitly en-
forcing these constraints throughout training. Notably, the “grokking”-like behavior observed under
Manifold Muon may hint at improved generalization properties, though we leave a systematic in-
vestigation of this effect to future work. These results point to a promising pathway toward scalable
norm-free Transformers and motivate further investigation at larger model sizes, where training sta-
bility is often the dominant bottleneck.
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8 Appendix

8.1 Manifold Muon Algorithm

A manifold is a subspace of a higher-dimensional space that maintains certain geometric properties,
but at a close enough proximity, appears like a flat plane. The Manifold Muon optimizer constrains
all of the columns in the weight matrices W € R™** to be on the Stiefel manifold V}, ,,— a subspace
that requires all columns to be orthonormal and where all the singular values are equal to 1. This is
formalized by the equation:

WIw =1,
where I}, is the k x k identity matrix.

The Manifold Muon optimizer updates the weight matrices by solving a dual constrain optimization
problem: finding the update U that minimizes the loss approximation and has spectral norm less
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than 7, and also being tangent to the manifold. The objective is defined as:
1
n%}n <Tr(ATG) + 27’|A||iﬂ) subjectto A € Ty Vi

Here, G = VwZ. is the Euclidean gradient of the loss £ with respect to W, and the constraint
A € T\ V}, ., ensures the update is tangent to the manifold.

In order to solve the optimization problem, the authors of the original Modular Manifold essay
[Bernstein et al.] introduce the matrix A, the Lagrange multipliers subject to the tangent space
constraint. By forming the Lagrangian and setting its derivative with respect to A to zero, the
optimal update A (the tangent update) is found to be:

A =—n(G—-WA)

The term WA effectively projects the Euclidean gradient G onto the tangent space, yielding the
Riemannian gradient component of the update. Finding the optimal A matrix involves solving a
second equation, which can be computationally expensive.

The matrix update A is constrained to be orthonormal via the matrix sign function. Once an optimal
update direction is found, the new W matrix is calculated by adding the update matrix A multiplied
by the learning rate 1. The following result is then retracted back onto the manifold again via the
matrix sign function.

Instead of calculating and solving for A in every manifold muon call, we implement an online
version of the manifold muon optimizer by storing the candidate A matrix after one call of the
manifold optimizer step, and re-using that A matrix and improving it in the next optimizer step with
the following equation: A = A — oH.

8.2 Embedding Initialization and Activation Scaling

Our input sequence is composed of two binary flags signalling x or y, 5 i.i.d unit Gaussian normals,
and then an extra dimension to add an explicit bias feature. Thus, the total number of entries in any
given input is 5 + 1 + 1. These relationships are formalized below:

u = [X*flaga y,flag, L1yeoy Tapy—sizers Y1y -+ Yory—sizes 1];

With s being the number of nonzero entries:

s=D+1+1=5+1+1=7

For example, for an z-token we have

x_flag=1, y_flag=0, z; ~N(0,1), y; =0,
and for a y-token we have

x-flag=0, y-flag=1, y; ~N(0,1), z; =0,
The final coordinate is always 1 and acts as an explicit bias feature.

We implement our linear embedding without bias:

h = Wemb, Wemb € RdmOdelema
where h € R% is the embedded token representation. We initialize each row of W, with i.i.d.
Gaussian entries,
2

(Wemb)ij ~ N(0,07),
and choose o so that the RMS norm of h is approximately 1 at initialization.
To determine the variance of each of the entries of W, we calculate the RMS norm for each entry of
the activation vector, h;. Thus, we have:

din
hi, = Z(Wemb)kjuj-

j=1
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Assuming E[u;] = 0 for the non-constant coordinates, E[u3] ~ 1 for the s active coordinates and 0
for the others, and independence between W, and u, the variance of hy, is

din
Var(hg) = Z]E[(Wemb)ij] E[u?] ~ so?.

J
Thus to achieve RMS norm 1 for each coordinate at initialization,

Eri]=1 <= Var(hg) =1,

we achieve
9 1 1
soc-=1 —= o0=—=—————.
Vs VD+1+1
In code, we implement this as
self.embedding = nn.Linear (input_dim, hidden_size, bias=False)

nn.init.normal_ (self.embedding.weight,
mean=0.0,

std=(xy_size + 1 + (1 if add_fake_dim else 0))*x-0.5)
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