
ФП 2.0 123
1

осень 20252

Содержание3

1 Воспоминания о ФП 64

1.1 Термы и редукция . 65

1.2 Типы . 66

1.3 Функции в Haskell . 97

1.4 Данные в Haskell . 108

1.5 Классы типов в Haskell . 129

1.6 Монады в Haskell . 1310

2 Параметрический полиморфизм 1611

2.1 Параметрический полиморфизм в языке . 1612

2.1.1 Эмуляция типовых абстракций и аппликаций (Proxy) 1813

2.1.2 First-class polymorphism . 1814

2.1.3 Higher-order/kinded polymorphism . 2015

2.1.4 Обобщённые алгебраические типы данных (GADTs) 2116

2.1.5 Структуры на уровне типов, data promotion 2217

2.2 Реализация параметрического полиморфизма 2518

2.2.1 Mономорфизация . 2519

2.2.2 Стирание типа . 2620

2.2.3 Гибридный подход . 2721

2.2.4 Использование виртуальной таблицы свойств типов 2822

2.3 Полиморфизм по конвенции вызова . 2923

2.3.1 Разновидности runtime представлений в Haskell 2924

2.3.2 Классификация значений по runtime представлению 3025

2.3.3 Representation polymorphism . 3126

3 Специальный (ad-hoc) полиморфизм 3227

3.1 Классы типов в языке . 3328

3.1.1 Словари . 3329

3.1.2 Неявные аргументы . 3530

3.1.3 Вывод инстансов . 3531

3.1.4 Построение типа по значению . 3732

3.1.5 Имплиситы и когерентность . 3833

1Автор Андрей Стоян (andrey.stoyan.csam@gmail.com).
2Спасибо Илье Колегову за первое внимательное прочтение и кучу комментариев. Спасибо моим студентам,

которые своим интересом к предмету сделали эту работу возможной.
3Версия от 14 января 2026 г., 11:37.

1

3.1.6 Правила (rules) и специализация . 4034

3.1.7 Отступление: дефункционализация . 4035

3.1.8 Эмуляция полиморфизма высших порядков 4136

3.2 Семейства . 4237

3.2.1 Data families . 4338

3.2.2 Synonym families . 4339

3.2.3 Инъективные семейства . 4440

3.2.4 Семейства первого класса . 4541

3.3 Кайнд Constraint . 4642

3.4 Использование ad-hoc полиморфизма . 4743

3.4.1 Сериализация . 4744

3.4.2 Экзистенциальные типы . 4845

3.4.3 Разрешение имён . 4946

3.4.4 Несинтаксические типовые эквивалентности, System FC 5047

3.4.5 Коерции и роли . 5148

3.4.6 Type reflection . 5349

3.4.7 Data reflection . 5450

3.4.8 Открытые структуры . 5551

3.4.9 Исключения и открытая иерархия . 5552

3.4.10 Легковесные частичные стек-трейсы 5753

3.4.11 Кастомизируемые ошибки типизации 5854

4 Типы данных 5955

4.1 Вариантность . 5956

4.2 Изоморфизм . 6157

4.2.1 Кардинальность: суммы, произведения, экспоненты 6258

4.2.2 Алгебраическое представление типа . 6359

4.3 Рекурсивные типы . 6560

4.3.1 Просто список . 6561

4.3.2 Неподвижная точка функтора . 6762

4.3.3 Схемы рекурсии . 6863

4.4 Всё через свёртки . 7064

4.4.1 Deforestation & list fusion . 7165

4.4.2 Visitor pattern . 7366

4.5 Всё через развёртку . 7467

4.5.1 Абстрактные типы данных . 7568

4.5.2 Stream fusion . 7669

4.6 Вездесущий дуализм . 7770

4.6.1 Push vs pull streaming . 7871

4.6.2 Data vs codata . 7872

4.7 Приложение: категория алгебр . 8073

2

5 Интерпретаторы 8374

5.1 Интерпретаторы как основа основ . 8375

5.1.1 Башня интерпретаторов . 8376

5.1.2 Интерпретаторы повсюду . 8477

5.1.3 Интерпретаторы и семантика языков программирования 8578

5.1.4 Встроенные доменно-специфичные языки (eDSL) 8779

5.1.5 Пример: библиотека Accelerate . 8980

5.2 Типы значений . 8981

5.2.1 Untyped tagless interpreters . 8982

5.2.2 Typed tagged interpreters . 9083

5.2.3 Typed tagless interpreters . 9084

5.3 Связывания и функции первого класса . 9185

5.3.1 Семантика имён . 9186

5.3.2 Подстановки . 9287

5.3.3 Окружение . 9388

5.3.4 Замыкания . 9489

5.3.5 Типизированный контекст . 9590

5.3.6 Meta-circular интерпретация . 9591

5.3.7 Синтаксис высшего порядка . 9692

5.3.8 Сериализация функций . 9793

5.4 Tagless final интерпретаторы . 9894

5.4.1 Разные интерпретации для shallow embedding 9895

5.4.2 Дойти до конца . 9996

5.4.3 Восстановление композиционности семантики 10097

5.4.4 Typed tagless final interpreter . 10198

5.4.5 Встречаем старых друзей: Applicative, Monad 10299

5.5 Expression problem . 104100

5.5.1 Копроизведение функторов . 105101

5.5.2 Произведение алгебр . 106102

6 Продолжения (continuations) 108103

6.1 Концепция продолжений . 108104

6.1.1 Reduction semantics . 109105

6.1.2 Continuation semantics . 111106

6.1.3 Продолжения первого класса . 112107

6.2 Продолжения своими руками . 115108

6.2.1 Дефункционализация и аккумуляторы 116109

6.2.2 Monad Cont . 117110

6.2.3 call/cc . 119111

6.3 Delimited continuations . 119112

6.3.1 Реализация операторов . 121113

3

6.3.2 В Monad Cont . 122114

6.4 Приложения продолжений . 123115

6.4.1 Всё через продолжения . 123116

6.4.2 The mother of all monads . 125117

6.4.3 Генераторы и корутины . 127118

6.5 Эффективная работа с продолжениями . 128119

6.5.1 Contiguous stack . 128120

6.5.2 Сегментный стек . 128121

6.5.3 Finite state machine (FSM) . 128122

7 Эффекты и модульные интерпретаторы 130123

7.1 Понятие эффекта . 130124

7.2 Хендлеры эффектов . 132125

7.2.1 Хендлеры через ограниченные продолжения 133126

7.2.2 Эффективная реализация хендлеров 133127

7.2.3 Встроенные хендлеры как явная клиент-серверная коммуникация . . . 134128

7.2.4 Расширяемые сообщения и пересылка 135129

7.2.5 Свободные монады . 136130

7.2.6 Хендлеры через свободные монады . 137131

7.2.7 Приложения хендлеров . 138132

7.2.8 Трансформеры монад . 139133

7.2.9 Алгебраичность и эффекты высших порядков 139134

4

Введение135

Многие сложные концепции в дизайне языков и программ могут быть поняты как частные136

случаи некоторых простых фундаментальных принципов, которые, как правило, считаются137

общеизвестным фольклором, не требующим дополнительных пояснений. Однако, сложность138

в том, что эти знания рассеяны по книгам, статьям и “культовым” блог-постам, и требуется139

довольно много времени и сил для восстановления целостной картины.140

Цель данного курса — собрать в одном месте такие фольклорные знания и организовать141

их в некоторую систему. Курс будет явным образом опираться на классические работы, ис-142

следующие принципы построения языков, и помогать в их изучении. Просмотр упоминаемых143

статей является важной частью самостоятельной работы в рамках курса.144

Под функциональным программированием, вынесенным даже в заголовок курса, понима-145

ется трепетное отношение к понятию эффекта, которое в ФП, в отличие от других школ146

мысли, не считается аксиоматической данностью, но предметом для изучения, сознатель-147

ного конструирования и аккуратного обращения. Этот подход оказывается очень полезным148

для изучения языков, построения могущественных языковых конструкций, а так же является149

основой для продуктивного стиля программирования. Кроме того, функциональные языки150

сравнительно просты, в результате чего новые идеи и подходы нередко зарождаются в них и151

распространяются далее.152

В качестве основного языка курса выбран Haskell, так как он, с одной стороны, воплощает153

в себе многие концепции, часто доведенные до некоторого логического завершения, и доста-154

точно могуществен для кодирования других. С другой стороны, всё ещё является прикладным155

промышленным языком программирования.156

В связи с широтой контекста, данный курс не всегда является глубоким. Так, детали157

реализации в GHC или теор-категорные основания вещей могут даваться в общем виде и без158

конкретики. В то же время, в плоскости языкового дизайна через оптику функционального159

программирования курс пытается быть максимально подробным.160

Таким образом, данный курс может быть полезен тем, кто интересуется дизайном язы-161

ков и красивыми обобщениями программистских концепций, хочет улучшить свои навыки162

проектирования API, или планирует вести практическую деятельность на функциональных163

языках.164

Пререквизитом к прохождению курса является знание основ функционального програм-165

мирования: алгебраических типов данных, паттерн-матчинга, свёрток, параметрического по-166

лиморфизма, классов типов, базовых монад. Дополнительно будет полезным умение читать167

типовые дроби, знакомство с полиморфным λ-исчислением и кодированием Чёрча.168

5

1 Воспоминания о ФП169

В этом разделе мы вспомним основные концепции функционального программирования170

и языка Haskell.171

1.1 Термы и редукция172

В ФП программы представляют собой выражения. Выполнение программ — редукция173

таких выражений до более “простых”. Выражения можно представлять как в виде линейной174

записи символов, так и в виде дерева, для понимания которого не требуется знания вспомо-175

гательных правил ассоциативности и проч.176

Простейший функциональный язык — λ-исчисление. Выражения в нём называются λ-177

термами, которые состоят из вершин трёх видов (V — множество валидных идентификато-178

ров, Λ — множество λ-термов):179

Переменные x ∈ Λ, если x ∈ V x
180

Абстракция (λx.M) ∈ Λ, если x ∈ V,M ∈ Λ

λ

x

M
181

Аппликация (M N) ∈ Λ, если M ∈ Λ, N ∈ Λ

@

M N
182

В произвольном выражении можно заменить некоторый его фрагмент на формальный183

параметр, который должен быть задекларирован выше по дереву с помощью специальной184

вершины λ. Вместо формального параметра можно в дальнейшем подставлять различные185

конкретные параметры с помощью вершины-аппликации @, то есть переиспользовать это186

выражение для различных целей (например, см. рис. 1). Редукция как раз определяется как187

следующее правило переписывания: ищется применение λ-функции к аргументу и в её тело188

осуществляется подстановка аргумента во все свободные вхождения переменной, связанной189

лямбдой (рис. 2).190

1.2 Типы191

Программное обеспечение — это сложно. Поэтому постоянно и неизбежно в программах192

возникают ошибки. Их можно искать, в том числе, статически, то есть без запуска програм-193

мы. Одним из видов статического анализа является анализ типов.194

6

÷

x +

2×

10 4

f

λ

y
÷

x +

y 2

@

f ×

10 4

Рис. 1: Выражение с помощью λ вершины преобразуется в функцию одного аргумента.

· · ·

@

λ

x

M

N

· · ·

[x 7→ N]M

Рис. 2: Редукция переписывает дерево путём подстановки конкретного аргумента вместо
формального параметра.

7

@

3λ

y
÷

x +

y 2

Рис. 3: Дерево соответствующее выражению (λy. x ÷ (y + 2)) 3.

@ : int

3 : intλ : int → int

y : int÷ : int

x : int + : int

y : int 2 : int

Рис. 4: Дерево выражения (λy. x ÷ (y + 2)) 3 после приписывания типовых меток.

Идея анализа типов состоит в том, что каждой вершине дерева программы мы пытаемся195

приписать некоторую синтаксическую метку по определённым правилам. Если таким образом196

каждой вершине можно приписать метку, то мы считаем, что программа проходит проверку197

типов, и она “хорошая”. Например, на рисунке 3 представлено выражение, а на рисунке 4198

каждой вершине приписаны метки в согласие с некоторой системой типов.199

Система типов определяет синтаксис типовых меток и правила, по которым их можно200

приписывать. Синтаксис обычно описывается в классических нотациях а ля BNF, а пра-201

вила в виде типовых дробей. Например, так выглядят дроби для просто-типизированного202

λ-исчисления:203

(x : σ) ∈ Γ
Γ ⊢ x : σ ctx

Γ ⊢ M : σ → τ Γ ⊢ N : σ
Γ ⊢ M N : τ el im →

{x : σ} ∪ Γ ⊢ M : τ
Γ ⊢ λxσ.M : σ → τ intro →

Типовые метки имеют чисто-синтаксическую природу, однако их можно проинтерпретиро-204

вать. Самая популярная интерпретация — воспринимать типовую метку как множество. Так,205

метке int → int можно поставить в соответствие множество функций между множествами206

целых чисел Z→ Z.207

8

1.3 Функции в Haskell208

В своей основе Haskell представляет собой расширенное типизированное λ-исчисление,209

дополненное примитивными типами, возможностью декларировать новые имена, структура-210

ми данных и классами типов.211

Примеры λ-абстракций в REPL окружении GHCi:212

1 ghci> (\x -> x + 1) 4
2 5

Можно узнать тип функции в интерпретаторе (в реальности числа полиморфные, но об213

этом далее):214

1 ghci> :t \x -> x + 1
2 \x -> x + 1 :: Int -> Int

Функциям можно давать имена. Именам можно приписывать типы, это рекомендуется215

делать явно для деклараций на верхнем уровне файлов исходного кода:216

1 f :: Int -> Int
2 f x = x + 1

Если имя типа начинается с маленькой буквы, то это не конкретный тип, а типовая пе-217

ременная, способная принимать различные значения в зависимости от места вызова. Такая218

возможность называется параметрическим полиморфизмом. Так, функция, которая про-219

сто возвращает свой аргумент, никак не ограничивает тип аргумента. Но в то же время тип220

результата должен совпадать с типом аргумента:221

1 id :: a -> a
2 id x = x

3 ghci> :t id 5
4 id 5 :: Int

Функции могут принимать другие функции в качестве аргументов (такие функции называ-222

ются функциями высших порядков (higher-order functions). Имя функции может состоять223

из специальных символов, тогда она считается оператором и может применяться к своим224

операндам в инфиксном стиле:225

1 ($) :: (a -> b) -> a -> b
2 f $ x = f x

Пример рекурсивной функции, использующей охранные выражения для отличения базо-226

вого случая рекурсии:227

9

1 factorial :: Int -> Int
2 factorial n
3 | n < 1 = 1
4 | otherwise = n * factorial (n - 1)

Упражнение 1 Что выведет запрос ghci> :t uncurry (flip const)?228

Упражнение 2 Что выведет запрос ghci> :t first . first при229

1 first :: (a -> a') -> (a, b) -> (a', b)

Упражнение 3 Реализуйте факториал с помощью техники аккумулирующего параметра.230

1.4 Данные в Haskell231

В Haskell есть встроенная возможность объявлять новые типы данных на основании дру-232

гих типов, а так же создавать их экземпляры.233

Зададим тип данных, описывающий животных:234

1 data Animal
2 = Cat String Int
3 | Dog String

Мы задали тип данных Animal и два способа создать значения этого типа: для кошек и235

собак. Cat и Dog — это конструкторы данных. Они представляют собой функции, реали-236

зация которых находится на стороне языка. Они выделяют память под экземпляры данного237

типа и позиционно размещают компоненты. Кошек мы описываем именем и оставшимся238

количеством жизней, а собак — только именем.239

1 Cat :: String -> Int -> Animal
2 Dog :: String -> Animal

Чтобы воспользоваться информацией, сохранённой в структуре данных, требуется декон-240

струировать её с помощью паттерн-матчинга. Мы сопоставляем значение типа с образцом.241

Если образец похож на то, как было сконструировано значение, то он выбирается среди других242

образцов и переменные, задекларированные в нём, начинают ссылаться на соответствующее243

позиционно содержимое структуры данных:244

1 show :: Animal -> String
2 show animal = case animal of
3 Cat name nLifes -> "This is cat " ++ name ++ " " ++ show nLifes
4 Dog name -> "This is dog " ++ name

В Haskell есть специальный синтаксис для объявления полей с именованными метками.245

10

1 data Penguin = Penguin { getName :: String, getAge :: Int }
2 penguin = Penguin { getName = "Andrey", getAge = 500 }

Haskell генерирует функции-аксессоры для доступа к полям объекта:246

1 ghci> :t getName :: Penguin -> String

Часто функции в программировании частичные — при некоторых значениях аргументов247

они могут вернуть результат, а при некоторых — нет. Давайте моделировать это с помощью248

специального типа данных. Если есть вещественный результат, будем возвращать его. Если249

нет, будем возвращать специально выделенное константное значение этого типа.250

1 data MaybeD = NothingD | JustD Double
2 sqrt :: Double -> MaybeD
3 sqrt x = if x < 0 then NothingD else JustD (calcSqrt x)

Можно заметить, что так нам придётся объявлять по типу MaybeT для каждого типа T.251

Поэтому Haskell позволяет абстрагироваться в типе, аналогично тому как можно абстраги-252

роваться по значениям в терме.253

1 data Maybe a = Nothing | Just a
2 sqrt :: Double -> Maybe Double
3 sqrt x = if x < 0 then Nothing else Just (calcSqrt x)

Заметьте, что сейчас Maybe — это не совсем тип, так как теперь нужно передать типовой254

параметр, чтобы получить конкретный тип. Maybe называют типовым конструктором.255

Вместе с абстракцией на уровне типов появилась и аппликация типа к типу. А что ес-256

ли дать меньше параметров типовому конструктору, чем ожидается? А что если больше?257

Контроль за корректностью типовых аппликаций обеспечивает система кайндов4. Это про-258

стейшие “типы для типов”, то есть синтаксические метки, контролирующие корректность259

записанных программистом типов. Так, обычные типы имеют метку (кайнд) *. Типовые кон-260

структоры имеют стрелочные кайнды. Например, Maybe :: * -> *. Аппликация типового261

конструктора к типу подходящего кайнда убирает одну стрелку:262

1 ghci> :k Int
2 Int :: *
3 ghci> :k Maybe
4 Maybe :: * -> *
5 ghci> :k Maybe Int
6 Maybe Int :: *

Кроме совершенно новых типов данных, в Haskell можно объявлять типовые синонимы.263

Это имена, которые можно использовать вместо других типов, если, например, запись ори-264

гинального типа слишком длинная для повсеместного написания:265

4Иногда в русскоязычной литературе кайнды называют родами типов, но мы не будем так говорить.

11

1 type T a = VeryLongType Int (a -> AnotherLongType a)

Если тип данных содержит только один конструктор и только одно поле, то отсутствует266

необходимость в аллокации новой памяти, содержащей тег конструктора и набор ссылок на267

поля. В таком случае, в качестве значения такого типа можно всегда просто использовать268

значение оборачиваемого типа, оставляя новый тип присутствовать исключительно во время269

компиляции, снижая нагрузку во время исполнения. Для объявления таких типов-обёрток270

нужно воспользоваться ключевым словом newtype вместо data:271

1 newtype CourseId = CourseId Int64
2 newtype ModuleId = ModuleId Int64

Упражнение 4 Определите кайнд конструктора типа272

1 data Free f a = Pure a | Free (f (Free f a))

1.5 Классы типов в Haskell273

Параметрический полиморфизм позволяет использовать один и тот же код для различ-274

ных типов входных данных. Классы типов же позволяют одному идентификатору ссылать-275

ся на разные реализации для разных типов данных (что аналогично механизму перегрузки276

(overloading) в других языках). Классы типов, как говорят, являются механизмом специаль-277

ного (ad-hoc) полиморфизма. Так, мы можем задекларировать символ ==, выбор реализа-278

ции которого зависит от выбора типа аргументов a:279

1 class Eq a where
2 (==) :: a -> a -> Bool

Для каждого типа можно объявить свою собственную реализацию Eq:280

1 instance Eq CourseId where
2 CourseId x == CourseId y = x == y

3 instance Eq a => Eq [a] where
4 [] == [] = True
5 x:xs == y:ys = x == y && xs == ys

Теперь в зависимости от конкретного типа a в месте вызова, будет выбрана подходящая281

реализация для этого типа:282

1 ghci> CourseId 1 == CourseId 2
2 False
3 ghci> [CourseId 1, CourseId 2] == [CourseId 1, CourseId 2]
4 True

12

Рассмотренные ранее параметрически-полиморфные функции ничего не могли делать со283

своими аргументами, кроме как возвращать их в качестве результата или передавать в другие284

полиморфные функции. Чтобы уметь делать что-то ещё, нужна какая-то дополнительная285

информация про тип, потому что иначе нет никакой гарантии, что над объектом данного типа286

можно делать все необходимые операции. Так, функция suc n = n + 1 не будет работать287

для строчек, потому что для них, очевидно, не определена операция сложения. Поэтому288

некорректно будет приписать полиморфный тип suc :: a -> a.289

Классы типов, в отличие от перегрузки, в том числе являются механизмом ограничения290

полиморфности функций. Мы можем явно задать, что функция требует не произвольный тип291

на вход, а произвольный тип, для которого определены обязательно нужные нам операции.292

Так, для типа suc достаточно ограничить тип условием наличия плюса для него (операция293

обозначаемая символом + объявлена в классе типов Num):294

1 suc :: Num a => a -> a

Упражнение 5 Реализуйте функцию, проверяющую равенство всех элементов данного спис-295

ка.296

Упражнение 6 Реализуйте инстанс полугруппы для функций.297

Упражнение 7 Реализуйте проверку равенства функций.298

1.6 Монады в Haskell299

Класс типов Functor объявляется для конструкторов типов и позволяет заменить в неко-300

тором контейнере все элементы одного типа на все элементы другого, оставляя структуру301

контейнера неизменной.302

1 class Functor (f :: * -> *) where
2 fmap :: (a -> b) -> f a -> f b

3 instance Functor [] where
4 fmap :: (a -> b) -> [a] -> [b]
5 fmap _ [] = []
6 fmap f (x:xs) = f x : fmap f xs

В Haskell любая функция просто вычисляет результат некоторого типа. Однако в програм-303

мирования часто требуются функции, которые не только вычисляют результат, но и делают304

что-то ещё. Например, изменяют какое-то состояние или пишут в консоль. Иными слова-305

ми, производят побочные эффекты. В любом случае в Haskell мы можем только вернуть306

из функции только результат, поэтому такие побочные эффекты мы кодируем в качестве307

дополнительной структуры, оборачивающей чистый результат. Т.е. если функция без побоч-308

ных эффектов возвращала какой-то тип a, то после добавления побочных эффектов в её309

реализацию, она будет возвращать некоторый тип вычислений f a.310

13

• Если функция кидает ошибку, то f = Maybe.311

• Если функция читает глобальное состояние типа e, то f = e -> _.312

• Если функция читает глобальное состояние s и обновляет его, то f = s -> (s, _).313

Стандартная библиотека Haskell предоставляет несколько классов типов для работы со314

значениями вида f a. Они позволяют абстрагироваться от структуры f и работать со зна-315

чениями a внутри, как будто нет никакой дополнительной структуры.316

Первый такой класс типов позволяет писать выражения над вычислениями f a.317

1 class Functor f => Applicative (f :: * -> *) where
2 pure :: a -> f a
3 liftA2 :: (a -> b -> c) -> f a -> f b -> f c

4 instance Applicative Maybe where
5 pure :: a -> Maybe a
6 pure = Just

7 liftA2 :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c
8 liftA2 _ Nothing _ = Nothing
9 liftA2 _ _ Nothing = Nothing

10 liftA2 f (Just x) (Just y) = Just (f x y)

Второй класс типов позволяет делать последовательную композицию вычислений в им-318

перативном стиле:319

1 class Applicative m => Monad (m :: * -> *) where
2 (>>=) :: m a -> (a -> m b) -> m b

3 newtype State s a = State { runState :: s -> (s, a) }

4 instance Monad (State s) where
5 (>>=) :: State s a -> (a -> State s b) -> State s b
6 m >>= k = State \s ->
7 let (s', x) = runState m s in
8 runState (k x) s'

Теперь если мы определим базовые операции работы с состоянием, мы сможем писать320

код в императивном стиле с побочными эффектами.321

1 get :: State s s
2 get = State \s -> (s, s)

3 put :: s -> State s ()
4 put newS = State \oldS -> (newS, ())

14

5 example :: State Int Int
6 example =
7 get >>= \x ->
8 put 42 >>= \() ->
9 get >>= \y ->

10 pure (x + y)

11 ghci> runState example 1
12 43

Для таких монадических цепочек существует специальный синтаксический сахар:322

1 example :: State Int Int
2 example = do
3 x <- get
4 put 42
5 y <- get
6 pure (x + y)

Упражнение 8 Реализуйте liftA3 через liftA2.323

Упражнение 9 Реализуйте >>= через join и наоборот.324

Упражнение 10 Два числа с консоли, поделите одно на другое нацело и распечатайте ре-325

зультат, если остаток не нулевой, распечатайте его тоже.326

15

2 Параметрический полиморфизм327

Никакое нетривиальное свойство программ не может быть алгоритмически проверено5.328

Чтобы оставаться разрешимыми (в смысле проверки типов и/или вывода), многие системы329

типов жертвуют полнотой и, помимо некорректных программ, отвергают много корректных.330

В то же время системы типов также стараются предоставлять различные возможности,331

позволяющие протипизировать как можно больше корректных программ. Одна из них —332

параметрический полиморфизм.333

Под параметрическим полиморфизмом мы будем подразумевать возможность кода334

единообразно работать с произвольными типами данных Strachey [2000], Cardelli and Wegner335

[1985], что позволяет во многих случаях избегать дублирования кода.336

В этой главе мы рассмотрим, как описывают полиморфизм в самом простом виде — в ти-337

пизированном λ-исчислении. Изучим различные формы параметрического полиморфизма и338

сопутствующие техники безопасного программирования. Проанализируем возможные спосо-339

бы эффективной реализации параметрического полиморфизма. И в завершение рассмотрим340

полиморфизм по рантайм-представлению, “полиморфизм по полиморфизму”.341

2.1 Параметрический полиморфизм в языке342

λ-абстракция позволяет обобщать выражения по значениям, каждая абстракция добав-343

ляет стрелку в тип выражения, аппликация же снимает стрелку:344

x : τ,Γ ⊢ M : σ
Γ ⊢ λx : τ.M : τ → σ Lam

Γ ⊢ M : τ → σ Γ ⊢ N : τ
Γ ⊢ M N : σ App

В то же время Λ-абстракция позволяет обобщать выражения по типам, добавляя квантор345

в тип (Π-абстракцию), а применение терма к типу (универсальная аппликация (universal346

application)) позволяет выбрать, с каким конкретным типом этот терм планируется исполь-347

зовать [Pierce, 2002, глава 23]:348

Γ ⊢ M : τ
Γ ⊢ Λα.M : ∀α. τ TLam

Γ ⊢ M : ∀α. τ
Γ ⊢ M σ : [α→ σ] τ TApp

Таким образом, например, функция id фактически принимает два аргумента: тип и зна-349

чение:350

id : ∀α.α→ α
id = Λα. λx : α. x

id nat : nat → nat
id nat 42 : nat

В Haskell типовые абстракции и аппликации приписываются неявно механизмом вывода351

типов. Однако, есть расширения языка, которые позволяют их написать явно: TypeAbstractions,352

TypeApplications. Это может помочь, например, когда информации из терма не достаточно,353

чтобы вывести тип. Так, можно явно специализировать id на нужный тип:354

5https://en.wikipedia.org/wiki/Rice%27s_theorem

16

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/type_abstractions.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/type_applications.html
https://en.wikipedia.org/wiki/Rice%27s_theorem

1 id :: forall a . a -> a
2 ghci> :t id @Int
3 id @Int :: Int -> Int

Кванторы также приписываются неявно в начале типа, следуя конвенции именования:355

конкретные типы начинаются с большой буквы, а полиморфные — с маленькой. Аналогич-356

но, у пользователя есть возможность явно приписывать forall’ы с помощью расширения357

ExplicitForAll. Это может понадобиться либо за тем, чтобы задать вручную порядок типо-358

вых абстракций, либо, чтобы иметь возможность сослаться на абстрагированный тип в теле359

функции (расширение ScopedTypeVariables).360

Полиморфные типы данных задаются с помощью другой конструкции. Если ранее мы361

управляли типом с уровня термов универсальной аппликацией, то теперь мы хотим управлять362

типом на уровне типов. Для этого мы вводим λ абстракцию в типах, аппликацию в типах363

и, соответственно, β-редукцию. Система кайндов (пока) представляет собой простейшую364

“систему типов для типов” и обеспечивает well-formedness типов и строгую нормализуемость6.365

Например, мы можем написать тип пары, абстрагированный от конкретных типов компонент,366

чтобы пользователь мог выбрать нужные ему:367

Pair : ∗ → ∗ → ∗
Pair = λτ∗ σ∗. ∀γ. (τ → σ → γ)→ γ
pair : ∀α β.α→ β → Pair α β
pair = Λα∗ β∗. λxα yβ. (Λγ∗. λf α→β→γ. f x y)

f st : ∀α β. Pair α β → α
f st = Λα∗ β∗. λpPair α β. p α (K α β)

В Haskell вычислительную семантику полиморфных типов можно проследить в синонимах368

типов:369

1 type Pair a b = forall c . (a -> b -> c) -> c
2 intPair :: Pair Int Int -- forall c . (Int -> Int -> c) -> c

Обычные конструкторы типов номинативны. Например, (Int, Int) или Maybe Int никуда370

далее не вычисляются.371

Haskell не позволяет создавать функции на типах по месту с помощью явной типовой372

лямбды7 ввиду проблематичности этой конструкции для вывода типов. Однако именованные373

функции на типах есть, и мы рассмотрим их далее 3.2. В Scala существует нетривиальный374

трюк89, который позволяет этого добиться. Scala3, однако, включила эту возможность непо-375

средственно в язык10.376

6Строгая нормализуемость — любой порядок редукций приводит к нормальной форме.
7https://stackoverflow.com/questions/4069840/lambda-for-type-expressions-in-haskell
8(stackoverflow) Scala type lambdas.
9https://stackoverflow.com/questions/9443004/what-does-the-operator-mean-in-scala

10https://docs.scala-lang.org/scala3/reference/new-types/type-lambdas.html

17

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/explicit_forall.html#extension-ExplicitForAll
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/scoped_type_variables.html#extension-ScopedTypeVariables
https://stackoverflow.com/questions/4069840/lambda-for-type-expressions-in-haskell
https://stackoverflow.com/questions/8736164/what-are-type-lambdas-in-scala-and-what-are-their-benefits
https://stackoverflow.com/questions/9443004/what-does-the-operator-mean-in-scala
https://docs.scala-lang.org/scala3/reference/new-types/type-lambdas.html

2.1.1 Эмуляция типовых абстракций и аппликаций (Proxy)377

В Haskell расширения, позволяющие вручную задавать типовые аппликации и абстракции378

появились сравнительно недавно11. До этого пользовались следующей техникой.379

В стандартной библиотеке определён тип Proxy с одним параметром. Это фантомный380

типовой параметр — значения соответствующего типа не хранятся в структуре данных, он381

только позволяет размещать дополнительную информацию на уровне типов12. Соответствен-382

но, неинформативную константу Proxy можно проаннотировать нужным типом и передать383

в функцию, чтобы специализировать типовой параметр на нужный тип. Или можно принять384

Proxy и воспользоваться ScopedTypeVariables для типовых сигнатур в паттернах13.385

1 data Proxy a = Proxy

2 id :: Proxy a -> a -> a
3 ghci> :t id (Proxy :: Proxy Int)
4 id (Proxy :: Proxy Int) :: Int -> Int

5 id (Proxy :: Proxy a) x = (x :: a)

Иногда прокси-тип оставляют полиморфным, чтобы не зависеть от Data.Proxy. Вместо386

конкретного значения иногда передают специализированное значение ⊥, а получатель, не387

зная тип, не сможет его форсировать (однако, любые вхождения ⊥ в терм слишком насто-388

раживают, поэтому это скорее не очень хорошая практика).389

1 id :: proxy a -> a -> a
2 id (_ :: proxy a) x = (x :: a)

3 ghci> :t id (undefined :: Proxy Int)
4 id (undefined :: Proxy Int) :: Int -> Int

2.1.2 First-class polymorphism390

Существует возможность писать функции, которые принимают другие полиморфные функ-391

ции в качестве аргументов. Типы таких функций называются типами высшего ранга (higher-392

rank types), их можно использовать с расширением RankNTypes. Так, типовой параметр393

функции g определяет функция f, а не вызывающий функцию f:394

1 f :: (forall a . a -> a) -> (Int, Char)
2 f g = (g @Int 42, g @Char 'a') -- универсальная аппликация для наглядности
3 ghci> f (\x -> x)

11TypeApplications, TypeAbstractions.
12https://wiki.haskell.org/Phantom_type
13Типовый параметр на самом деле имеет полиморфные кайнд data Proxy (a :: k) = Proxy, чтобы эта

техника работала с типами произвольных кайндов (см. далее 2.1.5).

18

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/scoped_type_variables.html#pattern-type-signatures
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/rank_polymorphism.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/type_applications.html#extension-TypeApplications
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/type_abstractions.html#extension-TypeAbstractions
https://wiki.haskell.org/Phantom_type

Проблема типов высшего ранга в том, что их вывод неразрешим, то есть глобальный395

вывод типов Haskell в этом случае перестаёт работать. Но если типы высшего ранга приписать396

вручную, остальной вывод будет работать как раньше. Например, числа Чёрча имеют высший397

ранг1415:398

1 suc :: (forall a . (a -> a) -> a -> a) -> (a -> a) -> a -> a
2 suc n s z = s (n s z)

Упражнение 11 Какой ранг имеет тип Int -> (forall a . a -> a)?399

От многих проблем сопутствующих типам высших рангов можно избавиться, если созда-400

вать для них обёртки. Например, для чисел Чёрча можно создать обёртку newtype Church.401

Теперь код, работающий с обёрткой, может быть протипизирован типами первого ранга,402

только конструктор имеет тип высшего ранга:403

1 newtype Church = Church (forall a . (a -> a) -> a -> a)
2 (+) :: Church -> Church -> Church -- rank 1

Аналогичный код можно написать и в Java (Kotlin):404

1 interface Church { fun <a> fold(s: (a) -> a, z: a): a }
2 fun plus(n: Church, m: Church): Church = object : Church {
3 override fun <a> fold(s: (a) -> a, z: a): a = n.fold(s, m.fold(s, z))
4 }

По умолчанию типовые параметры можно специализировать только на конкретные ти-405

пы. Расширение ImpredicativeTypes позволяет специализировать типовые параметры на по-406

лиморфные типы (включающие forall’ы внутри себя) — импредикативное применение.407

1 runST :: (forall s. ST s a) -> a
2 ($) :: forall a b . (a -> b) -> a -> b
3 foo = runST $... -- типизируется только с ImpredicativeTypes

Higher-rank типы можно использовать как type-based escape analysis, иначе говоря, не408

позволять пользователю передавать некоторое значение вовне определённого скоупа. Так,409

например, Haskell предоставляет эффективную монаду ST, позволяющую в рамках ограни-410

ченного скоупа работать с мутабельными ячейками памяти Launchbury and Peyton Jones411

[1995][Maguire, a, 7.2, ST trick]:412

1 newtype ST s a = ST (IO a)
2 runST :: (forall s. ST s a) -> a

14https://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
15Любому интересующемуся языками программирования предлагается провести на сайте Олега Киселёва не

один месяц жизни: https://okmij.org/ftp/README.html.

19

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/impredicative_types.html
https://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
https://okmij.org/ftp/README.html

3 sumTo :: Int -> Int
4 sumTo n = runST do
5 ref <- newSTRef 0
6 forM [0..n] \i -> modifySTRef ref (+ i)
7 readSTRef ref

Заметим, что если попытаться вернуть из runST ссылку на мутабельную ячейку, то резуль-413

тирующий тип не пройдёт well-formedness проверку, так как будет содержать фантомный па-414

раметр s, который не будет нигде связан:415

1 newSTRef :: a -> ST s (Ref s a)
2 ghci> runST (newSTRef 0) :: Ref s Int -- ошибка

На практике, чтобы отличать такие локально связанные типовые переменные, используют416

концепцию уровней16 Jones [2019].417

Типы высших рангов вместе с импредикативным применением образуют полиморфизм418

первого класса (first-class polymorphism), когда полиморфные типы могут использоваться419

почти так же свободно, как и любые другие. Классический алгоритм глобального вывода420

Хиндли-Милнера не справляется (и в общем случае задача неразрешима), так что существу-421

ет большое количество решений, делающих различные компромиссы. Можно сделать вывод422

типов локальным, опирающемся только на соседние ноды AST и вспомогательные типовые423

аннотации Pierce and Turner [2000], Christiansen [2013], Dunfield and Krishnaswami [2019]. Либо424

же можно попытаться помочь глобальному выводу дополнительной предобработкой (Quick425

Look17 Serrano et al. [2020], реализованный в Haskell с недавнего времени) или дополнитель-426

ными регулирующими конструкциями (FreezeML Emrich et al. [2020]).427

2.1.3 Higher-order/kinded polymorphism428

Haskell позволяет также абстрагироваться по типам произвольных кайндов, а не только429

Type, как в data декларациях (higher-order/kinded types (HKT)18), так и в полиморфных430

функциях. Далее мы встретим немало примеров. Так, Fix имеет кайнд (Type -> Type) -> Type,431

а катаморфизм абстрагирован по типу стрелочного кайнда:432

1 newtype Fix f = Fix (f (Fix f))
2 cata :: forall (f :: Type -> Type) a . Functor f => (f a -> a) -> Fix f -> a

Далее мы рассмотрим технику, позволяющую типы высших порядков закодировать в язы-433

ке, их не поддерживающем (см. 3.1.8).434

16https://okmij.org/ftp/ML/generalization.html
17(youtube) A Quick Look at Impredicativity (Simon Peyton Jones)
18https://serokell.io/blog/kinds-and-hkts-in-haskell

20

https://okmij.org/ftp/ML/generalization.html
https://youtu.be/ZuNMo136QqI?si=qp8PAEeeF-bioCB_
https://serokell.io/blog/kinds-and-hkts-in-haskell

2.1.4 Обобщённые алгебраические типы данных (GADTs)435

Обобщённые алгебраические типы данных (generalized algebraic data types, GADTs) поз-436

воляют приписывать данным на уровне типов больше информации. В качестве модельного437

примера возьмём синтаксис крошечного языка программирования. Зададимся целью не до-438

пустить возможности конструирования в Haskell некорректных с точки зрения типов синтак-439

сических деревьев.440

1 data Expr = Const Int | IsZero Expr | If Expr Expr Expr

Как мы знаем, конструкторы данных в Haskell — это обычные функции с той лишь раз-441

ницей, что их реализация генерируется компилятором (аллокация памяти, размещение по-442

лей. . .). У функций есть тип. Например, IsZero :: Expr -> Expr.443

В Haskell есть синтаксис определения data через задание типов конструкторов19. Он со-444

вершенно аналогичен рассмотренному ранее, только гораздо более удобен для сложно орга-445

низованных структур данных. Рассмотренный ранее тип термов Expr будет выглядеть следу-446

ющим образом:447

1 data Expr where
2 Const :: Int -> Expr
3 IsZero :: Expr -> Expr
4 If :: Expr -> Expr -> Expr -> Expr

Для полиморфных структур данных, на примере списка, используется следующий синтак-448

сис. Имя elem нужно исключительно для документации и больше никак его использовать449

нельзя, оно только маркирует наличие типового параметра и позволяет ему вручную задать450

кайнд20.451

1 data List (elem :: Type) where
2 Nil :: List a
3 Cons :: a -> List a -> List a

Добавим к Expr фантомный типовой параметр ty, обозначающий тип Haskell, в кото-452

рый должно быть проинтерпретировано данное выражение, и с помощью GADT зададим453

конкретные значения ty результирующим типам конструкторов. Так, мы говорим, что про-454

грамма сконструированная с помощью Const вычисляется в число, IsZero вычисляется в455

булево значение, а условное выражение — в тип веток:456

1 data Expr ty where
2 Const :: Int -> Expr Int
3 IsZero :: Expr Int -> Expr Bool
4 If :: forall ty . Expr Bool -> Expr ty -> Expr ty -> Expr ty

5 eval :: Expr ty -> ty
19https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/gadt_syntax.html#gadt-style
20Кайд можно не писать. Либо можно не писать имена параметров и просто приписать кайнд типовому

конструктору: data List :: Type -> Type where

21

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/gadt_syntax.html#gadt-style

Теперь мы можем написать безопасный типизированный интерпретатор. Обратите вни-457

мание, что при сопоставлении с образцами конструкторов, у нас уточняется информация о458

типовом параметре:21
459

1 eval :: Expr ty -> ty
2 eval = \case
3 Const x -> x -- ty ∼ Int
4 IsZero t -> eval t == 0 -- ty ∼ Bool
5 If c t e -> if eval c then eval t else eval e

Далее мы рассмотрим как GADT в Haskell выражаются через более базовые механизмы460

языка 3.4.4.461

2.1.5 Структуры на уровне типов, data promotion462

Чтобы обрести больший контроль корректности программ, научимся кодировать произ-463

вольные структуры данных на уровне типов. В качестве модельной задачи зададим структуру464

данных, моделирующую вектор, но с контролем длины.465

Для начала определим натуральные числа на уровне типов в стиле Пеано:466

1 data Zero
2 data Suc n

Упражнение 12 Сколько обитателей типа Suc (Suc Zero)?467

Теперь мы можем задать тип вектора, содержащий информацию о длине:468

1 data Vec (size :: Type) (elem :: Type) where
2 VNil :: Vec Zero a
3 VCons :: a -> Vec n a -> Vec (Suc n) a

4 example :: Vec (Suc (Suc Zero)) Int
5 example = VCons 1 (VCons 2 VNil)

Для такого типа, например, можно написать безопасную функцию zip, работающую толь-469

ко на векторах одинаковой длины:470

1 vzip :: Vec n a -> Vec n b -> Vec n (a, b)
2 vzip VNil VNil = VNil -- n ∼ Zero
3 vzip (VCons x xs) (VCons y ys) = VCons (x, y) (vzip xs ys) -- n ∼ Suc n'

Заметьте, что в остальных ветках vzip должны возникнуть эквивалентности, начинающи-471

еся с различных конструкторов, например, Zero ∼ Suc n. Поскольку невозможно построить472

такие аргументы функции, Haskell позволяет соответствующие ветки не рассматривать.473

21Тут используется удобное расширение LambdaCase, позволяющее не вводить лишние имена.

22

https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/exts/lambda_case.html

Упражнение 13 Напишите функцию добавления в конец элемента вектора. Двигайтесь по-474

следовательно, заполняя типовые дыры и отслеживая возникающие эквивалентности.475

Сейчас язык кайндов, который должен контролировать типы, слишком беден. Действи-476

тельно, кайнд Suc — Suc :: Type -> Type, соответственно ничто не мешает написать Suc (Maybe Int).477

В то же время он слишком ограничивающий, поскольку не поддерживает полиморфизм, что478

дало начало большому количеству дублирований а ля Typeable (ty :: Type), Typeable1 (ty :: Type -> Type). . .479

Современный Haskell имеет расширение TypeData, позволяющее объявлять новые типы480

и кайнды подобно тому, как data позволяет объявлять новые типы.481

1 type data Nat = Zero | Suc Nat

Теперь вектору можно приписать более точный кайнд:482

1 data Vec (size :: Nat) (elem :: Type) where
2 VNil :: Vec Zero a
3 VCons :: a -> Vec n a -> Vec (Suc n) a

Упражнение 14 Что выведет ghci> :k Vec?483

Другим вариантом добиться того же самого является использование DataKinds Yorgey484

et al. [2012]. Это расширение автоматически продвигает (promotion) все data декларации на485

уровень выше. А именно: любой конструктор типа также становится кайндом, а конструк-486

тор данных — конструктором типа. Так, в примере с числами, мы можем задекларировать487

натуральные числа как обычно и использовать на уровне типов:488

1 data Nat = Zero | Suc Nat
2 ghci> :k Suc :: Nat -> Nat -- тут понятно что Suc используется как тип

Поскольку типы и термы в Haskell живут в разных пространствах имён, можно называть489

конструкторы типов и данных одинаково. Однако если продвинуть такой тип данных, возник-490

нет неоднозначность: мы имеем в виду тип или продвинутый конструктор. Haskell позволяет491

указать явно, что речь идёт о продвинутом конструкторе с помощью одинарной кавычки.492

1 data T = T Nat
2 ghci> :k T
3 T :: Type -- про конструктор типа
4 ghci> :k 'T
5 'T :: Nat -> T -- про продвинутый конструктор данных

Не любые data декларации подходят для продвижения, в то же время type data декла-493

рации позволяют явно запросить структуру уровня типов и получить внятные ошибки, если494

декларация написана неправильно.495

В случае продвижения полиморфного типа, мы получаем полиморфные кайнды (PolyKinds):496

23

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/type_data.html#extension-TypeData
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/data_kinds.html#extension-DataKinds
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/poly_kinds.html

Term Type Kind
Zero Nat Type

[Zero, Suc Zero] [Nat] Type
[] forall a. [a] Type
(:) forall a. a -> [a] -> [a] Type

'Suc 'Zero Nat
'['Zero, 'Suc 'Zero] [Nat]

'[Int, Double] [Type]
'[] forall k. [k]
'(:) forall k. k -> [k] -> [k]

Рис. 5: Пример продвижений в Haskell.

1 data [a] = [] | (:) a [a]
2 ghci> :k '(:)
3 '(:) :: forall k . k -> [k] -> [k]

Примеры продвижения различных конструкций можно увидеть в таблице 5.497

В качестве примера, зададим гетерогенный список, индексированный типами элементов:498

1 data HList (tys :: [Type]) where
2 HNil :: HList '[]
3 HCons :: ty -> HList tys -> HList (ty ': tys)

4 example :: HList '[Int, Bool, Double]
5 example = HCons 42 $ HCons True $ HCons 12.5 HNil

Структуры данных тоже могут быть полиморфными по кайндам. Рассмотрим тип Tagged,499

позволяющий дополнить тип значения дополнительным типовым тегом. Кайнд тега может500

быть произвольным, поэтому, например, можем использовать встроенные в систему типов501

константы TypeLits (другой пример использования полиморфных кайндов мы видели ранее502

2.1.1):503

1 newtype Tagged (tag :: k) (a :: Type) = Tagged a
2 ghci> :t Tagged
3 Tagged :: forall k (tag :: k) a. a -> Tagged tag a

4 example :: Tagged ("dbId" :: Symbol) Int
5 example = Tagged 42

Современный Haskell в итоге пришёл к тому, что система типов не делает различий между504

типами и кайндами (рис. 6). В частности, Type :: Type. Это нужно для расширения возмож-505

ностей Haskell в сторону программирования с зависимыми типами путём добавления несин-506

24

https://hackage.haskell.org/package/tagged-0.8.8/docs/Data-Tagged.html#t:Tagged
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/type_literals.html

таксических эквивалентностей для кайндов (TypeInType). System FC была представлена в507

работе Weirich et al. [2013]2223.508

Рис. 6: Типы и кайнды — одно (Bragilevsky).

2.2 Реализация параметрического полиморфизма509

Конвенция вызова24 представляет собой набор соглашений между тем как функция ком-510

пилируется и как должна вызываться. Например, функция принимает два аргумента, каждый511

размером в машинное слово, и возвращает один результат размером в машинное слово. То-512

гда сгенерированный низкоуровневый код этой функции может, например, ожидать, что оба513

аргумента передаются через специальную пару регистров, а складывать результат он будет514

в третий. В таком случае вызывающий код обязан предоставить аргументы в правильных515

регистрах и ожидать результата в некотором третьем, заранее оговоренном регистре.516

В общем случае, конвенция вызова функции зависит от типов аргументов и результата.517

Нужно знать как минимум их размер, чтобы понять, размещать их в регистрах или на стеке.518

Нужно знать, это указатель (reference type) или значение само по себе (value type), чтобы519

понимать, как с ним работать. В структурах данных нужно знать смещения полей.520

Таким образом, реализация параметрического полиморфизма в языке — это не триви-521

альная задача. Разные языки используют различные подходы, все со своими достоинствами522

и недостатками.523

2.2.1 Mономорфизация524

Mономорфизация — самый прямолинейный подход, компилируем полиморфные функции525

и структуры для каждого набора типовых аргументов. Так, если различных наборов типовых526

22(youtube) Мини-курс на русском языке про развитие Haskell в сторону зависимой типизации.
23(youtube) Мини-курс на русском языке — система вывода типов Haskell.
24https://en.wikipedia.org/wiki/Calling_convention

25

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/poly_kinds.html#extension-TypeInType
https://www.youtube.com/watch?v=ISGENChlA4M&list=PLvPsfYrGz3wufQguebnCduYgQQ9UMeJRt
https://www.youtube.com/watch?v=_HYI7zjkrEs&list=PLvPsfYrGz3wuVAGhNf6-i7uafXg56oqM5&index=1
https://en.wikipedia.org/wiki/Calling_convention

аргументов, с которыми эта функция вызывается, например, 100 (что запросто может быть),527

то её код будет компилироваться сто раз и занимать в бинарнике в сто раз больше места.528

Так делают, например, C++ и Rust.529

На самом деле всё ещё хуже. Если проект многомодульный и состоит из множества еди-530

ниц компиляции (кусков, которые компилируются отдельно), то одна и та же специализация531

функции на типовые аргументы будет компилироваться заново во всех единицах компиляции,532

где такая специализация нужна. А затем, линкер будет заниматься удалением дубликатов, что533

тоже не самый быстрый и эффективный процесс.534

+ Порождаемый код максимально эффективен для каждого типа;535

+ Легко на этапе компиляции отрабатывают is-проверки значений на принадлежность536

определённому типу (в остальных подходах с этим всё сложно);537

− Время компиляции крайне велико;538

− Существенно увеличивается размер результирующего бинарного файла, что может быть539

критично для некоторых приложений;540

− Может неэффективно работать из-за засорения кеша кода в процессоре;541

− В интерфейсах не может быть полиморфных методов, так как мы не знаем в месте542

вызова, к какому именно наследнику относится вызываемый метод, и какой код нужно543

специализировать (аналогично, не работает higher-rank полиморфзм);544

− К полиморфным функциям нельзя динамически линковаться (у них нет кода до специ-545

ализации);546

− В общем случае нельзя поддержать variance, потому что код компилируется для кон-547

кретного типа и в общем случае не может работать для произвольного подтипа или548

супертипа (если reference и value типы могут находиться в одной иерархии подтипиза-549

ции).550

Некоторые языки (например, C++ и Zig) не делают инстанциацию скрытой деталью ре-551

ализации языка, а предоставляют её как инструмент пользователям. Это даёт следующие552

возможности:553

• Если разрешить использовать значения в типах, инстанциация может использоваться554

как механизм вычислений на этапе компиляции.555

• Если отложить проверку ошибок на стадию инстанциирования, то мы получим своего556

рода статическую утиную типизацию. Это позволит не описывать сложные сигнату-557

ры полиморфных функций. Однако тогда функции для тестирования придётся вручную558

инстанциировать против всевозможных типов, иначе нельзя понять статически, компи-559

лируется ли она хотя бы против этих типов или нет.560

2.2.2 Стирание типа561

Можно всё сделать наоборот, унифицировав значения, которые приходят на вход поли-562

морфным функциям и хранятся в полиморфных структурах данных, вместо того, чтобы ком-563

пилировать код под каждый тип.564

26

Пусть каждое значение будет аллоцировано в куче и передаваться по указателю. Тогда565

мы сможем переиспользовать один и тот же код для разных типовых аргументов — он просто566

будет ожидать указатели.567

+ Каждая функция компилируется ровно один раз — быстро;568

+ Можно динамически загружать новые полиморфные функции и типы и использовать569

их друг с другом;570

+ Гибкость — вариантность, полиморфные методы в интерфейсах, higher-rank types и т.д.571

просто работают;572

− Аллокация в куче и разыменование указателя может очень сильно замедлить код;573

− Поскольку информация о типах стирается, нельзя ничего сделать с типовым аргумен-574

том, не имея его обитателей (например, запросить рефлексией информацию или сде-575

лать is проверку).576

Такого подхода придерживаются JVM, Haskell и, как правило, другие функциональные577

языки ввиду его гибкости и скорости компиляции.578

Особую проблему вызывает работа с примитивами и другими value-типами, потому что579

каждое значение приходится сначала боксить (переносить в кучу), а потом уже использо-580

вать в полиморфном контексте. Поэтому языки борются с этим как могут. Некоторые языки581

урезают диапазоны значений примитивов, чтобы зарезервировать бит, определяющий, это582

указатель или значение. Код консультируется с этим битом для работы (похоже на 2.2.4).583

Так делают, например, OCaml и Koka. Агрессивный инлайнинг вместе с другими оптимиза-584

циями тоже помогают Blanchet [1999]. Java, например, также пытается аккуратно двигаться585

в сторону возможности мономорфизации2526.586

2.2.3 Гибридный подход587

С# реализует гибридный подход27. Они различают значения, хранимые в куче — reference588

types, и значения, хранимые на стеке — value types. Для первых они генерируют одну спе-589

циализацию, работающую с указателями. Для каждого набора value-типов они генерируют590

лениво, в рантайме, специализации.591

То есть следы дженериков в таком подходе есть и промежуточном представлении CIL, и592

в рантайме.593

+ value-типы хранятся и передаются as-is без боксинга;594

+ Доступна рефлексия по дженерикам;595

+ Небольшое время компиляции;596

− Инстанциация в рантайме замедляет исполнение;597

− Variance работает только для reference types (что странно — есть “правильная” подти-598

пизация, а есть “неправильная”).599

25Type Specialization of Java Generics - What If Casts Have Teeth?
26https://cr.openjdk.org/~jrose/values/parametric-vm.html
27Generics in the runtime (C# programming guide).

27

https://koka-lang.github.io/koka/doc/book.html#sec-value-types
https://youtu.be/JI09cs2yUgY?si=MLkRs31mN1koXIu1
https://cr.openjdk.org/~jrose/values/parametric-vm.html
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generics-in-the-run-time

Рис. 7: Swift value witness table.

Рис. 8: Код полиморфной функции, порождаемый компилятором Swift.

2.2.4 Использование виртуальной таблицы свойств типов600

Swift28 вместе с каждым типовым параметром передаёт value witness table (рис. 7). Это601

таблица со всей необходимой информацией о типе: размер и выравнивание, что нужно сде-602

лать при копировании и перемещении объекта (например, инкрементировать счётчик ссы-603

лок). Таким образом, скомпилированный код постоянно обращается к этой таблице и делает604

виртуальные вызовы функций из неё (рис. 8).605

+ Небольшое время компиляции;606

+ Предсказуемая эффективность (не приводит к неожиданным паузам в рантайме);607

+ Эффективная работа с value-значениями;608

+ Высокая гибкость;609

+ Информация о типах не стирается;610

− Серьёзный константный оверхед на динамические вызовы через таблицу, эффектив-611

ность очень сильно зависит от компиляторных оптимизаций.612

Своего рода реализация параметрического полиморфизма через специальный.613

28(youtube) 2017 LLVM Developers’ Meeting: “Implementing Swift Generics”

28

https://youtu.be/ctS8FzqcRug?si=y_ZYnuUOulA33d_X

2.3 Полиморфизм по конвенции вызова614

Как мы уже обсуждали выше 2.2.2, параметрический полиморфизм в Haskell реализуется615

следующим образом: все значения хранятся в куче и передаются в полиморфные функции616

по указателю. Однако, если для вычислительного кода важна производительность, такой617

подход не годится ввиду большой нагрузки на подсистему управления памятью и множества618

индирекций. Поэтому Haskell позволяет также писать код с использованием unboxed значений.619

А если конвенция вызова не принципиальна, можно по ней абстрагироваться и писать один620

код для boxed и unboxed значений Eisenberg and Peyton Jones [2017].621

2.3.1 Разновидности runtime представлений в Haskell622

Рис. 9: Виды значений в Haskell с примерами Eisenberg and Peyton Jones [2017].

На рисунке 9 можно увидеть классификацию значений в Haskell с примерами типов.623

Unboxed типы — их значения удерживаются и передаются по значению. Boxed, соответ-624

ственно, наоборот, передаются по указателю и хранятся в куче. Обычный Int является про-625

сто декларацией следующего вида, где I# — это обычный конструктор с необычным именем,626

содержащий unboxed значение.627

1 data Int = I# Int#

Lifted типы — содержат ⊥ в качестве значения. Иначе говоря, могут содержать отложен-628

ные вычисления (это для них специальным образом обеспечивают компилятор и рантайм).629

Unlifted типы — наоборот, не могут быть отложенными. Операции, производящие значения630

unlifted типов всегда энергичные. Свойство lifted/unlifted называют levity. Чтобы распро-631

странить дальнейшее изложение на энергичные языки, можно levity заменить на boxity и всё632

останется справедливым.633

в именах типов и функций — это конвенция, показывающая, что где-то рядом проис-634

ходит работа с unlifted значениями29.635

Также в Haskell есть unboxed кортежи, которых не существует на этапе исполнения. На-636

пример, следующая функция как бы возвращает пару значений, но в действительности ком-637

пилятор может их разместить, например, в паре регистров. Соответственно, паттерн-матчинг638

по таким кортежам, просто позволяет сослаться на каждое из этих значений.639

29Нужно подключить расширение MagicHash, чтобы пользоваться # в идентификаторах.

29

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/magic_hash.html

1 divMod# :: Int -> Int -> (# Int, Int #)
2 case divMod# n k of (# quot, rem #) -> ...

Соответственно, нет никакого различия между по-разному вложенными unboxed кортежами:640

1 (# A, (# B, C #)) ≡ (# #(A, B #), C #) ≡ (# A, B, C #)

2.3.2 Классификация значений по runtime представлению641

Значения различных типов могут быть на этапе исполнения устроены по-разному. То есть642

нам нужна некоторая система классификации типов. Но такая система в Haskell уж есть —643

кайнды. Опишем в виде структур данных предметную область, а потом продвинем на нужный644

уровень с помощью DataKinds 2.1.5.645

Стандартная библиотека Haskell предоставляет следующие типы данных:646

1 TYPE :: RuntimeRep -> Type

2 data Levity = Lifted | Unlifted

3 data RuntimeRep = BoxedRep Levity
4 | IntRep | DoubleRep
5 | TupleRep [RuntimeRep]
6 | SumRep [RuntimeRep]
7 | ...

8 type LiftedRep = BoxedRep Lifted

9 type Type = TYPE LiftedRep

TYPE — это магический тип, определённый в компиляторе. Он параметризован runtime-647

представлением значений. Теперь привычный Type — это частный случай с boxed lifted зна-648

чениями.649

• Int :: TYPE (BoxedRep Lifted) или :: Type650

• IntRep и DoubleRep соответствуют представлению численных констант (в зависимости651

от архитектуры процессора, целые числа и числа с плавающей запятой может быть652

необходимо располагать в различных специальных регистрах)653

Int# :: TYPE IntRep654

• Maybe Int :: Type655

• Maybe :: Type -> Type656

• TupleRep и SumRep — unboxed алгебраические типы, представления параметризованы657

представлениями хранимых значений658

(# Int, Bool #) :: TYPE (TupleRep '[LiftedRep, LiftedRep])659

• Для простоты, типы вложенных кортежей не унифицируются660

30

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/representation_polymorphism.html

1 (# Int#, (# Int, Double# #) #)
2 :: TYPE (TupleRep '[IntRep, TupleRep '[LiftedRep, DoubleRep]])

2.3.3 Representation polymorphism661

Выставив runtime-представление в структуре кайндов, мы теперь можем параметризо-662

ваться по ним. Например, кайнд функциональной стрелки выглядит следующим образом30:663

1 ghci> :k (->)
2 (->) :: forall {q :: RuntimeRep} {r :: RuntimeRep}. TYPE q -> TYPE r -> Type

Упражнение 15 Подумайте, почему функция имеет boxed тип. Может ли быть иначе? Может664

ли это быть полезным?665

К сожалению, Haskell выставляет довольно строгое ограничение: связыватели не мо-666

гут иметь тип, полиморфный по runtime представлению. Можно легко предположить, поче-667

му, — нельзя сгенерировать код функции для работы с параметром произвольного рантайм-668

представления. Это можно решить только мономорфизацией 2.2.1, но Haskell избегает этого669

подхода31. Сообщество также пытается найти другие решения32 (что-то вроде 2.2.4).670

Например, изначально оператор аппликации был обобщён только по возвращаемому ти-671

пу. Это не порождает проблем, так как вызывающий код сможет вывести представление и672

сгенерировать подходящий код:673

1 ($) :: forall r a (b :: TYPE r). (a -> b) -> a -> b
2 f $ x = f x

Однако, было замечено, что для оператора аппликации можно получить другую реализацию,674

не использующую levity-полиморфное связывание33:675

1 ($) :: forall ra rb (a :: TYPE ra) (b :: TYPE rb). (a -> b) -> a -> b
2 ($) f = f

Таким образом, в Haskell полиморфизм по представлениям несколько вырожден и помога-676

ет лишь в небольшом количестве случаев, однако немаловажных. Если позволить мономор-677

физацию по RuntimeRep параметрам, получится система аналогичная гибридной реализации678

параметрического полиморфизма 2.2.3, только с большим контролем со стороны програм-679

миста над мономорфизацией.680

30Выключить упрощения: ghci> :set -fprint-explicit-foralls -fprint-explicit-runtime-reps
31https://gitlab.haskell.org/ghc/ghc/-/issues/14917
32https://mail.haskell.org/pipermail/haskell-cafe/2023-January/135770.html
33https://gitlab.haskell.org/ghc/ghc/-/merge_requests/10131

31

https://gitlab.haskell.org/ghc/ghc/-/issues/14917
https://mail.haskell.org/pipermail/haskell-cafe/2023-January/135770.html
https://gitlab.haskell.org/ghc/ghc/-/merge_requests/10131

3 Специальный (ad-hoc) полиморфизм681

Как-то Joe Fasel в разговоре с Philip Wadler высказал идею того, что перегрузка функций682

(overloading) должна находить своё отражение в типах. Wadler понял его неправильно Hudak683

et al. [2007]. Но то, что он понял, — оказалось классами типов Wadler and Blott [1989].684

Christopher Strachey ввёл классификацию полиморфизма на две категории Strachey [2000].685

Параметрический — один и тот же код работает с данными различных типов. Специальный686

(ad-hoc) полиморфизм — код выбирается в зависимости от типа. Например, один и тот же687

символ умножения по-разному действует на целые числа и на числа с плавающей точкой.688

Перегрузка в языках обозначает возможность назвать несколько функций с различными689

наборами входных параметров одинаково. В месте вызова компилятор статически определяет690

по типам аргументов, какую из них действительно следует вызвать.691

1 string toString(x: int) { ... }
2 string toString(fmt: String, d: double) { ... }

Классы типов обязуют сначала задекларировать именованную сущность (собственно, класс692

типов), включающую в себя пачку деклараций функций, которые могут быть перегружены693

для различных типов.694

1 class Show a where
2 show :: a -> String

3 instance Show Int where
4 show :: Int -> String
5 show = ...

Необходимо заметить, что декларация класса типов содержит формальный типовой па-695

раметр, по вхождениям которого в тип функции, собственно, выбирается перегрузка. Таких696

параметров может быть много (MultiParamTypeClasses), они могут иметь стрелочные кайн-697

ды. Например, в случае класса типов Applicative, выбор реализации операции pure будет698

происходить по типовому конструктору результата, то есть даже не по полноценному типу.699

1 class Functor f => Applicative (f :: Type -> Type) where
2 pure :: a -> f a
3 ...

4 instance Applicative Maybe where
5 pure :: a -> Maybe a
6 ...

Также, в отличие от перегрузки, классы типов совместимы с параметрическим полимор-700

физмом. Так, в типе полиморфной функции нельзя указать, что для типа должна присут-701

ствовать определённая перегрузка. Классы типов же позволяют ограничить набор возможных702

типовых аргументов теми, для которых реализован инстанс нужного класса типов:703

32

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/multi_param_type_classes.html

1 showPrefixed :: Show a => a -> String -> String

Если сравнивать классы типов с переопределением (overriding) в ООП языках, то раз-704

решение вызова виртуальной функции происходит с использованием таблицы, хранящейся705

объекте первого параметра (получателя вызова, receiver). Классы типов же опираются ис-706

ключительно на тип, поэтому, например, возможно определение констант в классах типов34:707

1 class Enum a => Bounded a where
2 minBound :: a
3 maxBound :: a

В то же время, классы типов не являются типами, а, скорее, предикатами на типах. Тип708

удовлетворяет такому предикату, или свойству, если для него есть соответствующий инстанс.709

Поэтому, в частности, привычный способ в ООП создать гетерогенную коллекцию элементов,710

имеющих общий интерфейс, напрямую не сработает с классами типов. Например, такой тип711

не будет корректным: [Show]. Мы вернёмся к этой проблеме в 3.4.2.712

3.1 Классы типов в языке713

Несмотря на поразительное могущество, идея реализации классов типов крайне проста.714

Она была уже во всей полноте представлена в первой работе Wadler and Blott [1989]. В даль-715

нейших работах уточнялся механизм вывода типов в виде сведения к классической системе716

типов в стиле Hindley-Milner Hall et al. [1996]. Остальные работы, в основном, предлагают717

огромное разнообразие различных расширений и приложений Jones et al. [1997].718

3.1.1 Словари719

Рассмотрим идею реализации классов типов на примере полиморфной сортировки. Сор-720

тировка для списка элементов конкретного типа пишется тривиально:721

1 sort :: [Int] -> [Int]
2 sort = \case [] -> []; x:xs -> insert x (sort xs)
3 where
4 insert x xs = let (l, r) = List.partition (< x) xs in l ++ x : r)

В реализации единственная информация о типе, которой мы пользуемся — порядок на его722

обитателях. Таким образом, при переходе к полиморфной сортировке, нам нужно принять723

словарь с предикатами, задающими нужный порядок для данного типа.724

1 data OrdDict a = OrdDict { less :: a -> a -> Bool }

2 sort :: OrdDict a -> [a] -> [a]
34Современные ООП языки, тем не менее, стремятся поддержать статические функции в интерфейсах, что

делает их ближе к классам типов и позволяет делать похожие вещи. Например, Swift.

33

3 sort d@OrdDict{ less } = \case [] -> []; x:xs -> insert x (sort d xs)
4 where
5 insert x xs = let (l, r) = List.partition (`less` x) xs in l ++ x : r

Теперь, чтобы воспользоваться сортировкой на списке чисел, нужно сконструировать нуж-725

ный рекорд и вызвать с ним функцию на списке конкретных типов:726

1 intOrd :: OrdDict Int
2 intOrd = OrdDict { less = (<) }

3 ghci> sort intOrd [3, 2, 1]

Возможна ситуация, когда инстанс для одного типа зависит от инстанса для другого727

Например, порядок на списках можно получить автоматически, зная порядок на элементах.728

В случае словарей мы это моделируем функцией между словарями:729

1 listDict :: OrdDict a -> OrdDict [a]
2 listDict d = OrdDict { less = ... less d ... }

Теперь мы можем сортировать список списков, конструируя нужный словарь:730

1 ghci> sort (listDict intDict) [[3, 2], [2, 1], [0]]

Сравнение явной передачи словарей и классов типов можно увидеть в следующей таблице:731

1. Определение словаря функций

1 data MyOrd a = MyOrd
2 { less :: a -> a -> Bool }

2. Экземпляр словаря для конкретного
типа

• Именованное значение

1 intMyOrd :: MyOrd Int
2 intMyOrd = MyOrd { less = (<) }

3. Явный параметр функции

1 sort :: MyOrd a -> [a] -> [a]

4. Передаётся пользователем

1 test = sort intMyOrd [3, 2, 1]

1. Определение класса типов

1 class MyOrd a where
2 less :: a -> a -> Bool

2. Объявление типа представителем
класса типов

• Не имеет имени

1 instance MyOrd Int where
2 less = (<)

3. Неявный параметр функции

1 sort :: MyOrd a => [a] -> [a]

4. Передаётся компилятором

1 test = sort [3, 2, 1]

732

Таким образом, словарь — это свидетель (witness) или доказательство того, что тип733

удовлетворяет ограничению.734

Упражнение 16 Какой словарь будет соответствовать higher-kinded классу типов Functor?735

34

3.1.2 Неявные аргументы736

Можно думать так, что слева от => передаются неявные аргументы функций, выводимые737

компилятором из контекста. То есть, например, не стоит удивляться вхождениям => в типе738

аргумента, это просто функция с неявным аргументом. Так, следующий код не скомпилиру-739

ется, потому что в месте использования переменной y нет значения типа Show b:740

1 f :: (Show b => b) -> b
2 f x = x -- ошибка

Можно это значение принять в функции f, тогда оно автоматически пропагируется в y:741

1 f :: Show b => (Show b => b) -> b
2 f x = x

Расширение ImplicitParams даёт возможность делать некоторые аргументы функции неяв-742

ными. Фактически, это реализация динамического связывания в статическом языке Lewis743

et al. [2000] (см. далее 5.3.1). Неявные аргументы берутся из скоупа по имени и подставля-744

ются автоматически:745

1 sortBy :: (a -> a -> Bool) -> [a] -> [a]

2 sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
3 sort = sortBy ?cmp

Haskell также предоставляет возможность сохранять словари в структуры данных:746

1 data ShowDict a where
2 ShowDict :: Show a => ShowDict a

3 f :: ShowDict b -> (Show b => b) -> b
4 f d x = case d of ShowDict -> x -- в скоупе доступен инстанс Show b

Упражнение 17 Возможна ли именно такая семантика в энергичном языке? Почему?747

3.1.3 Вывод инстансов748

Чтобы вызвать ограниченно-полиморфную функцию, GHC производит вывод инстансов749

или, иначе говоря, автоматически конструирует свидетелей. Вывод инстансов тесно интегри-750

рован с общей системой вывода типов Haskell Peyton Jones [2019].751

В действительности вывод инстансов это не что иное, как задача населения типа. Дей-752

ствительно, после трансляции в Core (промежуточное представление в GHC), классы типов753

представляют собой словари функций. У нас в контексте имеются конкретные словари и754

функции, позволяющие из одних словарей получать другие. Требуется найти терм, констру-755

ирующий словарь нужного типа.756

35

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/implicit_parameters.html

Пусть, например, внутри функции f :: Show a => .. происходит вызов ограниченно–757

полиморфной функции g :: Show [a] -> ... То есть, у нас имеется словарь d1 :: ShowDict a,758

а так же функция d2 :: ShowDict a -> ShowDict [a], пришедшая из импортов35. Необ-759

ходимо сконструировать терм типа ShowDict [a]. Очевидно, это будет просто аппликации760

одного к другому: d2 d1.761

Вывод инстансов происходит рекурсивно. Чтобы вывести ShowDict [a], выводится сна-762

чала посылка ShowDict a. То есть получается рекурсия по структуре типа. Иначе говоря,763

вывод инстансов можно эксплуатировать как вычислительный примитив уровня типов. Так,764

например, мы можем опускать информацию из типов в термы (аналогично GHC.TypeLits):765

1 type data Nat = Zero | Suc Nat

2 class KnownNat (n :: Nat) where
3 natVal :: Int

4 instance KnownNat Zero where
5 natVal = 0

6 instance KnownNat n => KnownNat (Suc n) where
7 natVal = 1 + natVal @n

8 ghci> natVal @(Suc (Suc Zero))
9 -- выведется natVal {knownSuc (knownSuc knownZero)}

В общем случае процесс населения типа, как можно предположить по вычислительной766

аналогии, неразрешим. Поэтому GHC накладывает большое количество ограничений на вид767

инстансов, которые гарантируют тотальность вывода. Подробно эти ограничения описаны768

в Sulzmann et al. [2007a]. Также GHC предоставляет различные расширения, ослабляющие769

эти ограничения и перекладывающие часть ответственности на плечи программиста36. На-770

пример, c UndecidableInstances можно легко написать разворот списка типов на этапе компи-771

ляции, как и любую другую функцию:772

1 class Reverse (acc :: [Type]) (tys :: [Type]) where
2 showReverse :: String

3 instance ShowT acc => Reverse acc '[] where
4 showReverse = showTypes @acc

5 instance Reverse (ty : acc) tys => Reverse acc (ty : tys) where
6 showReverse = showReverse @(ty : acc) @tys

35Инстансы можно импортировать пустым импортом: import Module ().
36https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/instances.html

36

https://hackage.haskell.org/package/base-4.20.0.1/docs/GHC-TypeLits.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/instances.html#extension-UndecidableInstances
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/instances.html

7 ghci> showReverse @'[] @'[Char, Int, Double]

Можно заметить, что процесс вывода классов типов очень похож на вычисление логиче-773

ских программ, например, на Prolog, только без backtracking’а (перебора различных вариан-774

тов решений в поисках подходящего). Как, впрочем, и вывод типов в Haskell Peyton Jones775

[2019] в целом: собранные по программе эквивалентности можно рассматривать как логиче-776

скую программу, решение этой системы типовых уравнений — как исполнение этой програм-777

мы.778

Между классами типов и выводом типов существует интересная синергия (рис. 10)37.779

Исходя из термов, выводятся типы. Затем, исходя из типов, выводятся инстансы классов780

типов. То есть мы пишем какой-то интересный интеллектуальный код, а параллельно с нами781

компилятор выписывает неинтересный код.782

Рис. 10: Классы типов + вывод инстансов = кодогенерация.

Вывод инстансов опирается только на вид “головы” декларации — справа от =>, а ограни-783

чения слева применяются постфактум. Это можно использовать, чтобы писать более общие784

инстансы. Так, например, работает constraint trick38, позволяющий резолвить ad-hoc поли-785

морфные функции в параметрически-полиморфном контексте.786

3.1.4 Построение типа по значению787

После того как мы научились опускать значения из типов, закономерно научиться обрат-788

ному — поднимать значения в типы. Воспользуемся техникой, описанной в Kiselyov and Shan789

[2004]. Существует соответствующая библиотека Data.Reflection (см. далее 3.4.7).790

В действительности мы, конечно, не можем честно получить синтаксически тип нужно-791

го размера, просто потому, что типы существуют строго до стадии исполнения. Однако,792

как мы знаем, словари классов типов имеют воплощение в рантайме (случай полиморфной793

рекурсии — как раз пример, когда этого нельзя полностью избежать). Поэтому воспользу-794

емся continuation passing style, который будет подробно рассмотрен далее в главе 6: вместо795

37(youtube) Hackett: a metaprogrammable Haskell.
38https://chrisdone.com/posts/haskell-constraint-trick/

37

https://hackage.haskell.org/package/reflection-2.1.6/docs/Data-Reflection.html
https://youtu.be/5QQdI3P7MdY?si=VAgqyD7iycALTrz_
https://chrisdone.com/posts/haskell-constraint-trick/

того, чтобы вернуть результат, примем продолжение, умеющее работать с любым типом с796

KnownNat (пользуемся типовыми абстракциями и аппликациями, см. 2.1)39:797

1 reify :: Int -> (forall n. KnownNat n => a) -> a
2 reify n k
3 | n <= 0 = k @Zero
4 | otherwise = reify (n - 1) \@n' -> k @(Suc n')

Продолжение, передаваемое в рекурсивный вызов, захватывает словарь для типа n и кон-798

струирует словарь для Suc n.799

Наконец, можем написать следующую удивительную тождественную функцию, поднима-800

ющую сначала значение в тип, а потом опускающее тип обратно в термы:801

1 wonderId :: Int -> Int
2 wonderId n = reify n (\@t -> natVal @t)

3.1.5 Имплиситы и когерентность802

Классы типов можно не делать специальным языковым механизмом, но вместо этого803

предоставлять на языковом уровне неявные параметры и население, достаточные для реа-804

лизации классов типов.805

Так, в Scala существует механизм имплиситов (implicits) Křikava et al. [2019]40. Парамет-806

ры функций могут быть помечены ключевым словом implicit, тогда Scala попытается их807

вывести самостоятельно с помощью доступных в скоупе implicit деклараций. Объявления808

переменных, функций и конструкторов объектов также могут быть помечены implicit, тогда809

они будут использоваться при населении. Теперь мы можем смоделировать словарь функций,810

например, с помощью интерфейсов (которые в Scala называются trait) и ООП синглтонов,811

чтобы получить классы типов Oliveira et al. [2010]:812

1 // Пачка функций.
2 trait Show[T] {
3 def show(x: T): String
4 }

5 // Обёртка для удобства вызова.
6 def show[T](x: T)(implicit ev: Show[T]): String = ev.show(x)

7 // Объект-синклтон, значение для пачки функций.
8 implicit object intShow extends Show[Int] {
9 def show(x: Int): String = x.toString

10 }
39В не самых свежих версиях GHC потребуется воспользоваться техникой Proxy из 2.1.1.
40Дизайн неявных параметров в Scala3 изменился (youtube) Scala Implicits Revisited, Martin Odersky.

38

https://youtu.be/dr0PUXQhg3M?si=pCydSikA_gnnCMrq

Рис. 11: Когерентность инстансов — диаграмма коммутирует.

11 def showAll[T](xs: List[T])(implicit ev: Show[T]): String =
12 xs.map(show(_)).join(", ")

Как мы говорили ранее (2.1), работа с типовыми параметрами похожа на работу с обыч-813

ными. Также, вывод типов можно рассматривать как процесс восстановления пропущенных814

типовых аппликаций. Заметим, что примерно этим же занимается и механизм вывода им-815

плиситов. Таким образом, при попытке сделать функции с имплиситами функциями первого816

класса, будут возникать сложности схожие со сложностями first-class полиморфизма (2.1.2).817

В языках с зависимыми типами неявные параметры41 особенно нужны, потому что, на-818

пример, типы — это ровно такие же параметры функции, как и все остальные. Поэтому819

вывод типов — это фактически вывод неявных аргументов функций. Более того, зависимые820

функции, вместе с аргументами часто принимают доказательства каких-то свойств этих аргу-821

ментов, которые тоже хочется по возможности выводить из контекста автоматически. Такой822

механизм вывода можно переиспользовать для эмулирования классов типов42 Devriese and823

Piessens [2011]. В обратную сторону тоже работает — можно механизмы зависимой типиза-824

ции эмулировать классами типов McBride [2002].825

Как мы увидим далее, неявные параметры сами по себе тоже нужны как статическая ап-826

проксимация динамических свободных переменных для реализации системы эффектов (см.827

далее ??). Однако, иметь классы типов отдельной языковой возможностью всё же полезно,828

несмотря на то, что они, вроде бы, представляют собой те же неявные параметры (пусть и с829

рекурсивным механизмом населения). Так, можно поддержать важное свойство при соблю-830

дении всех ограничений, т.е. при отсутствии orphan instances43. Когерентность инстансов831

(coherence) — для одного типа все инстансы данного класса типов, полученные разными832

способами, неотличимы (рис. 11). Соответственно, не имеет значения происхождение того833

или иного инстанса. Иначе говоря, об этом можно не думать, это снимает существенное834

41https://agda.readthedocs.io/en/v2.7.0.1/language/implicit-arguments.html
42https://agda.readthedocs.io/en/v2.7.0.1/language/instance-arguments.html
43https://stackoverflow.com/questions/3079537/orphaned-instances-in-haskell

39

https://agda.readthedocs.io/en/v2.7.0.1/language/implicit-arguments.html
https://agda.readthedocs.io/en/v2.7.0.1/language/instance-arguments.html
https://stackoverflow.com/questions/3079537/orphaned-instances-in-haskell

количество когнитивной нагрузки и упрощает рефакторинг44. В то время как остальные под-835

ходы требуют трепетного отношения к контексту вызова, потому что из него может прийти836

неожиданная реализация.837

3.1.6 Правила (rules) и специализация838

GHC позволяет прямо в коде, с помощью специально прагмы, указывать оптимизирующие839

правила переписывания для компилятора45 Jones et al. [2001]. Например:840

1 {-# RULES
2 "map/map" forall f g xs. map f (map g xs) = map (f . g) xs
3 "map/append" forall f xs ys. map f (xs ++ ys) = map f xs ++ map f ys
4 #-}

Первый закон представляет собой не что иное, как закон функторов. В идеале, мы форму-841

лируем законы на этапе дизайна Maguire [b], проверяем их выполнение с помощью property-842

based testing46, а потом используем их для оптимизаций.843

Можно переписать полиморфную версию функции на специализированную, если типы844

подходят. Для этого нужно реализовать специализированную версию (совпадение семанти-845

ки — полностью ответственность программиста) и задать соответствующее правило перепи-846

сывания:847

1 genericLookup :: Ord a => Table a b -> a -> b
2 intLookup :: Table Int b -> Int -> b

3 {-# RULES "genericLookup/Int" genericLookup = intLookup #-}

Основной эффект такой оптимизации — гарантированное превращение динамических вы-848

зовов функций классов типов в статические (потому что тип известен, следовательно, — и849

соответствующий ему словарь).850

3.1.7 Отступление: дефункционализация851

Дефункционализация (defunctionalization) — техника избавления от функций высших852

порядков в программе47 Xia. Впервые предложена в Reynolds [1972, 1998].853

Идея заключается в том, чтобы заменить каждое создание лямбда-функции вызовом кон-854

структора некоторого алгебраического типа данных. А каждый call-cite функции заменить на855

вызов специальной first-order функции apply, интерпретирующей данный алгебраический тип.856

Рассмотрим пример из функции высших порядков map и двух колсайтов, создающих857

лямбда-функции:858

44Edward Kmett - Type Classes vs. the World.
45https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/rewrite_rules.html
46(youtube) John Hughes - Keynote: How to specify it!
47https://en.wikipedia.org/wiki/Defunctionalization

40

https://youtu.be/hIZxTQP1ifo?si=aG2Lk2eb-5E5SOLb
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/rewrite_rules.html
https://youtu.be/G0NUOst-53U?si=vdcKVUi9vSPBY0Jz
https://en.wikipedia.org/wiki/Defunctionalization

1 map :: (Int -> Int) -> [Int] -> [Int]
2 map f = \case [] -> []; x:xs -> f x : map f xs

3 example1 xs = map (\x -> x + 1) xs
4 example2 y xs = map (\x -> x * y) xs

Для каждого лямбда-литерала заводим по конструктору, хранящему замыкание. Аппликацию859

заменяем на вызов apply. Таким образом получили функцию map первого порядка.860

1 data Fun = F1 | F2 Int
2 apply :: Fun -> Int -> Int
3 apply df x = case df of F1 -> x + 1; F2 y -> x * y

4 map :: Fun -> [Int] -> [Int]
5 map df = \case [] -> []; x:xs -> apply df x : map df xs

6 example1 xs = map F1 xs
7 example2 y xs = map (F2 y) xs

3.1.8 Эмуляция полиморфизма высших порядков861

Далеко не во всех языках есть полиморфизм высшего ранга, но иногда он бывает поле-862

зен. Самое распространённое его применение — эмуляция классов типов стрелочных кайндов863

вроде Monad.864

Заметим, что типовый конструктор кайнда Type -> Type — это функция на типах, при-865

нимающая один тип, и возвращающая другой. Применим дефункционализацию, чтобы из-866

бежать необходимости параметризовать один типовый конструктор другим Xia, Yallop and867

White [2014].868

Поставим в соответствие типовому конструктору List тип-“символ” ListSym (для примера869

используем Kotlin):870

1 class ListSym

Заведём тип, соответствующий аппликации символа к типу, хранящий оригинальное значение871

со стёртым типом:872

1 class Apply<Sym, T>(val value: Any)

Установим изоморфизм между изначальным типом, полученным типовой аппликацией кон-873

структора, и новой аппликацией символа:48
874

1 fun <T> List<T>.to(): Apply<ListSym, T> = Apply(this)
2 fun <T> Apply<ListSym, T>.from(): List<T> = this.value as List<T>

48Слева от точки в декларации указывается дополнительный аргумент функции с синтаксисом передачи сов-
падающим с вызовом метода на объекте. Из тела функции на него можно ссылаться с помощью this.

41

Теперь мы можем объявить интерфейс монад и задать реализацию для списка с помощью875

объекта-синглтона:876

1 interface Monad<M> {
2 fun <T> pure(x: T): Apply<M, T>
3 infix fun <T, R> Apply<M, T>.bind(k: (T) -> Apply<M, R>): Apply<M, R>
4 }

5 object ListMonad : Monad<ListSym> {
6 override fun <T> pure(x: T): Apply<ListSym, T> = listOf(x).to()
7 override fun <T, R> Apply<ListSym, T>.
8 bind(k: (T) -> Apply<ListSym, R>): Apply<ListSym, R> =
9 this.from().flatMap { k(it).from() }.to()

10 }

И наконец мы можем писать функции над произвольными монадами:49
877

1 fun <M> Monad<M>.go(x: Apply<M, Int>): Apply<M, Int> =
2 x bind { it -> pure(it + 1) } bind { it -> pure(it + 2) }

3 fun test(xs: List<Int>): List<Int> = ListMonad.go(xs.to()).from()

Не лишним будет отметить, что результирующий код выглядит несколько чудовищно.878

Скорее всего, использование этой техники не окупает себя и нужно выбирать другой стиль879

программирования.880

3.2 Семейства881

Идея ad-hoc полиморфизма в том, чтобы в зависимости от типа получать различный882

код. Семейства начинались как продолжение этой идеи в плоскость данных и типов. Так,883

ассоциированные синонимы типов — различные типы для различных индексов (типовых па-884

раметров) Chakravarty et al. [2005a]. Ассоциированные data — различные представления для885

различных индексов Chakravarty et al. [2005b]. В конце концов эти идеи были обобщены до886

открытых семейств Schrijvers et al. [2008], потом были введены закрытые Eisenberg et al.887

[2014].888

Можно считать, что семейства5051 — это типовые конструкторы, задающие множество889

типов. Конкретный тип из множества можно выбрать, передав типовой параметр, называе-890

мый индексом. Сравните с обычными полиморфными конструкторами типа, которые ведут891

себя одинаково вне зависимости от типовых параметров.892

Большое количество интересных примеров использования можно найти, например, в Kiselyov893

et al. [2010].894

49Аргументы слева от точки умеют самостоятельно запрыгивать в последующие вызовы. Собственно говоря,
они являются неявными параметрами.

50https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/type_families.html
51https://serokell.io/blog/type-families-haskell

42

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/type_families.html
https://serokell.io/blog/type-families-haskell

3.2.1 Data families895

Data families позволяют выбирать декларацию алгебраического типа в зависимости от896

типового индекса. Например, для более эффективной реализации структур данных. Это на-897

поминает специализацию шаблонов в C++.898

1 data family XList elem
2 data instance XList () = IntList Int
3 data instance XList Bool = BoolList ByteArray

Единственный способ работать с data family — разместить реализацию в классе типов,899

чтобы она сопровождала значение с того момента, когда типовой индекс конкретный.900

1 class XListOp elem where
2 xelem :: elem -> XList elem -> Bool

3 instance XListOp () where
4 xelem () (IntList size) = size > 0

5 instance XList Bool where
6 xelem key (ByteArray bs) = ...

7 xelemAll :: XListOp elem => XList elem -> [elem] -> Bool
8 xelemAll xs = all (`xelem` xs)

К сожалению, в отличие от специализации шаблонов, нельзя задать определение по-901

умолчанию вроде data instance XList a = AList [a].902

3.2.2 Synonym families903

Synonym families (семейства типов) фактически являются функциями на типах. Они быва-904

ют открытыми, закрытыми и ассоциированными. Открытые семейства открыты в том смыс-905

ле, что инстансы можно писать отдельно от декларации, подобно классам типов. Закры-906

тые, наоборот, полностью описываются в одном месте, кейсы упорядочены сверху вниз, что907

несколько ослабляет ограничения на паттерны.908

1 type family Plus (n :: Nat) (m :: Nat) :: Nat where
2 Plus Zero m = m
3 Plus (Suc n) m = Suc (Plus n m)

Чтобы посмотреть, во что вычисляется нечто на уровне типов, можно воспользоваться909

следующей командой в ghci:910

43

1 ghci> :k! Plus (Suc Zero) (Suc (Suc Zero))
2 Plus (Suc Zero) (Suc (Suc Zero)) :: Nat
3 = Suc (Suc (Suc Zero))

Ассоциированные семейства работают аналогично, только объявляются в рамках некото-911

рого класса типов, являясь некоторой функциональной альтернативой FunctionalDependencies912

Jones [2000] (которые выглядят скорее реляционно). Иначе говоря, позволяют поставить в913

соответствие типу, для которого написан инстанс, другой тип. Например, коллекции — тип914

её элементов:915

1 class Container c where
2 type Elem c
3 elements :: c -> [Elem c]

4 instance Container [a] where
5 type Elem [a] = a
6 elements = id

7 instance Container ByteString where
8 type Elem ByteString = Word8
9 elements = ByteString.unpack

В современных языках часто встречаются ассоциированные семейства под видом ассоци-916

ированных типов52. Так, Swift сильно полагается на ассоциированные типы, вовсе не поддер-917

живая дженерики в протоколах (интерфейсах)53. В то же время Scala пытается отслеживать,918

в присутствии экзистенциальных типов (интерфейсов), из какого именно значения пришёл919

тот или иной ассоциированный тип с помощью path-dependent types Amin et al. [2014].920

3.2.3 Инъективные семейства921

Семейства типов отличаются от типовых конструкторов примерно так же, как функции от922

конструкторов данных. Конструкторы пассивны и не редуцируются (Maybe Int), в то время923

как функции вычисляются в какой-то результат (e.g. F Int ∼ Bool). В частности, как и924

функции, семейства не обязательно инъективны.925

Для типовых конструкторов, зная, что сконструированные ими типы эквивалентны, можно926

вывести, что типовые аргументы эквивалентны тоже. Например:927

1 Maybe a ∼ Maybe b ⇒ a ∼ b

Очевидно, что для классов типов это свойство по умолчанию не выполняется:928

52Ассоциированные типы являются фактически экзистенциальными типами, их связывает с ассоциирован-
ными семействами логический процесс сколемизации.

53(youtube) 2017 LLVM Developers’ Meeting: “Implementing Swift Generics”

44

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/functional_dependencies.html
https://youtu.be/ctS8FzqcRug?si=y_ZYnuUOulA33d_X

1 type family NonInjective a where
2 NonInjective Int = Double
3 NonInjective Char = Double

Haskell предоставляет явный синтаксис для объявления инъективных семейств типов, на-929

поминающий функциональные зависимости в классах типов (TypeFamilyDependencies) Stolarek930

et al. [2015]. Конечно, компилятор проверит, что реализация инъективна. Синтаксис требует931

связать результат именем через равенство и указать, аналогично FunctionalDependencies, что932

результат определяет какие-то из типовых индексов семейства:933

1 type family InjectiveB a b = r | r -> b
2 ...

3.2.4 Семейства первого класса934

Помимо инъективности, классы типов также не обязательно обладают свойством generavity,935

критически важным для вывода типов, — один и тот же результат не обязательно получен936

из того же самого семейства:937

1 f a ∼ g a ⇒ f ∼ g

Вместе инъективность и generavity — matchability. Когда Haskell работает с типом стре-938

лочного кайнда, он подразумевает, что этот тип matchable. Соответственно, семейства не939

могут передаваться в качестве параметров, а все их вхождения должны быть полностью при-940

менёнными ко всем аргументам (fully saturated). Либо нужно явно указать, что семейство941

возвращает конструктор (в этом конкретном месте семантика зависит от переноса аргумен-942

тов направо от ::):943

1 type family ToCtor (s :: Symbol) :: Type -> Type where
2 ToCtor "maybe" = Maybe
3 ToCtor "identity" = Identity

Одним из способов обойти это ограничение является дефункционализация семейств Xia,944

Eisenberg and Stolarek [2014]. Как мы и обсуждали ранее 3.1.7, вместо функции первого класса945

заводится некоторый символ, обозначающий её, и функция интерпретации, умеющая сделать946

действие, соответствующее этому символу. В данном случае функцией интерпретации будет947

открытое семейство Apply [Maguire, a, глава 10].948

В Haskell ведутся работы54 по устранению saturation ограничения Kiss et al. [2019]. Для949

этого нужно различать matchable и unmatchable типовые функции. Это предлагается делать950

дополнительным индексированием стрелочных кайндов: →≡→M и ↠≡→U. И, конечно, эти951

индексы могут быть полиморфными.952

54GHC proposal: Unsaturated Type Families.

45

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/type_families.html#extension-TypeFamilyDependencies
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/functional_dependencies.html
https://ghc-proposals.readthedocs.io/en/latest/proposals/0242-unsaturated-type-families.html

1 data Matchability = Matchable | Unmatchable

2 hMap
3 :: forall (m :: Matchability) (c :: Type -> Constraint)
4 . forall (f :: Type ->m Type) (as :: [Type])
5 . All as c => (forall a. c a => a -> f a) -> HList as -> HList (Map f as)

3.3 Кайнд Constraint953

Давно появлялись предложения добавить в GHC поддержку синонимов для констреинтов,954

семейств констреинтов и т.д Orchard and Schrijvers [2010]. В итоге был предложен55 и реа-955

лизован56 некоторый механизм унификации типов и констреинтов. Таким образом, всё, что956

работало для типов, стало работать и для констреинтов.957

В GHC с ConstraintKinds был добавлен специальный кайнд Constraint:958

• Класс типов конструирует констреинт: Monad :: (Type -> Type) -> Constraint;959

• Эквивалентность является констреинтом: (a ∼ b) :: Constraint;960

• Пустой кортеж констреинтов является констреинтом: () :: Constraint;961

• Кортеж констреинтов является констреинтом: (Eq a, a ∼ b) :: Constraint.962

Теперь, например, мы можем реифицировать словарь как объект языка:57
963

1 data Dict (c :: Constraint) where
2 Dict :: c => Dict c

Вспомним гетерогенный список, рассмотренный ранее 2.1.5:964

1 data HList (tys :: [Type]) where
2 HNil :: HList '[]
3 HCons :: ty -> HList tys -> HList (ty : tys)

Эта структура данных является first-class аналогом variadic generics в C++ или Swift58 (cоб-965

ственно, смысл вариадиков — не работать HList-подобными структурами напрямую). Напри-966

мер, мы можем написать map для такой структуры, если все типы удовлетворяют определён-967

ному ограничению. Для этого сначала реализуем семейство, генерирующее кортеж констре-968

интов для каждого типа из списка:969

1 type family All (c :: k -> Constraint) (tys :: [k]) :: Constraint where
2 All c '[] = ()
3 All c (ty : tys) = (c ty, All c tys)

4 -- All Show [Int, Double] ∼ (Show Int, (Show Double, ())
55https://gitlab.haskell.org/ghc/ghc/-/wikis/kind-fact
56http://blog.omega-prime.co.uk/2011/09/10/constraint-kinds-for-ghc/
57https://hackage.haskell.org/package/constraints-0.14.2/docs/src/Data.Constraint.html#Dict
58https://github.com/swiftlang/swift-evolution/blob/main/proposals/0398-variadic-types.md

46

https://downloads.haskell.org/ghc/9.2-latest/docs/html/users_guide/exts/constraint_kind.html
https://gitlab.haskell.org/ghc/ghc/-/wikis/kind-fact
http://blog.omega-prime.co.uk/2011/09/10/constraint-kinds-for-ghc/
https://hackage.haskell.org/package/constraints-0.14.2/docs/src/Data.Constraint.html#Dict
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0398-variadic-types.md

Теперь можем реализовать map:970

1 hmap :: forall c res tys . All c tys
2 => (forall ty . c ty => ty -> res) -> HList tys -> [res]
3 hmap f = \case
4 HNil -> []
5 HCons x xs -> f x : hmap @c f xs

6 ghci> hmap @Show show (HCons (1 :: Int) $ HCons 'a' HNil)

Больше такого рода упражнений в гетерогенных конструкциях можно найти в de Vries and971

Löh [2014].972

Констреинты также могут быть параметрически-полиморфными59 Bottu et al. [2017]:973

1 data Rose f x = Rose x (f (Rose f x))

2 instance (Eq a, forall b. Eq b => Eq (f b)) => Eq (Rose f a) where
3 Rose x1 rs1 == Rose x2 rs2 = x1 == x2 && rs1 == rs2

3.4 Использование ad-hoc полиморфизма974

Часто языки, имеющие что-то напоминающее классы типов, стремятся выразить через975

них как можно больше других языковых возможностей и полезных техник. Оказывается,976

это на удивление мощный механизм. Рассмотрим в этом параграфе некоторые избранные977

примеры.978

3.4.1 Сериализация979

Классическим примером использования классов типов является сериализация. Пробле-980

ма в том, что десериализация производится, когда самого объекта ещё нет (ущербный Java981

подход заполнения объекта дефолтными значениями с последующей мутацией мы не рас-982

сматриваем). Поэтому нет возможности написать ООП интерфейс Serializable.983

Стандартная библиотека сериализации в Kotlin60 предоставляет сущность KSerializer,984

которая является интерфейсом для отдельного объекта-сериализатора нашего типа (для985

эффективности тут используется CPS в виде потоков событий encoder и decoder, вернёмся986

к этому подходу далее 4.4.1):987

1 interface KSerializer<T> {
2 fun serialize(encoder: Encoder, value: T)
3 fun deserialize(decoder: Decoder): T
4 }

59https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/quantified_constraints.html
60https://github.com/Kotlin/kotlinx.serialization

47

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/quantified_constraints.html
https://github.com/Kotlin/kotlinx.serialization

Очевидно, чтобы сконструировать сериализатор полиморфного типа, нужны сериализа-988

торы типов-параметров. Что уже отчётливо напоминает классы типов.989

1 class PairSerializer(
2 keySerializer: KSerializer<K>,
3 valueSerializer: KSerializer<V>,
4): KSerializer<Pair<K, V>> { ... }

Однако в Kotlin нет классов типов, а значит создавать сериализаторы придётся вручную.990

С этим, однако несколько помогает пачка технологий: inline fun, reified дженерики, ре-991

флексия и компиляторный плагин библиотеки, который, однако не безопасен с точки зрения992

типов.993

3.4.2 Экзистенциальные типы994

Квантор существования в типах является механизмом инкапсуляции [Pierce, 2002, глава995

24]. Так, мы можем в типе τ заменить вхождения подтипа σ на переменную α и получить996

∃α. τ ′, где [α 7→ σ] τ ′ ≡ τ . Таким образом, мы скрыли от пользователя часть типа.997

Например, можно с помощью экзистенциальных типов привести разные типы к одной998

форме и сложить их значения в один список. В Haskell экзистенциальный тип выражают999

через data декларацию, в которой полиморфный конструктор данных и мономорфный тип61.1000

Так, тривиальный экзистенциальный тип ∃α.α можно получить в Haskell в виде типа Any,1001

заданного следующим образом:1002

1 data Any where
2 Any :: forall a . a -> Any -- логически эквивалентно (exists a . a) -> Any

3 list :: [Any]
4 list = [Any 42, Any "Hello", Any (Just Nothing)]

В месте деконструирования Any, будет доступно значение некоторого неизвестного ти-1003

па. Очевидно, с таким значением ничего сделать нельзя. Однако, помимо значения, можно1004

положить в конструктор свидетельство о том, что этот неизвестный тип удовлетворяет неко-1005

торому классу типов62.1006

1 data Has (c :: Type -> Constraint) where
2 Has :: c a => a -> Has c

Значение типа Has свидетельствует о том, что существует некоторый населённый тип a,1007

который принадлежит определённому классу типов. Например, рассмотрим Show:1008

61Подобно идиоме type erasure в C++.
62Подобно Rust fat pointers (пара из указателя на данные и указателя на таблицу виртуальных функций) и

ООП объектам.

48

1 showAll :: [Has Show] -> String
2 showAll = List.intercalate "," . map \(Has x) -> show x

В общем случае, чтобы элиминировать такой тип данных нужны типы высших рангов [Pierce,1009

2002, глава 24.3]:1010

1 foldHas :: Has c -> (forall a . c a => a -> b) -> b
2 foldHas (Has x) k = k x

Подробнее можно посмотреть в [Maguire, a, глава 7] и [Pierce, 2002, глава 24].1011

3.4.3 Разрешение имён1012

Процесс разрешения имён (name resolution) в языках программирования определяет, с1013

какой программной сущностью связать то или иное употребление имени. Разрешение имён1014

рассматривает импорты, иерархию пространств имён и скоупов, типы выражений. . . Как пра-1015

вило, это сложный процесс, неотделимый от вывода типов.1016

Однако, в GHC стадия разрешения имён довольно простая и отрабатывает до вывода1017

типов. На её тривиальную суть намекает её название — Renamer — она просто переписывает1018

имена в программе на fully-qualified имена, опираясь на импорты.1019

С одной стороны, простота — это хорошо. С другой — строгое отделение от вывода1020

типов накладывает неприятное ограничение: типы не могут участвовать в разрешении имён.1021

Наиболее остро эта проблема стоит с метками полей в рекордах. Приходится называть все1022

поля в модуле по-разному, чтобы избежать клешей.1023

Чтобы заставить разрешение имён зависеть от типов, Haskell снова прибегает к классам1024

типов. А именно, определяется класс типов IsLabel, который зависит от символа и ожида-1025

емого типа:1026

1 class IsLabel (s :: Symbol) a where
2 fromLabel :: a

Для вызова fromLabel есть синтаксический сахар (OverloadedLabels):1027

1 #name ≡ fromLabel @"name"

Теперь разрешение имени name будет учитывать тип63:1028

1 data Pet = Pet { name :: String }
2 instance IsLabel "name" (Pet -> String) where
3 fromLabel Pet{ name } = name

4 data Person = Person { name :: String, pets :: [Pet] }
5 instance IsLabel "name" (Person -> String) where
6 fromLabel Person{ name } = name

7 ghci> #name pet
63Чтобы избавиться от ошибки переопределения, нужно включить NoFieldSelectors.

49

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/overloaded_labels.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/field_selectors.html#extension-FieldSelectors

3.4.4 Несинтаксические типовые эквивалентности, System FC1029

Современный Haskell является синтаксически богатым языком, который, однако, несмот-1030

ря не многообразие конструкций, транслируется в маленький типизированный внутренний1031

язык. Это язык System FC Sulzmann et al. [2007b], расширяет System F (2.1) несинтаксиче-1032

скими эквивалентностями типов. Оказывается, этого достаточно, чтобы поддержать такие1033

возможности Haskell как обобщённые алгебраические типы, ассоциированные семейства ти-1034

пов, функциональные зависимости и т.д.1035

А именно, вводится встроенный констреинт ∼, свидетельствующий о эквивалентности1036

двух типов64. Например, тип функции id может быть записан таким странным образом:1037

1 f :: forall a b . a ∼ b => a -> b
2 f = id

На самом деле это функция от четырёх параметров: двух типовых параметров, коерции и1038

аргумента. Коерция — это значение размера 0, автоматически выводимое компилятором,1039

которое является свидетельством того, что два соответствующих типа эквивалентны.1040

Например, GADT из 2.1.4 рассахаривается следующим образом:1041

1 data Expr ty where
2 Const :: Int -> Expr Int
3 IsZero :: Expr Int -> Expr Bool
4 If :: forall ty . Expr Bool -> Expr ty -> Expr ty -> Expr ty
5 -- транслируется в
6 data Expr ty where
7 Const :: forall ty . ty ∼ Int => Expr ty
8 IsZero :: forall ty . ty ∼ Bool => Expr Int -> Expr ty
9 If :: forall ty . Expr Bool -> Expr ty -> Expr ty -> Expr ty

И после паттерн-матчинга по конструкторам, констреинт эквивалентности попадёт в ветку и1042

позволит системе вывода типов сделать необходимые переписывания.1043

Про вывод типов при наличии локальных предположений можно почитать в классической1044

статье OutsideIn(X) Vytiniotis et al. [2011].1045

Очевидно, что Haskell может населить констреинт эквивалентности следуя рефлексивно-1046

сти, симметричности и транзитивности. Также, компилятор может генерировать новые ак-1047

сиомы (пользователь напрямую свои аксиомы записать не может). Например, по семейству1048

типов компилятор генерирует аксиомы равенства апплицированного конструктора семейства1049

результирующим типам:1050

1 type family Plus (n :: Nat) (m :: Nat) :: Nat where
2 Plus Zero m = m
3 Plus (Suc n) m = Suc (Plus n m)
4 -- раскроется в

64https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/equality_constraints.html

50

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/equality_constraints.html

5 axiom Plus Zero m ∼ m
6 axiom Plus (Suc n) m ∼ Suc (Plus n m)

3.4.5 Коерции и роли1051

Haskell имеет поддержку generative type abstractions в виде newtype деклараций. Эта тех-1052

ника позволяет задавать доменно-специфичные типы, которые во время исполнения не отли-1053

чимы от оборачиваемых типов, но позволяют различать их. Так, мы можем ввести обёртки1054

для чисел, которые в предметной области представляют собой идентификаторы различных1055

сущностей. Теперь система типов не даст их перепутать.1056

1 newtype ModuleId = ModuleId Int64
2 newtype CourceId = CourceId Int64

Существует крайне недооценённая практика программирования65, когда у нас в программе1057

есть чёткая граница, на которой происходит парсинг данных из внешнего мира. После неё1058

сырые неструктурированные данные обогащаются структурой и принимают смысл внутри1059

предметной области. Либо же мы отвергаем эти данные как некорректные. В оставшейся же1060

части программы мы уже пользуемся типизированными данными, свойства которых уже уста-1061

новлены и гарантированы. Например, мы можем быть уверены, что число ModuleId строго1062

больше нуля.1063

Однако, если у нас есть коллекция обёрнутых данных, а мы хотим с ней поработать как с1064

коллекцией сырых, то нам придётся трансформировать коллекцию, несмотря на то, что эта1065

трансформация ничего не делает. Оптимизатор Haskell не справится её элиминировать, пото-1066

му что работает с типизированным промежуточным представлением и не сможет избавиться1067

от преобразования, меняющего тип.1068

1 newtype Csv = Csv { unCsv :: String }

2 concatC :: [Csv] -> Csv
3 concatC = Csv . concat . map unCsv

Поэтому в Haskell есть механизм безопасных коерций между типами, у которых одинаковое1069

представление во время исполнения. Это реализовано с помощью магического класса типов1070

Coercible. Его имплементирует компилятор автоматически (см. рис. 12).1071

1 class Coercible from to where
2 coerce :: from -> to

Теперь, можем избавиться от лишней трансформации списка:1072

1 concatC :: [Csv] -> Csv
2 concatC = coerce concat

65https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/

51

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/

Рис. 12: Принципы построения инстансов Coercible Breitner et al. [2014].

Безопасность коерций обеспечивает система ролей. Каждый типовой параметр имеет1073

специальное свойство — роль.1074

Роль phantom имеют фантомные типовые параметры. Их можно свободно коерсить (нет1075

пререквизитов для инстансов Coercible):1076

1 data Phantom h = Phantom
2 data NestedPhantom b = MkNP [Phantom b] | SomethingElse

3 instance Coercible (Phantom a) (Phantom b)
4 instance Coercible (NestedPhantom a) (NestedPhantom b)

Типовой параметр имеет роль representational, если типовой конструктор можно коерсить1077

только при условии, что можно коерсить аргументы:1078

1 data Maybe a = Nothing | Just a
2 instance Coerce a b => Coerce (Maybe a) (Maybe b)

Роль nominal имеет типовой параметр, если типовой конструктор можно коерсить только1079

при условии, что аргументы эквивалентны. Это требуется, если типовой аргумент индексирует1080

семейство или констреинт.1081

52

1 type family F a
2 data Applied a = Applied (F a)
3 instance (a ∼ b) => Coercible (Applied a) (Applied b)

4 data ShowDict a where
5 ShowDict :: Show a => a -> ShowDict a
6 instance (a ∼ b) => Coercible (ShowDict a) (ShowDict b)

Иногда компилятор выводит неправильную роль типовому параметру. Например, если ин-1082

варианты структуры зависят на конкретную имплементацию какого-то класса типов для ти-1083

пового аргумента, что совершенно не видно в декларации самого типа. В таком случае, роли1084

можно указать явно:1085

1 type role Map nominal representational
2 data Map k v = ...

Подробнее можно прочитать в Breitner et al. [2014] и [Maguire, a, глава 8].1086

3.4.6 Type reflection1087

Рефлексия — это языковой механизм получения информации о типах во время исполнения1088

(на уровне термов). Звучит знакомо, и действительно, Haskell реализует этот механизм через1089

классы типов Peyton Jones et al. [2016].1090

Библиотека предоставляет магический класс типов Typeable, который реализуется ком-1091

пилятором для каждого конкретного типа через deriving. Чтобы получить информацию о1092

типе, в скоупе должен быть инстанс Typeable для этого типа. Структура типа представле-1093

на типом-суммы TypeRep, который предоставляет возможность дополнительного типового1094

контроля с помощью обобщённых алгебраических типов данных и типовых тегов.1095

1 class Typeable a where
2 typeRep# :: TypeRep a

Например, следующим образом можно получить имя конструктора типа:1096

1 typeName :: forall a. Typeable a => String
2 typeName = tyConName $ typeRepTyCon $ typeRep $ Proxy @a

3 ghci> typeName @Int

Упражнение 18 Объявите класс типов, который позволяет распечатать список типов.1097

С помощью структуры представления типа и экзистенциальных типов в Haskell можно1098

эмулировать динамическую типизацию. А именно: любой тип может быть преобразован в1099

Dynamic, а потом безопасно преобразован обратно.1100

53

https://hackage.haskell.org/package/base-4.20.0.1/docs/Type-Reflection.html
https://hackage.haskell.org/package/ghc-internal-9.1001.0/docs/src/GHC.Internal.Data.Typeable.Internal.html#TypeRep

1 data Dynamic where
2 Dynamic :: Typeable a => a -> Dynamic

3 fromDynamic :: Typeable a => Dynamic -> Maybe a

Это может быть полезно, например, для определения гетерогенного хранилища ключ-1101

значение:1102

1 data Store = Map Key Dynamic
2 data Ref ty = Ref Key
3 get :: Typeable ty => Store -> Ref ty -> Maybe ty

3.4.7 Data reflection1103

Как мы обсуждали ранее, в свойство когерентности гарантирует, что каждому типу в1104

Haskell соответствует ровно один инстанс определённого класса типов. И единственный спо-1105

соб объявить инстанс в Haskell — декларацией на верхнем уровне, то есть он не может1106

зависеть ни от каких локальных данных. Однако в Haskell есть библиотека Data.Reflection66,1107

которая позволяет создавать локальные инстансы для свежих, чёрной магией сгенерирован-1108

ных67, типов.1109

Она пользуется идеей “поднятия значений в типы”, обсуждённой нами ранее (см. 3.1.4),1110

но в несколько более общем виде. Вместо заведения классов типов вида Known_, вводится1111

один класс типов, индексированный типом термов terms, которые спускаются из типов:1112

1 class Reifies ty terms | ty -> terms where
2 reflect :: Proxy ty -> terms

Также, с помощью следующей функции, библиотека позволяет сгенерировать свежий тип1113

и инстанс Reifies, который по этому свежему типу возвращает данное значение типа a (пе-1114

реданное первым аргументом). Поскольку он передаётся в функцию высшего ранга, свежий1115

тип не может утечь из скоупа 2.1.2:1116

1 reify :: a -> (forall fresh . Reifies fresh a => Proxy fresh -> res) -> res

Чтобы воспользоваться нестандартным инстансом класса типов для некого типа a, нужно1117

объявить новый тип (например, с помощью newtype), содержащий данный, и написать для1118

него нужный инстанс (см, например, Down). Мы не хотим объявлять по новой декларации1119

для каждого случая, поэтому заведём обёртку, похожую на Data.Tagged, которая позволяет1120

добавлять фантомный типовой тег к типу значения. Варьируя тег, можно получить сколь1121

угодно много типов, оборачивающих данный.1122

1 newtype Wrapped tag a = Wrapped { unwrap :: a }

66https://www.tweag.io/blog/2017-12-21-reflection-tutorial/
67https://www.schoolofhaskell.com/user/thoughtpolice/using-reflection

54

https://hackage.haskell.org/package/reflection-2.1.6/docs/Data-Reflection.html
https://hackage.haskell.org/package/base-4.20.0.1/docs/Data-Ord.html#t:Down
https://hackage.haskell.org/package/tagged-0.8.8/docs/Data-Tagged.html
https://www.tweag.io/blog/2017-12-21-reflection-tutorial/
https://www.schoolofhaskell.com/user/thoughtpolice/using-reflection

Объявим тип обёртки Wrapped tag a представителем нужного класса типов. Код для1123

реализации будем с помощью reflect получать по типу тега в виде честного словаря.1124

1 data ReifiedOrd a = ReifiedOrd { compare :: a -> a -> Ordering }

2 instance Reifies tag (ReifiedOrd a) => Ord (Wrapped tag a) where
3 compare = coerce $ compare $ reflect $ Proxy @tag

Наконец, можем вызвать функцию сортировки, подменив локально порядок на обратный:1125

1 sort :: Ord a => [a] -> [a]

2 sortReverse :: forall a . Ord a => [a] -> [a]
3 sortReverse xs =
4 let dict = ReifiedOrd { compare = flip compare } in
5 reify dict \(Proxy :: Proxy fresh) ->
6 coerce $ sort @(Wrapped fresh a) $ coerce xs

3.4.8 Открытые структуры1126

В динамических языках можно создавать объекты на ходу, последовательно дописывая в1127

них содержимое, и не вводя предварительно декларацию. В Haskell тоже так можно, используя1128

пары для произведений и Either для сумм. Например, можно добавить новое поле, создав1129

новую пару: (oldObj, newField).1130

Однако, такая реализация не оптимальна как с точки зрения эффективности (о более1131

эффективных реализациях можно почитать в [Maguire, a, глава 11]), так и с точки зрения1132

удобства использования. А именно — порядок полей имеет значение и на типах в Haskell1133

нет отношения подтипизации (например, нельзя передать значение с меньшим количеством1134

полей или вариантов). Но можно заметить, что констреинты лишены этих недостатков. По-1135

этому можно организовывать тип структуры данных, например, таким образом:1136

1 (Int, Double) заменяем на (Member Int d, Member Double d) => Prod d

3.4.9 Исключения и открытая иерархия1137

Важный аспект работы с ошибками заключается в том, что многие из них обрабаты-1138

ваются единообразно. Таким образом, ошибки должны образовывать иерархию наподобие1139

той, которая в ООП языках получается с помощью наследования, чтобы иметь возможность1140

реагировать сразу на группу ошибок одним кодом. Так, возникает задача моделирования1141

подобной иерархии в Haskell.1142

Более того, статически типизированные ошибки это активная область исследований, бу-1143

дем говорить об этом в рамках систем эффектов (см. далее ??). Классические исключения же1144

55

динамически типизированные. Особенно хорошо этот вариант подходит для ошибок програм-1145

миста, которые по-хорошему не должны обрабатываться в программе кроме как закрытием1146

ресурсов.1147

Поддержка исключений присутствует в системе исполнения Haskell как простого и привыч-1148

ного способа обработки исключительных ситуаций: ошибок программиста, исполнения непол-1149

ного паттерн-матчинга, асинхронных системных сигналов Marlow et al. [2001]. . . Исключения1150

динамически типизированные и образуют иерархию Marlow [2006]. Если породить исключе-1151

ние может и чистый код, так как ⊥, по семантике Haskell, населяет любой тип, то поймать1152

исключение можно только68 в IO Jones [2001], используя специальные примитивы языка.1153

Чтобы сделать тип исключением, нужно объявить инстанс Exception для него:1154

1 class (Typeable a, Show a) => Exception a where
2 toException :: a -> SomeException
3 toException = SomeException

4 fromException :: SomeException -> Maybe a
5 fromException (SomeExcetion e) = cast e

Где SomeException — это экзистенциальная обёртка наподобие Dynamic (см. 3.4.6), в ко-1155

торую заворачивается конкретный тип исключения. Ловя SomeException, можно поймать1156

любое исключение (cast всегда сработает).1157

1 data SomeException where
2 SomeException :: Exception a => a -> SomeException

3 instance Exception SomeException

Система исполнения Haskell предоставляет интринсики для кидания и ловли исключений,1158

обернём их для поддержки любого Exception типа:1159

1 throw :: Exception e => e -> a
2 throw = primThrow (toException e)

3 catch :: Exception e => IO a -> (e -> IO a) -> IO a
4 catch io handler = io `primCatch` \e -> case fromException e of
5 Nothing -> throw e
6 Just e' -> handler e'

7 ghci> throw "error" `catch` (e :: String) -> putStrLn e

В простейшем случае свой тип исключения можно реализовать в две строчки. Чтобы его1160

поймать, нужно либо ловить сам этот тип, либо SomeException, потому что для них обоих1161

fromException на объекте вида SomeException MyError вернёт Just69.1162

68(stackoverflow) Why can Haskell exceptions only be caught inside the IO monad?
69instance Exception SomeException where fromException = Just

56

https://stackoverflow.com/questions/3642793/why-can-haskell-exceptions-only-be-caught-inside-the-io-monad

1 data MyError = MyError deriving (Show, Typeable)
2 instance Exception MyError

Добавим исключение ArithException и ещё один более общий тип исключений меж-1163

ду ним и SomeException — SomeArithException (таким образом, будет три способа пой-1164

мать ArithException). Для этого сделаем SomeArithException экзистенциальной обёрт-1165

кой, а каждое исключение типа ArithException будем автоматически оборачивать в неё.1166

В fromException на каждом уровне вложенности будем пытаться получить оборачивающий1167

конструктор рекурсивным вызовом.1168

1 data SomeArithException where
2 SomeArithException :: Exception a => a -> SomeArithException

3 -- SomeException - базовый (реализация по умолчанию)
4 instance Exception ArithException

5 data DivisionByZero = DivisionByZero deriving Show
6 instance Exception DivisionByZero where
7 toException = toException . SomeArithException
8 fromException e = do
9 SomeArithException e' <- fromException e

10 cast e'

Так, во время бросания DivisionByZero будет конструироваться объект вида:1169

1 SomeException (SomeArithException DivisionByZero)

Реализация fromException для конкретного типа умеет убедиться в наличии соответствую-1170

щего конструктора в результирующем объекте исключения.1171

3.4.10 Легковесные частичные стек-трейсы1172

Забавной эксплуатацией классов типов в Haskell являются легковесные частичные стек-1173

трейсы70. Вообще для сбора трейсов нужна поддержка рантайма, что в случае Haskell услож-1174

няется ещё и тем, что модель вычислений, редукция графов, реальных трейсов не содержит1175

и их приходится эмулировать. Мы же получим трейсы без поддержки рантайма.1176

В стандартной библиотеке определён констреинт GHC.Stack.HasCallStack, позволяю-1177

щий получить информацию о месте вызова функции. Эту информацию фактически разме-1178

щает компилятор в процессе вывода инстансов. Если в месте вызова доступна информация с1179

уровня выше, компилятор распространяет её дальше. Таким образом, доступна информация1180

только на определённую глубину стека вызовов.1181

70https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/callstack.html

57

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/callstack.html

1 myHead :: HasCallStack => [a] -> a
2 myHead [] = error "empty"
3 myHead (x:xs) = x

4 bad :: Int
5 bad = myHead []

6 ghci> bad
7 *** Exception: empty
8 CallStack (from HasCallStack):
9 error, called at Bad.hs:8:15 in main:Bad

10 myHead, called at Bad.hs:12:7 in main:Bad
11 -- no information about bad call site here

HasCallStack — это просто имплисит (см. 3.1.2), про который знает компилятор:1182

1 type HasCallStack = (?callStack :: CallStack)

3.4.11 Кастомизируемые ошибки типизации1183

При программировании сложных с точки зрения типов библиотек, желательно предостав-1184

лять пользователям более информативные ошибки типизации, чем ошибки по умолчанию.1185

Для этого в GHC есть механизм в GHC.TypeLits, позволяющий сконструировать специальный1186

тип, информация из которого попадёт в сообщение об ошибке. Например, этот тип можно1187

вернуть из synonym family при некорректном наборе аргументов. Или же можно воспользо-1188

ваться constraint trick (см. 3.1.3) и разместить такой тип в качестве посылки в инстансе.1189

Если инстанс подошел и компилятор начал обрабатывать ограничения слева, значит, что-то1190

пошло не так [Maguire, a, глава 12].1191

1 instance (TypeError
2 (Text "Attempting to show a function of type "
3 :<>: Text "'" :<>: ShowType (a -> b) :<>: Text "'"
4 :$$: Text "Did you forget to apply an argument?"
5)) => Show (a -> b) where
6 show = undefined -- реализация не важна, до исполнения дело не дойдёт

58

https://hackage.haskell.org/package/base-4.20.0.1/docs/GHC-TypeLits.html

4 Типы данных1192

В этой главе собраны некоторые общие знания о типах. Также, мы получим различные1193

эквивалентные представления рекурсивных типов данных (иначе говоря, коллекций). Многие1194

концепции являются частными случаями этого многообразия.1195

Разделы 4.1, 4.2 в основном следуют [Maguire, a, глава 1].1196

4.1 Вариантность1197

В этом параграфе мы будем рассматривать тему с точки зрения программирования [Maguire,1198

a, глава 3], не отдавая должного теории категорий. Восполнить пробел можно с помощью1199

замечательной статьи, написанной в жанре пьесы Hinze et al. [2012].1200

Ковариантный функтор — пара из некоторого типового конструктора F и операции на1201

функциях fmap :: (a -> b) -> (F a -> F b). Плюс законы о том, что fmap уважает id и1202

композицию.1203

1 class Functor f where
2 fmap :: (a -> b) -> (f a -> f b)

Контравариантный функтор — пара из типового конструктора и операции на функциях,1204

разворачивающей стрелку. Плюс соответствующие законы.1205

1 class Contravariant f where
2 contramap :: (a -> b) -> (f b -> f a)

Типовой конструктор можно объявить ковариантным или контравариантным функтором1206

(или никаким из них) относительно некоторого типового параметра в зависимости от вида1207

59

декларации соответствующих конструкторов данных. А именно, от знака позиций, в которых1208

входит этот типовой параметр в тип.1209

Разовьём интуитивное понимание знаков позиций. Тип A входит в положительной пози-1210

ции в B если его значение можно извлечь из B. И наоборот, тип A входит в отрицательной1211

позиции, если его значение нужно, наоборот, предоставить. Рассмотрим знаки позиций типов1212

в базовых типовых конструкторах:1213

Тип знак позиции A знак позиции B
Either A B + +

(A, B) + +

A -> B − +

1214

Действительно, из суммы и произведения можно извлечь компоненты с помощью паттерн-1215

матчинга, а из стрелки можно получить правый тип апплицируя её к аргументу. В то же время1216

значение типа слева от стрелки нужно предоставить.1217

На плюс и минус действуют интуитивные алгебраические законы при рассмотрении более1218

сложных типов. Рассмотрим на примере f :: ((A, B) -> C) -> (D, E).1219

• Плюс на плюс даёт плюс. Действительно, нужно лишь применить две элиминации вме-1220

сто одной, чтобы получить заветный тип. В нашем примере, чтобы получить D, нужно1221

сначала апплицировать функцию, а потом разобрать пару.1222

• Плюс на минус (и наоборот) даёт минус. Действительно, C нам нужно предоставить:1223

f (\ab -> provideC).1224

• Минус на минус даёт плюс. Пару (A, B) нам предоставляют: f (\ab -> ...).1225

Упражнение 19 Убедитесь что плюс на минус даёт минус.1226

Возвращаясь к функторам, если типовой параметр входит в декларацию только в поло-1227

жительных позициях, типовой конструктор можно объявить ковариантным функтором отно-1228

сительно этого параметра. Если в только в отрицательных — контравариантным функтором.1229

Если в обоих, то никаким функтором объявить нельзя. Соответственно, будем называть ти-1230

повые параметры ковариантными, контравариантными и инвариантными.1231

Упражнение 20 Объявите instance Contravariant F для data F a = L (a -> ()) | R Int.1232

Таким образом, можно понимать ковариантный функтор как вычисление, результат ко-1233

торого можно пост-обработать, а контравариантный функтор — как вычисление, аргументы1234

которого можно пред-обработать.1235

Тип от двух положительных параметров можно объявить бифунктором:1236

1 class Bifunctor f where
2 bimap :: (a -> c) -> (b -> d) -> f a b -> f c d

Тип от двух параметров, положительного и отрицательного, — профунктором:1237

60

1 class Profunctor p where
2 dimap :: (c -> a) -> (b -> d) -> p a b -> p c d

Профункторы являются некоторыми обобщениями функциональной стрелки. Например,1238

если у нас есть SQL запрос, который по данным возвращает результат, его можно объявить1239

профунктором с семантикой — добавить пред-обработку входных данных и пост-обработку1240

выходных:1241

1 dimap serialize deserialize (query :: Sql Text Text) :: Sql Age [User]

Также понятие вариантности часто встречается в объектно ориентированных языках (да1242

и вообще в теории подтипизации) для обозначения возможности дополнить отношение под-1243

типизации на полиморфные типы.1244

Действительно, отношение подтипизации B <: A говорит о том, что значение типа B1245

безопасно использовать в позиции, где ожидается значение типа A. Иначе говоря, существует1246

функция upcast :: B -> A. Если типовой конструктор F a ковариантен относительно пара-1247

метра a, то по upcast найдётся upcast’ :: F B -> F A. То есть отношение подтипизации1248

также автоматически включает F B <: F A. Контравариантный случай аналогично.1249

Упражнение 21 Убедитесь в вашем любимом языке с подтипизацией и поддержкой вари-1250

антности, что минус на минус даёт плюс.1251

4.2 Изоморфизм1252

Пусть нам нужно спроектировать функцию или модель данных. Мы начинаем с декларации1253

типа, как её выбрать и из каких вариантов? Для начала поймём, когда два типа взаимозаме-1254

нимы, для этого рассмотрим понятия изоморфизма.1255

Два типа A и B называются изоморфными (обозначают A ∼= B) тогда и только тогда,1256

когда существует такая пара функций to :: A -> B и from :: B -> A, что71
1257

1 to . from = id
2 from . to = id

Иначе говоря, между обитателями таких типов можно установить взаимно-однозначное1258

соответствие. Легко понять, что со смысловой точки зрения не принципиально, какой из1259

изоморфных типов использовать — их можно заменять друг на друга, добавляя вызовы1260

функций перехода. Такие два типа заключают в себе одинаковое “количество информации”.1261

Например, типы Bool и Maybe () в этом смысле совершенно взаимозаменимы. Покажем это,1262

предъявив пару взаимообратных функций72:1263

71Под равенством термов можно понимать разное, например, αβγ-эквивалентность. Мы будем пользоваться
экстенсиональным равенством для функций — две функции равны, когда равны их результаты на всех входах.
https://ncatlab.org/nlab/show/function+extensionality

72Нужно не забыть показать взаимообратность функций, но это делается тривиально перебором входов (мо-
жет быть с помощью индукции) и редукцией.

61

https://ncatlab.org/nlab/show/function+extensionality

1 to :: Bool -> Maybe ()
2 to b = if b then Just () else Nothing

3 from :: Maybe () -> Bool
4 from m = case m of Nothing -> False; Just () -> True

Несмотря на смысловую взаимозаменимость, для кодирования информации о том, пере-1264

дал ли пользователь программе определённый флаг, мы, скорее всего, воспользуемся типом1265

Bool ввиду нефункциональных соображений о читабельности кода. Аналогично можно рас-1266

сматривать соображения эффективности.1267

С категорным взглядом на происходящее можно ознакомиться в Hinze and James [2010].1268

Мы же придерживаемся теоретико-множественной интерпретации типов.1269

4.2.1 Кардинальность: суммы, произведения, экспоненты1270

Типы можно воспринимать как синтаксис для записи множеств, а населяющие их термы —1271

как синтаксические записи элементов этих множеств. Так терм (True, False) — запись эле-1272

мента множества пар, записываемого в синтаксисе типов как (Bool, Bool) (вместо матема-1273

тического B×B). Или же терм \x -> x + 1 является записью функции прибавляющей еди-1274

ницу из множества функций над целыми числами, записываемого как Integer -> Integer1275

(вместо математического Z→ Z).1276

Заметим, что два типа изоморфны, если соответствующие им множества имеют одина-1277

ковое количество элементов. Более того, таких изоморфизмов n! в случае конечности мно-1278

жеств. Научимся определять количество таких элементов. С помощью | · | будем записывать1279

кардинальность типа — количество элементов в соответствующем множестве.1280

Тип и его декларация кардинальность
data Void 0

data Unit = Unit73 1

data Bool = False | True 2

1281

Идея алгебраических типов данных в том, что сложные типы можно строить из простых1282

с помощью операции + (“или”) и операции × (“и”)74:1283

Тип кардинальность
data Either a b = Left a | Right b |a|+ |b|
data Pair a b = Pair a b |a| × |b|

1284

Посчитаем количество обитателей различных типов (вы можете убедиться в справедли-1285

вости заключения перебрав все термы вручную):1286

• |Either Unit (Eigher Bool Bool)| = |Unit| + (|Bool| + |Bool|) = 5.1287

73Unit записывается в Haskell с помощью специального синтаксиса (), означающем как бы пустой кортеж.
74https://stanford-cs242.github.io/f18/lectures/02-2-algebraic-data-types.html

62

https://stanford-cs242.github.io/f18/lectures/02-2-algebraic-data-types.html

• Pair (Either Bool Unit) (Pair Unit Void)| = 0 — тип Void не населён, как и кор-1288

теж, его включающий.1289

• Если data Example = FirstAlternative Bool | AnotherOne Unit Bool Bool, то1290

|Example| = |Bool| + |Unit| * |Bool| * |Bool| = 2 + 1 * 2 * 2 = 6.1291

Функциональную стрелку называют экспоненциальным типом. Действительно, комбина-1292

торно количество обитателей A -> B вычисляется как1293

|A→ B| = |B||A|

Так как же проектировать типы? Тому есть несколько соображений:1294

• В типе должно быть не меньше элементов, чем в предметной области, все необходимые1295

объекты были представимы.1296

• В типе должно быть как можно меньше элементов, которых нет в предметной области,1297

чтобы пространство ошибок было минимальным.1298

• Далее среди изоморфных типов выбирается оптимальный исходя из нефункциональных1299

требований.1300

Прежде чем работать с некоторым объектом предметной области, информацию о нём, в1301

соответствии со вторым правилом, следует привести в максимально структурное представ-1302

ление, дающее наибольшее количество гарантий75.1303

4.2.2 Алгебраическое представление типа1304

Как мы увидели выше, чтобы показать наличие изоморфизма между двумя типами мож-1305

но либо предъявить пару взаимообратных функций, либо показать, что кардинальности этих1306

двух типов совпадают. В этом разделе мы научимся сопоставлять типу некоторую алгебраиче-1307

скую запись, отражающую его структуру и кардинальность. Так, мы сможем синтаксическими1308

преобразованиями формул получать эквивалентные записи, из которых будем восстанавли-1309

вать типы, заведомо изоморфные данному76.1310

В основу алгебраического представления положим вычисление кардинальности типов.1311

Фактически мы забываем несущественную для изоморфизма информацию об именах кон-1312

структоров данных и конструкторов типов, то есть переходим к структурной типизации.1313

Тип алгебраическая формула
data Void 0

data Unit = Unit 1

data Bool = False | True 1 + 1 (обозначим как 2)
data Maybe a = Nothing | Just a 1 + a

data Either a b = Left a | Right b a + b

data Pair a b = Pair a b a × b
a -> b ba

1314

75https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
76https://codewords.recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types

63

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://codewords.recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types

Рис. 13: Законы школьной алгебры ностальгии ради Hinze and James [2010].

Упражнение 22 Запишите в алгебраическом виде следующий тип:1315

1 data T a b = Undefined | Defined a (a -> b)

В качестве отношения эквивалентности, будем использовать изоморфизм соответствую-1316

щих типов. В такой интерпретации, классические свойства алгебраических операций сохра-1317

няются (рис. 13). Действительно, например:1318

1 -- (cb)a ∼= ca×b
2 to :: (a -> b -> c) -> (a, b) -> c
3 to = uncurry
4 from :: ((a, b) -> c) -> a -> b -> c
5 from = curry

Упражнение 23 Покажите, что (a + b) + c ∼= a + (b + c).1319

Упражнение 24 Покажите, что ca+b ∼= ca × cb.1320

Интересным наблюдением может быть то, что функции можно использовать как структу-1321

ры данных, в соответствие с изоморфизмом ca+b ∼= ca × cb. Действительно, в таком случае1322

аргумент функции выступает индексом (его кардинальность должна совпадать с размером1323

коллекции).1324

1 -- a × a ∼= a2
2 get :: (a, a) -> (Bool -> a)
3 get (x, y) idx = if idx then x else y
4 tabulate :: (Bool -> a) -> (a, a)
5 tabulate f = (f True, f False)

64

Каноническим предствлением типа (canonical representaion) называют сумму произ-1325

ведений типов:1326 ∑
i

∏
j

ti j

Каноническое представление является своего рода нормальной формой, в которой можно1327

записывать алгебраические типы (любой алгебраический тип можно по правилам привести1328

к ней). Легко узнать в нём вид data деклараций в Haskell.1329

Удивительно, но даже производная алгебраического типа имеет вполне понятную семанти-1330

ку. Это контекст зиппера (zipper), структуры данных наподобие итератора, позволяющей на-1331

вигироваться по структуре данных произвольной формы Huet [1997], McBride [2001], Abbott1332

et al. [2003].1333

4.3 Рекурсивные типы1334

Рекурсивные типы, наподобие рекурсивным термам, могут включать себя в своих опре-1335

делениях. Иначе говоря, рекурсивный тип изоморфен какому-то другому типу, в который он1336

сам входит как подтип.1337

1 fac n = if n <= 1 then 1 else n * fac (n - 1)
2 data Nat = Zero | Suc Nat

Мы в основном посмотрим на рекурсивные типы с практической точки зрения. Однако, их1338

формальное теоретико-типовое описание, теоретико-категорная и теоретико-множественная1339

интерпретации представляют отдельный интерес [Pierce, 2002, часть 4].1340

4.3.1 Просто список1341

Рассмотрим классический функциональный список. Список это либо коллекция из нуля1342

элементов, либо одного, либо двух. . . Алгебраически это запишется следующим образом:1343

L = 1 + a + a2 + a3 + . . .

Фактически получили тип с бесконечной записью. Поработаем с ним как с формальным1344

рядом. Вынесем a за скобки:1345

L = 1 + a × (1 + a + a2 + . . .)

Заметим, что выражение в скобках представляет собой список, получим такое рекурсивное1346

уравнение77:1347

L = 1 + a × L

Легко видеть, что это на самом деле знакомое нам определение списка из Haskell:1348

77Либо можно получить то же самое, заметив, что мы имеем дело с рядом Тейлора https://codewords.
recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types.

65

https://codewords.recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types
https://codewords.recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types

1 data List a = Nil | Cons a (List a)

Получим конечное нерекурсивное представление типа L. Фактически, нам нужно получить1349

тип изоморфный типу, включающему в себя исходный:1350

L ∼= 1 + a × L

Расширим язык типов абстракцией (полиморфизмом) и решим полученное рекурсивное урав-1351

нение в стиле λ-исчисления, с помощью некоторого комбинатора неподвижной точки:1352

L = F IX λr. 1 + a × r

Закодируем это на Haskell. В качестве комбинатора рекурсии возьмём data FixList a:1353

1 type Shape a r = Either () (a, r) -- λar. 1 + a × r
2 data FixList a = In (Shape a (FixList a))
3 -- FixList a ∼= Shape a (FixList a) ∼= Shape a (Shape a (FixList a)) ∼= ...

4 example :: FixList Int -- [1, 2, 3]
5 example = In (Right (1, In (Right (2, In (Right 3, Left ())))))

Таким образом, мы разделили определение списка на две части: одна отвечает за форму1354

типа, другая — за рекурсию78. Форму можно переиспользовать, в определении свёртки:1355

1 foldr :: (Either () (a, r) -> r) -> FixList a -> r
2 foldr phi (FixList shape) = case shape of
3 Left () -> phi (Left ())
4 Right (x, xs) -> phi (Right (x, foldr phi xs))
5 -- сравните с классическим определением
6 foldr :: r -> (a -> r -> r) -> [a] -> r
7 foldr ini f list = case list of
8 [] -> ini
9 x:xs -> f x (foldr ini f xs)

Действительно, свёртка в общем смысле позволяет заменить каждый конструктор данных1356

в дереве на некоторую функцию. В результате получается вычисление, имеющее доступ ко1357

всему содержимому структуры данных, и возвращающее результат агрегации:1358

1359

78Техника абстрагирования по “рекурсивной ссылке на себя” называется открытой рекурсией. Так, мы предо-
ставляем пользователю больше контроля. Например, на уровне термов комбинатор рекурсии может подсчиты-
вать количество рекурсивных вызовов и оборвать вычисление при привышении какого-то лимита.

66

То есть количество и типы аргументов свёртки зависят от “формы” сворачиваемого типа.1360

В случае списка требуется нольарная функция вместо Nil и бинарная вместо Cons. Мы же1361

эти две функции представляем в как одну с помощью типа-формы. Сравните:1362

1 foldr 0 (\e r -> e + r)
2 foldr (\case Left () -> 0; Right (e, r) -> e + r)

4.3.2 Неподвижная точка функтора1363

Абстрагируем FixList по типу-форме:1364

1 newtype Fix :: (Type -> Type) -> Type
2 newtype Fix f = In { out :: f (Fix f) }

3 data ListF a r = Nil | Cons a r
4 type List a = Fix (ListF a)

Упражнение 25 Какие типы будут у In и out?1365

Можно показать, что [a] ∼= List a:1366

1 to :: [a] -> List a
2 to = \case
3 [] -> In Nil
4 x:xs -> In $ Cons x (to xs)

5 from :: List a -> [a]
6 from (In shape) = case shape of
7 Nil -> []
8 Cons x xs -> x : from xs

Тип формы можно сделать функтором по последнему параметру. Это позволит нам в1367

дальнейшем заменять вхождения поддеревьев на что-то полезное.1368

1 instance Functor (ListF a) where
2 fmap :: (rec -> other) -> ListF a rec -> ListF a other
3 fmap f = \case
4 Nil -> Nil
5 Cons x xs -> Cons x (f xs)

Упражнение 26 Выразите следующее дерево как неподвижную точку функтора. Объявите1369

инстанс функтора для типа-формы.1370

1 data Tree a = Leaf a | Node a (Tree a) (Tree a)

67

4.3.3 Схемы рекурсии1371

Подобно тому, как структурное императивное программирование, в сравнении с беспо-1372

рядочным использованием goto, помогает рассуждать о программах, так схемы рекурсии1373

позволяют алгебраически описывать свойства рекурсивных функций, в отличие от “неструк-1374

турной” рекурсии79 Meijer et al. [1991], Meijer and Hutton [1995].1375

Глобальная идея состояла в том, чтобы формулировать требуемые свойства и вычис-1376

лять нужные программы подобно тому, как математики находят решения дифференциаль-1377

ных уравнений. Однако, эта идея не нашла нужного развития и применения (однако, владеть1378

алгебраическим подходом в целом полезно Maguire [b]). Тем не менее это знание, с одной сто-1379

роны, даёт более глубокое понимание рекурсии, с другой, пригодится нам для рассмотрения1380

и решения главной проблемы этого курса — expression problem.1381

Универсальная свёртка называется катаморфизмом. Катаморфизм сначала рекурсивно1382

сворачивает поддеревья, добираясь к ним с помощью fmap, и оставляет результаты свёртки1383

типа a вместо бывших вхождений поддеревьев. Получается значение типа f a, где f — какой-1384

то функтор формы. Далее применяется функция типа f a -> a, которая определяет, как1385

свернуть один слой рекурсивной структуры, когда поддеревья уже свёрнуты.1386

1 cata :: Functor f => (f a -> a) -> Fix f -> a
2 cata phi = phi . fmap (cata phi) . out

Иначе говоря, cata заменяет все конструкторы In на функцию phi, которая содержит1387

информацию о том, как реагировать на разные варианты конструкторов в дереве:1388

1 example = In (Cons 1 (In (Cons 2 (In (Cons 3 (In Nil))))))
2 cata phi example =β phi (Cons 1 (phi (Cons 2 (phi (Cons 3 (phi Nil))))))

Например, сумма списка будет выглядеть следующим образом (рис. 14):1389

1 sum :: List Int -> Int
2 sum = cata \case
3 Nil -> 0
4 Cons x result -> x + result

Функцию f a -> a называют f-алгеброй. Действительно, если в качестве функтора f1390

взять сигнатуру алгебры, а в качестве a носитель, то f-алгебра будет задавать некоторую1391

интерпретацию сигнатуры:1392

1 data MonoidSig carrier = Mempty | Mappend carrier carrier

2 interpretSig :: MonoidSig Int -> Int
3 interpretSig = \case Mempty -> 0; Mappend l r -> l + r

Упражнение 27 С помощью какой алгебры можно скопировать структуру данных?1393

79https://reasonablypolymorphic.com/blog/recursion-schemes/index.html

68

https://reasonablypolymorphic.com/blog/recursion-schemes/index.html

Рис. 14: Катаморфизм переиспользует вхождения рекурсивных поддеревьев, чтобы хранить
результаты свёртки соответствующих поддеревьев.

Упражнение 28 С помощью какой алгебры можно распечатать список в строчку?1394

В противоположность универсальной свёртке, можно построить анаморфизм — универ-1395

сальную развёртку (аналогично unfold для списка). Здесь f-коалгебра (стрелочка в обрат-1396

ную сторону) показывает, как из некоторого значения-зерна получить один слой структуры1397

данных, где вместо рекурсивных ссылок будут зёрнышки, из которых потом прорастут под-1398

деревья. Анаморфизм как раз сначала разворачивает один слой, а потом рекурсивно разво-1399

рачивает все поддеревья:1400

1 ana :: Functor f => (s -> f s) -> s -> Fix f
2 ana psi = In . fmap (ana psi) . psi
3 -- сравните с классическим определением развёртки списка
4 unfoldr :: (s -> Maybe (a, s)) -> s -> [a]

Упражнение 29 Реализуйте анаморфизм, строящий список от 0 до заданного n.1401

Также вводят гиломорфизм (hylomorphism), которые позволяют описать произвольное1402

рекурсивное вычисление. Гиломорфизм задаётся как композиция анаморфизма и катамор-1403

физма. Сначала анаморфизм строит явное дерево, представляющее собой дерево вызовов1404

некоторой рекурсивной процедуры, затем катаморфизм сворачивает его в результат.1405

1 hylo :: Functor f => (a -> f a) -> (f b -> b) -> a -> b
2 hylo psi phi = cata phi . ana psi

Например, вычисление факториала может быть реализовано следующим образом:1406

1 fac n = hylo
2 (\n -> if n > 0 then Cons n (n - 1) else Nil)
3 (\case Nil -> 1; Cons n acc -> n * acc)

Можно ввести ещё много различных рекурсивных схем80 и описать их свойства. Однако,1407

мы пока остановимся.1408

Интересный факт: катаморфизм представляет собой теоретико-множественный принцип1409

индукции, а анаморфизм — коиндукции, если в качестве вложения множеств взять функ-1410

цию [Pierce, 2002, глава 21].1411

80https://wiki.haskell.org/Zygohistomorphic_prepromorphisms

69

https://wiki.haskell.org/Zygohistomorphic_prepromorphisms

4.4 Всё через свёртки1412

Оказывается, что с помощью катаморфизма можно получить изоморфизм между струк-1413

турами данных и их свёртками: Fix f ∼= forall a . (f a -> a) -> a.1414

1 to :: Functor f => Fix f -> (forall a . (f a -> a) -> a)
2 to = flip cata

3 from :: (forall a . (f a -> a) -> a) -> Fix f
4 from g = g In

Например, следующие два списка эквивалентны (все конструкторы In заменяем на данную1415

алгебру):1416

1 data ListF elem rec = Nil | Cons elem rec

2 xs1 :: Fix (ListF Int)
3 xs1 = In (Cons 1 (In (Cons 2 (In (Cons 3 (In Nil))))))

4 xs2 :: (ListF Int a -> a) -> a
5 xs2 = \alg -> alg (Cons 1 (alg (Cons 2 (alg (Cons 3 (alg Nil))))))

6 ghci> xs2 @Int \case Nil -> 0; Cons x acc -> x + acc
7 6

Теперь избавимся от функтора формы. Это нерекурсивный тип, который можно предста-1417

вить в канонической форме (см. 4.2.2):1418

f a ∼=
∑
i

∏
j

(ti j a)

Тогда алгебра может быть записана следующим образом:1419

f a→ a ∼= a
∑
i

∏
j (ti j a) ∼=

∏
i

a
∏
j (ti j a)

Остались произведения, от которых можно избавиться с помощью каррирования, и получить1420

Church encoded структуры данных. Например, для списка имеем:1421

(ListF elem a -> a) -> a ∼= aa
1 + elem × a ∼= aa × a

elem × a ∼=
(
aa
)((aa)elem)

∼= a -> (elem -> a -> a) -> a

Мы получили не что иное, как список Чёрча8182. Структуру данных, без единого конструк-1422

тора!83 Перепишем знакомый нам список ещё раз:1423

81https://en.wikipedia.org/wiki/Church_encoding
82https://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
83На самом деле в этом нет ничего удивительного, если вспомнить, что функции первого класса представля-

ются как замыкания, содержащие данные. Мы получили тот же односвязный список, только на замыканиях.

70

https://en.wikipedia.org/wiki/Church_encoding
https://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html

1 xs3 :: a -> (Int -> a -> a) -> a
2 xs3 = \ini f -> f 1 (f 2 (f 3 ini))

Упражнение 30 Какая знакомая вам стандартная функция работы со списками по data1424

списку возвращает список Чёрча?1425

Попробуем интуитивно понять, что это всё значит. Заметим, что список Чёрча прини-1426

мает функции, соответствующие веткам паттерн-матчинга или аргументам сворачивающей1427

функции. Вместо конструкторов же сразу вызываются соответствующие функции. То есть,1428

вместо того, чтобы создать структуру данных и доставить её к месту деконструирования1429

(паттерн-матчингу), мы доставляем место деконструирования к месту конструирования и1430

оказывается, что ничего конструировать по итогу и не надо.1431

Мы уже работали с обратным процессом, дефункционализацией, когда функции первого1432

класса превращались в вызовы конструкторов, а их тела — в ветки паттерн-матчинга 3.1.7.1433

Можно заметить, что тут мы имеем дело с обратным процессом, рефункционализацией,1434

когда вместо вызовов конструкторов сразу вызывается соответствующий интерпретирующий1435

код Danvy and Millikin [2009].1436

С технической точки зрения, мы поняли, что условное ветвление (if, паттерн-матчинг,1437

конструкция switch) и виртуальные вызовы (вызовы замыканий, методов на интерфейсах)1438

взаимозаменимы.1439

Стоит также отметить, что изоморфизм Fix f ≃ forall d . (f d -> d) -> d являет-1440

ся обобщением изоморфизма a ∼ forall r . (a -> r) -> r (при f = Const a), который1441

является основой CPS трансформации, рассматриваемой нами далее в главе 6.1442

4.4.1 Deforestation & list fusion1443

В функциональном программировании мы строим новые функции путём композирования1444

имеющихся, более простых, функций. Этот подход позволяет переиспользовать реализован-1445

ную функциональность, снижая сложность кода и вероятность ошибок. Однако, он может1446

приводить к излишним накладным расходам на аллокацию и деконструирование промежу-1447

точных структур данных.1448

Например, сравните следующие две реализации. Первая предпочтительна с точки зрения1449

качества кода, однако она порождает промежуточный список во время работы:1450

1 all p xs = and (map p xs)
2 -- или fused версия
3 all p [] = True
4 all p (x:xs) = p x && all p xs

Очевидно, это задача оптимизирующего компилятора превращать хороший код с абстрак-1451

циями в быстрый код. Оптимизация, избавляющая программы от (промежуточных) структур1452

данных (деревьев) называется дефорестацией (deforestation). В результате две функции,1453

как говорят, “сплавляются” — fuse.1454

71

Рис. 15: Примеры работы дефорестирующего алгоритма Wadler [1988].

Термин и первый дефорестирующий алгоритм был предложен Philip Wadler Wadler [1988],1455

он основан на нескольких простых правилах переписывания, нацеленных получить ситуацию1456

case K args of ..., и агрессивном инлайнинге (см. примеры работы на рис. 15). Однако,1457

этот алгоритм может приводить к экспоненциальному разбуханию кода и имеет шанс не1458

завершится при наличии рекурсивных вызовов84. Чтобы алгоритм завершался программы1459

должны быть написаны в некоторой строгой форме под названием treeless.1460

Сфокусируемся на списках и рассмотрим более практичные решения85. Первым очевид-1461

ным решением было бы для каждой пары функций, работающих со списками, добавить спе-1462

циальное правило переписывания (см. 3.1.6), дефорестирующее с помощью алгебраических1463

свойств списочных трансформаций. Однако, таких правил будет экспоненциально много.1464

1 {-# RULES
84Дефорестация является частным случаем суперкомпиляции Романенко, которая в свою очередь является

обобщеним большого количества компиляторных оптимизаций.
85https://markkarpov.com/tutorial/ghc-optimization-and-fusion.html

72

https://markkarpov.com/tutorial/ghc-optimization-and-fusion.html

1 std::variant<Msg1, Msg2>
2 deserialize(bytes bs) {
3 if (...) {
4 return std::variant{Msg1(...)};
5 else {
6 return std::variant{Msg2(...)};
7 }
8 }

1 template<class Impl>
2 auto deserialize(bytes bs) {
3 if (...) {
4 return Impl::processMsg1(...);
5 else {
6 return Impl::processMsg2(...);
7 }
8 }

Рис. 16: Ручная дефорестация в C++.

2 "map/map" forall f g xs. map f (map g xs) = map (f . g) xs
3 #-}

Современная техника дефорестирования в Haskell — fold/build list fusion Gill et al. [1993] —1465

вместо использования множества алгебраических правил, определяет универсальный способ1466

конструирования и деконструирования списка. Деконструировать список будем с помощью1467

foldr. Конструировать будем с помощью функции build:1468

1 build :: (forall b . (a -> b -> b) -> b -> b) -> [a]
2 build g = g (:) []

Например, список [1, 2, 3] и функция map теперь запишутся следующим образом86:1469

1 list123 :: [Int]
2 list123 = build \s z -> s 1 (s 2 (s 3 z))

3 map :: (a -> b) -> [a] -> [b]
4 map f xs = build \s z -> foldr (\x acc -> s (f x) acc) z xs

Можно заметить, что на вход build передаётся список Чёрча, отсюда не удивителен закон:1470

1 foldr f ini (build g) ≡ g f ini

Таким образом, мы избавились от конструирования списков путём замены вызовов кон-1471

структоров на вызовы сворачивающих функций.1472

Дефорестацию также можно производить вручную (см. 16).1473

4.4.2 Visitor pattern1474

Рассмотрим некоторое дерево и его свёртку:1475

1 data Tree a = Leaf | Node a [Tree a]
2 foldTree :: Tree a -> r -> (a -> [r] -> r) -> r

86В стандартной библиотеке Haskell функции работы со списками написаны нормально, но рядом написаны
правила RULES (см. 3.1.6), которые подменяют их реализацию на fold/build.

73

Перепишем и переименуем:1476

1 data Visitor a r = Visitor { onLeaf :: r, onNode :: a -> [r] -> r }
2 visitTree :: Tree a -> Visitor a r -> r

Чтобы это ещё более выглядело в ООП стиле, само дерево должно задаваться свёрткой1477

(как бы интерфейсом с функцией visit), а разные вершины — конкретными её реализациями1478

(объектами-наследниками):1479

1 data Tree a = Tree { visit :: forall r . Visitor a r -> r }

2 leaf :: Tree a
3 leaf = Tree { visit = \Visitor{onLeaf} -> onLeaf }

4 node :: a -> [Tree a] -> Tree a
5 node x ts = Tree { visit = \v@Visitor{onNode} -> onNode x (map (`visit` v) ts) }

Для наглядности, покажем этот код ещё и на Kotlin:1480

1 interface Visitor<a, r> {
2 fun onLeaf(): r
3 fun onNode(x: a, subtrees: List<r>): r
4 }

5 interface Tree<a> {
6 fun <r> visit(visitor: Visitor<a, r>): r
7 }
8 class Leaf : Tree<Nothing> {
9 override fun <r> visit(visitor: Visitor<Nothing, r>): r = visitor.onLeaf()

10 }
11 class Node<a>(val value: a, val subtrees: List<Tree<a>>) : Tree<a> {
12 override fun <r> visit(visitor: Visitor<a, r>): r =
13 visitor.onNode(value, subtrees.map { it -> it.visit(visitor) })
14 }

4.5 Всё через развёртку1481

Вспомним, что существует универсальная развёртка — анаморфизм, которая по генери-1482

рующей процедуре позволяет получить целую структуру данных (см. 4.3.3).1483

1 ana :: Functor f => forall s . (s -> f s) -> s -> Fix f
2 ana psi = In . fmap (ana psi) . psi

Приведём функцию ana к типу вида A -> B, чтобы затем проще было исследовать стрелку1484

B -> A. Для этого сделаем uncurry и перенесём квантор налево от стрелки (он изменится1485

на противоположный):1486

74

1 ana :: Functor f => (exists s . (s, s -> f s)) -> Fix f

Закодируем квантор существования с помощью нового типа (см. 3.4.2) и перепишем анамор-1487

физм на работу с ним:1488

1 data Box f where
2 -- exists s. (s, s -> f s)
3 Box :: forall s . s -> (s -> f s) -> Box

4 ana' :: Functor f => Box f -> Fix f
5 ana' (Box currSeed psi) =
6 In $ (\nextSeed -> ana' (Box nextSeed psi)) <$> psi currSeed

Теперь построим изоморфизм между структурами данных и их тривиальными развёртками,1489

возвращающими каждый раз следующий слой данной структуры, Fix f ≃ Box f:1490

1 to :: Fix f -> Box f
2 to x = Box x out

3 from :: Functor f => Box f -> Fix f
4 from = ana'

Таким образом, мы получили свидетельство того, что любую рекурсивную структуру данных1491

можно хотя бы тривиальным образом представить как Box f. Иногда такое представление1492

называют co-Church encoding Gibbons [2008].1493

Например, бесконечный ленивый список натуральных чисел может быть задан следую-1494

щим образом. Заметьте, что тут мы не полагаемся на ленивость Haskell , а значит можем1495

использовать эту технику и в энергичных языках.1496

1 nats :: Box (ListF Int)
2 nats = Box 0 \curr -> Cons curr (curr + 1)

Упражнение 31 Реализуйте ленивую функцию1497

take :: Int -> Box (ListF Int) -> Box (ListF Int).1498

Иначе говоря, бесконечные структуры данных представимы как процедуры, лениво гене-1499

рирующие слой рекурсивной структуры за слоем по запросу.1500

4.5.1 Абстрактные типы данных1501

Рассмотрим случай, когда функтор формы представляет собой произведение:1502

s -> f s ∼=

(∏
i

(ti s)

)s
∼=
∏
i

(s → ti s)

75

То есть коалгебра эквивалентна кортежу функций. Таким образом, Box это не что иное, как1503

абстрактный тип данных (ADT): он включает в себя скрытое состояние неизвестной природы1504

и набор операций для работы с ним Gibbons [2008]. На самом деле мы уже встречали такую1505

конструкцию ранее, когда говорили про экзистенциальные типы 3.4.2 (там мы использовали1506

инстансы классы типов в качестве кортежей функций).1507

ООП объекты тоже можно рассматривать через коалгебры. Подробнее про соотношение1508

объектов и абстрактных типов данных можно почитать в Cook [2009].1509

4.5.2 Stream fusion1510

Ранее мы рассматривали foldr/build list fusion оптимизацию, элиминирующую промежу-1511

точные списки (см. 4.4.1). Однако, эта техника не подходит для многих популярных функ-1512

ций, например, zip (нужно корутинить между двумя алгебрами) или take (нужно оборвать1513

свёртку в определённый момент).1514

Позднее была предложена техника использования ко-структуры списка — развёртки или1515

Stream87 Coutts et al. [2007]:1516

1 data ListF a r = Nil | Cons a r
2 type MyStream a = Box (ListF a) -- ∃s . (s -> ListF a s, s)
3 -- ∼=
4 data Step a s = Done | Yield a s
5 data Stream a where
6 Stream :: forall s . (s -> Step a s) -> s -> Stream a

7 stream :: [a] -> Stream a
8 stream xs = Stream (\case [] -> Done; x:xs -> Yield x xs) xs

9 unstream :: Stream a -> [a]
10 unstream (Stream next s) = case next s of
11 Done -> []
12 Yield a s' -> a : unstream next s'

Идея в том, что теперь функции работы со стримами нерекурсивны и легко подверга-1517

ются базовым компиляторным дефорестирующим трансформациям в стиле Wadler [1988].1518

Действительно, вместо рекурсивного вызова мы запоминаем состояние для следующей ите-1519

рации.1520

1 mapS :: (a -> b) -> Stream a -> Stream b
2 mapS f (Stream next s) = Stream next' s
3 where
4 next' s = case next s of
5 Done -> Done

87https://markkarpov.com/tutorial/ghc-optimization-and-fusion.html

76

https://markkarpov.com/tutorial/ghc-optimization-and-fusion.html

6 Yield x s' -> Yield (f x) s'

Общий пайплайн выглядит следующим образом:1521

1. Мы пишем все функции работы со списками через стримы:1522

1 map :: (a -> b) -> [a] -> [b]
2 map f = unstream . mapS f . stream

2. С помощью RULES (см. 3.1.6) задаём правило переписывания stream/unstream, двой-1523

ственное foldr/build: stream . unstream = id.1524

3. Далее справляются обычные компиляторные оптимизации.88
1525

Чтобы поддержать нерекурсивную функцию фильтрации, обычно добавляют отдельный1526

вид шагов:1527

1 data Step a s = Done | Skip s | Yield a s

2 filterS :: (a -> Bool) -> Stream a -> Stream a
3 filterS p (Stream next s) = Stream next' s
4 where
5 next' s = case next s of
6 Done -> Done
7 Skip s' -> Skip s'
8 Yield a s' -> if p a then Yield a s' else Skip s'

В стандартной библиотеке Haskell всё-таки используется foldr/build fusion, однако суще-1528

ствует множество промышленных библиотек стримов [Bragilevsky, глава 14].1529

Больше про стримы можно почитать у Олега Киселёва89.1530

4.6 Вездесущий дуализм1531

Мы рассмотрели три формы рекурсивных данных:1532

• Fix f — обычные рекурсивные типы данных, конечные в энергичных языках;1533

• ∀a . (f a -> a) -> a — Church encoding, конечные структуры заданные свёртками;1534

• ∃s . (s -> f s, s) — co-Church encoding, потенциально бесконечные структуры дан-1535

ных, абстракции по данным (работаем через интерфейс над сокрытым представлением).1536

В этом разделе мы рассмотрим некоторые практические примеры, в которых пространство1537

решений задано дуальными представлениями коллекций.1538

88Можно гарантировать полную дефорестацию с помощью staging (см. далее ??) Kiselyov et al. [2017].
89https://okmij.org/ftp/Streams.html

77

https://okmij.org/ftp/Streams.html

4.6.1 Push vs pull streaming1539

Рассмотрим различные представления списков или, как их иногда называют, потоков со-1540

бытий. Подробнее сравнение можно посмотреть тут [Kiselyov et al., 2017, параграф 3].1541

Church encoding для списков даёт push stream, или internal iteration, или Observer pattern90
1542

(в некотором смысле частный случай Visitor pattern 4.4.2), когда мы регистрируем обработчи-1543

ка событий, а коллекция вызывает (push) на нём методы. Примерами push потоков являются1544

Java Stream API91, Closure Transducers92.1545

1 events.observe(object : Observer<Event> {
2 override fun onComplete() { .. }
3 override fun onNext(elem: Event) { .. }
4 })

co-Church encoding для списков даёт pull stream, или external iteration, или Iterator1546

pattern. Чтобы получить следующий элемент, его нужно явно запросить (pull) потребляюще-1547

му коду. Это представление часто гораздо удобнее с точки зрения использования (см. 4.5.2)93,1548

однако сложнее на стороне имплементации, потому что нужно выделить и поддерживать эк-1549

зистенциальное состояние в коалгебре. Генераторы призваны автоматизировать выделение1550

этого состояния, так как можно заметить, что это continuation вычисления (см. далее 6.4.3).1551

Нередко работу с потоками называют реактивным программированием94.1552

4.6.2 Data vs codata1553

Вспомним функтор-формы для списка:1554

1 data ListF a r = Nil | Cons a r

С помощью ключевого слова data мы определяем новый алгебраический тип данных1555

через способы его сконструировать. Далее, с помощью pattern-matching мы можем декон-1556

струировать значения алгебраического типа данных и воспользоваться хранящейся в нём1557

информацией.1558

1 data List a where
2 List :: ListF a (List a) -> List a

3 fold :: (ListF a r -> r) -> List a -> r
4 fold alg xs = case xs of
5 Fix Nil -> alg Nil
6 Fix (Cons y ys) -> alg (Cons y (fold alg ys))

90https://learn.microsoft.com/en-us/dotnet/api/system.iobserver-1?view=net-9.0
91https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
92https://clojure.org/reference/transducers
93https://github.com/pulldown-cmark/pulldown-cmark/?tab=readme-ov-file#why-a-pull-parser
94(youtube) React 2014 : Erik Meijer - What does it mean to be Reactive?

78

https://learn.microsoft.com/en-us/dotnet/api/system.iobserver-1?view=net-9.0
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://clojure.org/reference/transducers
https://github.com/pulldown-cmark/pulldown-cmark/?tab=readme-ov-file#why-a-pull-parser
https://youtu.be/sTSQlYX5DU0?si=Xhfi62ScXHBBjdBx

Однако, также можно определять тип данных через способы его деконструировать с помо-1559

щью ключевого слова codata (в воображаемом языке). Так, у ко-списка можно потребовать1560

показать следующий слой структуры. Сконструировать такой тип данных можно с помощью1561

co-pattern-matching’а, описав как деконструирующая функция должна вести себя на констру-1562

ирующем терме (unfold coalg s)95.1563

1 codata CoList a where
2 force :: CoList a -> ListF a (CoList a)

3 unfold :: (s -> ListF a s) -> s -> CoList a
4 force (unfold coalg s) = case coalg s of
5 Nil -> Nil
6 Cons x s' -> Cons x (unfold coalg s')

По сути, codata представляет собой словарь функций, которые захватывают некоторое1564

состояние, необходимое для генерации следующих слоёв структуры. Так, codata можно срав-1565

нить с ООП интерфейсами, а co-pattern-matching с анонимной реализацией интерфейса.1566

Предыдущие два примера можно записать, например, в Kotlin следующим образом (фор-1567

ма списка кодируется как Pair<a, r>?, убедитесь самостоятельно, что этот тип изоморфен1568

ListF).1569

1 class List<a>(val layer: Pair<a, List<a>>?)

2 fun <a, r> fold(alg: (Pair<a, r>?) -> r, xs: List<a>): r =
3 if (xs.layer == null) alg(null)
4 else alg(Pair(xs.layer.first, fold(alg, xs.list.second)))

5 interface CoList<a> { fun force(): Pair<a, CoList<a>>? }

6 fun <a, s> unfold(coalg: (s) -> Pair<a, s>?, ini: s): CoList<a> =
7 object : CoList<a> {
8 override fun force(): Pair<a, CoList<a>>? {
9 val layer = coalg(ini)

10 return if (layer == null) null else
11 Pair(layer.first, unfold(coalg, layer.second))
12 }
13 }

Функциональный стиль программирование в основном оперирует напрямую наблюдаемы-1570

ми данными data, а ООП — скрывает данные за интерфейсами codata. Однако, обе конструк-1571

ции имеют свои понятные области применения и ими не стоит пренебрегать вне зависимости1572

от предпочитаемого стиля Downen et al. [2019]96.1573

95(youtube) CS410 2017 Lecture 15 Coinduction and Coalgebras
96https://reasonablypolymorphic.com/blog/review-codata/

79

https://youtu.be/ZCdYIEwcna0?si=XEQSBFhnehQFZPxy
https://reasonablypolymorphic.com/blog/review-codata/

В языках с проверкой тотальности функций разделяют индуктивные и коиндуктивные1574

определения. Для них используются паттерн-матчинг и ко-паттерн-матчинг, принцип индук-1575

ции (катаморфизм) и принцип коиндукции (анаморфизм). Индуктивные определения задают1576

конечные структуры данных, проверка тотальности проверяет, что рекурсивные вызовы дела-1577

ются на структурно меньших подтермах. Коиндуктивные определения задают потенициально1578

бесконечные структуры данных, для них проверяется продуктивность — порождающая функ-1579

ция всегда после рекурсивного вызова породит новый конструктор 97.1580

4.7 Приложение: категория алгебр1581

Это факультативный раздел, не являющийся необходимым для понимания курса в даль-1582

нейшем. Однако, полезен для понимания часто употребимой терминологии.1583

Категория — это коллекция объектов и коллекция стрелок. Для каждого объекта X1584

существует тождественная стрелка, а для каждой пары стрелок существует способ получить1585

их композицию: f : Y → Z, g : X → Y ⇒ f ◦ g : X → Z.1586

Определяют категорию, соответствующую Haskell — Hask . На самом деле это плохая1587

категория с точки зрения теории, но для наших нестрогих рассуждений подойдёт98. Объ-1588

ектами в Hask являются типы языка Haskell, а морфизмами — термы, задающие функции1589

между соответствующими типами. Тождественный морфизм — id, композиция задаётся как1590

f . g = \x -> f (g x).1591

Упражнение 32 Как в такой категории представить константы?1592

Функтором называется отображение между категориями, которое объектам одной кате-1593

гории сопоставляет объекты другой, а стрелкам одной — стрелки другой. В Haskell типовые1594

конструкторы задают отображение между объектами, а fmap — между стрелками. Функтор1595

должен сохранять тождественный морфизм и композицию.

1596

Алгеброй в категории C называется пара из объекта категории X ∈ Obj(C) и морфизма1597

φ : F X → X, где F — функтор. Сам морфизм F X → X называют f-алгеброй. Алгебрами1598

в смысле категорий можно описывать алгебры. Так, в качестве объекта X берём носитель1599

алгебры. В качестве функтора F — сигнатуру алгебры в виде типа-формы. Тогда морфизмом1600

будет интерпретацией сигнатуры.1601

97https://rocq-prover.org/doc/V8.18.0/refman/language/core/coinductive.html
98https://math.andrej.com/2016/08/06/hask-is-not-a-category/

80

https://rocq-prover.org/doc/V8.18.0/refman/language/core/coinductive.html
https://math.andrej.com/2016/08/06/hask-is-not-a-category/

Морфизмом алгебр называется такой морфизм между носителями h : X → Y , что следу-1602

ющая диаграмма коммутирует. Говорят, что диаграмма коммутирует, если все возможные1603

пути по стрелкам в ней равны.

1604

В морфизме алгебр можно обнаружить знакомые черты гомоморфизмов, то есть опера-1605

ций между носителями, которые “уважают” операции сигнатуры алгебраической теории.1606

Алгебры над категорией C образуют категорию алгебр, в которой объектами являются1607

алгебры, а морфизмами — морфизмы алгебр.1608

Начальным (инициальным) объектом категории называется объект, из которого в каж-1609

дый другой объект существует уникальная стрелка. Терминальным (финальным) объек-1610

том категории называется объект, в который из каждого другого объекта категории суще-1611

ствует уникальная стрелка.1612

Инициальный и терминальный объекты категории не обязательно присутствуют в един-1613

ственном экземпляре. Но все инициальные объекты изоморфны друг другу, как и все терми-1614

нальные.1615

Упражнение 33 Приведите начальный и терминальный объекты категории Hask .1616

Рекурсивный тип — это тип, значит ему соответствует объект в категории Hask. X явля-1617

ется рекурсивным типом с формой F , если имеет место следующий изоморфизм:1618

X ≃ F X

Можно заметить, что свидетель изоморфизма справа налево напоминает f-алгебру, а1619

слева направо — f-коалгебру (всё то же самое, только все стрелки в обратную сторону).1620

И действительно, подходящий объект X должен быть либо начальным объектом категории1621

алгебр, либо терминальным объектом категории коалгебр (с соответствующими морфизма-1622

ми). Первый вариант соответствует конечным структурам данных, второй — потенциально1623

бесконечным.1624

Начальным объектом категории алгебр над Hask для функтора f является следующая1625

алгебра: (Fix f, In)99100. Действительно, для каждого типа a и для каждой f-алгебры phi1626

мы можем построить такой морфизм cata phi :: Fix f -> a, что следующая диаграмма1627

будет коммутировать:1628

99https://bartoszmilewski.com/2017/02/28/f-algebras/
100https://ncatlab.org/nlab/show/catamorphism

81

https://bartoszmilewski.com/2017/02/28/f-algebras/
https://ncatlab.org/nlab/show/catamorphism

Покажем, что (Fix f, out) является терминальным объектом категории коалгебр (бла-1629

годаря ленивости Haskell). Аналогично, для каждого объекта a и f-коалгебры psi найдётся1630

морфизм ana psi :: a -> Fix f:

1631

82

5 Интерпретаторы1632

Искусство программирования во многом состоит в умении управлять сложностью, и в1633

рамках данного курса основным инструментом для этого мы будем рассматривать построение1634

языков и интерпретаторов.1635

5.1 Интерпретаторы как основа основ1636

Мы начнём с обзора роли интерпретаторов в программировании.1637

5.1.1 Башня интерпретаторов1638

Самым базовым интерпретатором является процессор, он воплощён физически в железе.1639

Ему на вход подаётся программа на некотором языке, например, x86, он зачитывает команды1640

и превращает их в действия над памятью. Однако, человеку сложно программировать на этом1641

языке, нужен новый язык, инкапсулирующий часть сложности и скрывающий лишние детали.1642

Чтобы получить новый язык, мы строим программный интерпретатор. Программный1643

интерпретатор UNM — это программа на языкеM101, получающая на вход программу на языке1644

N и вход для неё — данные из D, и возвращающая результат выполнения этой программы1645

на этих данных:1646

UNM : N ×D → D

Язык реализации интерпретатора M мы будем называть мета-языком, а L — опреде-1647

ляемым. Про интерпретатор можно интуитивно думать следующим образом: это понятное1648

мета-языку объяснение того, что значат конструкции определяемого языка. Иными словами,1649

какие инструкции мета-языка нужно исполнить, чтобы получить нужную семантику инструк-1650

ций определяемого языка.1651

Например, у нас есть программа pN и данные для неё din, результат исполнения этой1652

программы dout можно получить как1653

dout = U
N
M

⟨pN, din⟩︸ ︷︷ ︸
∈N×D


Но интерпретатор это тоже программа. Как её запустить? Возьмём наш базовый интер-1654

претатор Ux86, у него нет языка реализации, так как он реализован в железе, а не программно.1655

Возьмём интерпретатор языка ассемблера, реализованный в кодах x86, UAsmx86 , программу на1656

ассемблере pAsm и вход для неё din. Вспомним, что программа — это тоже данные, просто в1657

некотором специальном формате. Тогда результат применения pAsm на данных мы получим1658

101Под языком мы тут понимаем множество программ на этом языке, иначе говоря, множество деревьев
определённого вида.

83

следующим образом:1659

dout = U
x86

〈UAsmx86︸ ︷︷ ︸
∈x86

,

∈Asm︷ ︸︸ ︷
⟨pAsm,

∈D︷︸︸︷
din⟩︸ ︷︷ ︸

∈D

〉
Но язык ассемблера, тоже не очень приятен для программирования. Однако, на нем можно1660

уже написать интерпретатор языка посложнее. И так далее. Получаем башню интерпретато-1661

ров, на вершине находится язык, на котором мы хотим уже решать непосредственно нашу1662

задачу:1663

dout = U
x86
(〈
UAsmx86 ,

〈
UCAsm,

〈
UHasC , ⟨pHas , din⟩

〉〉〉)
На практике часто язык задают через трансляцию (компиляцию) в другой. Однако, далее1664

мы будем фокусироваться на встроенных языках и понятие интерпретатора будет нам полез-1665

нее. Кроме того, существуют универсальные теоретические способы построения компилятора1666

по интерпретатору102 (см. далее ??), так что для нас они схожи.1667

5.1.2 Интерпретаторы повсюду1668

Хорошо, мы пришли к языку нашего сердца (Хаскеллу), почему же мы продолжаем го-1669

ворить об интерпретаторах? Потому что для решения конкретных бизнес-задач прикладные1670

языки всё ещё слишком церемониальны — программисту приходится думать о большом ко-1671

личестве вещей, нерелевантных его предметной области и решаемой задаче. Сложность —1672

главный враг программиста, потому что ресурсы человеческого мозга несопоставимы со1673

сложностью реальности, которую приходится описываться в программах. Таким образом, в1674

работе постоянно приходится описывать новые языки, наиболее подходящие для решения1675

конкретных прикладных задач. А новые языки мы задаём с помощью интерпретаторов.1676

Как выглядит классический рекурсивный интерпретатор? Он получает программу в виде1677

некоторого дерева и рекурсивно обходит его, считая результаты поддеревьев. Когда он посе-1678

щает вершину дерева, он определяет её тип и понимает, какие действия нужно исполнить. То1679

есть тип вершины диспатчит, навигирует, исполнение интерпретатора на нужный код. Так,1680

интерпретатор простой языка выражений имеет следующий вид:1681

1 eval :: Expr -> Int
2 eval prog = case prog of
3 Const x -> x
4 Plus l r -> eval l + eval r

Видно, что это похоже, например, на работу утилиты командной строки — разбираем ар-1682

гументы, определяем, что и как нужно сделать, делаем. Как ни странно, философия Unix, в1683

частности, заключается в построении маленьких языков (утилит с текстовым API), решаю-1684

щих хорошо одну задачу Bentley [1986]. Ещё это похоже на обработку запроса web-сервером —1685

определяем роут на которую пришел запрос, выполняем соответствующее действие. То есть1686

102https://en.wikipedia.org/wiki/Partial_evaluation

84

https://en.wikipedia.org/wiki/Partial_evaluation

не так редко мы в реальной жизни пишем интерпретаторы. Мы просто не видим, что то, что1687

мы пишем — это на самом деле интерпретатор некоторого языка. В общем случае, свёртку1688

структуры данных уже можно рассматривать как интерпретацию Gibbons and Wu [2014].1689

Более того, как мы убедимся в дальнейшем 5.4, написание любой функции — это уже1690

задание нового языка. Вот был язык, в котором нельзя было добавить пользователя в при-1691

ложение. Написали функцию registerUser — появилась новая команда в языке — добавить1692

пользователя. Далее мы формально покажем, то такой способ эквивалентен добавлению1693

новой ноды в синтаксическое дерево языка (5.4.1). Использование функций является при-1694

мером встраивания языка, когда мы вместо того, чтобы делать новый отдельный язык, его1695

реализуем как библиотеку для уже существующего языка Gibbons [2013].1696

Как мы убедимся в течение курса, многие задачи можно рассматривать как придумывание1697

языка и реализацию интерпретатора. Значит, если мы научимся хорошо писать интерпрета-1698

торы, мы научимся делать сразу кучу всего! И основные наши усилия будут направлены на1699

изучение средств построения интерпретаторов встроенных языков.1700

Во время повествования мы часто пользуемся приёмом Hutton’s Razor, который подра-1701

зумевает рассмотрение до смешного маленького языка для изучения сложных концепций.1702

Утверждается, что для изучения большинства вопросов можно сконструировать такой язык,1703

делающий всё важное максимально наглядным.1704

5.1.3 Интерпретаторы и семантика языков программирования1705

Семантика языков программирования103 — это наука, изучающая свойства языков и смысл1706

программ, его свойства и способы описания. Отличным введением может послужить серия1707

книг Software Foundations104 Pierce et al. [2010]. Существует много различных стилей описа-1708

ния семантики программ, для нас важнейшим будет денотационная семантика.1709

Денотационная семантика105106107 описывает смысл программ путём сопоставления им1710

объектов некоторого множества, семантического домена. Иначе говоря, денотационная се-1711

мантика языка L — это тотальная функция из программы на этом языке в элемент домена1712

D:1713

J•K : L 7→ D

Домен выбирается исходя из языка и информации, которую хочется извлекать из про-1714

грамм. Например, чтобы узнать размер программы (тут, выражения со сложением), в каче-1715

стве домена можно взять натуральные числа:1716

JnK = 1

Jl + rK = 1 +max (JlK, JrK)

103https://en.wikipedia.org/wiki/Semantics_(computer_science)
104https://coq.vercel.app/ext/sf/
105https://en.wikipedia.org/wiki/Denotational_semantics
106https://en.wikibooks.org/wiki/Haskell/Denotational_semantics
107(youtube) The Lost Art of Denotational Semantics — Eric Meyer.

85

https://en.wikipedia.org/wiki/Semantics_(computer_science)
https://coq.vercel.app/ext/sf/
https://en.wikipedia.org/wiki/Denotational_semantics
https://en.wikibooks.org/wiki/Haskell/Denotational_semantics
https://youtu.be/pQyH0p-XJzE?si=TUEzrpHhJZfO7dTF

Если нас интересует конечный результат, можно посчитать его:1717

JnK = n

Jl + rK = JlK+ JrK

Если у программы есть вход, доменом будет функция N→ N:1718

JnK(m) = n

Jl + rK(m) = JlK(m) + JrK(m)
JinputK(m) = m

Таким образом, программа является лишь синтаксической записью для некоторого эле-1719

мента семантического домена. Вариантов доменов много, это могут быть даже игры108.1720

Упражнение 34 В какой домен разумно проинтерпретировать программы на языке с цело-1721

численными мутабельными переменными? А на недетерминированном языке?1722

Легко заметить, что денотационная семантика языка — это просто интерпретатор, только1723

написанный на языке математики. Такие интерпретаторы ставят в основу башни интерпре-1724

таторов, когда цель исследовать свойства языков и программ, а не исполнять их.1725

Также, можем реализовывать интерпретатор на каком-нибудь реальном языке и он тоже1726

будет задавать семантику определяемого языка. Однако формальность такого определения1727

будет зависеть от формальности описания семантики мета-языка. Такие интерпретаторы1728

называют определяющими, они задают семантику языка, как правило, жертвуя эффектив-1729

ностью ради наглядности. Взаимоотношения определяемого языка и мета-языка изучаются1730

в классических статьях Reynolds [1972, 1998]109.1731

Мы будем использовать определяющие интерпретаторы для задания семантики новых1732

языков и в качестве мета-языка будем использовать Haskell. А в качестве доменов будем брать1733

типы Haskell. И интерпретировать программу не в множество функций между натуральными1734

числами, а, скажем, в тип Nat -> Nat в языке Haskell110. Так, денотационная семантика1735

языка сумм с входом будет записываться следующим образом:1736

1 eval :: Prog -> (Nat -> Nat)
2 eval = \case
3 Val n -> _ -> n
4 Plus l r -> \m -> eval l m + eval r m
5 Input -> \m -> m

Семантика называется композиционной (compositional), если смысл конструкций зави-1737

сит только от смысла подконструкций. Иначе говоря, если денотационная семантика пред-1738

ставляет собой свёртку программы (рис. 17) и может быть записана в терминах катамор-1739

физма 4.3.3.1740

108https://en.wikipedia.org/wiki/Game_semantics
109Активно используемое автором понятие продолжения будет рассмотрено далее в этом курсе (раздел 6).
110https://okmij.org/ftp/Denotational.html

86

https://en.wikipedia.org/wiki/Game_semantics
https://okmij.org/ftp/Denotational.html

Рис. 17: Денотационная семантика определяет смысл синтаксических конструкций через опе-
рации над доменом Hutton [1998].

Другим популярным стилем описания семантики является операционная семантика, ко-1741

торая представляет смысл программы в виде последовательности шагов вычислений. Это1742

может быть как последовательное переписывание самого выражения, так и переписывание1743

состояния некоторой абстрактной машины. Операционная семантика, в свою очередь, зада-1744

ётся как развёртка (или анаморфизм 4.3.3) последовательности шагов вычисления из про-1745

граммы. Тут отчётливо видна некоторая двойственность между денотационной и операцион-1746

ной семантиками Hutton [1998].1747

5.1.4 Встроенные доменно-специфичные языки (eDSL)1748

Под доменно-специфичными языками (domain specific languages, DSL)111 часто пони-1749

мают специализированные языки для конкретных предметных областей, например, запросов1750

к БД или форматирования документов. Как правило, такие языки не являются полными по1751

Тьюрингу.1752

В этом курсе, однако, мы будем считать доменно-специфичным языком любую доменно-1753

специфичную специализацию языка общего назначения112. Это следует из того соображения,1754

что код должен читаться как грамотная проза с уместным словоупотреблением, предостав-1755

ляющая читателю только необходимое количество подробностей, скрывая несущественное1756

за умолчаниями и терминологией.1757

Самостоятельные доменно-специфичные языки (standalone domain specific languages)1758

— языки, имеющие свой собственный конкретный синтаксис, а так же инструменты програм-1759

мирования (IDE, исполняющая среда. . .). Примеры: SQL, AWK, Antlr. . . 113
1760

Встроенные доменно-специфичные языки (embedded domain specific languages, eDSL)1761

111https://en.wikipedia.org/wiki/Domain-specific_language
112https://en.wikipedia.org/wiki/Language-oriented_programming, на русскоязычную страницу тоже

следует заглянуть.
113Есть отличная прикладная книга Nystrom, рассказывающая о построении интерпретаторов и простых вир-

туальных машин. В то же время она покрывает сознание полноценного языка во всех его аспектах, от синтак-
сического анализа до управления памятью.

87

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Language-oriented_programming

— языки, пользующиеся поддержкой инфраструктуры других языков. Обычно реализуются1762

как библиотеки для программ на уже существующем языке общего назначения. Не имеют1763

полностью собственного конкретного синтаксиса. Примеры: ORM, функции обработки строк,1764

библиотека парсер-комбинаторов. . .1765

Deep eDSL — термы на таком языке строят дерево абстрактного синтаксиса для даль-1766

нейшей интерпретации:1767

1 f :: Int -> Int
2 f = eval $ Const 1 `Plus` Input

Интерпретаторы, которые принимают деревья на вход и интерпретируют их в семантиче-1768

ский домен, называют инициальными114, мы их также будем называть “классическими”. С1769

них мы и будем начинать. Классические интерпретаторы полезны, например, как для реали-1770

зации “последнего языка” — интерфейса программы во внешний мир, и как фундамент для1771

наших дальнейших построений.1772

Однако, можно заметить, что промежуточное дерево, которое получается, нас, как прави-1773

ло, не интересует. Нам важно только получить элемент домена, которым мы уже умеем поль-1774

зоваться непосредственно. Shallow eDSL минуют стадию построения дерева и сразу строят1775

значение в семантическом домене. Такие интерпретаторы мы будем называть финальными.1776

1 cnst :: Int -> (Int -> Int)
2 cnst x _ = x

3 input :: Int -> Int
4 input env = env

5 plus :: (Int -> Int) -> (Int -> Int) -> (Int -> Int)
6 plus l r env = l env + r env

7 f :: Int -> Int
8 f = cnst 1 `plus` input

Интерпретаторы часто называют наблюдателями (observers), которые анализируют тер-1777

мы и дают им некоторый смысл Gibbons [2013]. Можно заметить, что для deep eDSL можно1778

написать сколь угодно много различных наблюдателей. Однако в случае shallow embedding1779

наблюдатели всегда id. Мы будем обсуждать возможные решения этой проблемы далее в1780

разделе 5.4.1.1781

Обсуждение терминологии и сравнение подходов к построению DSL можно найти в Gibbons1782

[2013]. Краткое описание терминов — в конспекте курса Language Engineering Hutchinson.1783

Введём ещё одно важное понятие. Meta-circular интерпретатор115 — это интерпретатор,1784

определяющий конструкции определяемого языка через конструкции мета-языка Reynolds1785

[1972]. Например:1786

114Тип синтаксиса заданный с помощью data является инициальным объектом категории интерпретаций.
115https://en.wikipedia.org/wiki/Meta-circular_evaluator

88

https://en.wikipedia.org/wiki/Meta-circular_evaluator

1 interpret term = case term of
2 App f t -> (interpret f) (interpret t)
3 If c t e -> if interpret c then interpret t else interpret e
4 ...

Свойства мета-языка в таком случае во многом определяют свойства объектного Reynolds1787

[1972, 1998]. Мы будем в этом курсе стремиться как можно более переиспользовать возмож-1788

ности мета-языка.1789

Упражнение 35 Предположите, какие свойства наследует определяемый язык из примера1790

выше.1791

5.1.5 Пример: библиотека Accelerate1792

Интересным примером встроенного языка, находящегося где-то между deep и shallow яв-1793

ляется библиотека Accelerate116 [Marlow, 2011, глава 6]. Она позволяет на Haskell описать1794

вычисления, которые будут исполняться на GPU117.1795

Чтобы исполнить что-то на GPU, нужно породить и скомпилировать код на Cuda. Таким1796

образом, язык Accelerate должен быть deep embedding, чтобы иметь дерево вычисления для1797

трансляции в Cuda наиболее эффективным образом.1798

В то же время описывать численные вычисления как дерево крайне неудобно. Неплохо1799

было бы иметь привычные операторы и функции высших порядков для работы с массивами1800

на GPU. Поэтому Accelerate предоставляет на самом деле shallow интерфейс для построения1801

деревьев. Так, для деревьев выражений определена реализация численных классов типов,1802

например, Num, где операции просто достраивают дерево:1803

1 example :: Acc (Vector Int) -> Acc (Vector Int) -> Acc (Vector Int)
2 example xs ys = A.zipWith (+) xs ys

5.2 Типы значений1804

Рассмотрим, какие есть способы реализации языков, значения в которых могут иметь1805

различные типы.1806

5.2.1 Untyped tagless interpreters1807

Для начала рассмотрим некоторый тривиальный нетипизироватный язык. Под нетипизи-1808

рованностью понимаем отсутствие проверки типов как до исполнения программы, так и во1809

время. Абстрактный синтаксис этого языка зададим следующим образом:1810

116https://hackage.haskell.org/package/accelerate
117Другой подход: Java code reflection, чтобы в рантайме извлекать модель кода. Однако, такой подход не

предоставляет статически гарантий программисту и требует глубогоко внедрения в мета-язык.

89

https://hackage.haskell.org/package/accelerate
https://youtu.be/6c0DB2kwF_Q?si=-nB7AkCsDWB_Q-hy

1 data Expr = Const Int | IsZero Expr | If Expr Expr Expr

Значения, возникающие во время исполнения программ на этом языке будем представ-1811

лять значениями типов Bool и Int языка Haskell. Соответственно, семантическим доменом1812

программы на этом языке является либо Bool, либо Int, в зависимости от самой программы.1813

1 evalUnsafe :: Expr -> forall res . res
2 evalUnsafe = \case
3 Const val -> unsafeCoerce val
4 IsZero cond -> unsafeCoerce $ evalUnsafe @Int cond == 0
5 If c t e -> if evalUnsafe c then evalUnsafe t else evalUnsafe e

Здесь unsafeCoerce используется, чтобы обмануть статическую систему типов Haskell1814

и просто исполнять программы на нашем нетипизированном языке. Мы имеем право так1815

делать, поскольку Int и Bool в Haskell имеют одинаковый размер. Неверное написание про-1816

граммы на этом языке или выбор неправильного домена интерпретации приводят к падению.1817

5.2.2 Typed tagged interpreters1818

Чтобы добиться некоторой безопасности исполнения, будем приписывать значениям теги,1819

которые будут доступны во время исполнения. Заведём следующий алгебраический тип:1820

1 data RtValue = RtBool Bool | RtInt Int

Теперь семантическим доменов у нас будет тип RtValue, а интерпретатор сможет прове-1821

рять типы во время исполнения:1822

1 evalRt :: Expr -> RtValue
2 evalRt (IsZero expr) = case evalRt expr of
3 RtBool value -> error "Type error"
4 RtInt value -> RtBool (value == 0)
5 -- ...

Ситуация с безопасностью программы определённо стала лучше, однако проверка типов1823

во время исполнения — это уже поздно: требует дополнительных расходов производительно-1824

сти и удорожает тестирование.1825

Этот подход часто называют динамической типизацей, когда мы атрибутируем значения1826

некоторой типовой информацией для использования во время исполнения (см. также 3.4.6).1827

5.2.3 Typed tagless interpreters1828

Опишем систему типов нашего маленького языка.1829

n : Int
Const n : int

Const
n : int

IsZero n : bool
IsZero

c : bool t : τ e : τ
If c t e : τ

If

90

Можем в качестве типовых тегов переиспользовать типы Haskell:1830

int ⇝ Int, bool ⇝ Bool

Заметим, что с помощью обобщённого алгебраического типа данных Expr ty (2.1.4), мы1831

как раз закодировали эти правила вывода. Иначе говоря, мы получили статически типизиро-1832

ванный язык программирования, переиспользовав систему типов Haskell.1833

1 data Expr ty where
2 Const :: Int -> Expr Int
3 IsZero :: Expr Int -> Expr Bool
4 If :: forall ty . Expr Bool -> Expr ty -> Expr ty -> Expr ty

5 eval :: Expr ty -> ty
6 eval = \case
7 Const n -> n
8 IsZero e -> eval e == 0
9 If c t e -> if eval c then eval t else eval e

Благодаря статической типизации, мы можем отказаться от тегирования значений во1834

время интерпретации без потери безопасности.1835

5.3 Связывания и функции первого класса1836

В этом параграфе мы рассмотрим техники и понятия, относящиеся к реализации функций1837

первого класса и связываний в общем. Поскольку эта функциональность уже, как правило,1838

реализована в мета-языке, мы будем стремиться её максимально переиспользовать.1839

let-связывания можно представить через функции первого класса следующим образом:1840

let x := N in M ≡ (λx.M) N

Напомним, что от функций первого класса можно избавиться с помощью дефункциона-1841

лизации, рассмотренной ранее 3.1.7.1842

5.3.1 Семантика имён1843

Существует несколько способов задания семантики идентификаторам.1844

Динамическое связывание (dynamic scoping) — значение свободных переменных функ-1845

ции зависит от области видимости в месте вызова. То есть разрешение имени происходит в1846

момент обращения к переменной. Например, следующий код напечатает 42:1847

1 val x = 4
2 val f = () => x + 1
3 val x = 41
4 println(f())

91

Этот подход проще в реализации и использовался в ранних версиях Lisp’ов, например.1848

Однако в таком случае функции не являются надежным барьером абстракции, по-хорошему1849

все свободные переменные должны являться частью сигнатуры (вернёмся в этому в главе1850

про системы эффектов ??).1851

Лексическое/статическое связывание (lexical/static scoping) — переменные связыва-1852

ются со значениями в момент объявления функции, в момент вызова результат зависит1853

только от параметров (по модулю изменяемого состояния118). Слово “лексический” часто1854

употребляется в языках, когда мы что-то можем понять из исходного кода без запуска про-1855

граммы. Так, код из примера выше напечатает 5.1856

Далее в этом разделе мы будем говорить о различных способах реализации функций1857

первого класса со статическим связыванием переменных, которых, на самом деле, великое1858

множество119.1859

5.3.2 Подстановки1860

Как можно заметить, в классическом лямбда-исчислении подстановки от бета-редукции1861

(вспоминали в разделе 1.1) обеспечивают статическое связывание. Действительно, аргумент1862

немедленно подставляется во все вхождения переменной, соответственно она не остаётся1863

свободной, а просто исчезает.1864

(λx. (λx. λy. x + y) 4) 41⇝ (λx. (λy. 4 + y)) 41

Такой подход не является самым эффективным, потому что на каждую аппликацию требу-1865

ется переписывать код функции целиком (!). В то же время его довольно просто реализовать1866

для некоторых представлений лямбда-термов. Рассмотрим пример такого представления —1867

locally nameless Charguéraud [2012].1868

1 data Term var
2 = Var var
3 | App (Term var) (Term var)
4 | Lam (Term (Maybe var))

В этом представлении можно выбирать любой тип для именования свободных перемен-1869

ных:1870

1 example :: Term String
2 example = Var "x" `App` Var "y" -- x y

Добавление каждой связанной переменной добавляет типу переменных нового обитателя1871

Nothing для обращения к ближайшей связанной переменной:1872

118Например, в Kotlin в лямбды можно захватывать изменяемые переменные. Изменения снаружи наблю-
даемы внутри лямбды, и наоборот. Иногда это может быть очень удобно, однако нередко приводит к очень
неочевидному поведению.

119https://jesper.cx/posts/1001-syntax-representations.html

92

https://jesper.cx/posts/1001-syntax-representations.html

1 -- λx. x y
2 example1 = Lam $ Nothing `App` Just "y"
3 -- λx y. x y z
4 example2 = Lam $ Lam $ Just Nothing `App` Nothing `App` Just (Just "z")

Монадический bind является реализацией подстановки для таких термов:1873

1 instance Monad Term where
2 (>>=) :: Term var -> (var -> Term var') -> Term var'
3 Var var >>= subst = subst var
4 App l r >>= subst = App (l >>= subst) (r >>= subst)
5 Lam t >>= subst = Lam $ t >>= \case
6 Nothing -> Var Nothing
7 Just var -> Just <$> subst var

Упражнение 36 Подумайте, зачем нужен fmap Just в последней строчке.1874

Соответственно, call-by-name интерпретатор такого лямбда-исчисления будет выглядеть1875

следующим образом:120
1876

1 eval :: Term var -> Term var
2 eval = \case
3 Var var -> Var var
4 App f arg -> case eval f of
5 Lam body -> eval $ body >>= maybe arg Var
6 t -> App t (eval arg)
7 Lam t -> Lam (eval t)

5.3.3 Окружение1877

Можно делать подстановку значений переменных лениво, распространяя окружение, ко-1878

торое ставит в соответствие свободным переменным термы. Лучше, в целом, пока не стало,1879

но мы получили композиционную семантику из некомпозиционной путём эксплицирования1880

контекстных зависимостей (подробнее далее 5.4.3).1881

1 data Term1 = Var1 String | App1 Term1 Term1 | Lam1 String Term1
2 type Env = Map String Term1

3 eval1 :: Term1 -> Env -> Term1
4 eval1 term env = case term of
5 Var1 name -> Map.findWithDefault (Var1 name) name env

120Поскольку мы рассматриваем классическое λ-исчисление, в качестве результирующего значения мы полу-
чаем тоже терм, но в нормальной форме.

93

6 App1 f arg -> case eval1 f env of
7 Lam1 name body -> eval1 body (Map.insert name arg env)
8 t -> App1 t (eval1 arg env)
9 Lam1 name body ->

10 let env' = Map.delete name env in
11 Lam1 name (eval1 body env')

Упражнение 37 Объясните, зачем окружение модифицируется на строчке 10?1882

Если ветка Lam1 не будет рекурсивно обходить подтерм и подставлять значения пере-1883

менных, информация о значениях свободных переменных в нём потеряется и мы получим1884

динамическое связывание вместо статического. Чтобы восстановить статическое связыва-1885

ние, ветка Lam1 интерпретатора должна конструировать замыкание, включающее текущее1886

окружение (см. далее 5.3.4).1887

5.3.4 Замыкания1888

Чтобы не делать энергично подстановку в тела функций и сохранить при этом статическое1889

связывание, добавим ещё одну конструкцию, замыкание (closure)121122 [Nystrom, глава 11].1890

Оно будет хранить контекст, в котором должен исполняться соответствующий терм.1891

1 data Term1 = Var1 String | App1 Term1 Term1 | Lam1 String Term1
2 | Closure Env String Term1 -- только для вычислений
3 type Env = Map String Term1

4 eval1 :: Term1 -> Env -> Term1
5 eval1 term env = case term of
6 Var1 name -> Map.findWithDefault (Var1 name) name env
7 App1 f arg -> case eval1 f env of
8 Closure env' body ->
9 let arg' = eval1 arg env in

10 eval1 body (Map.insert name arg' env')
11 t -> App1 t (eval1 arg env)
12 Lam1 name body -> Closure env name body

Замыкания обычно и используют в промышленных языках как представление времени1892

исполнения функций высших порядков. Во время компиляции сначала производят closure1893

conversion — функции высших порядков представляют как пару из окружения и указателя1894

на функцию, принимающую окружение дополнительным аргументом. Теперь, когда функция1895

не содержит свободных переменных, делают lambda lifting123 — поднимают её на верхний1896

уровень. Подробные примеры можно посмотреть в гарвардских слайдах Chong.1897

121https://en.wikipedia.org/wiki/Closure_(computer_programming)
122Термин closure был предложен Piter Landin, вместе с кучей других вещей.
123https://en.wikipedia.org/wiki/Lambda_lifting

94

https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Lambda_lifting

5.3.5 Типизированный контекст1898

Рассмотрим кодирование, описанное, например, в Kiselyov [2012a].1899

Для начала научимся с помощью системы типов Haskell проверять валидность обращения1900

к окружению. Представим окружение как список типов, закодированный с помощью вложен-1901

ных пар:1902

1 (4, (4.0, "hello")) :: (Int, (Double, String))

Обращение к окружению будем кодировать числом в унарной записи. Тип числа (типизи-1903

рованной ссылки внутрь контекста) пусть задаёт множество окружений env, из которых на1904

данной позиции можно извлечь тип ty.1905

1 data Ref env ty where
2 Here :: Ref (ty, env) ty
3 There :: Ref env ty -> Ref (ty', env) ty

Например, тип числа 1 утверждает, что с его помощью можно извлечь значение типа ty из1906

контекста, в котором значение соответствующего типа находится на первой позиции (нуме-1907

рация с нуля):1908

1 There Here :: Ref (ty', (ty, env)) ty

Теперь мы можем закодировать типизированное безопасное обращение к контексту:1909

1 envLookup :: env -> Ref env ty -> ty
2 envLookup env ref = case (ref, env) of
3 (Here, (x, _)) -> x
4 (There ref', (_, env')) -> envLookup env' ref'

Упражнение 38 Можно ли разобрать пару сразу на строчке 2? Поясните.1910

5.3.6 Meta-circular интерпретация1911

Крайне не хотелось бы для eDSL самостоятельно реализовывать связывания и функции1912

первого класса. Построим meta-circular интерпретатор (см. 5.1.4), который будет переисполь-1913

зовать функции первого класса мета-языка для реализации их в определяемом языке.1914

Термы теперь будут не только аннотированы результирующими типами, но и типами необ-1915

ходимых для интерпретации окружений, рассмотренных ранее 5.3.5. Абстрагированному тер-1916

му доступно большее окружение.1917

1 data Term2 env ty where
2 Var2 :: Ref env ty -> Term2 env ty
3 App2 :: Term2 env (arg -> res) -> Term2 env arg -> Term2 env res
4 Lam2 :: Term2 (arg, env) res -> Term2 env (arg -> res)

95

Теперь абстракцию можем проинтерпретировать в функцию Haskell, а аппликацию — в1918

аппликацию:1919

1 eval2 :: Term2 env ty -> env -> ty
2 eval2 term env = case term of
3 Var2 ref -> env `envLookup` ref
4 App2 f arg -> (eval2 f env) (eval2 arg env)
5 Lam2 t -> \arg -> eval2 t (arg, env)

Упражнение 39 Как так получилось, что в последней строчке нужно принять ещё один ар-1920

гумент?1921

Упражнение 40 Это call-by-value интерпретатор или call-by-name? От чего это зависит?1922

Упражнение 41 Подумайте, какое решение должно быть более производительно, это или1923

предыдущее?1924

Обратите внимание, что теперь функции определяемого языка во время исполнения —1925

это просто функции мета-языка. А значит, в программах на определяемом языке мы можем1926

полностью переиспользовать мета-язык! Добавим для этого конструкцию, позволяющую со-1927

хранить произвольное значение мета-языка в дереве:1928

1 data Term2 env ty where
2 Val2 :: ty -> Term2 env ty
3 -- ...

4 eval2 :: Term2 env ty -> env -> ty
5 eval2 term env = case term of
6 Val2 x -> x
7 -- ...

8 example :: Term2 env (Int -> Int)
9 example = Lam (Val2 (+) `App2` Val2 1 `App2` Var2 Here)

5.3.7 Синтаксис высшего порядка1929

Ещё чем мы ещё занимаемся вручную — определяем связыватели (да ещё и в унарной1930

записи). Хотим переиспользовать их из мета-языка. Для это мы будем прямо в дереве син-1931

таксиса хранить функции мета-языка — использовать синтаксис высшего порядка (higher1932

order abstract syntax)124125 Pfenning and Elliott [1988]:1933

124https://en.wikipedia.org/wiki/Higher-order_abstract_syntax
125What is higher-order in higher-order abstract syntax?

96

https://en.wikipedia.org/wiki/Higher-order_abstract_syntax
https://cstheory.stackexchange.com/questions/20071/what-is-higher-order-in-higher-order-abstract-syntax

1 data Term3 ty where
2 Val3 :: ty -> Term3 ty
3 Plus :: Term3 Int -> Term3 Int -> Term3 Int
4 App3 :: Term3 (arg -> res) -> Term3 arg -> Term3 res
5 Lam3 :: (Term3 arg -> Term3 res) -> Term3 (arg -> res)

6 example3 :: Term3 Int
7 example3 = (Lam3 \x -> x `Plus` Val3 41) `App3` Val3 1

Интерпретация очень простая и абсолютно meta-circular:1934

1 eval3 :: Term3 ty -> ty
2 eval3 term = case term of
3 Val3 x -> x
4 Plus l r -> eval3 l + eval3 r
5 App3 f arg -> (eval3 f) (eval3 arg)
6 Lam3 f -> \arg -> eval3 (f (Val3 arg))

Упражнение 42 Можно ли было объявить Lam3 следующим образом?1935

1 Lam3 :: (arg -> Term3 res) -> Term3 (arg -> res)

5.3.8 Сериализация функций1936

В этом разделе мы говорили о возможных реализациях функций первого класса, то есть1937

функций, которые можно использовать так же гибко, как и данные. Возникает закономерный1938

вопрос: можем ли мы сериализовать функцию первого класса и послать исполняться на1939

другую машину?1940

Функция состоит из кода и захваченных свободных переменных в случае статическо-1941

го связывания. Соответственно, если код представлен в сериализуемом виде (например,1942

позиционно-независимый байт-код), то его в принципе можно переслать по сети и испол-1943

нить на другом инстансе виртуальной машины. Так, например, делает Erlang. Однако, такой1944

подход неэффективный, так как байт-код нужно интерпретировать или предварительно ком-1945

пилировать. Таким образом, Erlang жертвует скоростью исполнения ради горизонтальной1946

масштабируемости.1947

Если мы гарантируем, что на различных узлах кластера исполняется один и тот же код,1948

как обычно и бывает на практике, можно добиться более эффективной реализации. Напри-1949

мер, используя дефункционализацию (см. 3.1.7), мы можем сериализовать только объекты1950

алгебраического типа, кодирующие функции. Поскольку на другом узле кластера исполняет-1951

ся такой же код, мы там можем десериализовать объект и исполнить его с помощью apply.1952

Однако этот подход не очень поддерживает модульность (сложно один алгебраический тип1953

разбить на много), а так же apply каждый раз производит декодирование перед исполнением1954

кода (чем, в прочем, можно пренебречь, учитывая работу с сетью).1955

97

Подход, реализованный в Haskell126127 позволяет наделить каждую функцию без свобод-1956

ных переменных некоторым статически известным адресом, одинаковым для всех инстансов1957

приложения. Далее можно сконструировать сериализуемое замыкание путём последователь-1958

ности частичных применений:1959

1 data Closure a where
2 StaticPtr :: StaticPtr b -> Closure b
3 Encoded :: ByteString -> Closure ByteString
4 Ap :: Closure (b -> c) -> Closure b -> Closure c

5 main = send "some-node" $
6 closure (static factorial) `closureAp` closurePure 10

Подробнее можно прочитать в основополагающей статье про облачный Haskell Epstein1960

et al. [2011]. С практической точки зрения — в книжке [Marlow, 2011, глава 16].1961

Упражнение 43 Нужно ли явно добавлять в замыкание свободную переменную (*) (опера-1962

тор умножения) в реализации факториала?1963

5.4 Tagless final интерпретаторы1964

Как мы убедились ранее (5.1.2), программирование состоит из написания новых и но-1965

вых интерпретаторов поверх друг друга. Интерпретаторы задают семантику новых языков1966

(5.1.3). В классическом виде язык задаётся как множество деревьев, а интерпретатор от-1967

правляет деревья в объект мета-языка. Если язык встроенный, то такой подход называют1968

deep embedding (см. 5.1.4), а соответствующий интерпретатор инициальным.1969

J•K : L→ D

Можно заметить, что в конечном итоге мы используем только элемент домена, в ко-1970

торый интерпретатор отображает программу. Сама программа же представляет собой лишь1971

удобную синтаксическую запись элемента домена и является промежуточным шагом, а не са-1972

моцелью. В то же время доменом в случае встроенных языков, заданных интерпретаторами,1973

являются объекты мета-языка. Можем ли мы миновать стадию интерпретации собственного1974

синтаксиса и сразу строить объект домена в синтаксисе мета-языка? Да, такое встраивание1975

называется shallow embedding (5.1.4), о нём эта глава.1976

5.4.1 Разные интерпретации для shallow embedding1977

Как мы узнали ранее (4.4), любую структуру данных можно представить свёрткой. И,1978

более того, в итоге можно обойтись без единого конструктора данных (как в списке Чёр-1979

ча, например): алгебра представляется набором функций, каждая из которых отвечает за1980

сворачивание определённого конструктора.1981

126https://blog.ocharles.org.uk/blog/guest-posts/2014-12-23-static-pointers.html
127https://hackage.haskell.org/package/distributed-closure

98

https://blog.ocharles.org.uk/blog/guest-posts/2014-12-23-static-pointers.html
https://hackage.haskell.org/package/distributed-closure

1 Fix f ∼= forall a . (f a -> a) -> a
2 List e ∼= forall a . (e -> a -> a) -> a -> a

Таким образом, вместо того, чтобы конструировать дерево языка, а затем его интерпре-1982

тировать (сворачивать), мы можем сразу сконструировать терм типа ∀a . (f a -> a) -> a.1983

Предоставив ему тип домена a и алгебру f a -> a (либо в виде пачки функций), мы немед-1984

ленно получим элемент нужного домена. Чтобы задать другую интерпретацию, нужно пере-1985

дать другой тип домена и алгебру:1986

1 example :: (Int -> a) -> (a -> a -> a) -> a
2 example cnst plus = cnst 1 `plus` cnst 41

3 ghci> example show (\l r -> l ++ " + " ++ r)
4 "1 + 41"

Если зафиксировать интерпретацию, то функции-аргументы можно реализовать стати-1987

чески и просто ссылаться на них в терме. Таким образом, про объявление функций можно1988

думать как про расширение некоторого встроенного предметного языка. Общие рассуждения1989

про shallow embeddings, свёртки и библиотеки можно почитать в Gibbons [2013], Gibbons and1990

Wu [2014]. Сравните:

Deep Shallow
Синтаксис языка задаётся набором допу-
стимых нод дерева

Декларация функции задаёт новую ноду
дерева: вызов этой функции

Интерпретатор при виде каждой ноды вы-
полняет соответствующий код на мета-
языке (ветку паттерн-матчинга) после вы-
числения поддеревьев

Интерпретатор при виде вызова выполня-
ет код тела функции после вычисления ар-
гументов

1991

5.4.2 Дойти до конца1992

Вернёмся к некаррированной версии свёрток: теперь это тип, принимающий кортеж функ-1993

ций. А кортеж функций можно заменить на класс типов. Тогда декларация класса будет1994

задавать синтаксис встроенного языка, а инстансы для доменов — реализацию. Этот под-1995

ход называется tagless final encoding128 и фактически это кодирование данных по Чёрчу с1996

классами типов и набором трюков Carette et al. [2007], Kiselyov [2012a].1997

Снова рассмотрим язык со сложением:1998

1 data Expr = Const Int | Plus Expr Expr

2 eval :: Expr -> Int
3 eval = \case Const x -> x; Plus l r -> eval l + eval r
128https://okmij.org/ftp/tagless-final/

99

https://okmij.org/ftp/tagless-final/

Или через катаморфизм:1999

1 data ExprF rec = Const Int | Plus rec rec

2 eval :: Fix ExprF -> Int
3 eval = cata \case Const x -> x; Plus l r -> l + r

Соответствующее tagless final кодирование будет выглядеть следующим образом:2000

1 class Expr domain where
2 cnst :: Int -> domain
3 plus :: domain -> domain -> domain

4 instance Expr Int where
5 cnst x = x
6 plus l r = l + r

Теперь мы можем сконструировать обычный терм Haskell, задать домен, и машинерия2001

классов типов подставит нужную алгебру самостоятельно:2002

1 example :: forall domain . Expr domain => domain
2 example = cnst 1 `plus` cnst 41

3 ghci> example :: Int
4 42

Чтобы добавить ещё интерпретацию, реализуем инстанс для другого домена:2003

1 instance Expr String where
2 cnst x = show x
3 plus l r = l <> " + " <> r

4 ghci> example :: String
5 "1 + 41"

5.4.3 Восстановление композиционности семантики2004

Семантика называется композиционной, если семантика конструкций зависит только2005

от семантик подконструкций (см. 5.1.3). Иначе говоря, она может быть задана катаморфиз-2006

мом и, соответственно, инстансом класса типов в tagless final. То есть, чтобы уметь для2007

любой семантики построить tagless final реализацию, нужно уметь универсальным образом2008

превращать некомпозиционные семантики в композиционные.2009

Всякие преобразования кода, как правило, не композиционные. Для примера рассмотрим2010

протаскивание унарных отрицаний:2011

100

1 data Expr1 = Lit Int | Add Expr1 Expr1 | Neg Expr1

2 transform1 :: Expr1 -> Expr1
3 transform1 = \case
4 Lit x -> Lit x
5 Add l r -> Add (transform1 l) (transform1 r)
6 Neg (Lit x) -> Lit (-x) -- проблема
7 Neg (Neg e) -> transform1 e -- проблема
8 Neg (Add l r) -> Add (transform1 (Neg l)) (transform1 (Neg r)) -- проблема

Чтобы восстановить композиционность семантики, нужно экплицировать контекстные зави-2012

симости с помощью стрелочного домена Kiselyov [2012a]:2013

1 data Ctx = CtxPos | CtxNeg
2 flipCtx = \case CtxPos -> CtxNeg; CtxNeg -> CtxPos

3 transform1' :: Expr1 -> (Ctx -> Expr1)
4 transform1' expr = case expr of
5 Lit x -> \case CtxNeg -> List (-x); CtxPos -> Lit x
6 Neg e -> \ctx -> transform1' e (flipCtx ctx)
7 Add l r -> \ctx -> Add (transform1' l ctx) (transform1' r ctx)

Отсюда можно получить tagless final версию:2014

1 class Expr2 d where
2 lit :: Int -> d
3 add :: d -> d -> d
4 neg :: d -> d

5 instance Expr2 d => Expr2 (Ctx -> d) where
6 lit x = \case CtxNeg -> lit (-x); CtxPos -> lit x
7 neg e = \ctx -> neg e (flipCtx ctx)
8 add l r ctx = add (l ctx) (r ctx)

5.4.4 Typed tagless final interpreter2015

Рассмотрим наш пример tagless initial encoding 5.2.3:2016

1 data Expr ty where
2 Const :: Int -> Expr Int
3 IsZero :: Expr Int -> Expr Bool
4 If :: forall ty . Expr Bool -> Expr ty -> Expr ty -> Expr ty

5 eval :: Expr ty -> ty

101

6 eval = \case
7 Const x -> x
8 IsZero t -> eval == 0
9 If c t e -> if eval c then eval t else eval e

Чтобы получить final encoding, параметризуем домен результирующим типом выражения:2017

1 class Expr (domain :: Type -> Type) where
2 cnst :: Int -> domain Int
3 isZero :: domain Int -> domain Bool
4 if' :: forall ty . domain Bool -> domain ty -> domain ty -> domain ty

5 instance Expr Identity where
6 cnst x = Identity x
7 isZero (Identity x) = Identity (x == 0)
8 if' (Identity c) t e = if c then t else e

Упражнение 44 Какой домен подойдёт для печати выражения?2018

5.4.5 Встречаем старых друзей: Applicative, Monad2019

Рассмотрим следующий язык в initial encoding с higher order abstract syntax (см. 5.3.6,2020

5.3.7). Справа перепишем в tagless final, выбирая подходящие имена для кусков синтаксиса.2021

1 data Expr s ty where
2 Val :: ty -> Expr s ty
3 App :: Expr s (arg -> res)
4 -> Expr s arg
5 -> Expr s res
6

7

8 LetIn :: Expr s ty
9 -> (ty -> Expr s ty')

10 -> Expr s ty'
11

12

13 Get :: Expr s s
14 Put :: s -> Expr s ()

1 class Applicative domain where
2 pure :: ty -> domain ty
3 (<*>) :: domain (arg -> res)
4 -> domain arg
5 -> domain res
6

7 class Monad domain where
8 (>>=) :: domain ty
9 -> (ty -> domain ty')

10 -> domain ty'
11

12 class MonadState s domain where
13 get :: domain s
14 put :: s -> domain ()

2022

Реализуем функцию, модифицирующую значение в нашем новом языке:2023

102

1 --
2 modify :: (s -> s) -> Expr s s
3 modify f =
4 Get `LetIn` \x ->
5 Put (f x) `LetIn` \() ->
6 Val x

1 -- s -> (s, s)
2 modify :: (s -> s) -> State s s
3 modify f =
4 get >>= \x ->
5 put (f x) >>= \() ->
6 pure x

2024

И до боли знакомую интерпретацию:2025

1 eval :: Expr s ty -> s -> (s, ty)
2 eval = \case
3

4

5 Val x -> \s -> (s, x)
6 App fs xs -> \s1 ->
7 let (s2, f) = eval fs s1 in
8 let (s3, x) = eval xs s2 in
9 (s3, f x)

10

11

12 LetIn comp k -> \s ->
13 let (s', x) = eval comp s in
14 eval (k x) s'
15

16

17 Get -> \s -> (s, s)
18 Put s -> _ -> (s, ())

1 newtype State s a = State
2 { runState :: s -> (s, a) }
3

4 instance Applicative (State s) where
5 pure x = State \s -> (s, x)
6 fs <*> xs = State \s1 ->
7 let (s2, f) = runState fs s1 in
8 let (s3, x) = runState xs s2 in
9 (s3, f x)

10

11 instance Monad (State s) where
12 comp >>= k = State \s ->
13 let (s', x) = runState comp s in
14 runState (k x) s'
15

16 instance MonadState s (State s) where
17 get = State \s -> (s, s)
18 put s' = State \s -> (s', ())

2026

Таким образом, аппликативные функторы — meta-circular язык с аппликацией, а монади-2027

ческий bind — это фактически let-in в higher-order синтаксисе.2028

Если вспомнить, что let x = M in N ≡ (λx.N) M ≡ [x 7→ M]N, то мы поймём, что мона-2029

дическое связывание — это подстановка a -> m b вычисления m b вместо результатов типа2030

a в вычислении m a. Либо, если в качестве m взять дерево выражения, то связывание будет2031

подстановкой поддеревьев вместо переменных:2032

1 data Expr var = Var var | Empty | Append (Expr var) (Expr var)
2 instance Monad Expr where
3 (>>=) :: Expr var -> (var -> Expr var') -> Expr var'
4 Var name >>= subst = subst name
5 Empty >>= _ = Empty
6 Append l r >>= subst = Append (l >>= subst) (r >>= subst)

103

Изначально использовать теор-категорное понятие монады129 в λ-исчислении было пред-2033

ложено в Moggi [1988], чтобы удобнее записывать денотационную семантику130. Это оказа-2034

лось настолько удобно в моменте, что их стали использовать повсеместно в функциональном2035

программировании, чтобы расширять простые функциональные языки различными могуще-2036

ственными возможностями без изменения самих языков Wadler [1990, 1992]. Был сформу-2037

лирован Moggi’s principle:2038

«Computations of type α correspond to values of type f α»2039

Использовать аппликативные функторы предложили существенно позже, чтобы избежать2040

именования промежуточных шагов вычислений, когда в этом нет необходимости McBride and2041

Paterson [2008]. Таким образом, аппликативы дают встроенный язык выражений, а монады —2042

язык стейтментов.2043

5.5 Expression problem2044

Expression problem131 или проблема выразительности — это некоторый критерий вы-2045

разительности языка программирования, сформулированный Wadler’ом в 1998132. Ставится2046

вопрос: насколько легко расширять синтаксис встроенного языка и добавлять новые интер-2047

претации? Иначе говоря, насколько легко добавлять новые разновидности данных и методы2048

обработки.2049

Под “легкостью” подразумевается локальность: нужно ли править различные куски кода2050

для этого. Например, если синтаксис языка задан обычным алгебраическим типом данных,2051

то добавить новую интерпретацию “легко” — просто добавить новую рекурсивную функцию,2052

а добавить новую синтаксическую конструкцию — “сложно” — нужно изменить все интер-2053

претаторы:2054

1 data Expr
2 = Const Int
3 | Plus Expr Expr -- добавляем

4 eval :: Expr -> Int
5 eval = \case Const x -> x; Plus l r -> eval l + eval r

6 show :: Expr -> String
7 show = \case Const x -> show x; Plus l r -> show l ++ " + " ++ show r

Если язык задан, например, с помощью наследования, то, наоборот, расширить синтаксис2055

легко — добавить новый класс, а добавить интерпретацию сложно — добавить реализацию2056

метода в каждом классе:2057

129https://ncatlab.org/nlab/show/monad+(in+computer+science)
130Часто сопутствующее монадам понятие эффекта мы рассмотрим далее 7.
131https://en.wikipedia.org/wiki/Expression_problem
132https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

104

https://ncatlab.org/nlab/show/monad+(in+computer+science)
https://en.wikipedia.org/wiki/Expression_problem
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

1 interface Lang {
2 fun eval(): Int
3 fun show(): String
4 }
5 class Const(val x: Int) : Lang {
6 override fun eval() = x
7 override fun show() = x.toString()
8 }
9 class Plus(val l: Lang, val r: Lang) : Lang {

10 override fun eval() = l.eval() + r.eval()
11 override fun show() = "$l + $r"
12 }

Оказывается, существуют подходы, позволяющие добиться “лёгкости” по обоим измере-2058

ниям. Мы уделим им много внимания в этом курсе.2059

Действительно, как мы обсуждали ранее 5.1.1, программы представляют собой серию2060

интерпретаторов. Для всё той же борьбы со сложностью, важно уметь описывать эти интер-2061

претаторы модульно — задавать части языков отдельно друг от друга, и собирать нужные2062

языки по месту из готовых блоков. Это помогает составлять программы из простых переис-2063

пользуемых компонент, каждая из которых имеет чёткую зону ответственности.2064

Expression problem возникала и решалась много раз: expression problem, stable denotations,2065

extensible (modular) interpreters. Прошло немало времени, пока не возникло понимание, что2066

всё это об одном и том же133.2067

5.5.1 Копроизведение функторов2068

Воспользуемся представлением данных как неподвижной точки функтора (см. 4.3.2). В2069

качестве модельного языка возьмём язык выражений со сложением:2070

1 data Basic rec = Const Int | Plus rec rec

2 algBasic :: Basic Int -> Int
3 algBasic = \case Const x -> c; Plus l r -> l + r

4 evalBasic :: Fix Basic -> Int
5 evalBasic = cata algBasic

Заметим, что сумма (копроизведение) функторов формы даёт функтор формы, алгебра2071

для которого получается из алгебр компонент134:2072

1 data (l :+: r) rec = L (l rec) | R (r rec)
133https://okmij.org/ftp/Computation/having-effect.html
134Пользуемся расширением TypeOperators.

105

https://okmij.org/ftp/Computation/having-effect.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/type_operators.html

2 (\/) :: (l a -> a) -> (r a -> a) -> ((l :+: r) a -> a)
3 phi \/ psi = \case L l -> phi l; R r -> psi r

Расширим наш язык чтением числа из окружения. Следуя рассмотренной ранее денота-2073

ционной семантике 5.1.3, выберем функцию Int -> Int в качестве домена:2074

1 data Basic rec = Const Int | Plus rec rec
2 data Input rec = Input

3 algBasic' :: Basic (Int -> Int) -> Int -> Int
4 algBasic' = \case Const x -> _env -> x; Plus l r -> _env -> l + r

5 algInput :: Input (Int -> Int) -> Int -> Int
6 algInput = \case Input -> \env -> env

Таким образом, мы добились возможности отдельно определять куски синтаксиса и се-2075

мантики языка, и собирать нужный язык по месту. Напишем программу на нашем языке с2076

неявным иммутабельным состоянием:2077

1 f :: Int -> Int
2 f = cata (algBasic' \/ algInput) $
3 In (L (Plus (In (L (Const 1))) (In (R Input)))) -- 1 + input

Однако заметим, что пока мы не решили проблему полностью, так как интерпретация2078

новой конструкции Input потребовала более сложный домен и нам пришлось переписывать2079

интерпретацию старой для него: из algBasic в algBasic'. Теперь мы понимаем, почему2080

stable denotations — это ещё одно название для expression problem 5.5. Далее мы дополним2081

это решение до полноценного 7.2082

5.5.2 Произведение алгебр2083

Построим tagless final представление для интерпретатора из предыдущего параграфа. Те-2084

перь синтаксис задаётся классами типов:2085

1 class Basic domain where
2 cnst :: Int -> domain
3 plus :: domain -> domain -> domain

4 class Input domain where
5 input :: domain

В качестве домена, как и ранее возьмём функции Int -> Int и реализуем интерпретацию:2086

106

1 instance Basic (Int -> Int) where
2 cnst value = _ -> value
3 plus l r = \env -> l env + r env

4 instance Input (Int -> Int) where
5 input = \env -> env

Теперь, чтобы собрать язык по месту, можно просто воспользоваться композируемостью2087

контекстов классов типов, всю остальную работу:2088

1 example :: forall domain . (Basic domain, Input domain) => domain
2 example = cnst 1 `plus` input

3 ghci> (example :: Int -> Int) 41
4 42

107

6 Продолжения (continuations)2089

Продолжения с начала 60х не один раз возникали в литературе в различных формах и2090

разнообразных приложениях Reynolds [1993], Landin [1997], пока в 70х Wadsworth не приду-2091

мал общий термин и единую концепцию — continuation135 — “the meaning of the rest of the2092

program”.2093

Начальным толчком к размышлениям стал язык Algol 60, имевший нетривиальный меха-2094

низм меток и прыжков. Проблемой была как имплементация семантики, так и её денотацион-2095

ное описание вместе с трансляцией в лямбда-исчисление. Действительно, как математически2096

описать goto? В каком домене искать семантику таких программ? Как написать определяю-2097

щий интерпретатор, отправляющий программу в этот домен? Решением стала возможность2098

сослаться на семантику остатка программы, продолжение, в определённой точке (например,2099

на метке).2100

О продолжениях всегда должен думать автор языка, ведь вычислителю в каждой точке2101

программы нужно знать, что исполнять дальше. А как мы уже поняли, любой программист2102

является автором множества языков, приближающих его к решению задачи. Более того,2103

многие повседневные языковые конструкции явно или неявно непосредственно манипулируют2104

продолжениями.2105

6.1 Концепция продолжений2106

Рассмотрим семантику выражения с операционной точки зрения, как последовательность2107

шагов переписывания (см. 5.1.3). Если внимательно рассмотреть каждый шаг, то мы обна-2108

ружим, что он состоит из двух этапов: поиска подвыражения (редекса), в котором можно2109

сделать элементарный шаг вычислений, выполнение этого шага, и так далее136. Во время2110

поиска редекса, выражение разбивается на две части (см. 18):2111

• Фокус — подвыражение в котором ищем редекс;2112

• Продолжение — остаток выражения с “дыркой”, обозначающий место, куда нужно под-2113

ставить результат шага вычислений.2114

Как правило, продолжения существуют вне пользовательского кода как состояние интер-2115

претатора, которому в каждый следующий момент времени нужно помнить, какой код и в2116

каком состоянии исполнять дальше. Однако, языки предоставляют пользователям множе-2117

ство конструкций, позволяющих управлять продолжениями (см. 19):2118

• Функция exit выбрасывает продолжение программы целиком;2119

• Конструкция try-catch позволяет выбросить часть продолжения до места поимки ис-2120

ключения и исполнить оставшееся;2121

135https://en.wikipedia.org/wiki/Continuation
136На самом деле вычислениям с продолжениями учат в начальных классах, когда рассказывают про вычис-

ление выражений “по действиям”.

108

https://en.wikipedia.org/wiki/Continuation

Рис. 18: Выражение разделяется на фокус (красный) и продолжение (синее), когда в фокусе
удалось сделать шаг, они объединяются в новое выражение, для которого процесс повторя-
ется.

Рис. 19: Конструкция exit выбрасывает продолжение и программа останавливается, в то
время как throw выбрасывает лишь часть продолжения до ближайшего try-catch.

• Конструкция return позволяет восстановить исполнение в месте, где функция была2122

вызвана;2123

• Конструкции break и continue восстанавливают продолжение после цикла и до. . .2124

6.1.1 Reduction semantics2125

Стиль задания операционной семантики через описание поиска примитивных (“голов-2126

ных”) редексов и их редукций называют семантикой редукционных контекстов (reduction2127

semantics)137. Как обычно, следуя Hutton’s Razor, рассмотрим интерпретацию маленького2128

простого язычка с вычитанием (несимметричная операция для проверки реализации):2129

1 data Expr = Const Int | Diff Expr Expr
137https://en.wikipedia.org/wiki/Operational_semantics

109

https://en.wikipedia.org/wiki/Operational_semantics

Для начала нам нужно определить синтаксис продолжений, “выражений с дыркой”. То есть2130

с технической точки зрения продолжение — это структура данных, содержащая всю необхо-2131

димую информацию, чтобы продолжить исполнение (здесь — только остаток выражения):2132

1 data K
2 = Hole -- дырка �
3 | LDiff K Expr -- фокус пошел в правое подвыражение, запомнили левое
4 | RDiff Int K -- посчитали левое, фокус пошел вправо

Зададим операцию разбиения выражения на продолжение и фокус:2133

1 split :: Expr -> (Expr, K)
2 split e = case e of
3 Const _ -> (e, Hole)
4 Diff (Const _) (Const _) -> (e, Hole) -- примитивный редекс
5 Diff (Const l) r -> -- левое подвыражение уже посчитано
6 let (focus, k) = split r in -- ищем редекс в правом
7 (focus, RDiff l k)
8 Diff l r -> -- ничего ещё не посчитано
9 let (focus, k) = split l in -- начинам с поиска редекса слева

10 (focus, LDiff k r)

11 ghci> split (Diff (Diff (Const 1) (Const 2)) (Const 3)) -- (1 - 2) - 3
12 (Diff (Const 1) (Const 2), LDiff Hole (Const 3)) -- (1 - 2, � - 3)

Шаг примитивной редукции умеет только вычитать числа:2134

1 headReduction :: Expr -> Expr
2 headReduction = \case
3 Diff (Const l) (Const r) -> Const (l - r)
4 e -> e

После шага примитивной редукции нам понадобится подставить результат обратно в про-2135

должение, чтобы из “выражения с дыркой” получить полноценное выражение, которое можно2136

продолжить редуцировать:2137

1 plugIn :: Expr -> K -> Expr
2 plugIn e k = case k of
3 Hole -> e
4 LDiff k' r -> Diff (e `plugIn` k') r
5 RDiff l k' -> Diff (Const l) (e `plugIn` k')

Как правило, подстановку терма t в продолжение E обозначают как E[t].2138

Теперь мы можем определить полноценный шаг:2139

110

1 transition :: Expr -> Expr
2 transition e =
3 let (focus, k) = split e in -- разбиваем на фокус и контекст
4 headReduction focus `plugIn` k -- делаем вычисление в фокусе и подставляем

Тода операционная семантика это развёртка списка промежуточных выражений:2140

1 eval :: Expr -> [Expr]
2 eval = List.unfoldr \prev ->
3 let next = transition prev in
4 if prev == next then Nothing else Just (next, next)

Можно заметить, что split и plugIn однозначно определяется по синтаксису продол-2141

жений и виду главных редукций, а transition и eval одинаковы для произвольного языка.2142

Поэтому семантику редукционных контекстов обычно задают как синтаксис продолжений,2143

перечень главных редукций и единственное правило вывода — шаг в контексте:138
2144

Values v ::= Z
Terms t ::= v | t ⊖ t
Evaluation context E ::= □ | E ⊖ t | Z⊖ E
(diff) v1 ⊖ v2 −→ v1 − v2

step
t −→ t ′

E[t] −→ E[t ′]

Существует стандартный инструмент PLT Redex139 для описания и тестирования семан-2145

тики в стиле редукционных контекстов.2146

6.1.2 Continuation semantics2147

Запишем денотационную семантику нашего языка:2148

1 evalDirect :: Expr -> Int
2 evalDirect = \case
3 Const n -> n
4 Diff l r -> evalDirect l - evalDirect r

Перепишем денотационную семантику в стиле с явными продолжениями. Но сначала по-2149

работаем с типом K и упростим работу с ним:2150

1 data K = Hole | LDiff K Expr | RDiff Int K
2 -- K = 1 + (K × Expr) + (Int ×K) = 1 + (Expr + Int)×K
3 data Frame = LDiff Expr | RDiff Int
4 type K = [Frame]

138⊖ тут обозначает синтаксический минус (ноду в дереве).
139https://redex.racket-lang.org/

111

https://redex.racket-lang.org/

Получили представление продолжения как стека фреймов.2151

Денотационную семантику будем записывать для домена K -> Int. Такая разновидность2152

денотационной семантики с явным представлением смысла остатка программы (в виде K)2153

иногда называют continuation semantics. А соответствующий стиль программирования с2154

передачей продолжений — continuation passing style (CPS).2155

В нашем continuation semantics будет выглядеть как пара взаимно-рекурсивных функций:2156

1 evalK :: Expr -> K -> Int
2 evalK e k = case e of
3 Const n -> k `appK` n -- выполняем остаток программы
4 Diff l r -> evalK l (LDiff r : k) -- запоминаем дальше вычислить правое

5 appK :: K -> Int -> Int
6 appK k result = case k of
7 [] -> result -- дальше делать нечего
8 LDiff r : k' -> evalK r (RDiff result : k') -- идем вычислять вправо
9 RDiff l' : k' -> k' `appK` (l' - result) -- продолжаем на результате

Тут мы снова спускаемся по выражению в поисках примитивного редекса (тут — константы),2157

попутно запоминая, что нужно будет сделать после.2158

Первая рекурсивная реализация evalDirect не заботилась о продолжениях. Однако, про-2159

должения — это неотъемлемая часть процесса вычисления, вычислителю нужно знать, что2160

делать дальше в каждый момент. На самом деле evalDirect лишь делегирует работу с про-2161

должениями определяемого языка мета-языку, но каким образом? Заметьте, что полученная2162

в итоге реализация evalK хвостово-рекурсивная, а значит, может быть скомпилирована в2163

цикл, не потребляющий стек вызовов, при этом K это стек. Таким образом, в первом слу-2164

чае мы делали рекурсивные вызовы и продолжение аллоцировалось на (аппаратном) стеке2165

мета-языка, а во втором случае мы самостоятельно аллоцируем стек в куче.2166

В случае, если стек мета-языка реализован поверх аппаратного, есть риск ошибки его2167

переполнения. Чтобы этого избежать, используется техника trampolining, которая как раз2168

состоит в ручной аллокации продолжения в куче Ganz et al. [1999], Bjarnarson [2012].2169

Подобно тому как тип контекста зиппера можно вычислить как производную алгебраиче-2170

ского представления соответствующего типа Huet [1997], McBride [2001], Abbott et al. [2003],2171

так можно вычислить тип продолжения свёртки McBride [2008].2172

6.1.3 Продолжения первого класса2173

В примерах выше конструкции языка управляют продолжениями неявно (см. рис. 19).2174

Однако, иногда вводят операторы, позволяющие явно оперировать продолжениями. С их2175

помощью можно реализовать как возможности манипуляции потоком управления вроде ге-2176

нераторов и корутин140141, так и все остальные эффекты вроде состояния (см. далее 7).2177

140https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style#Example:_coroutines
141https://kotlinlang.org/api/core/kotlin-stdlib/kotlin.coroutines/suspend-coroutine.html

112

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style#Example:_coroutines
https://kotlinlang.org/api/core/kotlin-stdlib/kotlin.coroutines/suspend-coroutine.html

Продолжения первого класса (first-class continuations) — продолжения, которые пред-2178

ставимы в программе в виде значений. Учитывая, что продолжение имеет вакантное место2179

ещё не вычисленного подвыражения, продолжения первого класса представляют функциями2180

первого класса.2181

Чтобы получить в коде продолжение первого класса, нужно либо написать код в CPS,2182

либо воспользоваться встроенным в язык оператором, которых придумано великое множе-2183

ство [Hillerström, 2022, приложение A]. Например, J, escape Reynolds [1972], call/cc. . .2184

Для примера реализуем в языке операцию Cont, позволяющую захватить текущее про-2185

должение. Он будет принимать пользовательскую функцию и передавать в неё текущее про-2186

должение от себя и до конца программы:2187

E[cont f] −→ f (λx. E[x])

Сначала расширим язык лямбда-исчислением:2188

1 data Expr
2 = Const Int | Diff Expr Expr
3 | Var String | Lam String Expr | App Expr Expr

4 data Frame
5 = LDiff Expr | RDiff Value
6 | LApp Expr | RApp Value
7 | SetEnv Env -- после исполнения замыкания возвращаем текущее окружение

Реализация интерпретатора довольно прямолинейна. Единственное, сейчас остаток про-2189

граммы представлен в виде линейного списка, который фактически обходится в цикле после-2190

довательно. Нужно не забыть после исполнения тела замыкания восстановить изначальное2191

окружение для исполнения продолжения:142
2192

1 evalK :: (?env :: Env) => Expr -> K -> Value
2 evalK e k = case e of
3 Const n -> k `appK` Number n
4 Diff l r -> evalK l (LDiff r : k)
5 Var name -> k `appK` (?env ! name)
6 Lam name body -> k `appK` Closure name ?env body
7 App f arg -> evalK f (LApp arg : k)

8 appK :: (?env :: Env) => K -> Value -> Value
9 appK k result = case k of

10 [] -> result
11 LDiff r : k' -> evalK r (RDiff result : k')
12 RDiff l' : k' -> k' `appK` Number (unwrapNumber l' - unwrapNumber result)

142Для удобства буддем передавать окружение неявным параметром.

113

13 LApp arg : k' -> evalK arg (RApp result : k')
14 RApp f : k' -> case f of
15 Closure name env body ->
16 let currEnv = ?env in
17 let ?env = Map.insert name result env in
18 evalK body (SetEnv currEnv : k')
19 K env k'' ->
20 let currEnv = ?env in
21 let ?env = env in
22 (k'' ++ SetEnv currEnv : k') `appK` result
23 other -> error $ "Expected callable, got " <> show other
24 SetEnv env : k' -> let ?env = env in k' `appK` result
25 where
26 unwrapNumber = \case
27 Number n -> n
28 other -> error $ "Expected number, got " <> show other

Наконец, реализуем оператор cont:2193

1 data Expr = ... | Cont Expr
2 data Frame = ... | ContFrame

3 evalK e k = case e of
4 ...
5 Cont f -> evalK f (ContFrame : k)

6 appK k result = case k of
7 ...
8 ContFrame : k' -> [RApp result] `appK` K ?env k' -- переиспользуем ветку RApp

Рассмотрим несколько примеров (обозначим contLam name body = Cont (Lam name body),2194

(-.) = Diff, c = Const, v = Var и (@) = App):2195

• c 10 -. contLam "k" (c 1) — выбросить продолжение и вернуть 1 (k = 10−�);2196

• c 10 -. contLam "k" (v "k" @ c 1) — ⇝ k 1⇝ 10− 1⇝ 9;2197

• c 10 -. contLam "k" (v "k" @ c 1 -. c 2) — ⇝ k 1− 2⇝ 9− 2⇝ 7;2198

• c 10 -. contLam "k" (v "k" @ c 1 -. v "k" @ c 2) — ⇝ k 1− k 2⇝ 9− 8⇝ 1.2199

Таким образом, мы получили язык, который позволяет пользователю в произвольном2200

месте программы получить текущее продолжение в виде функции.2201

Возможность получить продолжение первого класса почти не предоставляется промыш-2202

ленными языками, так как это довольно опасный инструмент. Действительно, если поль-2203

зователь не вызовет продолжение, может не произойти закрытия ресурсов. Если вызовет2204

несколько раз, снова может произойти как некорректная работа с ресурсами, так и порча2205

114

изменяемой памяти (продолжения, которые можно безопасно вызывать много раз называют2206

multi-shot). Подобные поведения можно исключать специальной обработкой таких ситуа-2207

ций Muhcu et al. [2025], проверками времени компиляции (например, с помощью линейных2208

типов) или времени исполнения. Сейчас с активными исследованиями о внедрении хендлеров2209

эффектов (см. далее 7) продолжения первого класса могут получить новый шанс.2210

6.2 Продолжения своими руками2211

Рассмотрим, как выглядит CPS в обычном коде, а не в контексте deep embedding. Для2212

этого мы, во-первых, перейдём к shallow embedding и будем сразу строить элементы целевого2213

домена. А во-вторых, рефункционализируем продолжения K и обобщим: вместо K -> Int бу-2214

дем использовать forall r . (a -> r) -> r, где a -> r — функциональное представление2215

продолжения.2216

Такой CPS эксплуатирует следующий изоморфизм:2217

1 to :: a -> (forall r . (a -> r) -> r)
2 to x k = k x

3 from :: (forall r . (a -> r) -> r) -> a
4 from comp = comp id

Иначе говоря, вместо того, чтобы предоставить значение типа a, можно спросить у вызыва-2218

ющей стороны, как она собирается с этим значением работать a -> r, сделать это самосто-2219

ятельно, и вернуть вызывающей стороне r.2220

Прикладным программистам этот изоморфизм знаком по технике использования callback’ов.2221

Теоретикам же известно, что он является частным случаем леммы Йонеды Hinze and James2222

[2010]. Сравните CPS с интансом этой леммы в теории предпорядка (выше мы считали a =2223

Unit; b = a):2224

a→ b ∼= ∀r. (b → r)→ (a→ r)
a ≤ b ⇐⇒ ∀r. (b ≤ r)⇒ (a ≤ r)

Например, мы можем переписать факториал в CPS. Заметьте, что код имеет доступ к2225

продолжению первого класса (однако, пока никак нетривиально не использует его), при этом2226

снова является хвостово-рекурсивным.2227

1 facCps :: Int -> (forall r . (Int -> r) -> r)
2 facCps n k
3 | n <= 1 = k 1
4 | otherwise = facCps (n - 1) \res -> k (n * res)

5 facCps 3 id ⇝ facCps 2 \res -> id (3 * res)
6 ⇝ facCps 1 \res -> id (3 * (2 * res)) ⇝ id (3 * (2 * 1)) ⇝ 6

Упражнение 45 Сколько функция facCps потребляет стековой памяти?2228

115

Рис. 20: Связь между семантиками в различных стилях Danvy [2008].

6.2.1 Дефункционализация и аккумуляторы2229

Дефункционализируем продолжения в facCps. Мы используем две функции высших по-2230

рядков, id и \res -> k (n * res), они дают нам два конструктора:2231

1 data K = Id | Times Int K
2 -- ∼=
3 type K = [Int]

4 runK :: K -> Int
5 runK = product

6 facCps :: Int -> K -> Int
7 facCps n k
8 | n <= 1 = runK k
9 | otherwise = facCps (n - 1) (snoc k n)

10 facCps 3 [] ⇝ facCps 2 [3] ⇝ facCps 1 [3, 2] ⇝ runK [3, 2] ⇝ 3 * (2 * 1)

Мы снова получили представление продолжения в виде стека фреймов. А значит, интер-2232

претатор evalK полученный нами ранее (6.1.2) является CPS версией обычного интерпрета-2233

тора, только с дефункционализированными продолжениями (они удобны для отладки — их2234

можно распечатать, в отличие от функций Haskell). Если расширить тот наш язык и написать2235

на нём факториал, а потом сделать fusion или рефункционализацию (4.4.1) дерева програм-2236

мы и дерева продолжения, мы получим текущую реализацию факториала. И в целом между2237

различными стилями реализаций семантик можно построить соответствие (см. рис. 20).2238

Этой техникой можно пользоваться и в более сложных случаях, чтобы легко получать2239

116

Рис. 21: Трансформации кода, основанные на CPS и де(ре)функционализации Danvy [2006].

хвостово-рекурсивные (итеративные) реализации143 Gibbons [2021]144. В целом CPS и де-2240

функционализация — это богатый источник различных рефакторингов (см. рис. 21).2241

Теперь заметим, что операция умножения ассоциативна, а значит, можно snoc заменить2242

на умножение, а продолжение представить одним числом. Получим привычную реализацию2243

факториала с аккумулятором:2244

1 facAcc :: Int -> Int -> Int
2 facAcc n acc
3 | n <= 1 = acc
4 | otherwise = facAcc (n - 1) (acc * n)

5 facAcc 3 1 ⇝ facAcc 2 (1 * 3) ⇝ facAcc 1 ((1 * 3) * 2) ⇝ (1 * 3) * 2 ⇝ 6

Также, можно фреймы представить в виде эндоморфизмов и в качестве ассоциативной2245

операции использовать композицию функций Ploeg and Kiselyov [2014]145.2246

6.2.2 Monad Cont2247

Из-за CPS код потерял привычную структуру, при которой функции напрямую возвращают2248

свои результаты (i.e. direct style). При наличии большого количества вызовов трансформи-2249

рованных функций, код становится плохо читаемым (проблема известна как callback hell):2250

1 fibCps :: Int -> (forall r . (Int -> r) -> r)

143https://www.pathsensitive.com/2019/07/the-best-refactoring-youve-never-heard.html
144(youtube) Jeremy Gibbons - Continuation-passing style, defunctionalization, and associativity.
145https://wiki.haskell.org/Difference_list

117

https://www.pathsensitive.com/2019/07/the-best-refactoring-youve-never-heard.html
https://youtu.be/8gnhaE2nmQ0?si=pEJX4jQteYmy7ZZn
https://wiki.haskell.org/Difference_list

2 fibCps n k = if n <= 2 then k 1 else
3 fibCps (n - 1) \res1 ->
4 fibCps (n - 2) \res2 ->
5 k (res1 + res2)

Домен (a -> r) -> r можно сделать монадой и восстановить direct style код внутри do-2251

нотации. Заведём newtype обёртку для объявления инстансов:2252

1 newtype Cont r a = Cont { runCont :: (a -> r) -> r }

Функтор добавляет пост-процессинг результату перед передачей в продолжение:2253

1 instance Functor (Cont r) where
2 -- fmap :: (a -> b) -> ((a -> r) -> r) -> ((b -> r) -> r)
3 fmap f (Cont comp) = Cont \k -> comp (k . f)

Аппликатив просто передаёт значение продолжению:2254

1 instance Applicative (Cont r) where
2 pure x = Cont \k -> k x
3 (<*>) = ap

Можно заметить, что монадическое связывание вторым аргументом тоже принимает про-2255

должение, но “маленькое”, до конца do-блока. Таким образом, смысл реализации монади-2256

ческого связывания для Cont — это композиция “маленького” продолжения с “большим”2257

продолжением, передаваемым снаружи:2258

1 instance Monad (Cont r) where
2 (>>=) :: Cont r a -> (a -> Cont r b) -> Cont r b
3 Cont comp >>= k = Cont \k' -> comp \x -> runCont (k x) k'

Теперь мы можем писать линейный код, а монадическая машинерия сама конструирует2259

продолжения и подкладывает в предыдущие вычисления:2260

1 fibCont :: Int -> Cont r Int
2 fibCont n = if n <= 2 then pure 1 else do
3 res1 <- fibCont (n - 1)
4 res2 <- fibCont (n - 2)
5 pure (res1 + res2)

Упражнение 46 Оборвите вычисление, если res1 больше 50.2261

Упражнение 47 Оборвите вычисление как только общий результат стал больше 50.2262

Монада Cont даёт реализацию встроенного языка, в котором можно получить продолже-2263

ние вычисления:2264

118

1 Cont :: ((a -> r) -> r) -> Cont r a

Прикладным программистам такая техника написания CPS кода через монады знакома в2265

виде концепций Future/Promise146147.2266

6.2.3 call/cc2267

Самым известным классическим оператором, который использовали в Scheme для полу-2268

чения продолжений первого класса, является call/cc (call with current continuation)148149.2269

Предоставляемое продолжение является неограниченным (undelimited/abortive), так как2270

оно содержит “конец программы” — никакой код не будет исполняться после его вызова.2271

Неограниченные продолжения де-факто — не совсем функции, так как они не возвращают2272

результата (он уже “beyond the grave”), следовательно, они также не композируются (также2273

как странно композировать abort с exit)150151. Они скорее являются ко-значениями: пока2274

часть программы выполняется, они ожидают её результата Curien and Herbelin [2000].2275

Давайте сэмулируем call/cc в монаде Cont. Захватить всё продолжение программы у2276

нас не выйдет, так как оно собирается только в рамках Cont, но мы можем проигнорировать2277

продолжение вызова захваченного продолжения:2278

1 callCC :: ((a -> Cont r b) -> Cont r a) -> Cont r a
2 callCC f = Cont \k -> runCont (f \x -> Cont _ -> k x) k

3 foo :: Int -> Cont r String
4 foo x = callCC \k -> do
5 let y = x ^ 2 + 3
6 when (y > 20) $ k "over twenty" -- throws next line away
7 pure (show $ y - 4)

6.3 Delimited continuations2279

В современной практике, как правило, используют продолжения не до конца програм-2280

мы, а только до определённой точки. Их называют ограниченными или разграниченными2281

продолжениями, delimited или composable continuations, subcontinuations152153.2282

Конструкции для работы с такими продолжениями парные: вводится оператор, ограни-2283

чивающий текущее продолжение (мб имеющий метку); а также оператор захвата фрагмента2284

146https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
147https://github.com/promises-aplus/promises-spec/issues/94
148https://en.wikipedia.org/wiki/Call-with-current-continuation
149https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style#callCC
150https://okmij.org/ftp/continuations/undelimited.html
151https://okmij.org/ftp/continuations/against-callcc.html
152https://www.cl.cam.ac.uk/teaching/2324/R277/handout-delimited-continuations.pdf
153(youtube) Keynote: Delimited Continuations, Demystified by Alexis King | Lambda Days 2023.

119

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://github.com/promises-aplus/promises-spec/issues/94
https://en.wikipedia.org/wiki/Call-with-current-continuation
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style#callCC
https://okmij.org/ftp/continuations/undelimited.html
https://okmij.org/ftp/continuations/against-callcc.html
https://www.cl.cam.ac.uk/teaching/2324/R277/handout-delimited-continuations.pdf
https://youtu.be/TE48LsgVlIU?si=cBdUCzYwYWpwPkkh

Рис. 22: Синтаксис λ-исчисления с примитивами для работы с продолжениями.

Рис. 23: Пример работы withSubCont.

текущего продолжения (мб до конкретного ограничителя с определённой меткой). Таких опе-2285

раторов придумано много [Hillerström, 2022, приложение А], но они более-менее все сводятся2286

друг к другу.2287

Например, работа с исключениями подразумевает использование двух конструкций: про-2288

должение ограничивается с помощью try-catch, а throw выкидывает соответствующее ча-2289

стичное продолжение, не захватывая его (см. рис. 19):2290

E1[try{E2[throw(v)]}catch(x){t}]→ E1[[x 7→ v] t]

Мы же рассмотрим универсальные операторы из Dyvbig et al. [2007]. Работа вводит сле-2291

дующий набор синтаксических конструкций (рис. 22) для работы с ограниченными продол-2292

жениями в дополнение к чистому call-by-value лямбда-исчислению:2293

• newP rompt154 — создаёт свежий идентификатор (метку) ограничения;2294

• pushP rompt p e — устанавливает ограничение с меткой p и исполняет выражение e;2295

• withSubCont p f — захватывает частичное продолжение до ограничения с меткой p и2296

передаёт в функцию f , возвращает результат f (рис. 23);2297

• pushSubCont k v — исполняет композицию текущего продолжения и k на значении v .2298

154Исторически в лиспах неограниченные продолжения были ограничены лишь REPL, отсюда название огра-
ничений — “prompt”.

120

Рис. 24: Пример выражения (результат — 9).

Операторы ограниченных продолжений легко понять как resumable exceptions, исключе-2299

ния, которые можно поймать, а программу возобновить с того места, где исключение было2300

выброшено (с некоторым значением). Необычно то, что классические операторы ограничен-2301

ных продолжений принимают код, работающий с частичным продолжением в месте “кидания2302

исключения”, а не в месте “поимки”. То есть блок обработки пишется не с catch, а с throw:2303

E1[pushP rompt p {E2[withSubCont p f]}]→ E1[f E2]
E1[try{E2[throw v]}catch(x, k){t}]→ E1[[x 7→ v] [k 7→ λy. E2[y]] t]

Упражнение 48 Поредуцируйте пример рис. 24.2304

6.3.1 Реализация операторов2305

Расширим язык 6.1.3 рассмотренными операторами для работы с ограниченными. Для2306

простоты вместо свежих меток промптов будем использовать имена, а вместо pushSubCont2307

обычную аппликацию:2308

1 data Expr = ...| PushPrompt String Expr | WithSubCont String Expr
2 data Frame = ... | PushPromptFrame String | WithSubContFrame String

Поиск редексов расширяется очевидным образом:2309

1 evalK :: (?env :: Env) => Expr -> K -> Value
2 evalK e k = case e of
3 -- ...
4 PushPrompt promptName body -> evalK body (PushPromptFrame promptName : k)
5 WithSubCont promptName f -> evalK f (WithSubContFrame promptName : k)

Вся задача PushPrompt — это застрять в продолжении в виде PushPromptFrame, но когда2310

до него доходит исполнение, он просто игнорируется:2311

121

1 appK :: (?env :: Env) => K -> Value -> Value
2 appK k result = case k of
3 -- ...
4 PushPromptFrame _ : k' -> k' `appK` result

Чтобы захватить фрагмент продолжения, нам нужна операция, которая найдёт первый2312

промпт с соответствующим именем в продолжении и вернёт subcontinuation — до этого2313

промпта и metacontinuation — после:2314

1 splitByPrompt :: K -> String -> (K, K)
2 splitByPrompt k targetPromptName = go [] k
3 where
4 go _ [] = error $ "Prompt " ++ targetPromptName ++ " not found"
5 go subcont (PushPromptFrame promptName : metacont)
6 | promptName == targetPromptName = (subcont, metacont)
7 go subcont (frame : metacont) = go (subcont ++ [frame]) metacont

Теперь WithSubCont должен просто применить пользовательскую функцию к subcontinuation,2315

но при этом не забыть дальше исполнить metacontinuation:2316

1 appK :: (?env :: Env) => K -> Value -> Value
2 appK k result = case k of
3 -- ...
4 WithSubContFrame promptName : k' ->
5 let (subcont, metacont) = k' `splitByPrompt` promptName in
6 (RApp result : metacont) `appK` K ?env subcont

Упражнение 49 Поредуцируйте следующий пример:2317

1 exampleDelimited = let ?env = Map.empty in flip evalK [] $
2 c 10 -. PushPrompt "p"
3 (c 5 -. WithSubCont "p"
4 (lam "k" $ v "k" @ c 1 -. v "k" @ c 3))

Многие классические операторы, например, shift/reset, prompt/control и т.д., можно2318

получить, оставив фрейм промпта в subcontinuation или в metacontinuation в реализации2319

splitByPrompt Dyvbig et al. [2007].2320

6.3.2 В Monad Cont2321

Для примера реализуем два классических оператора для работы с ограниченными продол-2322

жениями — shift-reset. Воспользуемся продолжениями, собираемыми монадой Cont. shift2323

просто захватывает текущее продолжение и передаёт его в пользовательское вычисление2324

подобно cont:2325

122

1 shift :: ((a -> r) -> Cont r r) -> Cont r a
2 shift f = Cont \k -> runCont (f k) id

reset же в качестве продолжения вычислению-аргументу передаёт id, тем самым это вы-2326

числение не имеет доступа к продолжению после reset (в то время как продолжение самого2327

Haskell запоминает, что после comp нужно исполнить k):2328

1 reset :: Cont a a -> Cont r a
2 reset comp = Cont \k -> k (runCont comp id)

Упражнение 50 Каким будет результат исполнения следующей функции:2329

1 exampleShiftReset = flip runCont id $
2 (1 +) <$> reset ((2 +) <$> shift \k -> pure (k 3 + k 5))

6.4 Приложения продолжений2330

Продолжения полезны для понимания смысла программ, которые мы пишем каждый день2331

(см. 107). Кроме того, как мы увидим в этой главе, продолжения первого класса можно2332

использовать как средство построения могущественных встроенных языков.2333

6.4.1 Всё через продолжения2334

Реализуем ряд полезных встроенных языков с помощью продолжений первого класса.2335

Чтобы получить доступ к продолжениям, воспользуемся shallow embedded языком Cont155.2336

Таким образом, будем работать с башней языков Haskell, Cont, X, где X — рассматриваемый2337

встроенный язык.2338

Начнём с тривиального встроенного императивного языка:2339

1 runIdentityC :: (forall r . Cont r a) -> a
2 runIdentityC comp = runCont comp id

3 exampleIdentity :: Int
4 exampleIdentity = runIdentityC do
5 x <- pure 4
6 y <- pure 5
7 pure (x + y)

Реализуем язык с исключениями. Для этого модифицируем первый типовый параметр2340

Cont, answer (response) type156. Функция abort игнорирует продолжение программы до2341

runExn, которая завершает продолжение оборачиванием успешного результата в Just:2342

155https://blog.poisson.chat/posts/2019-10-26-reasonable-continuations.html
156https://wiki.haskell.org/Cont_computations_as_question-answering_boxes

123

https://blog.poisson.chat/posts/2019-10-26-reasonable-continuations.html
https://wiki.haskell.org/Cont_computations_as_question-answering_boxes

1 abort :: Cont (Maybe r) a
2 abort = Cont $ const Nothing

3 runExn :: (forall r . Cont (Maybe r) a) -> Maybe a
4 runExn comp = runCont comp Just

5 exampleExn :: Int -> Maybe Int
6 exampleExn n = runExn do
7 when (n < 0) abort
8 pure (n + 1)

Обратите внимание, что семантика операции обрыва вычисления полностью сосредоточе-2343

на в функции abort, в то время как в Monad Maybe соответствующая функция бы отвечала2344

лишь за конструирование элемента домена, а уже монадическое связывание — за работу2345

с продолжениями. Имея доступ к first-class continuations, нам уже не нужно реализовывать2346

монадическое связывание вручную. Говорят, что для произвольного m, Cont (m r) a — “бес-2347

платная” реализация монады157.2348

Реализация работы с ошибками через возвращение специального результата (Either в2349

Haskell, Result в Rust, nil в Go. . .) имеет монадическую семантику (условные ветвления2350

на каждом выбрасывают только часть продолжения), в то время как полноценный механизм2351

исключений имеет доступ ко всему ограниченному продолжению до соответствующего блока2352

try-catch, что напоминает нашу текущую реализацию. С точки зрения количества синтак-2353

сического шума на уровне исходного кода, вариант с исключениями явно предпочтительнее,2354

а вопрос типизации исключений мы рассмотрим далее (см. ??). С точки зрения производи-2355

тельности всё не так очевидно158159, однако stack unwinding средствами рантайма как будто2356

имеет большее пространство для оптимизаций.2357

Теперь попробуем вызвать продолжение несколько раз. Получим язык с недетерминизмом2358

(или backtracking). Так, choice дважды продолжает остаток программы и аккумулирует все2359

полученные результаты в списке:2360

1 choice :: Cont [r] Bool
2 choice = Cont \k -> k True ++ k False

3 runNondet :: (forall r . Cont [r] a) -> [a]
4 runNondet comp = runCont comp (:[])

5 exampleNondet :: Int -> [Int]
6 exampleNondet n = runNondet do
7 b <- choice
8 if b then pure n else pure (n - 1)
157https://hackage.haskell.org/package/kan-extensions-5.2/docs/Control-Monad-Codensity.html
158https://www.serpentine.com/2011/02/25/cps-is-great-cps-is-terrible/
159https://stackoverflow.com/questions/13835817/are-exceptions-in-c-really-slow

124

https://hackage.haskell.org/package/kan-extensions-5.2/docs/Control-Monad-Codensity.html
https://www.serpentine.com/2011/02/25/cps-is-great-cps-is-terrible/
https://stackoverflow.com/questions/13835817/are-exceptions-in-c-really-slow

Удивительно, но имея только продолжения первого класса можно реализовать даже язык2361

с изменяемой ячейкой памяти:2362

1 -- s -> (s, a) ~ ((s, a) -> r) -> (s -> r)
2 -- ~ (a -> s -> r) -> (s -> r) ~ Cont (s -> r) a

3 get :: Cont (s -> r) s -- (s -> s -> r) -> (s -> r)
4 get = Cont \k s -> k s s

5 put :: s -> Cont (s -> r) ()
6 put s' = Cont \k _s -> k () s'

7 runStateС :: (forall r . Cont (s -> r) a) -> s -> (a, s)
8 runStateС comp = runCont comp (,)

9 exampleState :: Int -> ((), Int)
10 exampleState = runStateС do
11 s <- get
12 put (s + 1)

Идея довольно простая: захват продолжения оставляет после себя функцию, в которую2363

предыдущий вызов продолжения подкладывает текущее состояние. И действительно, изме-2364

няемое состояние это просто фрагмент продолжения (например, аппаратного стека), к кото-2365

рому мы имеем непосредственный доступ на чтение и изменение. Здесь же мы разместили2366

в начале продолжения аппликацию, к которой, захватывая продолжение, прыгаем, чтобы2367

получить аргумент и обновить её на новую.2368

Упражнение 51 Поредуцируйте пример выше, чтобы понять, как это работает.2369

Интуитивно могущество продолжений можно попробовать объяснить следующим обра-2370

зом: поддерживать продолжение — это основная обязанность системы исполнения языка;2371

когда продолжения передаются пользователю, его код как бы вовлекается в деятельность2372

runtime’а и становится его частью.2373

6.4.2 The mother of all monads2374

В предыдущем параграфе (6.4.1) мы реализовали возможности классических монад в2375

языке с продолжениями. Сработает ли это для произвольной монады? Оказывается, что2376

да160161 Filinski [1994].2377

160http://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/
the-mother-of-all-monads

161https://blog.poisson.chat/posts/2019-10-26-reasonable-continuations.html

125

http://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/the-mother-of-all-monads
http://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/the-mother-of-all-monads
https://blog.poisson.chat/posts/2019-10-26-reasonable-continuations.html

Вспомним, что монада — это конструктор типа m, которым мы представляем денотацию2378

вычисления. Операции pure и »= позволяют создавать и композировать денотации. Таким2379

образом, мы имеем вычисления, представленные в виде first-class данных.2380

Если наш язык предоставляет продолжения первого класса (для примера возьмём Cont (m r)2381

как такой язык), мы можем определить две операции: reflect — исполнить монадическое2382

вычисление в языке с продолжениями и получить результат a; reify — по вычислению в язы-2383

ке с продолжениями получить денотацию162. В Haskell можно это выразить как перегрузку2384

этой пары функций для различных монад:2385

1 class MonadicReflection m where
2 -- m a -> (a -> m r) -> m r
3 reflect :: m a -> forall r . Cont (m r) a
4 -- (forall r . (a -> m r) -> m r) -> m a
5 reify :: (forall r . Cont (m r) a) -> m a

Например, для домена State реализация будет выглядеть следующим образом:2386

1 newtype State s a = State { runState :: s -> (a, s) }

2 instance MonadicReflection (State s) where
3 reflect :: State s a -> (forall r . Cont (State s r) a)
4 reflect comp = Cont \k -> State \s ->
5 let (a, s') = runState comp s in
6 runState (k a) s'

7 reify :: (forall r . Cont (State s r) a) -> State s a
8 reify comp = State $ runState (runCont comp (\x -> State (x,)))

9 exampleStateReflection :: Int -> (Int, Int)
10 exampleStateReflection = runState $ reify do
11 x <- reflect get
12 reflect $ put (x + 1)
13 pure x

Интуитивно это можно понимать следующим образом: реализации bind на самом деле2387

не важно, ей подаётся “маленькое” продолжение (собранное с помощью рассахаривания do-2388

нотации), или “большое” продолжение, собранное мета-языком или монадой Cont. И в прин-2389

ципе монады можно задавать через их вложение в монаду Cont163.2390

Таким образом, если язык поддерживает продолжения первого класса, можно в direct-2391

стиле164 реализовать функциональность произвольной монады, без do-нотации, аппликатив-2392

162Для энергичного языка reify должна принимать thunk (() -> a) -> m a.
163https://blog.poisson.chat/posts/2019-10-27-continuation-submonads.html
164https://www.unison-lang.org/docs/fundamentals/abilities/for-monadically-inclined/

126

https://blog.poisson.chat/posts/2019-10-27-continuation-submonads.html
https://www.unison-lang.org/docs/fundamentals/abilities/for-monadically-inclined/

ных цепочек и прочего синтаксического шума165166. Позже мы увидим, что этот подход, в от-2393

личие от монад, нативно поддерживает композицию (7), а также не накладывает ограничений2394

на типизацию (??). Отсюда возникает вопрос: а нужны ли нам теперь в программировании2395

монады?2396

6.4.3 Генераторы и корутины2397

Генераторы и корутины обычно определяют как вычисление, которое может быть оста-2398

новлено и возобновлено снова в том же состоянии Moura and Ierusalimschy [2009]. Корутины2399

же обобщают генераторы и, как правило, используются как примитив асинхронного програм-2400

мирования в виде async/await или других языковых конструкций Elizarov et al. [2021]. Раз-2401

личие синхронного и асинхронного программирования можно понимать так: в первом случае2402

продолжениями управляет исключительно операционная система, а во втором — средства2403

языка.2404

Для примера реализуем генераторы. В качестве результата генератора будем использовать2405

ленивый список, итератор, закодированный в виде развёртки (см. 4.5):2406

1 data Box f = forall s . Box s (s -> f s)
2 data ListF a rec = Nil | Cons a rec
3 type Iterator a = Box (ListF a)

4 box2list :: Iterator a -> [a]
5 box2list (Box s next) = case next s of
6 Nil -> []
7 Cons x s' -> x : box2list (Box s' next)

Скрытым состоянием итератора будет ещё невыполненное продолжение. Доступ к продол-2407

жению будем получать в монаде Cont, где в качестве response type возьмём GenState. Так,2408

операция yield останавливает вычисление и сохраняет продолжение в конструкторе Yield,2409

а makeGen заканчивает данный генератор порождением конструктора Stop:2410

1 data GenState a = Stop | Yield a (() -> GenState a)

2 makeGen :: Cont (GenState a) () -> Iterator a
3 makeGen comp = Box
4 (\() -> runCont comp (\() -> Stop))
5 (\k -> case k () of
6 Stop -> Nil
7 Yield x k' -> Cons x k'
8)

165http://www.valuedlessons.com/2008/01/monads-in-python-with-nice-syntax.html
166https://github.com/lampepfl/monadic-reflection/blob/main/TUTORIAL.md

127

http://www.valuedlessons.com/2008/01/monads-in-python-with-nice-syntax.html
https://github.com/lampepfl/monadic-reflection/blob/main/TUTORIAL.md

9 yield :: a -> Cont (GenState a) ()
10 yield x = cont \k -> Yield x k

Теперь мы можем писать код, последовательно порождающий множество результатов:2411

1 exampleGen :: [Int]
2 exampleGen = it2list $ makeGen do
3 yield 1
4 yield 2
5 yield 3

Упражнение 52 Приведите вычисление runCont exampleGen (\() -> Stop)) к нормаль-2412

ной форме.2413

6.5 Эффективная работа с продолжениями2414

На практике для реализации генераторов и корутин требуется останавливать и продол-2415

жать программу, иначе говоря, захватывать продолжения. Это нужно делать максимально2416

эффективно.2417

6.5.1 Contiguous stack2418

Продолжение представляется в виде аппаратного стека. Как только требуется захватить2419

продолжение, стек копируется в кучу (возможно, лениво)167. То есть этот подход полностью2420

полагается на поддержку со стороны рантайма языка.2421

6.5.2 Сегментный стек2422

Стек вызовов представляется как связный список аллоцированных в куче сегментов, каж-2423

дый соответствует ограничивающей операции. Так, не требуется делать копирования, доста-2424

точно подмены указателей. Однако, в таком случае стек нелокален, что не очень хорошо для2425

работы кешей.2426

6.5.3 Finite state machine (FSM)2427

Данная реализация подразумевает автоматическую CPS трансформацию пользователь-2428

ского кода средствами компилятора. Чтобы не аллоцировать большое количество замыканий,2429

продолжения дефункционализируются и в рамках каждой функции представляются одним из-2430

меняемым объектом. Так, состояние функции целиком один раз аллоцируется в куче, а воз-2431

обновление кода тела функции в определённом месте реализовано как машина состояний —2432

с помощью меток и прыжков168.2433

167(youtube) Иван Углянский - Java Project Loom.
168https://github.com/Kotlin/KEEP/blob/master/proposals/coroutines.md#state-machines

128

https://youtu.be/kwS3OeoVCno?si=c4MkSkmLHNeywPrZ
https://github.com/Kotlin/KEEP/blob/master/proposals/coroutines.md#state-machines

Таким образом, например, реализованы корутины в Kotlin168, генераторы в C#169. . .2434

Даже в таком виде CPS остаётся тяжеловесной трансформацией, способной замедлить2435

исполнение кода на порядки. Дело, в частности, в том, что переменные в таком подходе2436

сложно размещать в регистрах (у функций много точек выходов и входов168), приходится2437

постоянно записывать их в RAM — производить spilling170.2438

169https://csharpindepth.com/Articles/IteratorBlockImplementation
170https://en.wikipedia.org/wiki/Register_allocation

129

https://csharpindepth.com/Articles/IteratorBlockImplementation
https://en.wikipedia.org/wiki/Register_allocation

7 Эффекты и модульные интерпретаторы2439

Ранее мы признали работу со сложностью главной задачей программиста, а построение2440

встроенных языков — основным инструментом её решения (5.1). В данной главе мы рас-2441

смотрим понятие эффекта. Оно тесно связано со встроенными языками и даст нам лучшее2442

понимание, когда их конструировать, что это даёт, и с чем нужно быть осторожным.2443

Для реализации встроенных языков мы предпочли shallow embedding в форме tagless final2444

(5.4), который максимально переиспользует возможности мета-языка и позволяет давать2445

различные интерпретации одной программе. Далее мы исследовали процесс вычисления и2446

извлекли понятие продолжения (6). Оказалось, что tagless final языки, которые мы строили2447

вокруг монад, можно выразить через продолжения удобнее и проще (6.4.1, 6.4.2). В этой2448

главе мы поймём, как это поможет решить expression problem (5.5) до конца.2449

С историческо-философской перспективы, теория эффектов является прочным мостом2450

между функциональной и императивной парадигмами программирования. Они возникли по-2451

рознь как Машина Тьюринга и λ-исчисление Чёрча, и оставались довольно изолированными2452

школами мысли довольно долгое время. Это стало меняться в последние 30 лет, и мы стали2453

понимать, как эти два мира дополняют друг друга. Теория эффектов до сих пор является2454

крайне горячей темой171172.2455

7.1 Понятие эффекта2456

Начнём разговор от обратного, со свойства чистоты. Чистая функция обладает следу-2457

ющими свойствами:2458

• Её результат всегда одинаков при одинаковом наборе аргументов (никак более нетри-2459

виально не зависит ни от чего более);2460

• Её единственный наблюдаемый результат — её возвращаемое значение.2461

В целом стиль программирования с использованием чистых функций приветствуется, так2462

как он обладает множеством хороших свойств. Так, про них можно удобно рассуждать с по-2463

мощью equational reasoning; всё, что нужно для понимания кода, явно написано в этом коде;2464

классические системы типов хорошо работают, предоставляя полноту абстракции, качествен-2465

ную документацию и частичную спецификацию. . . Также известно, что всё можно записать2466

с помощью чистых вычислений, даже работу с IO Jones [2001].2467

Однако, используя только чистые функции, всё приходится делать вручную. В случае с2468

IO (с состоянием аналогично) — передавать результирующий мир в аргументы раз за разом:2469

1 getList :: Int -> World -> (World, [Int])
2 getList n w | n == 0 = (w, [])
3 | otherwise =
4 let (w', x) = getInt w in

171(youtube) The Evolution of Effects — Nickolas Wu.
172https://github.com/yallop/effects-bibliography

130

https://youtu.be/m821Vz8N_bo?si=HQTDfs52vYKaBcqJ
https://github.com/yallop/effects-bibliography

Рис. 25: Эффекты как клиент-серверное взаимодействие.

5 let (w'', xs) = getList (n - 1) w' in
6 (w'', x : xs)

Таким образом, код из чистых функций заполнен несущественными церемониями, за ко-2470

торыми не видно бизнес-логики и сути. Чтобы сосредоточиться на важных деталях, нужно2471

делегировать весь этот bookkeeping стороннему коду, замести неинтересные детали под ковёр.2472

Тогда код выше можно будет переписать, например, следующим образом:2473

1 getList :: Int -> IO [Int]
2 getList n | n == 0 = pure []
3 | otherwise = do
4 x <- getInt
5 xs <- getList (n - 1)
6 return (x : xs)

Абстрактную сущность, которой мы будем делегировать несущественные для данного2474

фрагмента бизнес-логики детали, мы будем называть контекстом исполнения (execution2475

context)173. А эффектом — взаимодействие функции с контекстом исполнения, которое про-2476

исходит с помощью вызова effect-операций (например, getInt из примера выше)174. Так, на2477

контекст исполнения можно смотреть как на сервер, которому функция-клиент шлёт запросы2478

и получает ответы (см. рис. 25). В этой модели такая функция может нарушать оба свойства2479

чистых функций.2480

На практике этим контекстом является интерпретатор (встроенного) языка, а effect-2481

операциями — его конструкции. Если язык является встроенным, то говорят о пользователь-2482

ских (user-defined) эффектах. Так мы снова возвращаемся к задаче построения модульных2483

интерпретаторов (5.5). К тому же, реализация вычислительного контекста также может де-2484

легировать реализацию некоторой функциональности другому контексту исполнения, и так2485

далее. Получаем уже знакомую нам башню интерпретаторов (5.1.1).2486

173https://okmij.org/ftp/Computation/having-effect.html
174Также эффектом иногда называют функцию перехода в dataflow-анализе Møller and Schwartzbach [2012].

131

https://okmij.org/ftp/Computation/having-effect.html

Рассмотрим некоторые примеры вычислительных контекстов и операций:2487

• Контекст — подсистема управления памятью, modify — effect-операция: контекст для2488

нас поддерживает состояние ячеек памяти;2489

• Контекст — хендлер исключения, throw MyException — effect-операция: контекст за2490

нас определяет, как ошибка будет обрабатываться (обратите внимание, что тут управ-2491

ление не возвращается терму);2492

• Контекст — настройки инъекции зависимостей, запрос функциональности — effect-2493

операция: контекст за нас определяет реализацию функциональности, которой нам2494

пользоваться175. Как мы увидим далее, этот и подобные простые эффекты можно ре-2495

ализовать просто и эффективно (см. 7.2.2).2496

Упражнение 53 Приведите ещё примеры вычислительных контекстов и операций.2497

Когда мы говорим про standalone язык, на котором мы программируем (например, Haskell),2498

любое наше действие в программе исполняется им. То есть, например, сложение — effect-2499

операция? В таком случае разумно выделить подмножество конструкций языка, достаточно2500

“интересных”, чтобы считать, что они порождают эффект.2501

Какие конструкции языка считать “интересными”? Заметим, что с одной стороны это хо-2502

рошо, что эффекты скрывают от нас некоторую сложность, позволяя сосредоточиться на2503

других вещах. С другой стороны, это же и плохо, ведь мы эту сложность перестаём наблю-2504

дать, а она пронизывает наш код, поддерживает неявные зависимости между его частями. Та-2505

ким образом, эффекты требуют дополнительной аккуратности со стороны программиста176.2506

Соответственно, именно такие непростые конструкции и стоит считать “интересными”. Как2507

минимум точно стоит считать “интересными” конструкции, использование которых выво-2508

дит функцию из категории чистых. Также, это могут быть операции, делающие сложные2509

нелокальные модификации потока управления (поддерживаемого интерпретатором в виде2510

продолжения).2511

В конечном итоге выбор “интересных” конструкций зависит от задачи и перспективы раз-2512

работчика173. Так, конструкции, влияющие на произвольные наблюдаемые свойства кода,2513

как, например, терминируемость или вычислительная сложность, могут мотивировать счи-2514

тать рекурсивные вызовы или долгие операции эффектами.2515

Далее мы научимся отслеживать и контролировать использование эффектов на уровне2516

типов с помощью систем эффектов (см. далее ??).2517

7.2 Хендлеры эффектов2518

Хендлеры эффектов — это современный универсальный метод построения модульных ин-2519

терпретаторов встроенных языков, напрямую реализующий клиент-серверную метафору. Как2520

175Существует термин contextual polymorphism — код в разных контекстах может иметь различное поведение.
176(youtube) Kris Jenkins — Side-Effects Are The Complexity Iceberg.

132

https://youtu.be/_nG09Z_tdUU?si=lo9It6299rsB1vAr

обычно бывает, хендлеры были изобретены множество раз. В этой главе мы посмотрим на2521

основные реализации, которые лучше всего помогут нам понять концепцию.2522

Основная идея хендлеров эффектов довольно проста. Вводится языковая конструкция2523

handle, позволяющая задать вычислительный контекст для определённого скоупа, предо-2524

ставляющий реализации effect-операций. Также вводится конструкция perform, позволяю-2525

щая вызвать effect-операцию (отправить запрос контексту). Каждая операция имеет набор2526

параметров, а также “обратный адрес”, продолжение места вызова, в который она вернёт2527

результат. Например, на экспериментальном языке Koka177 контекст, предоставляющий неко-2528

торую константу, может быть реализован следующим образом (resume — имя продолжения2529

места вызова, perform вставляется неявно):2530

1 with handler
2 ctl ask() resume(21)
3 ask() + ask()

Если ближайший контекст нужный запрос обработать не может, запрос делегируется2531

внешнему контексту, и так пока подходящий контекст не будет найден. На этой идее ос-2532

новывается модульность интерпретаторов, заданных хендлерами.2533

7.2.1 Хендлеры через ограниченные продолжения2534

Как мы уже видели ранее, различные эффекты можно реализовывать с помощью доступа2535

к текущему продолжению (6.4.1, 6.4.2). Хендлеры эффектов дополняют эту идею тем, что2536

используют ограниченные продолжения, чтобы передавать управление различным интерпре-2537

таторам (хендлерам).2538

Известно, что классические операторы манипуляции ограниченными продолжениями, monadic2539

reflection и хендлеры эффектов выразимы друг через друга Forster et al. [2017].2540

7.2.2 Эффективная реализация хендлеров2541

В общем виде скорость работы perform определяется скоростью захвата и восстановле-2542

ния ограниченных продолжений. Однако, существует класс операций, которые можно реали-2543

зовать гораздо эффективнее.2544

Если мы посмотрим на реализацию операции ask, то мы увидим, что она последним2545

действием вызывает продолжение, возвращая управление вызвавшему коду. Такие операции2546

называют tail-resumptive, они очень сильно напоминают обычные функции, за исключе-2547

нием того, что их реализации определяются контекстом (хендлером). Таким образом, tail-2548

resumptive операции можно реализовать как неявную передачу словаря функций от хендлера2549

к perform, и тем самым избежать дорогих манипуляций продолжениями Xie et al. [2020]178.2550

177https://koka-lang.github.io/koka/doc/index.html
178Хендлеры tail-resumptive операций напоминают co-pattern-matching и, соответственно, объекты (см. 4.6.2).

133

https://koka-lang.github.io/koka/doc/index.html

7.2.3 Встроенные хендлеры как явная клиент-серверная коммуникация2551

Чтобы лучшим образом понять семантику хендлеров, реализуем язык с хендлерами как2552

встроенный в Haskell. Начнём с варианта, предложенного Олегом Киселёвым, максимально2553

прямолинейно кодирующего идею клиент-серверной коммуникации терма и контекста Kiselyov2554

et al. [2013].2555

Начнём с эффекта ask, запрашивающего числа у контекста. Зададим тип данных сооб-2556

щений к контексту, это либо конечный результат вычисления, либо запрос Ask, содержащий2557

“обратный адрес” — текущее продолжение:2558

1 data Message res = Val res | Ask (Int -> Message res)

Продолжения будем собирать в специализированный Monad Cont с подходящим response2559

type (см. 6.2.2, 6.4.1):2560

1 newtype Eff res = Eff
2 { runEff :: forall res' . (res -> Message res') -> Message res' }

Тогда эффект ask реализуется просто как “отправка” запроса Ask с текущим продолже-2561

нием:179
2562

1 ask :: Eff Int
2 ask = Eff \k -> Ask k

Хендлер мы реализуем как “сервер”, который в цикле обрабатывает запросы, пока вычис-2563

ление не пришлёт конечный результат:2564

1 run :: Eff res -> Message res
2 run comp = runEff comp Val

3 runReader :: Eff res -> Int -> res
4 runReader comp env = loop (run comp)
5 where
6 loop = \case
7 Val res -> res
8 Ask k -> loop (k env)

Наконец, мы можем писать effectful код:2565

1 exampleReader :: Int -> Int
2 exampleReader = runReader do
3 x <- ask
4 y <- ask
5 pure (x + y)

179Ранее мы аналогично реализовывали генераторы, см. 6.4.3.

134

Монада Eff превратит его в ленивый список сообщений:2566

1 exampleReader :: Int -> Int
2 exampleReader = loop $
3 Ask \x ->
4 Ask \y ->
5 Val (x + y)

7.2.4 Расширяемые сообщения и пересылка2567

Абстрагируем тип сообщений по “форме” запросов, которые в них могут участвовать (см.2568

4.3.2):2569

1 data Message effs res = Val res | Request (effs (Message effs res))

Предыдущий тип сообщений получается передачей следующего функтора формы:2570

1 newtype Reader env msg = Ask (env -> msg)

Упражнение 54 Убедитесь, что Message (Reader Int) res эквивалентно предыдущему ти-2571

пу сообщений.2572

Копроизведение функторов формы является функтором формы (см. 5.5.1):2573

1 data (eff |> effs) a = L (eff a) | R (effs a)

Теперь операция ask допускает существование других типов запросов effs:2574

1 ask :: Eff (Reader env |> effs) env
2 ask = Eff \k -> Msg $ L $ Ask k

Новый хендлер обрабатывает только часть запросов, остальные пересылает хендлеру вы-2575

ше (скомпозировав правильным образом продолжения):2576

1 runReader
2 :: forall effs env res . Functor es
3 => Eff (Reader env |> effs) res
4 -> env -> Eff effs res
5 runReader comp env = loop (run comp)
6 where
7 loop :: Request (Reader env |> effs) res -> Eff effs res
8 loop = \case
9 Val res -> pure res

10 Msg (L (Ask k)) -> loop (k env)
11 Msg (R unknownReq) -> do
12 response <- Eff \k -> Msg (fmap k unknownReq)
13 loop response

Заметьте, что в результирующем домене остались непроинтерпретированные эффекты.2577

Конечный домен получится применением всех необходимых интерпретаторов. Так решается2578

stable denotations problem (5.5).2579

135

7.2.5 Свободные монады2580

Чтобы получить полноценное решение более простым и минималистичным образом, пе-2581

рейдём к самой классической реализации хендлеров через свободные монады. Для начала2582

обсудим сами свободные монады.2583

Рассмотрим некоторую алгебраическую структуру, например, моноид (нейтральный эле-2584

мент и ассоциативная бинарная операция). По произвольному множеству X можно построить2585

некоторый моноид M(X) наиболее “экономичным” образом — свободный моноид. Это де-2586

лается следующим образом: к множеству X добавляют деревья выражений с операциями2587

моноида:2588

1 data M x = Element x | Mempty | Mappend (M x) (M x)
2 instance Monoid (M x) where
3 mempty = Mempty
4 mappend l r = Mappend l r

Ещё только нужно организовать новое множество таким образом, чтобы в нём не было2589

одинаковых с точки зрения алгебры деревьев (например, Mappend Mempty Mempty и Mempty).2590

В случае моноида в этом случае можно выбрать тип списка:2591

1 type M x = [x]
2 instance Monoid (M x) where
3 mempty = []
4 mappend = (++)

Свободные монады строятся аналогично свободным моноидам. Используем определение2592

монады как функтора с операциями pure и join. Тогда по произвольному функтору F можно2593

получить монаду F ree(F) (покажем это с помощью эквивалентного определения монад из2594

Haskell):2595

1 data Free f a = Pure a | Join (f (Free f a))
2 instance Functor f => Monad (Free f) where
3 return = Pure
4 Pure x >>= k = k x
5 Join f >>= k = Join (fmap (>>= k) f)

Переименуем конструкторы:2596

1 data Term sig var = Var var | Op (sig (Term sig var))
2 (>>=) :: Term sig var -> (var -> Term sig var') -> Term sig var'
3 data MonoidSig subtree = Mempty | MAppend subtree subtree -- (Bool -> subtree)

Это не что иное, как кодирование алгебраических термов над сигнатурой sig и переменными2597

из множества var. А монадическое связывание — это подстановка.2598

136

7.2.6 Хендлеры через свободные монады2599

Заметим, что следующие типы изоморфны: Message ∼= Free ∼= Term. Хендлеры в класси-2600

ческом виде как раз и возникли в процессе изучения того, как описывать эффекты в виде2601

алгебраических структур Bauer [2018]180.2602

Вместо переменных мы будем хранить чистый результат вычисления, а сигнатуры будем2603

записывать в виде P × (A→ K), где P — параметр операции, а A — результат операции, по2604

которому хендлер выбирает нужный подтерм-продолжение для возобновления вычисления:2605

1 data Comp effs res = Res res | Op (effs (Comp effs res))
2 data Reader env comp = Ask () (env -> comp)
3 data State s comp = Get () (s -> comp) | Put s (() -> comp)

Реализация Monad Comp будет как раз композировать продолжения для нас в do-нотации:2606

1 ask = Op (Ask () (\e -> Val e)
2 example = do
3 x <- ask
4 y <- ask
5 pure (x + y)
6 -- αβ-эквивалентно
7 example =
8 Op (Ask () (\x ->
9 Op (Ask () (\y ->

10 Res (x + y)))))

Хендлер также просто сворачивает список операций. Операции, которые он не умеет об-2607

рабатывать, он оставляет в дереве. Чтобы пропустить неизвестную операцию и интерпрети-2608

ровать поддерево (продолжение), используется fmap:2609

1 runReader
2 :: Functor effs => Comp (Reader env |> effs) res -> env -> Comp effs res
3 runReader comp env = case comp of
4 Res res -> Res res
5 Op (L (Ask () k)) -> runReader (k env) env
6 Op (R other) -> Op (fmap (`runReader` env) other)

Упражнение 55 Постройте пример вычисления из Reader и State. Какое дерево получится2610

после интерпретации одного из эффектов?2611

Как обычно, свёртку можно обобщить в виде катаморфизма:2612

180(youtube) What is algebraic about algebraic effects and handlers — Andrej Bauer.

137

https://www.youtube.com/watch?v=vPVMXLJVylU&list=PLt7hcIEdZLAkebYy70DdBDm2qLrw7ptfp

1 handle
2 :: Functor effs => (res -> d) -> (effs d -> d) -> Comp effs res -> d
3 handle val alg = \case
4 Pure res -> val res
5 Op eff -> alg $ fmap (handle val alg) eff

Теперь в реализации продолжение (поддерево) уже проинтерпретировано в нужный домен:2613

1 runReader
2 :: Functor effs => Eff (Reader env |> effs) res -> env -> Eff effs res
3 runReader = handle (\res _env -> pure res) \case
4 L (Ask k) -> \env -> k env env
5 R other -> \env -> Op (fmap ($ env) other)

Когда хендлеры реализуют как built-in возможность в языке, нужно принять дизайн-2614

решение, в предоставляемом продолжении текущий эффект уже проинтерпретирован, или2615

нет. Первый вариант называют deep handlers, второй — shallow handlers, они выразимы2616

друг через друга Hillerström and Lindley [2018].2617

К сожалению, поскольку различные варианты эффектов упорядочены как на уровне тер-2618

мов, так и на уровне типов, нам нужна операция, превращающая вычисление от меньшего2619

количества эффектов в вычисление с большим:2620

1 liftF :: Functor effs => Comp effs res -> Comp (eff |> effs) res
2 liftF = \case
3 Pure x -> Pure x
4 Op effs -> Op $ R $ liftF <$> effs

5 example :: Comp (Reader Int |> State Int) ()
6 example = do
7 env <- ask
8 liftF (put env)

От порядка можно избавиться с помощью классов типов Swierstra [2008] (3.4.8).2621

Можно заметить, что помимо большого количества аллокаций, использование Monad Free2622

может приводить к квадратичной сложности кода из-за линейных проходов в каждом bind’е.2623

Существуют различные альтернативные схемы кодирования Ploeg and Kiselyov [2014], Kiselyov2624

and Ishii [2015].2625

Свободные монады находят и другие, правда, аналогичные применения: trampolining Bjarnarson2626

[2012] и пайплайны Kiselyov [2012b] [Bragilevsky, chapter 14].2627

7.2.7 Приложения хендлеров2628

Рассмотрим хендлеры tail-resumptive операций, обращающиеся с продолжениями триви-2629

альным образом. Они нужны для распространения значений и функциональности вниз по2630

138

стеку. Как мы обсуждали ранее 7.2.2, такие хендлеры аналогичны наличию динамических2631

свободных переменных или неявных аргументов функций 3.1.2, и, вместе с ними, рекордов2632

или анонимных классов 4.6.2.2633

Среди нетривиальных сценариев использования продолжений выделим следующие:2634

• Продолжение можно не вызвать, так, можно реализовать механизм исключений. Одна-2635

ко, на практике продолжения могут содержать логику финализации ресурсов. В этом2636

случае всё равно нужна какая-то специальная обработка 181.2637

• Можно вызвать несколько раз для эмуляции недетерминизма. Это ограничивает исполь-2638

зование эффективных мутабельных продолжений 6.5 Leijen [2018]182, а также требует2639

нетривиальной обработки при работе с ресурсами.2640

• Можно вызвать не сразу. Это нужно для реализации изменяемого состояния, генерато-2641

ров и корутин. Для изменяемого состояния это слишком дорого. Генераторы — хорошее2642

применение, но built-in реализация генераторов может быть эффективнее за счёт эконо-2643

мии аллокаций продолжений (создаётся сразу Iterator)183. Реализация корутин поверх2644

хендлеров даёт возможность пользователям писать собственные планировщики, что са-2645

мое котируемое применение хендлеров на данный момент Sivaramakrishnan et al. [2021],2646

Phipps-Costin et al. [2023].2647

7.2.8 Трансформеры монад2648

В классической реализации хендлеров через свободные монады 7.2.6, каждый хендлер по-2649

рождает промежуточное дерево из непроинтерпретированных операций. Естественным обра-2650

зом возникает желание дефорестировать 4.4.1 эти промежуточные деревья. Можно пойти до2651

конца и полностью избавиться от свободных монад и функторов сигнатур Wu and Schrijvers2652

[2015]. Так, мы фактически получим tagless final shallow embedding 5.4, другое популярное2653

решение expression (stable denotations) problem — трансформеры монад Liang et al. [1995],2654

Jones [1995]184. В целом эти подходы, равносильны по выразительности, однако могут иметь2655

на практике различные особенности встраивания в язык Schrijvers et al. [2019]. Однако, в2656

отличие от трансформеров, хендлеры можно сделать удобной built-in возможностью языка.2657

7.2.9 Алгебраичность и эффекты высших порядков2658

В начале нулевых появилась идея описывать effect-операции не монадами сразу, а ал-2659

гебраически, с помощью сигнатур и уравнений Plotkin and Power [2002], Bauer [2018]. Эф-2660

фекты в этом формализме являются композируемыми по построению, как композируемы2661

сигнатуры алгебраических теорий (конкатенация сигнатур — сигнатура 7.2.4), так мы имеем2662

расширяемый синтаксис. Однако, на операции накладывается ограничение в виде свойства2663

181https://koka-lang.github.io/koka/doc/book.html#sec-resource
182https://koka-lang.github.io/koka/doc/book.html#sec-multi-resume
183https://csharpindepth.com/Articles/IteratorBlockImplementation
184https://hackage.haskell.org/package/mtl

139

https://koka-lang.github.io/koka/doc/book.html#sec-resource
https://koka-lang.github.io/koka/doc/book.html#sec-multi-resume
https://csharpindepth.com/Articles/IteratorBlockImplementation
https://hackage.haskell.org/package/mtl

алгебраичности — операция коммутирует с продолжением и “всплывает” наверх:2664

E[op(v , k)] ≡ op(v , λx. E[k(x)])

Соответствующие эффекты называют алгебраическими.2665

В нашей реализации (7.2.6) ограничение на алгебраичность можно увидеть следующим2666

образом. У нас сигнатуры операций являются функторами по своим продолжениям. Этим2667

пользуются как монадическое связывание для накапливания продолжений, так и хендлеры2668

для интерпретации продолжений неизвестных операций.2669

Многие полезные эффекты являются алгебраическими, но не все. Например, поимка ис-2670

ключений catch не является алгебраической операцией, так как её сигнатура запишется2671

следующим образом:2672

1 data Catch e comp = Catch { try :: comp, onExn :: (e -> comp), next :: comp }

В таком случае единственная разумная реализация функтора будет работать, в том числе, и2673

с вложенными продолжениями, и вся программа, в результате работы bind, окажется внутри2674

блока try.2675

Иначе говоря, алгебраические эффекты не могут принимать другие effectful вычисления в2676

качестве аргументов. Как раз, чтобы моделировать catch, и были оригинально предложены2677

хендлеры Plotkin and Pretnar [2013]185. Таким образом, у хендлеров две задачи: ограничивать2678

скоуп некоторой функциональности и интерпретировать эффекты. Однако, как мы знаем,2679

порядок хендлеров определяет результирующий домен и, соответственно, семантику. В то же2680

время задача ограничения скоупа фиксирует позицию хендлера, что ограничивает вырази-2681

тельность и делает некоторые домены недоступными.2682

Операции, не удовлетворяющие свойству алгебраичности, соответствуют эффектам выс-2683

ших порядков (higher-order effects), которы могут принимать другие effectful вычисления в2684

качестве аргументов. Существуют встраивания хендлеров таких эффектов и обширный набор2685

исследований на тему Wu et al. [2014]186187 Yang et al. [2022].2686

Ключ к эффектам высших порядков состоит в возможности исполнять эффекты вычислений-2687

аргументов в контексте тех хендлеров, которые доступны на колсайте эффекта высших по-2688

рядков van der Rest et al. [2022]. Это связано с другой идеей, bidirectional effects, позволяющей2689

реализации операции порождать эффекты на своём колсайте (например, бросать там исклю-2690

чения), что крайне необходимая на практике возможность Zhang et al. [2020]188.2691

To be continued...2692

185Несмотря на то, что алгебраические эффекты — это просто класс “хороших” операций, часто при их упо-
минании подразумевают хендлеры эффектов.

186https://github.com/fused-effects/fused-effects
187(youtube) Building Haskell Programs with Fused Effects — Patrick Thomson
188https://effekt-lang.org/docs/concepts/bidirectional

140

https://github.com/fused-effects/fused-effects
https://youtu.be/vfDazZfxlNs?si=3o1zkoL8GsmezMtU
https://effekt-lang.org/docs/concepts/bidirectional

Список литературы2693

Christopher Strachey. Fundamental concepts in programming languages.2694

Higher-order and symbolic computation, 13:11–49, 2000. URL https:2695

//facweb.cdm.depaul.edu/smitsch/courses/csc447fa23/assets/articles/2696

strachey-fundamental-concepts-in-programming-languages.pdf.2697

Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.2698

ACM Computing Surveys (CSUR), 17(4):471–523, 1985. URL https://doi.org/10.1145/2699

6041.6042.2700

Benjamin C Pierce. Types and programming languages. MIT press, 2002.2701

John Launchbury and Simon L Peyton Jones. State in haskell. Lisp and symbolic computation, 8(4):2702

293–341, 1995. URL https://www.microsoft.com/en-us/research/wp-content/uploads/2703

2016/07/state-lasc.pdf.2704

Sandy Maguire. Thinking with Types, Type-Level Programming in Haskell. a. URL https:2705

//leanpub.com/thinking-with-types/?2706

Simon Peyton Jones. Type inference as constraint solving: how ghc’s type inference engine actually2707

works. Keynote talk at Zurihac 2019, 2019.2708

Benjamin C Pierce and David N Turner. Local type inference. Acm transactions on programming2709

languages and systems (toplas), 22(1):1–44, 2000. URL https://doi.org/10.1145/345099.2710

345100.2711

David Raymond Christiansen. Bidirectional typing rules: A tutorial. 2013. URL https:2712

//davidchristiansen.dk/tutorials/bidirectional.pdf.2713

Jana Dunfield and Neelakantan R Krishnaswami. Sound and complete bidirectional typechecking2714

for higher-rank polymorphism with existentials and indexed types. Proceedings of the ACM on2715

Programming Languages, 3(POPL):1–28, 2019. URL https://doi.org/10.1145/3290322.2716

Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. A2717

quick look at impredicativity. Proceedings of the ACM on Programming Languages, 42718

(ICFP):1–29, 2020. URL https://www.microsoft.com/en-us/research/publication/2719

a-quick-look-at-impredicativity/.2720

Frank Emrich, Sam Lindley, Jan Stolarek, James Cheney, and Jonathan Coates. Freezeml: Complete2721

and easy type inference for first-class polymorphism. In Proceedings of the 41st ACM SIGPLAN2722

Conference on Programming Language Design and Implementation, pages 423–437, 2020. URL2723

https://link.springer.com/article/10.1208/s12249-010-9382-3.2724

141

https://facweb.cdm.depaul.edu/smitsch/courses/csc447fa23/assets/articles/strachey-fundamental-concepts-in-programming-languages.pdf
https://facweb.cdm.depaul.edu/smitsch/courses/csc447fa23/assets/articles/strachey-fundamental-concepts-in-programming-languages.pdf
https://facweb.cdm.depaul.edu/smitsch/courses/csc447fa23/assets/articles/strachey-fundamental-concepts-in-programming-languages.pdf
https://facweb.cdm.depaul.edu/smitsch/courses/csc447fa23/assets/articles/strachey-fundamental-concepts-in-programming-languages.pdf
https://facweb.cdm.depaul.edu/smitsch/courses/csc447fa23/assets/articles/strachey-fundamental-concepts-in-programming-languages.pdf
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf
https://leanpub.com/thinking-with-types/?
https://leanpub.com/thinking-with-types/?
https://leanpub.com/thinking-with-types/?
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://davidchristiansen.dk/tutorials/bidirectional.pdf
https://davidchristiansen.dk/tutorials/bidirectional.pdf
https://davidchristiansen.dk/tutorials/bidirectional.pdf
https://doi.org/10.1145/3290322
https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/
https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/
https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/
https://link.springer.com/article/10.1208/s12249-010-9382-3

Brent A Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytiniotis, and2725

José Pedro Magalhães. Giving haskell a promotion. In Proceedings of the 8th ACM SIGPLAN2726

Workshop on Types in Language Design and Implementation, pages 53–66, 2012. URL https:2727

//www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p53-yorgey.pdf.2728

Stephanie Weirich, Justin Hsu, and Richard A Eisenberg. System fc with explicit kind equality. ACM2729

SIGPLAN Notices, 48(9):275–286, 2013. URL https://doi.org/10.1145/2544174.2500599.2730

Vitaly Bragilevsky. Haskell in Depth. Manning. URL https://www.manning.com/books/2731

haskell-in-depth.2732

Bruno Blanchet. Escape analysis for object-oriented languages: application to java. Acm Sigplan2733

Notices, 34(10):20–34, 1999. URL https://doi.org/10.1145/320385.320387.2734

Richard A Eisenberg and Simon Peyton Jones. Levity polymorphism. ACM SIGPLAN Notices, 522735

(6):525–539, 2017. URL https://doi.org/10.1145/3140587.3062357.2736

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history2737

of haskell: being lazy with class. In Proceedings of the third ACM SIGPLAN2738

conference on History of programming languages, pages 12–1, 2007. URL https:2739

//www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_2740

A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/2741

A-history-of-Haskell-Being-lazy-with-class.pdf.2742

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In Proceedings2743

of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages2744

60–76, 1989. URL https://doi.org/10.1145/75277.75283.2745

Cordelia V Hall, Kevin Hammond, Simon L Peyton Jones, and Philip L Wadler. Type classes in2746

haskell. ACM Transactions on Programming Languages and Systems (TOPLAS), 18(2):109–2747

138, 1996. URL https://doi.org/10.1145/227699.227700.2748

Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration of the design2749

space. In In Haskell Workshop, 1997. URL https://courses.cs.washington.edu/courses/2750

cse590p/06sp/multi.pdf.2751

Jeffrey R Lewis, John Launchbury, Erik Meijer, and Mark B Shields. Implicit parameters: Dynamic2752

scoping with static types. In Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on2753

Principles of programming languages, pages 108–118, 2000. URL https://doi.org/10.1145/2754

325694.325708.2755

Simon Peyton Jones. Type inference as constraint solving: how ghc’s type inference engine2756

actually works, 2019. URL https://www.microsoft.com/en-us/research/publication/2757

type-inference-as-constraint-solving-how-ghcs-type-inference-engine-actually-works/.2758

142

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p53-yorgey.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p53-yorgey.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p53-yorgey.pdf
https://doi.org/10.1145/2544174.2500599
https://www.manning.com/books/haskell-in-depth
https://www.manning.com/books/haskell-in-depth
https://www.manning.com/books/haskell-in-depth
https://doi.org/10.1145/320385.320387
https://doi.org/10.1145/3140587.3062357
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/227699.227700
https://courses.cs.washington.edu/courses/cse590p/06sp/multi.pdf
https://courses.cs.washington.edu/courses/cse590p/06sp/multi.pdf
https://courses.cs.washington.edu/courses/cse590p/06sp/multi.pdf
https://doi.org/10.1145/325694.325708
https://doi.org/10.1145/325694.325708
https://doi.org/10.1145/325694.325708
https://www.microsoft.com/en-us/research/publication/type-inference-as-constraint-solving-how-ghcs-type-inference-engine-actually-works/
https://www.microsoft.com/en-us/research/publication/type-inference-as-constraint-solving-how-ghcs-type-inference-engine-actually-works/
https://www.microsoft.com/en-us/research/publication/type-inference-as-constraint-solving-how-ghcs-type-inference-engine-actually-works/

Martin Sulzmann, Gregory J Duck, Simon Peyton-Jones, and Peter J Stuckey. Understanding2759

functional dependencies via constraint handling rules. Journal of functional programming, 17(1):2760

83–129, 2007a. URL https://doi.org/10.1017/S0956796806006137.2761

Oleg Kiselyov and Chung-chieh Shan. Functional pearl: implicit configurations–or, type classes2762

reflect the values of types. In Proceedings of the 2004 ACM SIGPLAN workshop on2763

Haskell, pages 33–44, 2004. URL https://d1wqtxts1xzle7.cloudfront.net/43582096/2764

Functional_pearl_implicit_configurations20160310-32037-1bu6179-libre.pdf.2765

Filip Křikava, Heather Miller, and Jan Vitek. Scala implicits are everywhere: A large-scale study of2766

the use of scala implicits in the wild. Proceedings of the ACM on Programming Languages, 32767

(OOPSLA):1–28, 2019. URL https://doi.org/10.1145/3360589.2768

Bruno CdS Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and implicits. ACM2769

Sigplan Notices, 45(10):341–360, 2010. URL https://citeseerx.ist.psu.edu/document?2770

repid=rep1&type=pdf&doi=d30d65ca9ce7891352024a5c71ebe0ae8c41f7ac.2771

Dominique Devriese and Frank Piessens. On the bright side of type classes: instance arguments in2772

agda. ACM SIGPLAN Notices, 46(9):143–155, 2011. URL https://archive.alvb.in/msc/2773

thesis/reading/typeclasses-agda_Devriese.pdf.2774

Conor McBride. Faking it simulating dependent types in haskell. Journal of functional programming,2775

12(4-5):375–392, 2002. URL https://doi.org/10.1017/S0956796802004355.2776

Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the rules: rewriting as a practical2777

optimisation technique in ghc. In Haskell workshop, volume 1, pages 203–233, 2001. URL https:2778

//www.microsoft.com/en-us/research/wp-content/uploads/2001/09/rules.pdf.2779

Sandy Maguire. Algebra-Driven Design, Elegant Solutions from Simple Building Blocks. b. URL2780

https://leanpub.com/algebra-driven-design/.2781

Li-yao Xia. Defunctionalization. URL https://poisson.chat/aquarium/2782

defunctionalization.pdf.2783

John C Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings2784

of the ACM annual conference-Volume 2, pages 717–740, 1972. URL https://doi.org/10.2785

1145/800194.805852.2786

John C Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic Computation, 11:2787

355–361, 1998. URL https://doi.org/10.1023/A:1010075320153.2788

Jeremy Yallop and Leo White. Lightweight higher-kinded polymorphism. In International Symposium2789

on Functional and Logic Programming, pages 119–135. Springer, 2014. URL https://www.cl.2790

cam.ac.uk/~jdy22/papers/lightweight-higher-kinded-polymorphism.pdf.2791

143

https://doi.org/10.1017/S0956796806006137
https://d1wqtxts1xzle7.cloudfront.net/43582096/Functional_pearl_implicit_configurations20160310-32037-1bu6179-libre.pdf
https://d1wqtxts1xzle7.cloudfront.net/43582096/Functional_pearl_implicit_configurations20160310-32037-1bu6179-libre.pdf
https://d1wqtxts1xzle7.cloudfront.net/43582096/Functional_pearl_implicit_configurations20160310-32037-1bu6179-libre.pdf
https://doi.org/10.1145/3360589
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d30d65ca9ce7891352024a5c71ebe0ae8c41f7ac
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d30d65ca9ce7891352024a5c71ebe0ae8c41f7ac
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d30d65ca9ce7891352024a5c71ebe0ae8c41f7ac
https://archive.alvb.in/msc/thesis/reading/typeclasses-agda_Devriese.pdf
https://archive.alvb.in/msc/thesis/reading/typeclasses-agda_Devriese.pdf
https://archive.alvb.in/msc/thesis/reading/typeclasses-agda_Devriese.pdf
https://doi.org/10.1017/S0956796802004355
https://www.microsoft.com/en-us/research/wp-content/uploads/2001/09/rules.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2001/09/rules.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2001/09/rules.pdf
https://leanpub.com/algebra-driven-design/
https://poisson.chat/aquarium/defunctionalization.pdf
https://poisson.chat/aquarium/defunctionalization.pdf
https://poisson.chat/aquarium/defunctionalization.pdf
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1023/A:1010075320153
https://www.cl.cam.ac.uk/~jdy22/papers/lightweight-higher-kinded-polymorphism.pdf
https://www.cl.cam.ac.uk/~jdy22/papers/lightweight-higher-kinded-polymorphism.pdf
https://www.cl.cam.ac.uk/~jdy22/papers/lightweight-higher-kinded-polymorphism.pdf

Manuel MT Chakravarty, Gabriele Keller, and Simon Peyton Jones. Associated type synonyms.2792

ACM SIGPLAN Notices, 40(9):241–253, 2005a. URL https://www.microsoft.com/en-us/2793

research/wp-content/uploads/2005/01/at-syns.pdf.2794

Manuel MT Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon Marlow. Associated2795

types with class. In Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles2796

of programming languages, pages 1–13, 2005b. URL https://www.microsoft.com/en-us/2797

research/wp-content/uploads/2005/01/assoc.pdf.2798

Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulzmann. Type checking2799

with open type functions. In Proceedings of the 13th ACM SIGPLAN international conference2800

on Functional programming, pages 51–62, 2008. URL https://www.microsoft.com/en-us/2801

research/wp-content/uploads/2008/01/icfp2008.pdf.2802

Richard A Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and Stephanie Weirich.2803

Closed type families with overlapping equations. ACM SIGPLAN Notices, 49(1):671–683,2804

2014. URL https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/2805

popl137-eisenberg.pdf.2806

Oleg Kiselyov, Simon Peyton Jones, and Chung-chieh Shan. Fun with type functions. Reflections2807

on the Work of CAR Hoare, pages 301–331, 2010. URL https://www.microsoft.2808

com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https:2809

//research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/2810

typefun.pdf&type=exact.2811

Mark P Jones. Type classes with functional dependencies. In European Symposium2812

on Programming, pages 230–244. Springer, 2000. URL https://doi.org/10.1007/2813

3-540-46425-5_15.2814

Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of path-dependent types. Acm Sigplan2815

Notices, 49(10):233–249, 2014. URL http://lampwww.epfl.ch/~amin/dot/fpdt_post.pdf.2816

Jan Stolarek, Simon Peyton Jones, and Richard A Eisenberg. Injective type families for haskell.2817

ACM SIGPLAN Notices, 50(12):118–128, 2015. URL https://repository.brynmawr.edu/2818

cgi/viewcontent.cgi?article=1070&context=compsci_pubs.2819

Richard A Eisenberg and Jan Stolarek. Promoting functions to type families in haskell. ACM2820

SIGPLAN Notices, 49(12):95–106, 2014. URL https://repository.brynmawr.edu/cgi/2821

viewcontent.cgi?article=1000&context=compsci_pubs.2822

Csongor Kiss, Tony Field, Susan Eisenbach, and Simon Peyton Jones. Higher-order type-level2823

programming in haskell. Proceedings of the ACM on Programming Languages, 3(ICFP):1–26,2824

2019. URL https://dl.acm.org/doi/pdf/10.1145/3341706.2825

144

https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/at-syns.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/at-syns.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/at-syns.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/assoc.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/assoc.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/assoc.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2008/01/icfp2008.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2008/01/icfp2008.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2008/01/icfp2008.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/popl137-eisenberg.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/popl137-eisenberg.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/popl137-eisenberg.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://doi.org/10.1007/3-540-46425-5_15
https://doi.org/10.1007/3-540-46425-5_15
https://doi.org/10.1007/3-540-46425-5_15
http://lampwww.epfl.ch/~amin/dot/fpdt_post.pdf
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1070&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1070&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1070&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1000&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1000&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1000&context=compsci_pubs
https://dl.acm.org/doi/pdf/10.1145/3341706

Dominic Orchard and Tom Schrijvers. Haskell type constraints unleashed. In International2826

Symposium on Functional and Logic Programming, pages 56–71. Springer, 2010. URL https:2827

//kar.kent.ac.uk/57498/1/constraint-families.pdf.2828

Edsko de Vries and Andres Löh. True sums of products. In Proceedings of the 10th ACM SIGPLAN2829

workshop on Generic programming, pages 83–94, 2014. URL https://doi.org/10.1145/2830

2633628.2633634.2831

Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C d S Oliveira, and Philip Wadler.2832

Quantified class constraints. ACM SIGPLAN Notices, 52(10):148–161, 2017. URL https:2833

//www.pure.ed.ac.uk/ws/portalfiles/portal/42495988/quantcc.pdf.2834

Martin Sulzmann, Manuel MT Chakravarty, Simon Peyton Jones, and Kevin Donnelly. System f2835

with type equality coercions. In Proceedings of the 2007 ACM SIGPLAN international workshop2836

on Types in languages design and implementation, pages 53–66, 2007b. URL https://doi.2837

org/10.1145/1190315.1190324.2838

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. Outsidein (x)2839

modular type inference with local assumptions. Journal of functional programming, 21(4-5):2840

333–412, 2011. URL https://doi.org/10.1017/S0956796811000098.2841

Joachim Breitner, Richard A Eisenberg, Simon Peyton Jones, and Stephanie Weirich. Safe zero-2842

cost coercions for haskell. In Proceedings of the 19th ACM SIGPLAN international conference2843

on Functional programming, pages 189–202, 2014. URL https://repository.brynmawr.edu/2844

cgi/viewcontent.cgi?article=1013&context=compsci_pubs.2845

Simon Peyton Jones, Stephanie Weirich, Richard A Eisenberg, and Dimitrios Vytiniotis. A2846

reflection on types. In A List of Successes That Can Change the World: Essays Dedicated2847

to Philip Wadler on the Occasion of His 60th Birthday, pages 292–317. Springer, 2016.2848

URL https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1002&context=2849

compsci_pubs.2850

Simon Marlow, Simon Peyton Jones, Andrew Moran, and John Reppy. Asynchronous exceptions2851

in haskell. In Proceedings of the ACM SIGPLAN 2001 conference on Programming language2852

design and implementation, pages 274–285, 2001. URL https://classes.cs.uchicago.edu/2853

archive/2007/spring/32102-1/papers/p274-marlow.pdf.2854

Simon Marlow. An extensible dynamically-typed hierarchy of exceptions. In Proceedings2855

of the 2006 ACM SIGPLAN Workshop on Haskell, pages 96–106, 2006. URL2856

https://archive.alvb.in/msc/03_infoafp/papers/2012-12-18_HoorCollege_2857

MarlowExtensibleExceptions_dk.pdf.2858

Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency, exceptions,2859

and foreign-language calls in haskell. NATO SCIENCE SERIES SUB SERIES III COMPUTER2860

145

https://kar.kent.ac.uk/57498/1/constraint-families.pdf
https://kar.kent.ac.uk/57498/1/constraint-families.pdf
https://kar.kent.ac.uk/57498/1/constraint-families.pdf
https://doi.org/10.1145/2633628.2633634
https://doi.org/10.1145/2633628.2633634
https://doi.org/10.1145/2633628.2633634
https://www.pure.ed.ac.uk/ws/portalfiles/portal/42495988/quantcc.pdf
https://www.pure.ed.ac.uk/ws/portalfiles/portal/42495988/quantcc.pdf
https://www.pure.ed.ac.uk/ws/portalfiles/portal/42495988/quantcc.pdf
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1017/S0956796811000098
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1013&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1013&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1013&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1002&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1002&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1002&context=compsci_pubs
https://classes.cs.uchicago.edu/archive/2007/spring/32102-1/papers/p274-marlow.pdf
https://classes.cs.uchicago.edu/archive/2007/spring/32102-1/papers/p274-marlow.pdf
https://classes.cs.uchicago.edu/archive/2007/spring/32102-1/papers/p274-marlow.pdf
https://archive.alvb.in/msc/03_infoafp/papers/2012-12-18_HoorCollege_MarlowExtensibleExceptions_dk.pdf
https://archive.alvb.in/msc/03_infoafp/papers/2012-12-18_HoorCollege_MarlowExtensibleExceptions_dk.pdf
https://archive.alvb.in/msc/03_infoafp/papers/2012-12-18_HoorCollege_MarlowExtensibleExceptions_dk.pdf

AND SYSTEMS SCIENCES, 180:47–96, 2001. URL https://citeseerx.ist.psu.edu/2861

document?repid=rep1&type=pdf&doi=2e6c9d76f9cb690dc18019fc894ba9572a8c2812.2862

Ralf Hinze, Jennifer Hackett, and Daniel WH James. Functional pearl: F for functor. 2012. URL2863

www.cs.ox.ac.uk/people/daniel.james/functor/functor.pdf.2864

Ralf Hinze and Daniel WH James. Reason isomorphically! In Proceedings of the 6th ACM2865

SIGPLAN workshop on Generic programming, pages 85–96, 2010. URL http://www.cs.ox.2866

ac.uk/people/ralf.hinze/publications/WGP10.pdf.2867

Gérard Huet. The zipper. Journal of functional programming, 7(5):549–554, 1997. URL https:2868

//doi.org/10.1017/S0956796897002864.2869

Conor McBride. The derivative of a regular type is its type of one-hole contexts. Unpublished2870

manuscript, pages 74–88, 2001. URL https://citeseerx.ist.psu.edu/document?repid=2871

rep1&type=pdf&doi=7de4f6fddb11254d1fd5f8adfd67b6e0c9439eaa.2872

Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Derivatives of containers.2873

In International Conference on Typed Lambda Calculi and Applications, pages 16–30. Springer,2874

2003. URL http://www.strictlypositive.org/derivcont.pdf.2875

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with bananas,2876

lenses, envelopes and barbed wire. In Conference on functional programming languages and2877

computer architecture, pages 124–144. Springer, 1991. URL https://ris.utwente.nl/ws/2878

portalfiles/portal/6142049/meijer91functional.pdf.2879

Erik Meijer and Graham Hutton. Bananas in space: Extending fold and unfold to exponential types.2880

In Proceedings of the seventh international conference on Functional programming languages2881

and computer architecture, pages 324–333, 1995. URL https://dl.acm.org/doi/pdf/10.2882

1145/224164.224225.2883

Olivier Danvy and Kevin Millikin. Refunctionalization at work. Science of Computer Programming,2884

74(8):534–549, 2009. ISSN 0167-6423. doi: https://doi.org/10.1016/j.scico.2007.10.2885

007. URL https://www.sciencedirect.com/science/article/pii/S0167642309000227.2886

Special Issue on Mathematics of Program Construction (MPC 2006).2887

Philip Wadler. Deforestation: Transforming programs to eliminate trees. In European Symposium on2888

Programming, pages 344–358. Springer, 1988. URL https://link.springer.com/content/2889

pdf/10.1007/3-540-19027-9_23.pdf.2890

СА Романенко. ВЫЯВЛЕНИЕ И ДОКАЗАТЕЛЬСТВО СВОЙСТВ ФУНКЦИОНАЛЬ-2891

НЫХ ПРОГРАММ МЕТОДАМИ СУПЕРКОМПИЛЯЦИИ. URL https://www.keldysh.ru/2892

council/1/klyuchnikov-diss.pdf.2893

146

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2e6c9d76f9cb690dc18019fc894ba9572a8c2812
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2e6c9d76f9cb690dc18019fc894ba9572a8c2812
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2e6c9d76f9cb690dc18019fc894ba9572a8c2812
www.cs.ox.ac.uk/people/daniel.james/functor/functor.pdf
http://www.cs.ox.ac.uk/people/ralf.hinze/publications/WGP10.pdf
http://www.cs.ox.ac.uk/people/ralf.hinze/publications/WGP10.pdf
http://www.cs.ox.ac.uk/people/ralf.hinze/publications/WGP10.pdf
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1017/S0956796897002864
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7de4f6fddb11254d1fd5f8adfd67b6e0c9439eaa
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7de4f6fddb11254d1fd5f8adfd67b6e0c9439eaa
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7de4f6fddb11254d1fd5f8adfd67b6e0c9439eaa
http://www.strictlypositive.org/derivcont.pdf
https://ris.utwente.nl/ws/portalfiles/portal/6142049/meijer91functional.pdf
https://ris.utwente.nl/ws/portalfiles/portal/6142049/meijer91functional.pdf
https://ris.utwente.nl/ws/portalfiles/portal/6142049/meijer91functional.pdf
https://dl.acm.org/doi/pdf/10.1145/224164.224225
https://dl.acm.org/doi/pdf/10.1145/224164.224225
https://dl.acm.org/doi/pdf/10.1145/224164.224225
https://www.sciencedirect.com/science/article/pii/S0167642309000227
https://link.springer.com/content/pdf/10.1007/3-540-19027-9_23.pdf
https://link.springer.com/content/pdf/10.1007/3-540-19027-9_23.pdf
https://link.springer.com/content/pdf/10.1007/3-540-19027-9_23.pdf
https://www.keldysh.ru/council/1/klyuchnikov-diss.pdf
https://www.keldysh.ru/council/1/klyuchnikov-diss.pdf
https://www.keldysh.ru/council/1/klyuchnikov-diss.pdf

Andrew Gill, John Launchbury, and Simon L Peyton Jones. A short cut to deforestation. In2894

Proceedings of the conference on Functional programming languages and computer architecture,2895

pages 223–232, 1993. URL https://dl.acm.org/doi/pdf/10.1145/165180.165214.2896

Jeremy Gibbons. Unfolding abstract datatypes. In International Conference on2897

Mathematics of Program Construction, pages 110–133. Springer, 2008. URL2898

https://ora.ox.ac.uk/objects/uuid:b51d2af6-25de-41ae-b3e7-9ac997de87b3/files/2899

m7c19077c7bfba562a6cc9ceb3db62641.2900

William R Cook. On understanding data abstraction, revisited. In Proceedings of the 24th ACM2901

SIGPLAN conference on Object oriented programming systems languages and applications, pages2902

557–572, 2009. URL https://www.phaazon.net/media/uploads/on_understanding_data_2903

abstraction.pdf.2904

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: From lists2905

to streams to nothing at all. ACM SIGPLAN Notices, 42(9):315–326, 2007.2906

URL https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2907

a4fad0d182605fcd155bebe3d620b7ffa0456968.2908

Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. Stream fusion,2909

to completeness. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of2910

Programming Languages, pages 285–299, 2017. URL https://arxiv.org/pdf/1612.06668.2911

Paul Downen, Zachary Sullivan, Zena M Ariola, and Simon Peyton Jones. Codata in action.2912

In European Symposium on Programming, pages 119–146. Springer International Publishing2913

Cham, 2019. URL https://library.oapen.org/bitstream/handle/20.500.12657/23330/2914

1006825.pdf?sequence=1#page=132.2915

Jon Louis Bentley. Little languages. Commun. ACM, 29(8):711–721, 1986. URL https://doi.2916

org/10.1145/6424.315691.2917

Jeremy Gibbons and Nicolas Wu. Folding domain-specific languages: deep and shallow embeddings2918

(functional pearl). In Proceedings of the 19th ACM SIGPLAN international conference on2919

Functional programming, pages 339–347, 2014. URL https://ora.ox.ac.uk/objects/uuid:2920

0547e439-48d5-4749-a5eb-811e65cfaaee/files/mf31b32c6dcbd81dd6a8ef43166a8cc91.2921

Jeremy Gibbons. Functional programming for domain-specific languages. In Central2922

European Functional Programming School, pages 1–28. Springer, 2013. URL2923

https://ora.ox.ac.uk/objects/uuid:489909da-8818-4d6e-a4fd-0107b589ee76/files/2924

m00be42b36cabbc6d11c8748fac8c7c71.2925

Benjamin C Pierce, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin Hri̧tcu, Vilhelm2926

Sjöberg, and Brent Yorgey. Software foundations. Webpage: http://www. cis. upenn.2927

edu/bcpierce/sf/current/index. html, 16, 2010. URL https://idris-hackers.github.io/2928

software-foundations/pdf/sf-idris-2018.pdf.2929

147

https://dl.acm.org/doi/pdf/10.1145/165180.165214
https://ora.ox.ac.uk/objects/uuid:b51d2af6-25de-41ae-b3e7-9ac997de87b3/files/m7c19077c7bfba562a6cc9ceb3db62641
https://ora.ox.ac.uk/objects/uuid:b51d2af6-25de-41ae-b3e7-9ac997de87b3/files/m7c19077c7bfba562a6cc9ceb3db62641
https://ora.ox.ac.uk/objects/uuid:b51d2af6-25de-41ae-b3e7-9ac997de87b3/files/m7c19077c7bfba562a6cc9ceb3db62641
https://www.phaazon.net/media/uploads/on_understanding_data_abstraction.pdf
https://www.phaazon.net/media/uploads/on_understanding_data_abstraction.pdf
https://www.phaazon.net/media/uploads/on_understanding_data_abstraction.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a4fad0d182605fcd155bebe3d620b7ffa0456968
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a4fad0d182605fcd155bebe3d620b7ffa0456968
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a4fad0d182605fcd155bebe3d620b7ffa0456968
https://arxiv.org/pdf/1612.06668
https://library.oapen.org/bitstream/handle/20.500.12657/23330/1006825.pdf?sequence=1#page=132
https://library.oapen.org/bitstream/handle/20.500.12657/23330/1006825.pdf?sequence=1#page=132
https://library.oapen.org/bitstream/handle/20.500.12657/23330/1006825.pdf?sequence=1#page=132
https://doi.org/10.1145/6424.315691
https://doi.org/10.1145/6424.315691
https://doi.org/10.1145/6424.315691
https://ora.ox.ac.uk/objects/uuid:0547e439-48d5-4749-a5eb-811e65cfaaee/files/mf31b32c6dcbd81dd6a8ef43166a8cc91
https://ora.ox.ac.uk/objects/uuid:0547e439-48d5-4749-a5eb-811e65cfaaee/files/mf31b32c6dcbd81dd6a8ef43166a8cc91
https://ora.ox.ac.uk/objects/uuid:0547e439-48d5-4749-a5eb-811e65cfaaee/files/mf31b32c6dcbd81dd6a8ef43166a8cc91
https://ora.ox.ac.uk/objects/uuid:489909da-8818-4d6e-a4fd-0107b589ee76/files/m00be42b36cabbc6d11c8748fac8c7c71
https://ora.ox.ac.uk/objects/uuid:489909da-8818-4d6e-a4fd-0107b589ee76/files/m00be42b36cabbc6d11c8748fac8c7c71
https://ora.ox.ac.uk/objects/uuid:489909da-8818-4d6e-a4fd-0107b589ee76/files/m00be42b36cabbc6d11c8748fac8c7c71
https://idris-hackers.github.io/software-foundations/pdf/sf-idris-2018.pdf
https://idris-hackers.github.io/software-foundations/pdf/sf-idris-2018.pdf
https://idris-hackers.github.io/software-foundations/pdf/sf-idris-2018.pdf

Graham Hutton. Fold and unfold for program semantics. ACM SIGPLAN Notices, 34(1):280–288,2930

1998. URL https://dl.acm.org/doi/abs/10.1145/291251.289457.2931

Robert Nystrom. Crafting Interpreters. URL https://craftinginterpreters.com/contents.2932

html.2933

Dom Hutchinson. Language engineering - notes. Course COMS22201 notes. URL https://2934

github.com/dajhutchinson/Language-Engineering.2935

Simon Marlow. Parallel and concurrent programming in haskell. In Central2936

European Functional Programming School, pages 339–401. Springer, 2011.2937

URL https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2938

bd127ea1952996864c1542e1453973a78973ad5c.2939

Arthur Charguéraud. The locally nameless representation. Journal of automated reasoning, 49:2940

363–408, 2012. URL https://www.chargueraud.org/research/2009/ln/main.pdf.2941

Stephen Chong. CS153: Compilers Lecture 12:Closures and Environments. URL https://groups.2942

seas.harvard.edu/courses/cs153/2018fa/lectures/Lec12-Functions.pdf.2943

Oleg Kiselyov. Typed tagless final interpreters. In Generic and indexed programming: International2944

spring school, sSGIP 2010, oxford, uK, march 22-26, 2010, revised lectures, pages 130–174.2945

Springer, 2012a. URL https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&2946

doi=f0b6a04331821a294bad4d08975637b4f363ec5a#page=136.2947

Frank Pfenning and Conal Elliott. Higher-order abstract syntax. ACM sigplan notices, 23(7):2948

199–208, 1988. URL https://doi.org/10.1145/960116.54010.2949

Jeff Epstein, Andrew P Black, and Simon Peyton-Jones. Towards haskell in the cloud.2950

In Proceedings of the 4th ACM symposium on Haskell, pages 118–129, 2011. URL2951

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.2952

pdf?from=https://research.microsoft.com/en-us/um/people/simonpj/papers/2953

parallel/remote.pdf&type=exact.2954

Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, partially2955

evaluated: Tagless staged interpreters for simpler typed languages. In Programming2956

Languages and Systems: 5th Asian Symposium, APLAS 2007, Singapore, November2957

29-December 1, 2007. Proceedings 5, pages 222–238. Springer, 2007. URL https:2958

//www.cambridge.org/core/journals/journal-of-functional-programming/article/2959

finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/2960

7B2DC44A2127EBBA71ADE63809D9425F.2961

Eugenio Moggi. Computational lambda-calculus and monads. University of Edinburgh, Department2962

of Computer Science, Laboratory for . . . , 1988. URL http://www.lfcs.inf.ed.ac.uk/2963

reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf.2964

148

https://dl.acm.org/doi/abs/10.1145/291251.289457
https://craftinginterpreters.com/contents.html
https://craftinginterpreters.com/contents.html
https://craftinginterpreters.com/contents.html
https://github.com/dajhutchinson/Language-Engineering
https://github.com/dajhutchinson/Language-Engineering
https://github.com/dajhutchinson/Language-Engineering
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bd127ea1952996864c1542e1453973a78973ad5c
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bd127ea1952996864c1542e1453973a78973ad5c
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bd127ea1952996864c1542e1453973a78973ad5c
https://www.chargueraud.org/research/2009/ln/main.pdf
https://groups.seas.harvard.edu/courses/cs153/2018fa/lectures/Lec12-Functions.pdf
https://groups.seas.harvard.edu/courses/cs153/2018fa/lectures/Lec12-Functions.pdf
https://groups.seas.harvard.edu/courses/cs153/2018fa/lectures/Lec12-Functions.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f0b6a04331821a294bad4d08975637b4f363ec5a#page=136
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f0b6a04331821a294bad4d08975637b4f363ec5a#page=136
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f0b6a04331821a294bad4d08975637b4f363ec5a#page=136
https://doi.org/10.1145/960116.54010
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.pdf?from=https://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/remote.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.pdf?from=https://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/remote.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.pdf?from=https://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/remote.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.pdf?from=https://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/remote.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.pdf?from=https://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/remote.pdf&type=exact
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf

Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM Conference on LISP and2965

Functional Programming, pages 61–78, 1990. URL https://dl.acm.org/doi/pdf/10.1145/2966

91556.91592.2967

Philip Wadler. The essence of functional programming. In Proceedings of the 19th ACM SIGPLAN-2968

SIGACT symposium on Principles of programming languages, pages 1–14, 1992. URL https:2969

//dl.acm.org/doi/pdf/10.1145/143165.143169.2970

Conor McBride and Ross Paterson. Applicative programming with effects. Journal of functional2971

programming, 18(1):1–13, 2008. URL https://doi.org/10.1017%2FS0956796807006326.2972

John C Reynolds. The discoveries of continuations. Lisp and symbolic computation, 6:233–247,2973

1993. URL https://ics.uci.edu/~jajones/INF102-S18/readings/08_histcont.pdf.2974

Peter J Landin. Histories of discoveries of continuations: Belles-lettres with equivocal2975

tenses. In Proceedings of the Second ACM SIGPLAN Workshop on Continuations2976

(CW’97), Technical report BRICS NS-96-13, University of Aarhus, page 1. Citeseer,2977

1997. URL https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2978

14c609276166517ed1afb56e6b84a41ba157030b.2979

Steven E Ganz, Daniel P Friedman, and Mitchell Wand. Trampolined style. In Proceedings of the2980

fourth ACM SIGPLAN international conference on Functional programming, pages 18–27, 1999.2981

URL https://doi.org/10.1145/317636.317779.2982

RO Bjarnarson. Stackless scala with free monads. Scala Days, 2012. URL https://days2012.2983

scala-lang.org/sites/days2012/files/bjarnason_trampolines.pdf.2984

Conor McBride. Clowns to the left of me, jokers to the right (pearl) dissecting data2985

structures. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles2986

of programming languages, pages 287–295, 2008. URL https://web.archive.org/web/2987

20170705104305id_/http://www.cis.upenn.edu/~cis39903/static/clowns.pdf.2988

Daniel Hillerström. Foundations for programming and implementing effect handlers. 2022. URL2989

http://dx.doi.org/10.7488/era/2122.2990

Serkan Muhcu, Philipp Schuster, Michel Steuwer, and Jonathan Immanuel Brachthäuser. Multiple2991

resumptions and local mutable state, directly. Proceedings of the ACM on Programming2992

Languages, 9(ICFP):704–733, 2025. URL https://doi.org/10.1145/3747529.2993

Olivier Danvy. Defunctionalized interpreters for programming languages. ACM Sigplan Notices, 432994

(9):131–142, 2008. URL http://jfla.inria.fr/2014/danvy-ICFP08.pdf.2995

Jeremy Gibbons. Continuation-passing style, defunctionalization, accumulations, and associativity.2996

arXiv preprint arXiv:2111.10413, 2021. URL https://doi.org/10.48550/arXiv.2111.10413.2997

149

https://dl.acm.org/doi/pdf/10.1145/91556.91592
https://dl.acm.org/doi/pdf/10.1145/91556.91592
https://dl.acm.org/doi/pdf/10.1145/91556.91592
https://dl.acm.org/doi/pdf/10.1145/143165.143169
https://dl.acm.org/doi/pdf/10.1145/143165.143169
https://dl.acm.org/doi/pdf/10.1145/143165.143169
https://doi.org/10.1017%2FS0956796807006326
https://ics.uci.edu/~jajones/INF102-S18/readings/08_histcont.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=14c609276166517ed1afb56e6b84a41ba157030b
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=14c609276166517ed1afb56e6b84a41ba157030b
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=14c609276166517ed1afb56e6b84a41ba157030b
https://doi.org/10.1145/317636.317779
https://days2012.scala-lang.org/sites/days2012/files/bjarnason_trampolines.pdf
https://days2012.scala-lang.org/sites/days2012/files/bjarnason_trampolines.pdf
https://days2012.scala-lang.org/sites/days2012/files/bjarnason_trampolines.pdf
https://web.archive.org/web/20170705104305id_/http://www.cis.upenn.edu/~cis39903/static/clowns.pdf
https://web.archive.org/web/20170705104305id_/http://www.cis.upenn.edu/~cis39903/static/clowns.pdf
https://web.archive.org/web/20170705104305id_/http://www.cis.upenn.edu/~cis39903/static/clowns.pdf
http://dx.doi.org/10.7488/era/2122
https://doi.org/10.1145/3747529
http://jfla.inria.fr/2014/danvy-ICFP08.pdf
https://doi.org/10.48550/arXiv.2111.10413

Olivier Danvy. An analytical approach to program as data objects, 2006. URL https://www.cs.2998

tufts.edu/comp/150FP/archive/olivier-danvy/d_scientia.pdf.2999

Atze van der Ploeg and Oleg Kiselyov. Reflection without remorse: revealing a hidden sequence to3000

speed up monadic reflection. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell,3001

pages 133–144, 2014. URL https://doi.org/10.1145/2633357.2633360.3002

Pierre-Louis Curien and Hugo Herbelin. The duality of computation. ACM sigplan notices, 35(9):3003

233–243, 2000. URL https://doi.org/10.1145/357766.351262.3004

R Kent Dyvbig, Simon Peyton Jones, and Amr Sabry. A monadic framework for delimited3005

continuations. Journal of functional programming, 17(6):687–730, 2007. URL https://doi.3006

org/10.1017/S0956796807006259.3007

Andrzej Filinski. Representing monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT3008

symposium on Principles of programming languages, pages 446–457, 1994. URL https:3009

//doi.org/10.1145/174675.178047.3010

Ana Lúcia De Moura and Roberto Ierusalimschy. Revisiting coroutines. ACM Transactions on3011

Programming Languages and Systems (TOPLAS), 31(2):1–31, 2009. URL https://doi.org/3012

10.1145/1462166.1462167.3013

Roman Elizarov, Mikhail Belyaev, Marat Akhin, and Ilmir Usmanov. Kotlin coroutines: design and3014

implementation. In Proceedings of the 2021 ACM SIGPLAN International Symposium on New3015

Ideas, New Paradigms, and Reflections on Programming and Software, pages 68–84, 2021. URL3016

https://www.researchgate.net/profile/Mikhail-Belyaev-3/publication/355361443_3017

Kotlin_coroutines_design_and_implementation/links/624c63c34f88c3119ce12a49/3018

Kotlin-coroutines-design-and-implementation.pdf.3019

Anders Møller and Michael I Schwartzbach. Static program analysis. Notes. Feb, 2012. URL3020

https://users-cs.au.dk/amoeller/spa/spa.pdf.3021

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the expressive power of user-3022

defined effects: Effect handlers, monadic reflection, delimited control. Proceedings of the ACM3023

on Programming Languages, 1(ICFP):1–29, 2017. URL https://doi.org/10.1145/3110257.3024

Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schuster, and Daan3025

Leijen. Effect handlers, evidently. Proceedings of the ACM on Programming Languages, 43026

(ICFP):1–29, 2020. URL https://doi.org/10.1145/3408981.3027

Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: an alternative to monad3028

transformers. ACM SIGPLAN Notices, 48(12):59–70, 2013. URL https://doi.org/10.1145/3029

2578854.2503791.3030

Andrej Bauer. What is algebraic about algebraic effects and handlers? arXiv preprint3031

arXiv:1807.05923, 2018. URL https://doi.org/10.48550/arXiv.1807.05923.3032

150

https://www.cs.tufts.edu/comp/150FP/archive/olivier-danvy/d_scientia.pdf
https://www.cs.tufts.edu/comp/150FP/archive/olivier-danvy/d_scientia.pdf
https://www.cs.tufts.edu/comp/150FP/archive/olivier-danvy/d_scientia.pdf
https://doi.org/10.1145/2633357.2633360
https://doi.org/10.1145/357766.351262
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/1462166.1462167
https://doi.org/10.1145/1462166.1462167
https://doi.org/10.1145/1462166.1462167
https://www.researchgate.net/profile/Mikhail-Belyaev-3/publication/355361443_Kotlin_coroutines_design_and_implementation/links/624c63c34f88c3119ce12a49/Kotlin-coroutines-design-and-implementation.pdf
https://www.researchgate.net/profile/Mikhail-Belyaev-3/publication/355361443_Kotlin_coroutines_design_and_implementation/links/624c63c34f88c3119ce12a49/Kotlin-coroutines-design-and-implementation.pdf
https://www.researchgate.net/profile/Mikhail-Belyaev-3/publication/355361443_Kotlin_coroutines_design_and_implementation/links/624c63c34f88c3119ce12a49/Kotlin-coroutines-design-and-implementation.pdf
https://www.researchgate.net/profile/Mikhail-Belyaev-3/publication/355361443_Kotlin_coroutines_design_and_implementation/links/624c63c34f88c3119ce12a49/Kotlin-coroutines-design-and-implementation.pdf
https://www.researchgate.net/profile/Mikhail-Belyaev-3/publication/355361443_Kotlin_coroutines_design_and_implementation/links/624c63c34f88c3119ce12a49/Kotlin-coroutines-design-and-implementation.pdf
https://users-cs.au.dk/amoeller/spa/spa.pdf
https://doi.org/10.1145/3110257
https://doi.org/10.1145/3408981
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.48550/arXiv.1807.05923

Daniel Hillerström and Sam Lindley. Shallow effect handlers. In Asian Symposium on Programming3033

Languages and Systems, pages 415–435. Springer, 2018. URL https://www.research.ed.ac.3034

uk/files/76099718/shallow_effect_handlers.pdf.3035

Wouter Swierstra. Data types à la carte. Journal of functional programming, 18(4):423–3036

436, 2008. URL https://www.cs.tufts.edu/~nr/cs257/archive/wouter-swierstra/3037

DataTypesALaCarte.pdf.3038

Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible effects. ACM SIGPLAN Notices, 503039

(12):94–105, 2015. URL https://doi.org/10.1145/2887747.2804319.3040

Oleg Kiselyov. Iteratees. In FLOPS’12: Proceedings of the 11th international conference3041

on Functional and Logic Programming, 2012b. URL https://okmij.org/ftp/Haskell/3042

Iteratee/describe.pdf.3043

Daan Leijen. Algebraic effect handlers with resources and deep finalization. Technical report,3044

Tech. Rep. MSR-TR-2018-10, Microsoft Research (April 2018), 2018. URL https://www.3045

microsoft.com/en-us/research/wp-content/uploads/2018/04/resource-v1.pdf.3046

KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy.3047

Retrofitting effect handlers onto ocaml. In Proceedings of the 42nd ACM SIGPLAN International3048

Conference on Programming Language Design and Implementation, pages 206–221, 2021. URL3049

https://doi.org/10.1145/3453483.3454039.3050

Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström,3051

KC Sivaramakrishnan, Matija Pretnar, and Sam Lindley. Continuing webassembly with effect3052

handlers. Proceedings of the ACM on Programming Languages, 7(OOPSLA2):460–485, 2023.3053

URL https://doi.org/10.1145/3622814.3054

Nicolas Wu and Tom Schrijvers. Fusion for free: Efficient algebraic effect handlers. In International3055

Conference on Mathematics of Program Construction, pages 302–322. Springer, 2015. URL3056

https://lirias.kuleuven.be/retrieve/322544.3057

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpreters. In3058

Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming3059

languages, pages 333–343, 1995. URL https://dl.acm.org/doi/pdf/10.1145/199448.3060

199528.3061

Mark P Jones. Functional programming with overloading and higher-order polymorphism. In3062

International School on Advanced Functional Programming, pages 97–136. Springer, 1995. URL3063

http://web.cecs.pdx.edu/mpj/pubs/springschool95.pdf.3064

Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff. Monad transformers and modular3065

algebraic effects: what binds them together. In Proceedings of the 12th ACM SIGPLAN3066

International Symposium on Haskell, pages 98–113, 2019. URL https://doi.org/10.1145/3067

3331545.3342595.3068

151

https://www.research.ed.ac.uk/files/76099718/shallow_effect_handlers.pdf
https://www.research.ed.ac.uk/files/76099718/shallow_effect_handlers.pdf
https://www.research.ed.ac.uk/files/76099718/shallow_effect_handlers.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/wouter-swierstra/DataTypesALaCarte.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/wouter-swierstra/DataTypesALaCarte.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/wouter-swierstra/DataTypesALaCarte.pdf
https://doi.org/10.1145/2887747.2804319
https://okmij.org/ftp/Haskell/Iteratee/describe.pdf
https://okmij.org/ftp/Haskell/Iteratee/describe.pdf
https://okmij.org/ftp/Haskell/Iteratee/describe.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2018/04/resource-v1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2018/04/resource-v1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2018/04/resource-v1.pdf
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3622814
https://lirias.kuleuven.be/retrieve/322544
https://dl.acm.org/doi/pdf/10.1145/199448.199528
https://dl.acm.org/doi/pdf/10.1145/199448.199528
https://dl.acm.org/doi/pdf/10.1145/199448.199528
http://web.cecs.pdx.edu/mpj/pubs/springschool95.pdf
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3331545.3342595

Gordon Plotkin and John Power. Notions of computation determine monads. In International3069

Conference on Foundations of Software Science and Computation Structures, pages 342–3070

356. Springer, 2002. URL https://era.ed.ac.uk/bitstream/handle/1842/196/Comp_Eff_3071

Monads.pdf?sequence=1.3072

Gordon D Plotkin and Matija Pretnar. Handling algebraic effects. Logical methods in computer3073

science, 9, 2013. URL https://doi.org/10.2168/LMCS-9(4:23)2013.3074

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. Effect handlers in scope. In Proceedings of the 20143075

ACM SIGPLAN Symposium on Haskell, pages 1–12, 2014. URL https://doi.org/10.1145/3076

2633357.2633358.3077

Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers. Structured3078

handling of scoped effects. In European Symposium on Programming, pages 462–491. Springer3079

International Publishing Cham, 2022. URL https://library.oapen.org/bitstream/handle/3080

20.500.12657/54028/1/978-3-030-99336-8.pdf#page=476.3081

Cas van der Rest, Jaro Reinders, and Casper Bach Poulsen. Handling higher-order effects. arXiv3082

preprint arXiv:2203.03288, 2022. URL https://arxiv.org/pdf/2203.03288.3083

Yizhou Zhang, Guido Salvaneschi, and Andrew C Myers. Handling bidirectional control flow.3084

Proceedings of the ACM on Programming Languages, 4(OOPSLA):1–30, 2020. URL https:3085

//doi.org/10.1145/3428207.3086

152

https://era.ed.ac.uk/bitstream/handle/1842/196/Comp_Eff_Monads.pdf?sequence=1
https://era.ed.ac.uk/bitstream/handle/1842/196/Comp_Eff_Monads.pdf?sequence=1
https://era.ed.ac.uk/bitstream/handle/1842/196/Comp_Eff_Monads.pdf?sequence=1
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/2633357.2633358
https://library.oapen.org/bitstream/handle/20.500.12657/54028/1/978-3-030-99336-8.pdf#page=476
https://library.oapen.org/bitstream/handle/20.500.12657/54028/1/978-3-030-99336-8.pdf#page=476
https://library.oapen.org/bitstream/handle/20.500.12657/54028/1/978-3-030-99336-8.pdf#page=476
https://arxiv.org/pdf/2203.03288
https://doi.org/10.1145/3428207
https://doi.org/10.1145/3428207
https://doi.org/10.1145/3428207

	Воспоминания о ФП
	Термы и редукция
	Типы
	Функции в Haskell
	Данные в Haskell
	Классы типов в Haskell
	Монады в Haskell

	Параметрический полиморфизм
	Параметрический полиморфизм в языке
	Эмуляция типовых абстракций и аппликаций (Proxy)
	First-class polymorphism
	Higher-order/kinded polymorphism
	Обобщённые алгебраические типы данных (GADTs)
	Структуры на уровне типов, data promotion

	Реализация параметрического полиморфизма
	Mономорфизация
	Стирание типа
	Гибридный подход
	Использование виртуальной таблицы свойств типов

	Полиморфизм по конвенции вызова
	Разновидности runtime представлений в Haskell
	Классификация значений по runtime представлению
	Representation polymorphism

	Специальный (ad-hoc) полиморфизм
	Классы типов в языке
	Словари
	Неявные аргументы
	Вывод инстансов
	Построение типа по значению
	Имплиситы и когерентность
	Правила (rules) и специализация
	Отступление: дефункционализация
	Эмуляция полиморфизма высших порядков

	Семейства
	Data families
	Synonym families
	Инъективные семейства
	Семейства первого класса

	Кайнд Constraint
	Использование ad-hoc полиморфизма
	Сериализация
	Экзистенциальные типы
	Разрешение имён
	Несинтаксические типовые эквивалентности, System FC
	Коерции и роли
	Type reflection
	Data reflection
	Открытые структуры
	Исключения и открытая иерархия
	Легковесные частичные стек-трейсы
	Кастомизируемые ошибки типизации

	Типы данных
	Вариантность
	Изоморфизм
	Кардинальность: суммы, произведения, экспоненты
	Алгебраическое представление типа

	Рекурсивные типы
	Просто список
	Неподвижная точка функтора
	Схемы рекурсии

	Всё через свёртки
	Deforestation & list fusion
	Visitor pattern

	Всё через развёртку
	Абстрактные типы данных
	Stream fusion

	Вездесущий дуализм
	Push vs pull streaming
	Data vs codata

	Приложение: категория алгебр

	Интерпретаторы
	Интерпретаторы как основа основ
	Башня интерпретаторов
	Интерпретаторы повсюду
	Интерпретаторы и семантика языков программирования
	Встроенные доменно-специфичные языки (eDSL)
	Пример: библиотека Accelerate

	Типы значений
	Untyped tagless interpreters
	Typed tagged interpreters
	Typed tagless interpreters

	Связывания и функции первого класса
	Семантика имён
	Подстановки
	Окружение
	Замыкания
	Типизированный контекст
	Meta-circular интерпретация
	Синтаксис высшего порядка
	Сериализация функций

	Tagless final интерпретаторы
	Разные интерпретации для shallow embedding
	Дойти до конца
	Восстановление композиционности семантики
	Typed tagless final interpreter
	Встречаем старых друзей: Applicative, Monad

	Expression problem
	Копроизведение функторов
	Произведение алгебр

	Продолжения (continuations)
	Концепция продолжений
	Reduction semantics
	Continuation semantics
	Продолжения первого класса

	Продолжения своими руками
	Дефункционализация и аккумуляторы
	Monad Cont
	call/cc

	Delimited continuations
	Реализация операторов
	В Monad Cont

	Приложения продолжений
	Всё через продолжения
	The mother of all monads
	Генераторы и корутины

	Эффективная работа с продолжениями
	Contiguous stack
	Сегментный стек
	Finite state machine (FSM)

	Эффекты и модульные интерпретаторы
	Понятие эффекта
	Хендлеры эффектов
	Хендлеры через ограниченные продолжения
	Эффективная реализация хендлеров
	Встроенные хендлеры как явная клиент-серверная коммуникация
	Расширяемые сообщения и пересылка
	Свободные монады
	Хендлеры через свободные монады
	Приложения хендлеров
	Трансформеры монад
	Алгебраичность и эффекты высших порядков

