
Proposal: Client-Side Real-Time Voice

Transformation using JUCE

1 Introduction

This proposal describes a client-side architecture for real-time voice transformation for

Resonate. The goal is to allow speakers to select from predefined voice styles while main-

taining low latency, strong privacy guarantees, and cross-platform consistency. All audio

processing is performed locally on the device, and only processed audio is transmitted

over the network.

2 Objectives

The primary objectives of this proposal are:

• Enable predefined, selectable voice styles for speakers.

• Perform all voice transformation on-device.

• Avoid server-side audio processing or storage.

• Maintain real-time performance suitable for live audio rooms.

• Share DSP logic across Android and iOS using C++.

• Integrate seamlessly with an existing Flutter + LiveKit codebase.

3 Design Principles

• Client-side processing: All DSP runs locally on the device.

• Privacy-first: Raw microphone audio never leaves the device.

• Low latency: Processing must meet real-time constraints.

1



4 High-Level Architecture

The system consists of four layers:

1. Flutter UI Layer — voice selection and preview controls.

2. Native Audio Capture Layer — microphone input (iOS / Android).

3. JUCE DSP Engine (C++) — real-time voice transformation.

4. LiveKit Transport Layer — customizing to take the processed DSP input.

5 Correct Audio Flow

Audio flows directly from the microphone to the DSP engine before being published:

Microphone Input
Native OS APIs
(Swift / Kotlin)

JUCE DSP Engine
Real-time Voice Processing

(C++)

LiveKit AudioTrack
Encoding & Transport

Network Delivery
WebRTC

Figure 1: Client-side real-time voice processing and transport flow

2



6 Repository Integration

6.1 Flutter Layer

Flutter is responsible only for UI and control signals.

lib/

services/

voice_engine_channel.dart

Flutter communicates with native code using platform channels.

6.2 Shared JUCE DSP Engine

All DSP logic is implemented once using JUCE and shared across platforms.

/dsp/

voice_engine/

|- VoiceEngine.h

|- VoiceEngine.cpp

|- VoiceProfiles.h

6.3 Android Integration

JUCE is compiled using the Android NDK and accessed via JNI.

android/app/src/main/

cpp/

|- voice_engine/

|- VoiceEngineJNI.cpp

kotlin/

|- VoiceEnginePlugin.kt

6.4 iOS Integration

JUCE is compiled as a static library and linked using Objective-C++.

ios/Runner/

|- VoiceEngineWrapper.mm

|- VoiceEngineWrapper.h

Native layers handle:

• Microphone capture

• Calling JUCE DSP

• Publishing processed audio to LiveKit

• Receiving Flutter control commands

3



7 Preview Mode

Preview mode allows users to test voice styles locally:

• Audio is captured from the microphone.

• JUCE DSP applies the selected voice profile.

• Audio is played back locally.

• No data is transmitted or stored.

8 Performance Considerations

The DSP engine is designed to be real-time safe:

• No dynamic memory allocation in the audio thread.

• Fixed-size audio buffers.

• JUCE DSP overhead is approximately 1–5% CPU.

• No additional latency introduced by the DSP layer.

9 Security and Privacy

• Raw microphone audio is never transmitted.

• Voice transformation is user-controlled and optional.

• No server-side voice modification occurs.

4


	Introduction
	Objectives
	Design Principles
	High-Level Architecture
	Correct Audio Flow
	Repository Integration
	Flutter Layer
	Shared JUCE DSP Engine
	Android Integration
	iOS Integration

	Preview Mode
	Performance Considerations
	Security and Privacy

