Proposal: Client-Side Real-Time Voice
Transformation using JUCE

1 Introduction

This proposal describes a client-side architecture for real-time voice transformation for
Resonate. The goal is to allow speakers to select from predefined voice styles while main-
taining low latency, strong privacy guarantees, and cross-platform consistency. All audio
processing is performed locally on the device, and only processed audio is transmitted
over the network.

2 Objectives

The primary objectives of this proposal are:

Enable predefined, selectable voice styles for speakers.

Perform all voice transformation on-device.

Avoid server-side audio processing or storage.

Maintain real-time performance suitable for live audio rooms.

Share DSP logic across Android and iOS using C++-.

Integrate seamlessly with an existing Flutter + LiveKit codebase.

3 Design Principles
e Client-side processing: All DSP runs locally on the device.
e Privacy-first: Raw microphone audio never leaves the device.

e Low latency: Processing must meet real-time constraints.



4 High-Level Architectur

The system consists of four layers:

e

Native Audio Capture Layer — microphone input (i0OS / Android).

-time voice transformation.

1. Flutter Ul Layer — voice selection and preview controls.
2.

3. JUCE DSP Engine (C++) — real

4.

5 Correct Audio Flow

Audio flows directly from the microphone to the DSP engine before being published:

LiveKit Transport Layer — customizing to take the processed DSP input.

(Swift /

Microphone Input
Native OS APIs

Kotlin)

~

-

JUCE DSP Engine
Real-time Voice Processing
(C++)

~

-

LiveKit A

Encoding & Transport

udioTrack

|

~

-

Network

|

WebRTC

Delivery

|

Figure 1: Client-side real-time voice processing and transport flow



6 Repository Integration

6.1 Flutter Layer

Flutter is responsible only for UI and control signals.

1ib/
services/

voice_engine_channel.dart

Flutter communicates with native code using platform channels.

6.2 Shared JUCE DSP Engine
All DSP logic is implemented once using JUCE and shared across platforms.

/dsp/
voice_engine/
|- VoiceEngine.h
|- VoiceEngine.cpp

| - VoiceProfiles.h

6.3 Android Integration
JUCE is compiled using the Android NDK and accessed via JNI.

android/app/src/main/
cpp/
|- voice_engine/
|- VoiceEngineJNI.cpp
kotlin/
|- VoiceEnginePlugin.kt

6.4 i0OS Integration

JUCE is compiled as a static library and linked using Objective-C++.

ios/Runner/
|- VoiceEngineWrapper.mm

|- VoiceEngineWrapper.h

Native layers handle:

Microphone capture

Calling JUCE DSP

Publishing processed audio to LiveKit

Receiving Flutter control commands



7 Preview Mode

Preview mode allows users to test voice styles locally:
e Audio is captured from the microphone.
e JUCE DSP applies the selected voice profile.
e Audio is played back locally.

e No data is transmitted or stored.

8 Performance Considerations

The DSP engine is designed to be real-time safe:
e No dynamic memory allocation in the audio thread.
e Fixed-size audio buffers.
e JUCE DSP overhead is approximately 1-5% CPU.

e No additional latency introduced by the DSP layer.

9 Security and Privacy
e Raw microphone audio is never transmitted.
e Voice transformation is user-controlled and optional.

e No server-side voice modification occurs.



	Introduction
	Objectives
	Design Principles
	High-Level Architecture
	Correct Audio Flow
	Repository Integration
	Flutter Layer
	Shared JUCE DSP Engine
	Android Integration
	iOS Integration

	Preview Mode
	Performance Considerations
	Security and Privacy

