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Magnetic nanoparticles are a prospective class of materials for use in
biomedicine as agents for magnetic resonance imagining (MRI) and
hyperthermia treatment. However, synthesis of nanoparticles with high
efficacy is resource-intensive experimental work. In turn, the use of machine
learning (ML) methods is becoming useful in materials design and serves as a
great approach to designing nanomagnets for biomedicine. In this work, for
the first time, an ML-based approach is developed for the prediction of main
parameters of material efficacy, i.e., specific absorption rate (SAR) for
hyperthermia and r, /r, relaxivities in MRI, with parameters of nanoparticles
as well as experimental conditions as descriptors. For that, a unique database
with more than 980 magnetic nanoparticles collected from scientific articles is
assembled. Using this data, several tree-based ensemble models are trained
to predict SAR, r; and r, relaxivity. After hyperparameter optimization, models
reach performances of R? = 0.86, R> = 0.78, and R? = 0.75, respectively.
Testing the models on samples unseen during the training shows no
performance drops. Finally, DiMag, an open access resource created to guide
synthesis of novel nanosized magnets for MRI and hyperthermia treatment
with machine learning and boost development of new biomedical agents, is

practice.''l As an example, Feridex and
Resovist have been approved as mag-
netic resonance imagining (MRI) contrast
agents for liver imagining. A number
of other magnetic nanoparticles for MRI
have undergone different stages of clinical
trials.['?) The main reason for using mag-
netic nanoparticles as MRI contrast agents
is that high-resolution images of different
tissues enable accurate lesion detection.[**]
Moreover, magnetic nanoparticles have re-
cently been used in clinical trials for
hyperthermia treatment of glioblastoma,
prostate, and pancreatic cancer. Under high
temperature, cells undergo heat stress, so
apoptosis, signal transduction, and protein
expression can be controlled.'*] How-
ever, the tedious process of synthesis of
nanoparticles with satisfactory power loss
for hyperthermia treatment and T,-T, dual
mode MRI contrast agents with high bio-
compatibility is limiting their biomedical

developed.

1. Introduction

Nanosized ferromagnets are an important class of materials
whose magnetic properties such as magnetization values or co-
ercivity are highly dependent on their size, shape, surface, and
composition.'l These unique properties of magnetic nanopar-
ticles are pivotal for catalysis,?] spintronics,>* ecology,®! data
storage,l®l and medicine.”"1% Medical treatments using magnetic
nanoparticles have already shown promising results in clinical
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applications.[111416] Although size, shape,
surface, and composition of nanoparti-
cles and parameters of applied electromag-
netic field can be optimized, selecting the
best combination of independent parameters is often infeasible
in practice due to low throughput and lack of resources.!'’-*]
There are several works attempting to build phenomenolog-
ical models that simplify optimization processes by establish-
ing relationships between the structure and the specific prop-
erties of magnetic nanoparticles.?>?2! Vuong et al. showed that
r, relaxivity positively correlates with the diameter of spheri-
cal iron oxide nanoparticles below the size limit of Motional
Averaging Regime.[?’] Shape of nanoparticles determines mag-
netic anisotropy, while surface modification affects the behav-
ior of nanoparticles inside an aqueous environment, thus influ-
encing interactions with water molecules that is critical for MRI
and hyperthermia treatment, as well as biocompatibility.l2!-2]
However, these structure—property associations refer to rather
special cases, not generally applicable to other systems since
they do not take into account other parameters of the system.
For example, size effects on relaxivity in MRI were shown to
be connected to nanoparticle composition.['] In this case, the-
oretical models using fundamental principles of physical pro-
cesses could be helpful for estimating performance of magnetic
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nanoparticles, i.e., Solomon—Bloembergen—-Morgan theory and
quantum mechanical outer sphere theory describing MRI relax-
ation processes;!1®17] linear response theory, the Rayleigh, and
the Stoner—Wohlfarth models that analytically determine spe-
cific absorption rate (SAR) to quantify the efficacy of magnetic
nanoparticles in converting electromagnetic energy into heat for
hyperthermia applications.[?2¢] However, these models cannot
account for all characteristics of real systems such as surface
coating composition, shape, single- or multidomain of magnetic
nanoparticles, magnetic dipole interactions, as well as varying ex-
perimental conditions.!':%228] To do that, significant extension
of theoretical models would have been necessary, which, in turn,
would increase their complexity and the demand for compute.[?]

Machine learning (ML) methods can overcome the aforemen-
tioned limitations by leveraging large amounts of data. ML al-
gorithms use training data to learn complex dependencies be-
tween sample features and its properties of interest bypassing
explicit mathematical formulation of their relationship. Notably,
this approach can also be computationally more efficient com-
pared to numerical methods in mathematical modeling.>*) ML
tools have been successfully used in materials science for predict-
ing properties of nanomaterials and even de novo design.[31-3]
Although there is an increasing demand for magnetic nanoparti-
cles with specific properties for the best performance in different
applications, there are relatively few works dedicated to ML tar-
geting new materials in this domain.® Court et al. developed
magnetocaloric property prediction models using the chemical
composition features for predicting Curie temperature, absolute
magnetic entropy change, and relative cooling power and applied
these models for inverse design of materials.*®! Exl et al. applied
an ML approach to study microstructural features of Nd,Fe,,B
permanent magnets with a granular structure and demonstrated
importance of the position of the grain within the magnet.*”] Nel-
son and Sanvito used chemical composition as the only feature
for prediction of the Curie temperature of ferromagnets with an
accuracy of ~50 K.38 Coisson et al. leveraged data of numeri-
cal simulations to predict power losses of magnetic nanoparti-
cles for hyperthermia applications in good agreement with exper-
imental data.[?! ML methods possess huge potential for design-
ing magnetic nanoparticles for medical applications that have not
yet been fully explored.[*"]

In this work, we propose an ML approach to predict the pa-
rameters determining efficacy of nanoparticles in MRI (r; and r,
relaxivities) or hyperthermia treatment (SAR). For this purpose,
we create a unique database with physicochemical characteristics
and measures of SAR and relaxivities by collecting data from the
previously published articles. We perform feature engineering,
train and optimize ML models to achieve tenfold cross-validation
R? = 0.86 for prediction of SAR, R> = 0.78 and R? = 0.75 for
prediction of r; and r, relaxivities, respectively. We analyze fea-
ture importances using SHAP-values and map them onto the
expected dependencies (those in agreement with previously re-
ported experiments) between descriptor and target variables in
the data to assess interpretability of our models. Thereby, we con-
firm a high degree of correspondence between the model predic-
tions and the existing empirical evidence, which increases the
confidence in the predictions of SAR and r, /r, relaxivities. More-
over, we validate the ML models on previously unseen nanopar-
ticles collected independently of the initial database and show
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accurate predictions of their properties, which makes a case
for the use of our models in experimental practice. Finally, we
present DiMag, a web service for rapid in silico screening of mag-
netic nanoparticles for biomedical applications, which provides
users worldwide with access to the database and the trained ML
models.

2. Results and Discussion

2.1. Database of Magnetic Nanoparticles for Hyperthermia
Treatment and MRI Diagnosis

MRI is one of the main in vivo imaging tools able to provide
both anatomical and functional information. In turn, hyperther-
mia is a kind of treatment frequently employed in cancer therapy.
Thus, a combination of these approaches delivers hyperthermia
treatment based on precise lesion diagnosis with MRI. Magnetic
nanoparticles have unique properties and attract a lot of attention
because of their potential use as MRI contrast agents for substi-
tution of high-toxic Gd-chelates. Moreover, magnetic nanomate-
rials can be used as heating agents for hyperthermia treatment
as they are able to convert large amounts of energy of alternating
magnetic fields into heat. Despite a lot of attention to magnetic
nanoparticles for biomedical applications, however, there are cur-
rently no databases of nanomagnets for MRI and hyperthermia
treatment. Therefore, we set out to create such a database fol-
lowing the so-called FAIR principles!**! to accelerate the develop-
ment of new materials and simplify the use of artificial intelli-
gence to distill new scientific knowledge from data.

For this purpose, first, we manually collected 1282 raw sam-
ples from 126 unique scientific articles (Table S1, Supporting
Information) with descriptions of synthesis, materials charac-
terizations, and measurements of magnetic hyperthermia and
MRI performances in vitro. Initial database consisted of vari-
ous parameters playing a significant role in MRI and hyperther-
mia applications according to the physical nature of the pro-
cess. Those include chemical composition of core, shape, length,
width, depth, zeta potential, hydrodynamic radius, magnetic pa-
rameters of nanoparticles measured by SQUID under 300 K, pa-
rameters of magnetic field during experiments, concentration of
nanoparticles and efficacy of nanomagnets in hyperthermia treat-
ment (SAR value) and MRI (r; and r, relaxivities) obtained via in
vitro experiments. Since it is known that surface composition de-
fines the properties of magnetic nanoparticles to a large extent,
we used inorganic shell and organic coating compositions to de-
scribe the surface of nanoparticles (Figure 1A).117:2°]

To go beyond collection of what had been readily available
in the literature and enable broader downstream applications,
we substantially expanded the set of characteristics of magnetic
nanoparticles by feature engineering (Figure 1B). Average mag-
netic moment of metals in the core was calculated using mag-
netic moments of each element with help of stoichiometry to
Dbetter describe composition of nanoparticles (Equation (S1), Sup-
porting Information). Average spin of metal elements on the sur-
face was obtained to describe interactions between the surface
elements and proton spins responsible for relaxation properties
of the nanoparticle (Equation (S2), Supporting Information). To
describe the role of organic coating, we employed a partition coef-
ficient LogP and number of H acceptors, which were calculated
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Figure 1. Database formation. A) Examples of descriptors mined from the scientific articles. B) Examples of engineered features based on core and shell

composition as well as geometry of nanoparticles.

using SMILES representations of organic molecules. These pa-
rameters could be informative of interactions of the surface of
the nanoparticle with water molecules, and such interactions are
known to have strong influence on the nanoparticle performance
in MRI and magnetic hyperthermia.***!! Volume and surface
area were calculated using the shape and size of the nanoparticle
to describe morphological characteristics of nanomagnets.

All obtained and engineered features can be divided into
specific groups that cover main aspects regarding behavior of
nanoparticles in MRI and hyperthermia applications: 1) pa-
rameters reflecting the composition of nanoparticles (e.g., av-
erage magnetic moment of the metals), 2) parameters de-
scribing behavior of nanoparticles in aqueous environment
(e.g., average spin of metal elements at the surface, zeta po-
tential, hydrodynamic radius, number of H acceptors, and
LogP of organic coating molecules), 3) parameters represent-
ing the structure of particles (e.g., such as area, volume, length,
width, and depth), 4) SQUID-parameters (e.g., coercivity, rema-
nence, and saturation magnetization reflecting magnetic prop-
erties of material), and 5) experimental conditions (e.g., field
strength, amplitude, and frequency, concentration of nanopar-
ticles). To investigate redundancy in these groups of features,
we calculated and analyzed the Pearson correlation matrix
(Figure 2A). We observed, for instance, a group of geometrical
features with high cross-correlations and reduced them to a sin-
gle area-volume feature. On the other hand, we investigated the
number of outliers and missing values to keep only the most
informative features.

After minimal data cleansing, we obtained the dataset of more
than 980 nanosized metals, bimetals, and metal oxides (ferrites
with various compositions) materials with more than 120 core
and 50 shell compositions of different kinds. Figure 2B illustrates
the broad coverage of nanoparticles in the final dataset. Ferrites,
being the most well studied class of magnetic nanoparticles, are
also the most represented one. The majority of magnetic nano-
materials have organic or inorganic shells of a wide range of com-
pounds. The broad coverage of magnetic nanoparticles is espe-
cially important for downstream ML applications to avoid over-
fitting and improve generalization capabilities of the models.
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In the following section, we use the resulting dataset to quan-
tify the efficacy of magnetic nanoparticles in MRI and hyperther-
mia treatment with machine learning. However, we intend to ex-
pand the initial database and keep it up-to-date to allow broader
use cases for fundamental research and biomedical applications.

2.2. Prediction of SAR and Relaxivity Values of Magnetic
Nanoparticles

We aimed at predicting SAR and r,/r, relaxivities based on
the unique database of magnetic properties of nanoparticles de-
scribed earlier. We started by implementing additional prepro-
cessing steps to ensure high quality of the input data. Due to
poor characterization of magnetic nanoparticles in the majority
of scientific articles, which served as data sources for our study,
it was impossible to effectively use all the collected descriptors.
For example, zeta potential and hydrodynamic radius are impor-
tant parameters describing the interaction between a nanoparti-
cle and a media. Even so, we had to exclude them due to the large
percent of missing values (>50%). Keeping those would require
data imputation, which at this scale would inevitably introduce
strong biases and decrease performance of ML models. As for
other parameters (those having less data sparsity), we chose kNN
imputation technique, because it considers the relationships be-
tween the different features, it is robust to outliers, and it can
handle both categorical and continuous variables.[*?] In the ini-
tial dataset, we had features with high percentages of missing
values, e.g., 34% for r, relaxation, 28% for remanent magnetiza-
tion, and 21% for coercivity. To cope with that, we first removed
the total of 211 samples such that each sample in the remaining
dataset had no more than 15% of missing values. After that, we
applied the kNN imputation algorithm to fill the gaps and obtain
the complete dataset.

Further, to alleviate redundancy in data and retain only the
most informative features, we transformed highly correlated ge-
ometrical features into area to volume and max to min length
ratios reflecting size and shape anisotropy of nanoparticles. Cor-
relation analysis confirmed the absence of linear dependencies
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Figure 2. A) Correlation matrix for the initial and the selected parameters (empty region indicates there is no intersection between the parameters, so
correlations between them cannot be calculated). B) Core and shell composition statistics for the final dataset.

for the new descriptors (Figure 2A). We also discarded nonin-
formative features of low variance, i.e., coercivity and remanent
magnetization values for prediction of MRI relaxivities.

Finally, we removed samples with outliers by setting empirical
thresholds on feature values while analyzing their distributions.
Our objective was to retain as many samples as possible while
mitigating negative influence of outliers.

After the final dataset has been prepared, we divided it into
three, one for each regression problem: prediction of SAR value,
r; or r, relaxivity containing 460, 355, and 465 samples, respec-
tively (Figures S1-S3, Supporting Information). For prediction
of SAR value, 11 descriptors were used, whereas relaxivity values
were predicted using 8 descriptors only (see Database collection
and processing section in the Supporting Information). We nor-
malized and log-scaled the data for each problem before splitting
to train and test sets in the 80/20 ratio.

In this work, we opted for tree-based algorithms such as Ran-
dom Forest and Gradient Boosting, as they remain state-of-the-art
for midsize inhomogeneous tabular data, on par with or even out-
performing modern deep learning models.[**] Ensemble of deci-
sion trees is at the heart of tree-based models. While Random
Forest and Extra Trees regression models are based on averaging
predictions of decision trees built on a random subset of features,
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LGBMRegressor and XGBRegressor algorithms build sequences
of decision trees such that each next tree minimizes the error of
the previous one.[***] To achieve the highest model performance
for each regression task, hyperparameter tuning was done using
the model-agnostic Optuna framework!*! (Table S5, Supporting
Information). For each regression problem, we optimized and
compared performance of four models (Figure S4, Supporting
Information). The best model was selected using the following
metrics: mean Q? and RMSE for tenfold cross-validation and R?
and RMSE for test samples.

One common issue for all machine learning applications is
overfitting. Trained on a finite dataset, models tend to learn not
only relevant dependencies among the variables but also biases.
This can lead to drastic drops in model performance (i.e., in-
creased errors), when evaluated on previously unseen testing ex-
amples. Therefore, we carefully examined the performance of the
selected models on the test sets. To our surprise, we even ob-
served slight improvement in RMSE, which advocates for good
generalization power of the best models (Figure 3A). For SAR
prediction, RMSE of 0.28 on tenfold cross-validation dropped to
0.26 on test samples; for r; and r, relaxivities, RMSE dropped
from 0.30 to 0.27 and from 0.25 to 0.22 on test samples, respec-
tively.

© 2023 Wiley-VCH GmbH
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Figure 3. Machine learning methods. A) Selected models for prediction of SAR and r,/r, relaxivities (shaded area corresponds to the RMSE on tenfold

cross-validation). B) SHAP diagrams.

It should be noticed that after the filtering procedure we have
done during data handling, we obtained increased metrics in
prediction of 1, relaxivity (R? on test samples increased from 0.75
to 0.78) and r, relaxivity (Q? on cross-validation increased from
0.63 to 0.71), which prove the importance of the described pre-
processing steps.

A longstanding concern in scientific applications of machine
learning is model interpretability, i.e., the ability to understand
the underlying decision making process, which is oftentimes
lacking.l*”] One way to approach that is to investigate feature
importances to shed light on which features in the data have
the strongest impact on the prediction. For this purpose, we
plotted SHAP (SHapley Additive exPlanations) values for each
selected ML model (Figure 3B). SHAP is a game-theoretic ap-
proach to explain the output of any machine learning model
by assigning each feature an importance value for a particular
prediction.[*®] Figure 3B demonstrates that SHAP-values high-
light well-known experimental dependencies. For example, the
amount of generated heat strongly depends on the amplitude
and frequency of the field (Equation (S6), Supporting Informa-
tion). It was previously shown that increasing field strength of
MRI scanners leads to an increase in r, and a decrease in 1,
relaxivity values.[*”] Decreasing area-to-volume ratio due to in-
creasing size of nanoparticles results in larger r, relaxivity val-
ues, which is also consistent with experimental observations.[1¢!
Shape anisotropy of nanoparticles, that is reflected in maximum
to minimum length ratio, has a strong influence on the r, re-
laxivity, as larger outer sphere diameter for nanoparticles with
anisotropic morphology is associated with increased r, values.!%]
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Magnetic properties of nanoparticles strongly affect their efficacy
in MRI and hyperthermia applications, as heat dissipation and r,
relaxivity are proportional to the saturation magnetization value
(Equations (S6) and (S9), Supporting Information). Increasing
spin of elements on the surface leads to an increase in r, relaxiv-
ity, which is in agreement with theoretical knowledge.'®! Thus,
analysis of feature importance diagrams proves interpretability
of our models and demonstrates their ability to make predic-
tions in good agreement with experimental observations and
theoretical knowledge.

Moreover, there are some nonobvious dependencies outlined
by the SHAP diagrams. For instance, larger values of LogP are
associated with increased SAR values, which can be explained
by higher mobility of nanoparticles in aqueous solution. Fur-
thermore, it is interesting to observe the influence of the num-
ber of H acceptors of organic coating on the r, relaxivity value.
Large number of H acceptors leads to an increasing number of
water molecules near the nanoparticle (in the second sphere),
and vice versa, thus strongly influencing the r, relaxivity, which
is expected.l’®) We can speculate that the intermediate number
of H acceptors does not lead to a significant increase in water
molecules near the nanoparticle for increasing r, relaxivity, how-
ever, interaction with protons slows down the exchange rate of re-
laxed and bulk water molecules resulting in a dramatic decrease
of the r, relaxivity value. Consequently, the analysis of SHAP di-
agrams allows to generate hypotheses about the mechanisms of
efficacy of magnetic nanoparticles.

As an additional validation effort, we formed another testing
set of samples (Tables S6 and S7, Supporting Information) that
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Figure 4. Validation of ML models. A) Model performance on validation samples. B) True versus predicted values of Ig(SAR) over the alternating magnetic

field amplitude at different frequencies. C) True versus predicted values of
tenfold cross-validation RMSE.

have not been used for training and optimizing hyperparame-
ters of the ML models. Some of them were collected from the
most recent experimental works published in 2023.51°%] In the
following, we refer to these samples as validation samples for the
sake of clarity and conciseness.

For prediction of relaxivity values, validation samples included
nanoparticles with different morphological parameters, element
compositions, and organic coatings. For prediction of SAR,
validation samples with different concentrations, morphology,
and composition of core and shell as well as at different exper-
imental conditions were used. Therefore, the validation samples
not only contained previously unseen samples but also intro-
duced additional variability by allowing previously unseen com-
binations of feature values. Thus, the additional testing set repre-
sents a good stress-test for the models and serves as a reliability
indicator.

Figure 4A compares model predictions and experimental mea-
surements of log-scaled SAR, r; and r, relaxivities. Most of the
validation samples appear within the blue area, which corre-
sponds to the mean tenfold cross-validation RMSE. Transition-
ing back from the log-scale to the real values, we computed per-
cent of predictions that differed from the true values by less
than 50%. For SAR, r; and r, relaxivities, the percentages were
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Ig(r2) over the size of nanoparticles. Shaded area corresponds to the mean

47%, 57%, and 68%, respectively, which indicates rather high
precision. Similar to interpretability analysis described earlier,
we followed and validated several predictions based on the avail-
able experimental data. For cubic Fe;O, nanoparticles of SAR
validation samples, we plotted predicted and experimental val-
ues over the field amplitude at different frequencies (Figure 4B).
With increasing field amplitude, predicted values remained close
to the measured ones within tenfold cross-validation RMSE for
the vast majority of frequencies. Deviations at 393 kHz can be
explained by the fact that there are only 14% of samples in
our training set measured at frequencies higher than 370 kHz
(Figure S1, Supporting Information). It is known that machine
learning algorithms are limited in their extrapolative power.>*-
In practice, it means that low performance is to be expected
when evaluating a model on the set of underrepresented sam-
ples. Figure 4C shows predictions of r, relaxivities for Fe;O,
nanoparticles at different sizes that almost exactly match the
experimental values.

However, every machine learning model has its limitations
that are important to keep in mind to avoid or minimize misuse.
Despite the rather high performance of our models, they were
trained on a limited dataset of nanoparticles previously charac-
terized in the literature. Thus, the trained models are biased to

© 2023 Wiley-VCH GmbH
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reproduce only those properties already contained in the database
(Figures S1-S3, Supporting Information). With substantial ex-
tension of the database to represent other types of nanomate-
rials, these biases can be alleviated but never completely over-
come. Therefore, prediction of properties of the new materials
may be inaccurate. Moreover, descriptors used in this work do
not reflect all aspects of any given system. For instance, the lack
of available data for hydrodynamic radius and zeta potential pre-
vented us from including this information in the training set,
thus limiting the capability of the model to explain behavior of
nanoparticles in the aqueous environment. Other examples in-
clude blocking temperature, Neel and Brownian relaxation times,
reflecting general properties of magnetized nanoparticles. Shell
thickness is another important parameter of magnetic nanopar-
ticles that is missing in the training set due to very few articles
reporting its quantification. In practice, it means that these fea-
tures cannot be used for predictions of SAR, r; and r, relaxiv-
ities for new nanomaterials with our models even if this data
becomes available.

Additionally, all the data used for training the models was col-
lected from in vitro studies, so the models are not suited to pre-
dict behavior of magnetic nanoparticles in vivo and are not gen-
erally applicable in clinics. As more data from in vivo studies of
magnetic nanoparticles becomes available, it will be possible to
investigate the degree of correlation between the two types of ex-
periments and attempt to predict the properties of magnetic NP
in vivo.

It is noteworthy that performance of nanoparticles in MRI
and hyperthermia is strongly dependent on their shapes. Apart
from the simple shapes, there are nonstandard ones, such as
Nanoflower and Dumbbell, that are impossible to describe with
three length measurements. Some complex shapes can be ap-
proximated as spherical or cubic, though any such simplification
might lead to information loss. However, capturing the nuanced
geometry of NPs requires appropriate data representations. In
our view, scanning electron microscopy images could be a viable
solution when processed with deep neural networks. Like any
deep learning application, this approach is inherently data-greedy
and simply not feasible when the number of training samples is
low. Nevertheless, we strongly believe that enriched data repre-
sentations obtained with deep learning will make many break-
throughs in characterization and design of nanomaterials in the
future.
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2.3. Web Service

To facilitate user access to the trained models and the database,
we developed an open access web service, called DiMag
(Figure 5), available at http://dimag.acidlab.space. DiMag pro-
vides the scientific community with an opportunity to 1) explore
biomedical performance of existing magnetic nanoparticles for
MRI and hyperthermia applications in one place, 2) quantify
properties of novel nanoparticles, and 3) explore the dataset us-
ing visualization of dependencies between different parameters.
To allow predictions with limited data available, the platform sup-
ports three modes of prediction depending on the number of de-
scriptors provided by the user. We recommend using advanced
mode for the most accurate prediction. Providing the service with
parameters of magnetic nanoparticles, a user can expect the pre-
dicted SAR or r, /1, relaxivity values along with a chart of the cor-
responding experimental dependency (predicted SAR over the
field amplitude and frequency or predicted relaxivity over the field
strength). Furthermore, the DiMag implements an interface to
expand the underlying database by creating new records of mag-
netic nanoparticles with links to the corresponding articles. We
encourage other researchers to contribute new data to keep the
database up-to-date and provide us with their feedback to further
improve the usability and predictive power of DiMag.

3. Conclusion

We introduced an ML approach to quantify efficacy of magnetic
nanoparticles by prediction parameters determining their per-
formance in MRI (r, and r, relaxivities) or hyperthermia treat-
ment (SAR). For this purpose, we created the unique database of
magnetic nanoparticles where more than 980 nanosized metal,
bimetal, and metal oxides (ferrites with various compositions)
materials having more than 120 core and 50 shell composi-
tions of different kinds were manually collected from 126 sci-
entific articles. This data was enhanced by theoretically calcu-
lated and newly engineered features related to composition (e.g.,
magnetic moment of the core, spin on the surface, LogP, and
number of H acceptors for organic coating molecules) and struc-
ture (e.g., ratio of max-to-min length and surface-to-volume ra-
tio). The resulting database was used to train tree-based ensem-
ble models to predict SAR, r; and r, relaxivities. Model-agnostic
hyperparameter optimization yielded state-of-the-art performanc

© 2023 Wiley-VCH GmbH

85UB0] 7 SUOWILLIOD 3ARER.D 8|qedl|dde sy Aq peusenob aJe saoie YO ‘@sn Jo Sa|nJ Joj AriqiT8uljuO 8|1/ UO (SUORIPUOD-pUe-SWLRY/LIo" A3 1M Afe1q 1 BUI [UO//SANY) SUORIPUOD PUe SWie | 8U1 83S *[620z/20/0T] o AriqiTauluo Aeim ‘AiseAlun OINLI AQ 2ZSE0EZ02 | 1WS/200T OT/I0p/uioo A8 | im ArelqjeujUo//:Sdny W0y pepeo|umoq ‘gy ‘€202 ‘6289€TIT



ADVANCED
SCIENCE NEWS

sl

www.advancedsciencenews.com

of R? = 0.86, R* = 0.78, and R? = 0.75, respectively. Analy-
sis of the best models proved high interpretability reflecting
well-known experimental dependences between the predicted
values and the data features. Additional validation procedure
based on previously unseen samples as well as previously unseen
combinations of feature values demonstrated high precision and,
therefore, good generalization capability of the best models.
Since the validation samples were obtained at the very late stage
of the study, this validation approach is even more indicative of
the model reliability than synthesis of a few selected nanoparti-
cles. Nevertheless, we do consider comprehensive experimental
validation in the follow-up studies. Finally, the results of this work
are now publicly available through DiMag, an open access web
service (http://dimag.acidlab.space) that empowers users world-
wide to easily utilize our best ML models, visualize and explore
our database, and contribute their own samples to foster open
research of magnetic nanomaterials. We envision a significant
impact of DiMag on developing and optimizing magnetic nano-
materials for hyperthermia treatment and MRI by enabling rapid
in silico screening as an alternative or a complement to resource-
intensive laboratory work.
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