

Simulink Automatic Code Generation for AMDC

This article explains how to implement the Simulink automatic code generation (Autogen) by demonstrating an example using a simple integrator.

Simulink Autogen Code

Autogen is the process of converting a user Simulink model for a controller into equivalent C code for an embedded system (such as the AMDC). The Autogen feature in Simulink can be used to conveniently convert complex controller implementations into C-code for implementing it on the AMDC. This article presents a step-by-step process of using Autogen to convert a simple integrator (as shown in the figure below) into C code.

Procedure

Pre-Requisites

User needs to install at least the following dedicated MATLAB/Simulink toolboxes/features:

- Simulink
- Embedded coder
- Simulink coders

File Organization

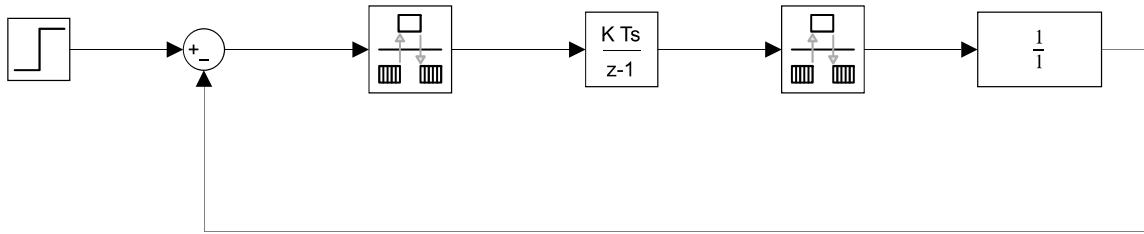
This article assumes that the user has completed the [Blink tutorial](#), where you set up your repository. To follow this Autogen tutorial, create a new `simulink` folder in your repository and organize the files as shown below:

```
my-AMDC-workspace/
  AMDC-Firmware/
    <= master repo
    <= AMDC-Firmware as library

  Skip to content
    rate-C-code/
      <= Your private user C code

  simulink/
    <= Now create this folder
```

Create a Simulink Model

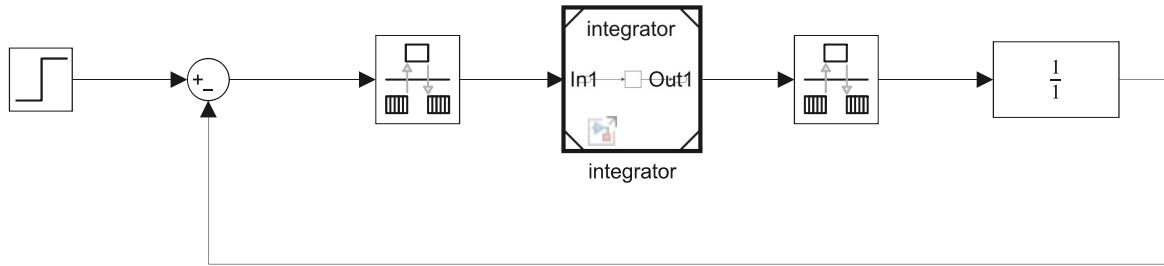

1. In `simulink` folder, create a new MATLAB file (e.g., `setup.m`).
2. In `setup.m`, define `fs = 10e3`, `Ts = 1/fs`, `Tsim = Ts/10`.

User can copy-paste the following MATLAB code:

```
fs = 10e3; % sampling frequency (Hz)
Ts = 1/fs; % sampling time (sec)
Tsim = Ts/10; % simulation time (s)
```

3. Open a blank model of Simulink, and save as `setupModel.slx` in `simulink` folder.
4. Add a `Step` block with the default setting.
5. Add a `Discrete-Time Integrator` block with the default setting.
6. Add a `Rate Transition` block before the integrator. In this block, put `Ts` as a sampling time.
7. Add a `Rate Transition` block after the integrator. In this block, set the sampling time to `-1`.
8. Add a continuous-time `Transfer Fcn` block as a Plant (= 1).
9. Add a `Sum` function and connect each block as shown below.

[Skip to content](#)


Model Setting

1. In **Modeling** tab, press **Model Settings** in **TOP MODEL** section.
 1. Under the **Solver** tree, in the **Solver Selection**, press **Fixed-step**.
 2. Set **Fixed-step-size** as **Tsim**.
2. Go to **Code Generation**.
 1. Click **Browse** for the **System target file**.
 2. Select **ert.tlc Embedded coder**.
 3. In the **Build process** section, check **Generate code only**.
3. Go to **Optimization** under **Code Generation**.
 1. Choose **None** for the **Leverage target hardware instruction set extensions** in the **Target specific optimizations**.
4. Go to **Templates** under **Code Generation**.
 1. Uncheck **Generate an example main program** in the **Custom templates** section.
5. Click **Apply** and **OK**.

Create a Referenced Model

1. Select the discrete-time integrator, and right-click.
2. Select **Create Subsystem from Selection**.
3. Right-click on the subsystem created. Select **Block parameters (Subsystem)**, check **Treat as atomic unit**, and click **OK**.
4. Right-click on the subsystem and select **Subsystem & Model Reference**. Select **Convert** and click **Referenced Model ...**.
5. In the **Input Parameters** section, define the **New model name** as **integrator**.
6. Click **Apply** and **Convert**.
7. Rename the referenced model block to be **integrator**. The expected Simulink model is shown below:

[Skip to content](#)

Referenced Model Setting

1. Double-click the `integrator` referenced model and click `Model Settings` under `Modeling` tab.
2. Click `Model Settings` in the `REFERENCED MODEL` section.
 1. Set `Fixed-step-size` as `Ts`.
3. Save the Simulink file.

The example of Simulink file along with the referenced model is stored [here](#).

Generate C-code

1. Open the `setup.m`.
2. Copy and paste the following code.

```
%> Autogen code for the controller
model='integrator'; % name of the controller to be built
slbuild(model); % generates the Autogen code
oldFolder = cd('C:integrator_ert_rtw\');
% Copy only .c and .h files in autogen folder
command = 'for /r %i in (*.c, *.h) do copy /y %i ..\autogen';
[status, cmdout] = system(command);
cd(oldFolder);
```

3. Run the `setup.m`, and Autogen code are created in `simulink/autogen` folder.

Integration with AMDC

Now, the user needs to update the user C code to incorporate the Autogen code generated from Simulink. To do this, update `task_controller.c` as follows:

`task_controller.c`:

[Skip to content](#)

```

// ...

int task_controller_clear(void)
{
    // ...

    // Clear state struct for Simulink controller
    memset((void *) &integrator_DW_DW), 0, sizeof(DW_integrator_T));

    // ...
}

int task_controller_init(void)
{
    // ...

    // Initialize Autogen step
    integrator_initialize();

    // ...
}

void task_controller_callback(void *arg)
{
    // ...

    // Update controller input parameters
    integrator_U.STEP = STEP;

    // Call Autogen code
    integrator_step();

    // ...
}

```

Results

THIS SECTION WILL BE UPDATED!

- After running the AMDC, show the input and output value through logging feature.

This page uses [Google Analytics](#) to collect statistics. Disable by blocking JavaScript from www.google-analytics.com.