
Thread Local Storage in the Fold

Framework
by

Lucie Mermod

Abstract
Fold is a framework to create Rust-based (dynamic) linkers, offering simple tools to

design and implement new linkers. This work aims to implement fully featured Thread

Local Storage support which was lacking in Fold’s first implementation.

Date: December 2025

Lucie Mermod

Contents
Abstract . ⁠1

1 Motivation . ⁠2

2 Background . ⁠2

2.1 Thread Local Storage . ⁠2

2.2 Musl’s implementation . ⁠4

2.2.1 Module allocation . ⁠4

2.2.2 Thread Control Block . ⁠4

2.2.3 The libc object . ⁠5

2.2.4 Observations . ⁠6

3 Implementation . ⁠6

3.1 Musl . ⁠6

3.2 Collection . ⁠7

3.3 Allocation . ⁠7

3.4 Relocation . ⁠8

4 Discussions . ⁠8

4.1 All static . ⁠8

4.2 Global Offset Table relocations . ⁠8

5 State of the project . ⁠9

6 Future work . ⁠9

7 References . ⁠10

A Musl’s TCB . ⁠11

B TLS module sizes . ⁠12

Lucie Mermod

1 Motivation
Most of nowadays applications rely on multi-threading to efficiently achieve their goal, e.g. by

processing data through streaming pipelines or by dispatching different tasks accross threads.

This means that for any loader aiming at being usable in a real environment, it must provide

an API adequate for multi-threading.

Luckily, there exists since 2002 a specification describing how ELF should store thread-related

data, and how loaders need to handle it [1]. This document concerns many architectures other

than x86_64, so I will summarize the relevant parts Section 2.1.

2 Background
Before diving into how Fold implements Thread Local Storage (TLS), we first need to take a

look at what it is exactly, as well as how Musl’s standard library [2] interacts with it. I would

like to thank Chao-tic [3], MaskRay [4] and the Android developpers [5] for their blogs which

helped a lot in understanding how TLS works.

2.1 Thread Local Storage

Thread Local Storage (TLS in short) is the in-memory data structure holding all the data which

is unique to a thread, i.e. the Thread Control Block (TCB) and all static variables denoted with

__thread_local, whether they are defined in the executable’s ELF or in any of the shared

objects it depends on.

Each ELF object can contain at most one segment marked with PT_TLS, indicating that this

segment should be loaded as part of the TLS structure. Such segment is called a TLS module

and is characterized, as all segments, with its offset in the file, size in the file, size in the

memory, etc. If the size in memory is larger than the size in the file, the remaining bytes should

be zeroed out when the module is loaded. This segment is usually split into two sections,

named .tdata and .tbss, analogous to the .data and .bss sections.

The TLS specification [1] describes two memory layouts to hold the TLS, but we will focus on

the second variant as it is the one used in x86_64. The figure below gives an overall view of

the structure:

Figure 1: TLS in-memory layout in x86_64

There are four main components:

2

Lucie Mermod

• Thread control block (TCB): holds thread-specific information such as the Thread Identifier

(TID), stack canary, etc. It also contains a pointer to the DTV (below).

• Static modules (at tlsoffset𝑥): TLS modules which are loaded at load-time or during thread

creation.

• Dynamic modules: TLS modules which are loaded only when the thread attempts to access

memory within them.

• Dynamic Thread Vector (DTV): stores a pointer to each loaded modules, as well as a gener

ation number used when library are dynamically loaded at run-time (using dlopen).

When creating the TLS, the loader must identify all the TLS modules across the executable

and its dependencies, and assign a Module ID to each of them. IDs starts at 1, which is reserved

for the executable’s TLS module, if any. Other modules can technically be assigned with any

IDs, although for practical reasons the loader will usually simply count from 2.

There are two reasons for the existence of dynamic modules. First, it makes the implemen

tation of dlopen() and related functions much easier and safer as they are allowed to place

the TLS modules of the new objects anywhere in the address space, and not specifically before

the existing modules (this could result in clashing with another existing memory mapping).

Also, some modules could be ignore by some threads and loading them would be a waste of

time and memory, hence the posssibilty to defer this allocation when the module is actuall

accessed (see Code snippet 1 in General Dynamic accesses below).

When a thread wants to access a variable from a TLS module, it can proceed with different

methods, by decreasing genericity:

• General Dynamic: Using different relocations, the loader will allocate a struct in the GOT

to store the Module ID and Offset of variable within the module, which the runtime will then

pass to the __tls_get_addr(uintptr_t[2]) function which will return the actual address of

the variable. This function should be provided by the loader itself. A naive implementation

would look like this:

void* __tls_get_addr(uintptr_t[2] req) {

 // Allocate the module with id req[0]

 if (tcb->dtv[req[0]] == NULL) {

 allocate_tls_module(req[0]);

 }

 return tcb->dtv[req[0]] + req[1];

}

Code snippet 1: simple __tls_get_addr implementation

• Local Dynamic: If the code accessing the variable is from the same object as the TLS module

requested, then it may call the __tls_get_addr() function and pass an offset of 0 to get

the address of the TLS module, and the compiler can add the offset itself since it would be

known at compile time. This method is only interseting if the program accesses multiple

thread-local variables, as it reduces to one the number of calls to __tls_get_addr().

• If the module is statically loaded, then the program can access the variable by offsetting the

thread pointer. To do so, it can either:

‣ Initial-Exec: Request the loader to generate a GOT entry to store the offset

3

Lucie Mermod

‣ Local-Exec: Produce a relocation asking the loader to directly write the offset into the

code.

Note that the specification states that Local-Exec cannot be used from a shared object, but I

did not understand why this restriction exists.

It is unclear who, between the programmer, compiler or loader, decides which module should

be statically loaded. While a DF_STATIC_TLS flag exists in the Dynamic Table, I found that

it is not produced by compilers and cannot be the sole decider whether the modules should

be static as this decision also depends on how other objects access it (which is obviously not

known when the compiler generates the shared object). From my understanding, any module

may be static except for those accessed through the R_X86_64_TPOFF32 and R_X86_64_TPOFF64

(used in Initial-Exec and Local-Exec) which have to be static. Those considerations taken into

account, the loader is free to choose whether to allocate dynamically or not the other modules.

2.2 Musl’s implementation

Knowing the fundamentals of Thread Local Storage, let’s now take a look at the implemen

tation details of Musl.

2.2.1 Module allocation

The first observation to be made is that Musl provides itself an implementation for

__tls_get_addr (Code snippet 2) which simply indexes the dtv array, meaning that all

TLS modules are statically allocated. This greatly simplifies to process of allocating the TLS

modules, but also increases the overhead of loading the ELF and creating new threads. See

also Section 4.1.

void *__tls_get_addr(tls_mod_off_t *v)

{

 pthread_t self = __pthread_self();

 return (void *)(self->dtv[v[0]] + v[1]);

}

Code snippet 2: Musl’s implementation of __tls_get_addr

2.2.2 Thread Control Block

On top of the Thread Control Block specified in the ABI (todo: ref wanted), Musl augments

it with quite a lot of fields, as shown in Code snippet 9 of Appendix A. Luckily, a lot of these

fields are handled by Musl’s runtime and should be initialized to 0; and the function __init_tp

(Code snippet 3) shows us which fields should be initialized and how.

4

Lucie Mermod

int __init_tp(void *p)

{

 pthread_t td = p;

 td->self = td;

 int r = __set_thread_area(TP_ADJ(p));

 if (r < 0) return -1;

 if (!r) libc.can_do_threads = 1;

 td->detach_state = DT_JOINABLE;

 td->tid = __syscall(SYS_set_tid_address, &__thread_list_lock);

 td->locale = &libc.global_locale;

 td->robust_list.head = &td->robust_list.head;

 td->sysinfo = __sysinfo;

 td->next = td->prev = td;

 return 0;

}

Code snippet 3: __init_tp

2.2.3 The libc object

When inspecting the __init_tp function (Code snippet 3), we encounter a rather peculiar

object called libc (Code snippet 4). It is a global variable in the Musl library that stores general

informations about the runtime. Here, we will focus on the thread-related fields which are for

the most part quite simple.

• can_do_threads: Whether the TLS was correctly initialized. Needs to be set to 1 in order

for the thrd_create function to succeed.

• threaded: Handled by Musl upon first call of thrd_create, indicates whether the library

has initialized its thread-related components.

• threads_minus_1: Number of threads running, minus 1.

• tls_head: A linked list of tls_module (Code snippet 5) objects. This list is used to create

the TLS region when an new thread is insantiated. It must be ordered according to the

Module IDs.

• tls_size: Total size in bytes of the TLS region, ergo size of the TCB, all the modules

(remember that they are all statically loaded) and the padding, if needed.

• tls_align: The alignement restriction for the TLS region, which is the maximum of all the

align fields of the TLS modules and the alignement of the TCB itself.

• tls_cnt: Number of TLS modules.

struct __libc {

 char can_do_threads;

 char threaded;

 char secure;

 volatile signed char need_locks;

 int threads_minus_1;

 size_t *auxv;

 struct tls_module *tls_head;

 size_t tls_size, tls_align, tls_cnt;

 size_t page_size;

 struct __locale_struct global_locale;

};

Code snippet 4: The libc object

5

Lucie Mermod

struct tls_module {

 struct tls_module *next;

 void *image;

 size_t len, size, align, offset;

};

Code snippet 5: The tls_module object

Similarly, there is a __sysinfo object where the loader should store the value of the

AT_SYSINFO from the auxiliary vector, but this is ignored in 64 bits mode [6].

2.2.4 Observations

It is interesting to note that when Musl creates a thread, it sets up the TLS region at the top of

the stack. While this may be peculiar at first, it makes sense as the TLS region and the stack

are the only memory region specific to a thread, the text and data segment are shared with

all the other threads of the process. However, this could be a security concern as it makes the

reference stack canary stored in the TCB may be accessed by overflowing the stack.

⏟
DTV ⎵

tlsoffset2

⎵
tlsoffset1

… stack gen PM1 PM2 M2 M1 TCB

Figure 2: TLS region in Musl

3 Implementation
To fully handle TLS in the Fold architecture, I added four modules. The first one is not specific

to TLS nor to SystemV (hence placed in fold/src/) while the three others form a chain to

identify and process all TLS-related info in the ELF.

3.1 Musl

This first module has a simple purpose: locating the objects discussed in Section 2.2.3 (__libc

and __sysinfo) as they are needed when setting up the TCB (see Code snippet 3). Since these

objects need to be written to, the module cannot simply clone them and put them in the shared

memory, neither can it store mutable references. Hence, the module stores a small struct

indicating in which segment and at which offset the object is stored (see Code snippet 6).

pub struct MuslObjectIdx<T> {

 range: Range<usize>,

 segment: Handle<Segment>,

 data: PhantomData<T>,

}

Code snippet 6: Structure used to store the location of a Musl object

This structure then exposes two functions get and get_mut that return (mutable) references

to the underlying object. This way, any module that wants to access a Musl Object can do

so by first retrieving and cloning the MuslObjectIdx from the shared map, and then using it

to borrow part of the manifold’s struct. Under the hood, these functions uses the zerocopy

6

Lucie Mermod

crate[7] which allows to safely convert a &[u8] into a &T or a &mut [u8] into &mut T, and

vice-versa.

3.2 Collection

Now let’s look into the TLS-related modules. The role of TlsCollector is to identify all the

TLS modules and generate their metadata: Module ID and tlsoffset. For the former, it checks

whether the object containing the module is the initial ELF (using the new INITIAL_ELF_KEY

shared map entry) or uses a counter to generate new IDs otherwise. The formula to compute

the offset of a module is shown in Figure 3 (TLS specification §3.4.6[1]). The module then

stores a Vec containing all the TLS modules (Code snippet 7) into the manifold’s shared map,

as well as the individual elements in their respective object’s shared map.

pub struct TlsModule {

 pub id: usize,

 pub tls_offset: usize,

 pub object: Handle<Object>,

 pub segment: Handle<Segment>,

}

Code snippet 7: Output of the TlsCollector module

{tlsoffset1 = round(tls_size1, tls_align1)tlsoffset𝑛+1 = round(tlsoffset𝑛 + tls_size𝑛+1, tls_align𝑛+1)

with round(𝑥, 𝑦) ≝ 𝑦 ⋅ ⌈𝑥𝑦⌉
Figure 3: Computation of tlsoffset

3.3 Allocation

TODO: maybe split into TlsAllocation and TlsMusl

This module is the heart of the implementation of TLS. Its role is to allocate and initialize

the memory region that will store the TCB, DTV and all the modules (following Musl’s

implementation, all modules are statically allocated). It begins by allocating a new memory

region using mmap, then fills it according to Figure 4. It also updates the libc object with all the

data related to TLS; the tls_head list is constructed by this module and stored in the shared

map to be exposed to the runtime (see also Section 6).

⏟
DTV ⎵

tlsoffset2

⎵
tlsoffset1

gen PM1 PM2 pad M2 M1 TCB

Figure 4: Main thread’s TLS region in Fold

Particular care must be taken when computing the addresses, as each components have their

own alignment restriction: the TCB and DTV are aligned on 8 bytes, and each module may

request a specific alignment. To cover this, an optional padding region is added between the

DTV and the modules (see Figure 4), such that the DTV is at the start of a page, and the TCB

7

Lucie Mermod

can be aligned on the maximum alignment requirement of the TCB and all the modules. After

that, the tlsoffset formula (Figure 3) ensures that all the modules are properly aligned.

3.4 Relocation

This last modules processes all the TLS-related relocations found in the objects. It is separated

from SysvReloc, but it may be interesting to merge both for performance reasons; using

separate modules means that the relocations will be iterated over twice.

The relocations handled by TlsRelocator are:

• R_X86_64_TPOFF{32,64}: Offset of the symbol relative to the thread-pointer, i.e. tlsoffset

+ sym.value.

• R_X86_64_DTPMOD64: Module ID of the TLS module containing the symbol.

• R_X86_64_DTPOFF{32,64}: Offset of the symbol within its TLS module, i.e. sym.value.

• R_X86_64_GOTTPOFF, R_X86_64_TLSGD and R_X86_64_TLSLD are left unimplemented for now

as they require proper handling of the GOT, which is not yet implemented in Fold (see

Section 4.2)

4 Discussions

4.1 All static

As discussed in Section 2.2.1, Musl allocates all TLS modules statically upon program loading/

thread start. TLS specification allowed dynamic allocation such that if a thread does not

access a TLS module, then it would never get loaded for that specific thread. This would avoid

allocating the memory, copying the .tdata section and zeroing out the .tbss section, hence

reducing both memory usage and thread startup time cost.

However, when taking a closer look at the memory size of TLS modules (Appendix B), it is

clear that the optimization gained by dynamic allocation would likely be negligeable or could

even backfire. Due to the small size of the modules, all those possibly used by an executable

would likely fit into a single page with the TCB, hence rendering null the memory optimization

side. For the time performance, we must first observe that allowing dynamic allocation shifts

the cost from 𝑂(tls_size) to 𝑂(#tls_accesses) since it requires a check during each calls to

__tls_get_addr. GNU’s libc improves this by marking the check as likely to yield “allocated”

for branch prediction, but one may still wonder whether there is an actual gain with dynamic

allocation. This is however no the focus of this work.

4.2 Global Offset Table relocations

As said in Section 3.4, the relocations using the Global Offset Table (GOT) are not implemented

as Fold itself does not implement proper handling of the GOT. However, when I checked the

shared object present in my system, none used this relocation. This means all these librairies

(and thus probably GCC itself) instead creates the structure given to __tls_get_addr in place

instead of inside the GOT, which is technically not compliant with the specification. I was able

to observe the same on several alpine-based docker image, i.e. with librairies built with Musl’s

compiler.

8

Lucie Mermod

The command in Code snippet 8 prints the number of R_X86_64_GOTTPOFF occurring in all

the shared object of the system. Running it on the docker images alpine, alpine/ansible,

node:alpine and postgresql:alpine yields 0 occurrences.

find / -type f -name '*.so' -exec readelf -rW {} \; \

 | grep R_X86_64_GOTTPOFF \

 | wc -l

Code snippet 8: Count R_X86_64_GOTTPOFF in all the shared objects

I was not able to find a source for why this relocation was removed, but we can observe that

in the case of libcount-pic.so (see Section 5), the structure targeted by the R_X86_64_DTP*

relocation is located in the GOT, so it may be that as modern compilers generate themselves

the GOT for the shared object, the relocations to allocate/get the address of the GOT are not

necessary anymore.

5 State of the project
On top of all the existing samples (that still execute correctly), some new samples where added

to the project to test the different ways the loader has to interact with the TLS:

• hello-threaded is a standalone executable with two static thread-local variables, one

initialized (value) and one left uninitialized (id). The executable prints these values, then

assigns its id to id and print it again. The expected output is to have value always output as

its value set in the code, while id should first be 0 then hold the thread’s id. On top of that,

a count thread-local variable defined by another shared object (libcount.so) incremented

and printed. This is ran on 5 different threads.

• hello-threaded-pic is the same as hello-threaded, expect that count is now accessed

through an incr() function defined by the same object (now libcount-pic.so).

• hello-threaded-ext is similar to hello-threaded-pic except that incr() is defined in yet

another object (libcount-ext.so).

All these examples run without any issues, accessing the different values through various

means.

6 Future work
A lot of work is still needed for Fold and its default module chain to be usable in a real

environment. From the initial project[8], the processing of jump slot relocation is still the

outstanding one, along with the other missing relocations and optimizations proposed.

On top of that, while working on implementing TLS, I noticed that a pattern that may appear

in the development of new modules is the need to share some data (let it be actual code,

information or any other memory content) with the runtime. Currently this appears when

allocating the stack of the program in SysvStart and the TlsModule linked list in TlsAlloc

(Section 3.3), which are respectively stored in a Vec<u8> and the shared map of the manifold.

Especially for the TlsModule linked list, this means that if the entry was to be moved for any

reason, it would likely cause a crash once the runtime needs to access that struct. It could be

useful to have an object designed to persist some memory once the control is handed over to

the runtime. It should also be coupled with an allocator to allow using the existing primitives

in Rust such as Box or Vec.

9

Lucie Mermod

7 References
[1] U. Drepper, “ELF Handling For Thread-Local Storage.” [Online]. Available: https://www.

akkadia.org/drepper/tls.pdf

[2] “Musl libc.” [Online]. Available: https://musl.libc.org/

[3] Chao-tic, [Online]. Available: https://chao-tic.github.io/blog/2018/12/25/tls

[4] MaskRay, [Online]. Available: https://maskray.me/blog/2021-02-14-all-about-thread-

local-storage

[5] [Online]. Available: https://android.googlesource.com/platform/bionic/+/HEAD/docs/

elf-tls.md

[6] “x86-specific ELF Auxiliary Vectors.” [Online]. Available: https://www.kernel.org/doc/

html/next/x86/elf_auxvec.html

[7] [Online]. Available: https://docs.rs/zerocopy/0.8.31/zerocopy/

[8] L. Mermod and N. Terrier, [Online]. Available: https://github.com/epfl-dcsl/fold

10

https://www.akkadia.org/drepper/tls.pdf
https://www.akkadia.org/drepper/tls.pdf
https://musl.libc.org/
https://chao-tic.github.io/blog/2018/12/25/tls
https://maskray.me/blog/2021-02-14-all-about-thread-local-storage
https://maskray.me/blog/2021-02-14-all-about-thread-local-storage
https://android.googlesource.com/platform/bionic/+/HEAD/docs/elf-tls.md
https://android.googlesource.com/platform/bionic/+/HEAD/docs/elf-tls.md
https://www.kernel.org/doc/html/next/x86/elf_auxvec.html
https://www.kernel.org/doc/html/next/x86/elf_auxvec.html
https://docs.rs/zerocopy/0.8.31/zerocopy/
https://github.com/epfl-dcsl/fold

Lucie Mermod

A Musl’s TCB
struct pthread {

 /* Part 1 -- these fields may be external or

 * internal (accessed via asm) ABI. Do not change. */

 struct pthread *self;

#ifndef TLS_ABOVE_TP

 uintptr_t *dtv;

#endif

 struct pthread *prev, *next; /* non-ABI */

 uintptr_t sysinfo;

#ifndef TLS_ABOVE_TP

#ifdef CANARY_PAD

 uintptr_t canary_pad;

#endif

 uintptr_t canary;

#endif

 /* Part 2 -- implementation details, non-ABI. */

 int tid;

 int errno_val;

 volatile int detach_state;

 volatile int cancel;

 volatile unsigned char canceldisable, cancelasync;

 unsigned char tsd_used:1;

 unsigned char dlerror_flag:1;

 unsigned char *map_base;

 size_t map_size;

 void *stack;

 size_t stack_size;

 size_t guard_size;

 void *result;

 struct __ptcb *cancelbuf;

 void **tsd;

 struct {

 volatile void *volatile head;

 long off;

 volatile void *volatile pending;

 } robust_list;

 int h_errno_val;

 volatile int timer_id;

 locale_t locale;

 volatile int killlock[1];

 char *dlerror_buf;

 void *stdio_locks;

 /* Part 3 -- the positions of these fields relative to

 * the end of the structure is external and internal ABI. */

#ifdef TLS_ABOVE_TP

 uintptr_t canary;

 uintptr_t *dtv;

#endif

};

Code snippet 9: Musl’s Thread Control Block

11

Lucie Mermod

B TLS module sizes
Table 1 shows the size of the TLS modules of all the shared objects present in the alpine/

ansible:2.20.0 docker image. It was obtained by running the script in Code snippet 10 in

the image. The average for the size in the file (F) and the size in memory (M) is respectively

0.72 and 2.16 bytes, both means are at 0.

Object F M Object F M

_asyncio.cpython-312-x86_64.so 0 0 _bcrypt.cpython-312-x86_64.so 32 72

_bisect.cpython-312-x86_64.so 0 0 _blake2.cpython-312-x86_64.so 0 0

_bz2.cpython-312-x86_64.so 0 0 _cffi_backend.cpython-312-x86_64.so 0 4

_codecs_cn.cpython-312-x86_64.so 0 0 _codecs_hk.cpython-312-x86_64.so 0 0

_codecs_iso2022.cpython-312-x86_64.so 0 0 _codecs_jp.cpython-312-x86_64.so 0 0

_codecs_kr.cpython-312-x86_64.so 0 0 _codecs_tw.cpython-312-x86_64.so 0 0

_contextvars.cpython-312-x86_64.so 0 0 _crypt.cpython-312-x86_64.so 0 0

_csv.cpython-312-x86_64.so 0 0 _ctypes.cpython-312-x86_64.so 0 0

_ctypes_test.cpython-312-x86_64.so 0 0 _curses.cpython-312-x86_64.so 0 0

_curses_panel.cpython-312-x86_64.so 0 0 _datetime.cpython-312-x86_64.so 0 0

_dbm.cpython-312-x86_64.so 0 0 _decimal.cpython-312-x86_64.so 0 0

_elementtree.cpython-312-x86_64.so 0 0 _hashlib.cpython-312-x86_64.so 0 0

_heapq.cpython-312-x86_64.so 0 0 _json.cpython-312-x86_64.so 0 0

_lsprof.cpython-312-x86_64.so 0 0 _lzma.cpython-312-x86_64.so 0 0

_md5.cpython-312-x86_64.so 0 0 _multibytecodec.cpython-312-x86_64.so 0 0

_multiprocessing.cpython-312-x86_64.so 0 0 _opcode.cpython-312-x86_64.so 0 0

_pickle.cpython-312-x86_64.so 0 0 _posixshmem.cpython-312-x86_64.so 0 0

_posixsubprocess.cpython-312-x86_64.so 0 0 _queue.cpython-312-x86_64.so 0 0

_random.cpython-312-x86_64.so 0 0 _rust.abi3.so 32 96

_sha1.cpython-312-x86_64.so 0 0 _sha2.cpython-312-x86_64.so 0 0

_sha3.cpython-312-x86_64.so 0 0 _socket.cpython-312-x86_64.so 0 0

_sodium.abi3.so 0 0 _speedups.cpython-312-x86_64.so 0 0

_sqlite3.cpython-312-x86_64.so 0 0 _ssl.cpython-312-x86_64.so 0 0

_statistics.cpython-312-x86_64.so 0 0 _struct.cpython-312-x86_64.so 0 0

_testbuffer.cpython-312-x86_64.so 0 0 _testcapi.cpython-312-x86_64.so 0 0

_testclinic.cpython-312-x86_64.so 0 0 _testimportmultiple.cpython-312-x86_64.so 0 0

_testinternalcapi.cpython-312-x86_64.so 0 0 _testmultiphase.cpython-312-x86_64.so 0 0

_testsinglephase.cpython-312-x86_64.so 0 0 _xxinterpchannels.cpython-312-x86_64.so 0 0

_xxsubinterpreters.cpython-312-x86_64.so 0 0 _xxtestfuzz.cpython-312-x86_64.so 0 0

_yaml.cpython-312-x86_64.so 0 0 _zoneinfo.cpython-312-x86_64.so 0 0

afalg.so 0 0 array.cpython-312-x86_64.so 0 0

audioop.cpython-312-x86_64.so 0 0 binascii.cpython-312-x86_64.so 0 0

capi.so 0 0 cmath.cpython-312-x86_64.so 0 0

fcntl.cpython-312-x86_64.so 0 0 grp.cpython-312-x86_64.so 0 0

legacy.so 0 0 libbfd-2.45.1.so 0 20

12

Lucie Mermod

libdep.so 0 0 libopcodes-2.45.1.so 0 0

libpython3.so 0 0 loader_attic.so 0 0

math.cpython-312-x86_64.so 0 0 mmap.cpython-312-x86_64.so 0 0

ossaudiodev.cpython-312-x86_64.so 0 0 padlock.so 0 0

pyexpat.cpython-312-x86_64.so 0 0 readline.cpython-312-x86_64.so 0 0

resource.cpython-312-x86_64.so 0 0 select.cpython-312-x86_64.so 0 0

spwd.cpython-312-x86_64.so 0 0 syslog.cpython-312-x86_64.so 0 0

termios.cpython-312-x86_64.so 0 0 unicodedata.cpython-312-x86_64.so 0 0

xxlimited.cpython-312-x86_64.so 0 0 xxlimited_35.cpython-312-x86_64.so 0 0

xxsubtype.cpython-312-x86_64.so 0 0 zlib.cpython-312-x86_64.so 0 0

Table 1: TLS module sizes in alpine/ansible:2.20.0

,

#!/bin/bash

if ! command -v readelf &> /dev/null; then

 echo "Missing readelf in PATH"

 exit 1

fi

get-segment-field() {

 readelf -lW $1 2> /dev/null | grep TLS | xargs echo | cut -d ' ' -f $2

}

for file in $(find / -type f -name '*.so'); do

 fs=$(($(get-segment-field $file 5)))

 ms=$(($(get-segment-field $file 6)))

 fs=${fs:-0}

 ms=${ms:-0}

 echo $file,$fs,$ms

done

Code snippet 10: Measure TLS module sizes of all shared object in the system

13

	Abstract
	1 Motivation
	2 Background
	2.1 Thread Local Storage
	2.2 Musl's implementation
	2.2.1 Module allocation
	2.2.2 Thread Control Block
	2.2.3 The libc object
	2.2.4 Observations

	3 Implementation
	3.1 Musl
	3.2 Collection
	3.3 Allocation
	3.4 Relocation

	4 Discussions
	4.1 All static
	4.2 Global Offset Table relocations

	5 State of the project
	6 Future work
	7 References
	A Musl's TCB
	B TLS module sizes

