Thread Local Storage in the Fold
Framework

by

Lucie Mermod

Abstract

Fold is a framework to create Rust-based (dynamic) linkers, offering simple tools to
design and implement new linkers. This work aims to implement fully featured Thread
Local Storage support which was lacking in Fold’s first implementation.

Date: December 2025

Lucie Mermod

Contents
A S aCt .. 1
B LY o) 7 1 (o) o 2
2 Background ... 2
2.1 Thread Local Storageo 2
2.2 Musl's implementationoooiiii e 4
2.2.1 Module allocation 4
2.2.2 Thread Control Block i 4
2.2.3 The 1ibc objectooii e 5
2.2.4 ODSEIVALIONS ...\ttt ettt et ettt et e et 6
3 IMPlementationoiite ettt e 6
Bl MUSL .o 6
3.2 ColleCtion . ..ot 7
3.3 ALlOCAtION ...\ 7
3.4 RelOCAtionN ..ottt 8
O I T ot b 33 (o) U3 8
4.1 ALl StatiC ..o 8
4.2 Global Offset Table relocationscooiiiiiiiiiii i 8
5 State of the projectoooo i 9
6 FUtUre WOTK ... e 9
T REIETEIICESttt e 10
A MUSEUS TCB ..o e 11
B TLS mModule SIZES\ttt e e e 12

Lucie Mermod

1 Motivation

Most of nowadays applications rely on multi-threading to efficiently achieve their goal, e.g. by
processing data through streaming pipelines or by dispatching different tasks accross threads.
This means that for any loader aiming at being usable in a real environment, it must provide
an API adequate for multi-threading.

Luckily, there exists since 2002 a specification describing how ELF should store thread-related
data, and how loaders need to handle it [1]. This document concerns many architectures other
than x86 64, so I will summarize the relevant parts Section 2.1.

2 Background

Before diving into how Fold implements Thread Local Storage (TLS), we first need to take a
look at what it is exactly, as well as how Musl’s standard library [2] interacts with it. I would
like to thank Chao-tic [3], MaskRay [4] and the Android developpers [5] for their blogs which
helped a lot in understanding how TLS works.

2.1 Thread Local Storage

Thread Local Storage (TLS in short) is the in-memory data structure holding all the data which
is unique to a thread, i.e. the Thread Control Block (TCB) and all static variables denoted with
__thread local, whether they are defined in the executable’s ELF or in any of the shared
objects it depends on.

Each ELF object can contain at most one segment marked with PT_TLS, indicating that this
segment should be loaded as part of the TLS structure. Such segment is called a TLS module
and is characterized, as all segments, with its offset in the file, size in the file, size in the
memory, etc. If the size in memory is larger than the size in the file, the remaining bytes should
be zeroed out when the module is loaded. This segment is usually split into two sections,
named . tdata and .tbss, analogous to the .data and .bss sections.

The TLS specification [1] describes two memory layouts to hold the TLS, but we will focus on
the second variant as it is the one used in x86_64. The figure below gives an overall view of
the structure:

r!.s:g..r‘}h‘r.r; soffser, isoffser, I TL3 Blocks for
- “ I

* * * * TCB Dynamically—loaded modules
NN\
N N—

!
|

l l l l l |

oen dmne drv dr div drv
P

rd r2 r3 4 L3

dtv
!

Figure 1: TLS in-memory layout in x86_64

There are four main components:

Lucie Mermod

« Thread control block (TCB): holds thread-specific information such as the Thread Identifier
(TID), stack canary, etc. It also contains a pointer to the DTV (below).

« Static modules (at tlsoffset,): TLS modules which are loaded at load-time or during thread
creation.

« Dynamic modules: TLS modules which are loaded only when the thread attempts to access
memory within them.

« Dynamic Thread Vector (DTV): stores a pointer to each loaded modules, as well as a gener-
ation number used when library are dynamically loaded at run-time (using dlopen).

When creating the TLS, the loader must identify all the TLS modules across the executable
and its dependencies, and assign a Module ID to each of them. IDs starts at 1, which is reserved
for the executable’s TLS module, if any. Other modules can technically be assigned with any
IDs, although for practical reasons the loader will usually simply count from 2.

There are two reasons for the existence of dynamic modules. First, it makes the implemen-
tation of dlopen() and related functions much easier and safer as they are allowed to place
the TLS modules of the new objects anywhere in the address space, and not specifically before
the existing modules (this could result in clashing with another existing memory mapping).
Also, some modules could be ignore by some threads and loading them would be a waste of
time and memory, hence the posssibilty to defer this allocation when the module is actuall
accessed (see Code snippet 1 in General Dynamic accesses below).

When a thread wants to access a variable from a TLS module, it can proceed with different
methods, by decreasing genericity:

+ General Dynamic: Using different relocations, the loader will allocate a struct in the GOT
to store the Module ID and Offset of variable within the module, which the runtime will then
passtothe tls get addr(uintptr t[2]) function which will return the actual address of
the variable. This function should be provided by the loader itself. A naive implementation
would look like this:

void* tls get addr(uintptr t[2] req) {
// Allocate the module with id req[0]
if (tcb->dtv[req[0]] == NULL) {
allocate tls module(reql[0]);
}

return tcb->dtv[req[0]] + reql[l];
}

Code snippet 1: simple _ tls get addr implementation

+ Local Dynamic: If the code accessing the variable is from the same object as the TLS module
requested, then it may call the tls get addr() function and pass an offset of 0 to get
the address of the TLS module, and the compiler can add the offset itself since it would be
known at compile time. This method is only interseting if the program accesses multiple
thread-local variables, as it reduces to one the number of callsto tls get addr().

« If the module is statically loaded, then the program can access the variable by offsetting the
thread pointer. To do so, it can either:
» Initial-Exec: Request the loader to generate a GOT entry to store the offset

Lucie Mermod

» Local-Exec: Produce a relocation asking the loader to directly write the offset into the
code.

Note that the specification states that Local-Exec cannot be used from a shared object, but I
did not understand why this restriction exists.

It is unclear who, between the programmer, compiler or loader, decides which module should
be statically loaded. While a DF_STATIC TLS flag exists in the Dynamic Table, I found that
it is not produced by compilers and cannot be the sole decider whether the modules should
be static as this decision also depends on how other objects access it (which is obviously not
known when the compiler generates the shared object). From my understanding, any module
may be static except for those accessed through the R_X86_64 TPOFF32 andR_X86_64 TPOFF64
(used in Initial-Exec and Local-Exec) which have to be static. Those considerations taken into
account, the loader is free to choose whether to allocate dynamically or not the other modules.

2.2 Musl’s implementation

Knowing the fundamentals of Thread Local Storage, let’s now take a look at the implemen-
tation details of Musl.

2.2.1 Module allocation

The first observation to be made is that Musl provides itself an implementation for
__tls get addr (Code snippet 2) which simply indexes the dtv array, meaning that all
TLS modules are statically allocated. This greatly simplifies to process of allocating the TLS
modules, but also increases the overhead of loading the ELF and creating new threads. See
also Section 4.1.

void * tls get addr(tls mod off t *v)

{
pthread t self = pthread self();

return (void *)(self->dtv[v[0]] + v[1]);
}
Code snippet 2: Musl’s implementation of tls get addr

2.2.2 Thread Control Block

On top of the Thread Control Block specified in the ABI (todo: ref wanted), Musl augments
it with quite a lot of fields, as shown in Code snippet 9 of Appendix A. Luckily, a lot of these
fields are handled by Musl’s runtime and should be initialized to 0; and the function _init tp
(Code snippet 3) shows us which fields should be initialized and how.

Lucie Mermod

int init tp(void *p)
{
pthread t td = p;
td->self = td;
int r = set thread area(TP_ADJ(p));
if (r < 0) return -1;
if (!'r) libc.can_do threads = 1;
td->detach state = DT JOINABLE;
td->tid = syscall(SYS set tid address, & thread list lock);
td->locale = &libc.global locale;
td->robust list.head = &td->robust list.head;

td->sysinfo = sysinfo;
td->next = td->prev = td;
return 0;

Code snippet 3: _init tp

2.2.3 The libc object

When inspecting the init tp function (Code snippet 3), we encounter a rather peculiar
object called 1ibc (Code snippet 4). It is a global variable in the Musl library that stores general
informations about the runtime. Here, we will focus on the thread-related fields which are for

the most part quite simple.

can_do_threads: Whether the TLS was correctly initialized. Needs to be set to 1 in order
for the thrd create function to succeed

threaded: Handled by Musl upon first call of thrd_create, indicates whether the library
has initialized its thread-related components.
threads_minus_1: Number of threads running, minus 1.

tls head: A linked list of tls module (Code snippet 5) objects. This list is used to create
the TLS region when an new thread is insantiated. It must be ordered according to the
Module IDs.

tls size: Total size in bytes of the TLS region, ergo size of the TCB, all the modules
(remember that they are all statically loaded) and the padding, if needed.

tls_align: The alignement restriction for the TLS region, which is the maximum of all the
align fields of the TLS modules and the alignement of the TCB itself.

tls cnt: Number of TLS modules.

struct libc {
char can do threads;
char threaded;
char secure;
volatile signed char need locks;
int threads minus 1;
size t *auxv;
struct tls module *tls head;
size t tls size, tls align, tls cnt;
size t page size;
struct _ locale struct global locale;

Code snippet 4: The libc object

Lucie Mermod

struct tls module {

struct tls module *next;

void *image;

size t len, size, align, offset;
b
Code snippet 5: The t1s_module object

Similarly, there is a _ sysinfo object where the loader should store the value of the
AT_SYSINFO from the auxiliary vector, but this is ignored in 64 bits mode [6].

2.2.4 Observations

It is interesting to note that when Musl creates a thread, it sets up the TLS region at the top of
the stack. While this may be peculiar at first, it makes sense as the TLS region and the stack
are the only memory region specific to a thread, the text and data segment are shared with
all the other threads of the process. However, this could be a security concern as it makes the
reference stack canary stored in the TCB may be accessed by overflowing the stack.

v [T~

... stack | gen | PM1 | PM2 M2 M1 TCB

DTV , tlsoffset,
tlsoffset,

Figure 2: TLS region in Musl

3 Implementation

To fully handle TLS in the Fold architecture, I added four modules. The first one is not specific
to TLS nor to SystemV (hence placed in fold/src/) while the three others form a chain to
identify and process all TLS-related info in the ELF.

3.1 Musl

This first module has a simple purpose: locating the objects discussed in Section 2.2.3 (__ libc
and sysinfo) as they are needed when setting up the TCB (see Code snippet 3). Since these
objects need to be written to, the module cannot simply clone them and put them in the shared
memory, neither can it store mutable references. Hence, the module stores a small struct
indicating in which segment and at which offset the object is stored (see Code snippet 6).

pub struct MuslObjectIdx<T> {
range: Range<usize>,
segment: Handle<Segment>,
data: PhantomData<T>,

}

Code snippet 6: Structure used to store the location of a Musl object

This structure then exposes two functions get and get mut that return (mutable) references
to the underlying object. This way, any module that wants to access a Musl Object can do
so by first retrieving and cloning the Mus10bjectIdx from the shared map, and then using it
to borrow part of the manifold’s struct. Under the hood, these functions uses the zerocopy

Lucie Mermod

crate[7] which allows to safely convert a &[u8] into a &T or a &mut [u8] into &mut T, and
vice-versa.

3.2 Collection

Now let’s look into the TLS-related modules. The role of TlsCollector is to identify all the
TLS modules and generate their metadata: Module ID and tlsoffset. For the former, it checks
whether the object containing the module is the initial ELF (using the new INITIAL ELF KEY
shared map entry) or uses a counter to generate new IDs otherwise. The formula to compute
the offset of a module is shown in Figure 3 (TLS specification §3.4.6[1]). The module then
stores a Vec containing all the TLS modules (Code snippet 7) into the manifold’s shared map,
as well as the individual elements in their respective object’s shared map.

pub struct TlsModule {
pub id: usize,
pub tls offset: usize,
pub object: Handle<Object>,
pub segment: Handle<Segment>,

}
Code snippet 7: Output of the TlsCollector module

tlsoffset; = round(tls_size,, tls_align,)
tlsoffset,,,; = round(tlsoffset,, + tls size, ,,tls align ;)

with round(z,y) £ y - {%—‘
Figure 3: Computation of tlsoffset

3.3 Allocation
TODO: maybe split into TlsAllocation and TlsMusl

This module is the heart of the implementation of TLS. Its role is to allocate and initialize
the memory region that will store the TCB, DTV and all the modules (following Musl’s
implementation, all modules are statically allocated). It begins by allocating a new memory
region using mmap, then fills it according to Figure 4. It also updates the 1ibc object with all the
data related to TLS; the t1s_head list is constructed by this module and stored in the shared
map to be exposed to the runtime (see also Section 6).

| [y v

gen | PM1 [PM2 | pad M2 M1 TCB

DTV , tlsoffset,
tlsoffset,

Figure 4: Main thread’s TLS region in Fold

Particular care must be taken when computing the addresses, as each components have their
own alignment restriction: the TCB and DTV are aligned on 8 bytes, and each module may
request a specific alignment. To cover this, an optional padding region is added between the
DTV and the modules (see Figure 4), such that the DTV is at the start of a page, and the TCB

Lucie Mermod

can be aligned on the maximum alignment requirement of the TCB and all the modules. After
that, the tlsoffset formula (Figure 3) ensures that all the modules are properly aligned.

3.4 Relocation

This last modules processes all the TLS-related relocations found in the objects. It is separated
from SysvReloc, but it may be interesting to merge both for performance reasons; using
separate modules means that the relocations will be iterated over twice.

The relocations handled by TlsRelocator are:

« R X86 64 TPOFF{32,64}: Offset of the symbol relative to the thread-pointer, i.e. tlsoffset
+ sym.value.

« R _X86_64 DTPMOD64: Module ID of the TLS module containing the symbol.

+ R X86 64 DTPOFF{32,64}: Offset of the symbol within its TLS module, i.e. sym.value.

+ R X86 64 GOTTPOFF,R X86 64 TLSGD andR X86 64 TLSLD are left unimplemented for now
as they require proper handling of the GOT, which is not yet implemented in Fold (see
Section 4.2)

4 Discussions

4.1 All static

As discussed in Section 2.2.1, Musl allocates all TLS modules statically upon program loading/
thread start. TLS specification allowed dynamic allocation such that if a thread does not
access a TLS module, then it would never get loaded for that specific thread. This would avoid
allocating the memory, copying the .tdata section and zeroing out the .tbss section, hence
reducing both memory usage and thread startup time cost.

However, when taking a closer look at the memory size of TLS modules (Appendix B), it is
clear that the optimization gained by dynamic allocation would likely be negligeable or could
even backfire. Due to the small size of the modules, all those possibly used by an executable
would likely fit into a single page with the TCB, hence rendering null the memory optimization
side. For the time performance, we must first observe that allowing dynamic allocation shifts
the cost from O(tls_size) to O(#tls_accesses) since it requires a check during each calls to
__tls get addr. GNU’s libc improves this by marking the check as likely to yield “allocated”
for branch prediction, but one may still wonder whether there is an actual gain with dynamic
allocation. This is however no the focus of this work.

4.2 Global Offset Table relocations

As said in Section 3.4, the relocations using the Global Offset Table (GOT) are not implemented
as Fold itself does not implement proper handling of the GOT. However, when I checked the
shared object present in my system, none used this relocation. This means all these librairies
(and thus probably GCC itself) instead creates the structure given to _ tls get addr in place
instead of inside the GOT, which is technically not compliant with the specification. I was able
to observe the same on several alpine-based docker image, i.e. with librairies built with Musl’s
compiler.

Lucie Mermod

The command in Code snippet 8 prints the number of R_X86 64 GOTTPOFF occurring in all
the shared object of the system. Running it on the docker images alpine, alpine/ansible,
node:alpine and postgresql:alpine yields 0 occurrences.

find / -type f -name '*.so' -exec readelf -rW {} \; \
| grep R _X86 64 GOTTPOFF \
| wc -1
Code snippet 8: Count R_X86 64 GOTTPOFF in all the shared objects

I was not able to find a source for why this relocation was removed, but we can observe that
in the case of libcount-pic.so (see Section 5), the structure targeted by the R_X86 64 DTP*
relocation is located in the GOT, so it may be that as modern compilers generate themselves
the GOT for the shared object, the relocations to allocate/get the address of the GOT are not
necessary anymore.

5 State of the project

On top of all the existing samples (that still execute correctly), some new samples where added

to the project to test the different ways the loader has to interact with the TLS:

« hello-threaded is a standalone executable with two static thread-local variables, one
initialized (value) and one left uninitialized (id). The executable prints these values, then
assigns its id to id and print it again. The expected output is to have value always output as
its value set in the code, while id should first be 0 then hold the thread’s id. On top of that,
a count thread-local variable defined by another shared object (Libcount.so) incremented
and printed. This is ran on 5 different threads.

« hello-threaded-pic is the same as hello-threaded, expect that count is now accessed
through an incr() function defined by the same object (now libcount-pic.so).

« hello-threaded-ext is similar to hello-threaded-pic except that incr() is defined in yet
another object (Libcount-ext.so).

All these examples run without any issues, accessing the different values through various
means.

6 Future work

A lot of work is still needed for Fold and its default module chain to be usable in a real
environment. From the initial project[8], the processing of jump slot relocation is still the
outstanding one, along with the other missing relocations and optimizations proposed.

On top of that, while working on implementing TLS, I noticed that a pattern that may appear
in the development of new modules is the need to share some data (let it be actual code,
information or any other memory content) with the runtime. Currently this appears when
allocating the stack of the program in SysvStart and the TlsModule linked list in TlsAlloc
(Section 3.3), which are respectively stored in a Vec<u8> and the shared map of the manifold.
Especially for the TlsModule linked list, this means that if the entry was to be moved for any
reason, it would likely cause a crash once the runtime needs to access that struct. It could be
useful to have an object designed to persist some memory once the control is handed over to
the runtime. It should also be coupled with an allocator to allow using the existing primitives
in Rust such as Box or Vec.

Lucie Mermod

7 References

[1]

[7]
8]

U. Drepper, “ELF Handling For Thread-Local Storage.” [Online]. Available: https://www.
akkadia.org/drepper/tls.pdf

“Musl libe” [Online]. Available: https://musl.libc.org/
Chao-tic, [Online]. Available: https://chao-tic.github.io/blog/2018/12/25/tls

MaskRay, [Online]. Available: https://maskray.me/blog/2021-02-14-all-about-thread-
local-storage

[Online]. Available: https://android.googlesource.com/platform/bionic/+/HEAD/docs/
elf-tls.md

“x86-specific ELF Auxiliary Vectors” [Online]. Available: https://www.kernel.org/doc/
html/next/x86/elf _auxvec.html

[Online]. Available: https://docs.rs/zerocopy/0.8.31/zerocopy/
L. Mermod and N. Terrier, [Online]. Available: https://github.com/epfl-dcsl/fold

10

https://www.akkadia.org/drepper/tls.pdf
https://www.akkadia.org/drepper/tls.pdf
https://musl.libc.org/
https://chao-tic.github.io/blog/2018/12/25/tls
https://maskray.me/blog/2021-02-14-all-about-thread-local-storage
https://maskray.me/blog/2021-02-14-all-about-thread-local-storage
https://android.googlesource.com/platform/bionic/+/HEAD/docs/elf-tls.md
https://android.googlesource.com/platform/bionic/+/HEAD/docs/elf-tls.md
https://www.kernel.org/doc/html/next/x86/elf_auxvec.html
https://www.kernel.org/doc/html/next/x86/elf_auxvec.html
https://docs.rs/zerocopy/0.8.31/zerocopy/
https://github.com/epfl-dcsl/fold

Lucie Mermod

A Musl’s TCB
struct pthread {
/* Part 1 -- these fields may be external or

* internal (accessed via asm) ABI. Do not change. */
struct pthread *self;
#ifndef TLS ABOVE TP
uintptr_ t *dtv;
#endif
struct pthread *prev, *next; /* non-ABI */
uintptr t sysinfo;
#ifndef TLS ABOVE_TP
#ifdef CANARY_ PAD
uintptr_t canary pad;

#endif
uintptr_t canary;

#endif
/* Part 2 -- implementation details, non-ABI. */
int tid;

int errno_val;
volatile int detach state;
volatile int cancel;
volatile unsigned char canceldisable, cancelasync;
unsigned char tsd used:1;
unsigned char dlerror flag:1;
unsigned char *map base;
size t map_size;
void *stack;
size t stack size;
size t guard size;
void *result;
struct _ ptcb *cancelbuf;
void **tsd;
struct {
volatile void *volatile head;
long off;
volatile void *volatile pending;
} robust list;
int h_errno val;
volatile int timer id;
locale t locale;
volatile int killlock[1];
char *dlerror_buf;
void *stdio locks;

/* Part 3 -- the positions of these fields relative to
* the end of the structure is external and internal ABI. */

#ifdef TLS ABOVE TP

uintptr t canary;

uintptr t *dtv;
#endif
}i

Code snippet 9: Musl’s Thread Control Block

11

Lucie Mermod

B TLS module sizes

Table 1 shows the size of the TLS modules of all the shared objects present in the alpine/
ansible:2.20.0 docker image. It was obtained by running the script in Code snippet 10 in
the image. The average for the size in the file (F) and the size in memory (M) is respectively

0.72 and 2.16 bytes, both means are at 0.

Object FIM Object F|M
_asyncio.cpython-312-x86_64.s0 0fo _berypt.cpython-312-x86_64.s0 32172
_bisect.cpython-312-x86_64.s0 0fo0 _blake2.cpython-312-x86_64.s0 00
_bz2.cpython-312-x86_64.s0 0o _cffi_backend.cpython-312-x86_64.so0 0| 4
_codecs_cn.cpython-312-x86_64.s0 0o _codecs_hk.cpython-312-x86_64.s0 010
_codecs_is02022.cpython-312-x86_64.so | 0 | 0 _codecs_jp.cpython-312-x86_64.s0 00O
_codecs_kr.cpython-312-x86_64.s0 0o _codecs_tw.cpython-312-x86_64.s0 010
_contextvars.cpython-312-x86_64.so0 0O _crypt.cpython-312-x86_64.s0 0O
_csv.cpython-312-x86_64.s0 0fo _ctypes.cpython-312-x86_64.so 00O
_ctypes_test.cpython-312-x86_64.s0 0O _curses.cpython-312-x86_64.s0 0O
_curses_panel.cpython-312-x86_64.s0 0o _datetime.cpython-312-x86_64.so 0o
_dbm.cpython-312-x86_64.so 0o _decimal.cpython-312-x86_64.s0 0o
_elementtree.cpython-312-x86_64.s0 0fo _hashlib.cpython-312-x86_64.so 00O
_heapq.cpython-312-x86_64.s0 0fo _json.cpython-312-x86_64.so 00
_Isprof.cpython-312-x86_64.s0 0fo _lzma.cpython-312-x86_64.s0 00
_md5.cpython-312-x86_64.s0 0fo0 _multibytecodec.cpython-312-x86_64.s0 0o
_multiprocessing.cpython-312-x86_64.s0 | 0 | 0 _opcode.cpython-312-x86_64.s0 0]0
_pickle.cpython-312-x86_64.s0 0o _posixshmem.cpython-312-x86_64.s0 0]0
_posixsubprocess.cpython-312-x86_64.s0 | 0 | 0 _queue.cpython-312-x86_64.s0 0o
_random.cpython-312-x86_64.s0 0o _rust.abi3.so 32 | 96
_shal.cpython-312-x86_64.s0 0fo _sha2.cpython-312-x86_64.so0 00O
_sha3.cpython-312-x86_64.s0 0fo _socket.cpython-312-x86_64.s0 00O
_sodium.abi3.so 0fo _speedups.cpython-312-x86_64.s0 0o
_sqlite3.cpython-312-x86_64.so 0o _ssl.cpython-312-x86_64.so 0o
_statistics.cpython-312-x86_64.s0 0fo _struct.cpython-312-x86_64.s0 00
_testbuffer.cpython-312-x86_64.s0 0fo _testcapi.cpython-312-x86_64.s0 00
_testclinic.cpython-312-x86_64.s0 0 [0 | _testimportmultiple.cpython-312-x86_64.s0 | 0 | 0
_testinternalcapi.cpython-312-x86_64.so | 0 | 0 _testmultiphase.cpython-312-x86_64.s0 00O
_testsinglephase.cpython-312-x86_64.so | 0 | 0 | _xxinterpchannels.cpython-312-x86_64.so | 0 | 0
_xxsubinterpreters.cpython-312-x86_64.so [0 [0 _xxtestfuzz.cpython-312-x86_64.s0 0]0
_yaml.cpython-312-x86_64.s0 0fo _zoneinfo.cpython-312-x86_64.s0 0o
afalg.so 0fo array.cpython-312-x86_64.so 00
audioop.cpython-312-x86_64.s0 0fo binascii.cpython-312-x86_64.so 00O
capi.so 0fo cmath.cpython-312-x86_64.so0 0o
fentl.cpython-312-x86_64.s0 0fo grp.cpython-312-x86_64.s0 0o
legacy.so 0fo libbfd-2.45.1.s0 0120

12

Lucie Mermod

libdep.so libopcodes-2.45.1.s0

libpython3.so loader_attic.so

math.cpython-312-x86_64.so0 mmap.cpython-312-x86_64.so

ossaudiodev.cpython-312-x86_64.s0 padlock.so

pyexpat.cpython-312-x86_64.so readline.cpython-312-x86_64.s0

resource.cpython-312-x86_64.so select.cpython-312-x86_64.s0

spwd.cpython-312-x86_64.s0 syslog.cpython-312-x86_64.s0

termios.cpython-312-x86_64.so unicodedata.cpython-312-x86_64.so

xxlimited.cpython-312-x86_64.s0 xxlimited_35.cpython-312-x86_64.s0

[=1 Bl Nell Hell =N E=N K= =k Ny i)
[=1 el Nl Nl RoX K= E=1 =l Ny)
[=1 el Nl Nl RoX E=N E=1 =l il)
Slo ||| |c|lo|lo|lo o

xxsubtype.cpython-312-x86_64.s0 zlib.cpython-312-x86_64.s0

Table 1: TLS module sizes in alpine/ansible:2.20.0

#!/bin/bash

if ! command -v readelf &> /dev/null; then
echo "Missing readelf in PATH"
exit 1

fi

get-segment-field() {
readelf -1W $1 2> /dev/null | grep TLS | xargs echo | cut -d ' ' -f $2
}

for file in $(find / -type f -name '*.so0'); do
fs=$(($(get-segment-field $file 5)))
ms=$(($(get-segment-field $file 6)))

fs=${fs:-0}
ms=${ms:-0}

echo $file,$fs, $ms
done

Code snippet 10: Measure TLS module sizes of all shared object in the system

13

	Abstract
	1 Motivation
	2 Background
	2.1 Thread Local Storage
	2.2 Musl's implementation
	2.2.1 Module allocation
	2.2.2 Thread Control Block
	2.2.3 The libc object
	2.2.4 Observations

	3 Implementation
	3.1 Musl
	3.2 Collection
	3.3 Allocation
	3.4 Relocation

	4 Discussions
	4.1 All static
	4.2 Global Offset Table relocations

	5 State of the project
	6 Future work
	7 References
	A Musl's TCB
	B TLS module sizes

