12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

N
N

28

29

30

31

32

33

DI 2.0

oceHb 2025

Copep>xaHue
I Bocnomunanuna o P 6
(1.1 TepMbl W peOYKUMS] 6
M2 Tuanl o 6
(1.3 Dynkumm B Haskell] 0 o 9
(1.4 Januble B Haskell| 10
[L5 Knaccertunos B Haskell oL 12
1.6 Monaabl B Haskelll 13
2 TlapameTtpunyeckum noammophnsm| 16
2.1 TlapameTpuyeckuin NOAUMOPMU3M B A3bIKE| 16
[2.1.1 OmMynaums TUnoBbIX abCTpakuwii U annavkauuii (Proxy)| 18
[2.1.2 First-class polymorphism| 18
[2.1.3 Higher-order/kinded polymorphism|(. 20
[2.1.4 Ob0bwWeEHHbIe anrebpanyeckne Tunbl gaHHbix (GADTs)(. 21
[2.1.5 CTpyKTypbl Ha ypoBHe TunoB, data promotion|. 22
2.2 Peanuzaunsa napaMeTpuyeckoro NoaMMopduamMalo 25
[2.2.1 MoHoMOpU3aLMSA| 25
[2.2.2 CTunpaHne TUnal 26
[2.2.3 T WOpUAHBIA NOAXOA|« . o o e 27
[2.2.4 Vlcnonb3oBaHWe BUPTYaJibHOWM TabaULbl CBOWCTB TUMOB| 28
2.3 TlonmMop®mu3M MO KOHBEHLMMW BbI3OBA| o o o v v ot e e 29
[2.3.1 Pa3HoBuAgHOCTW runtime npeacTaBaeHun B Haskelll 29
[2.3.2 Knaccudurkaums 3Ha4eHnid no runtime nNpeacTaBAeHUIO|. 30
[2.3.3 Representation polymorphism| 31
[3 Cneuwanbhbin (ad-hoc) nonumopdpunsm| 32
BI Knacchl TMNOB B A3BIKEl 33
[3.1.1 ChoBapul|, 33
[3.1.2 HesiBHble apryMeHThI| 35
[3.1.3 BbIBOA MHCTAHCOB| o 35
[3.1.4 [locTpoeHue Tuna no 3HAYEHUKO| v v i it 37
[3.1.5 VIMNAUCUTBI U KOFEPEHTHOCTB| v o o v e e e e e e e, 38

L AgTop Anapeli CTosH (andrey.stoyan.csam@gmail.com).
2Cnacubo Mnbe Koneroey 3a nepeoe BHUMaTeNbHOE NPOYTEHME U Kydy KOMMeHTapues. Cnacnbo MouM CTyaeHTaM,

KOTOpble CBOMM MHTEPECOM K MPeaMETY CeNann 3Ty paboTy BO3MOXHOIA.

3Bepcus oT 14 sxBaps 2026 r., 11:37.

37

38

39

40

41

44

45

46

47

48

49

50

51

52

53

54

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

[3.1.6 [lpaswna (rules) n cmeumanuzaums| 40

[3.1.7 OTcrynneHue: Je@YHKUMOHANU3AUNSA| 40
[3.1.8 SIMynsaumns nonmMopdunamMa BbICLUUX MOPSAOKOB| 41

B2 CemelricTtral 42
3.2.1 Data families| 43
[3.2.2 Synonym families| 43
3.2.3 VlHbekTuBHbIE CEMEMCTBAl o 44
[3.2.4 CeMeNCTBA MEPBOTO KNACCA| . . .+ v v v v e it e e e e e e e, 45

[3.3 KanHg Constraint| 46
[3.4 Vlcnonb3oBaHwe ad-hoc nonmmopduamal 47
[3.4.1 Cepuanuaaums| a7
[3.4.2 DK3uUCTeHUMaNbHble TUMNbI 48
[3.4.3 PaspelleHne UMEH| 49
[3.4.4 HecuHTakCHM4YeCckue TUMNOBble SKBMBAAEHTHOCTH, System FC| 50
[3.4.5 Koepuuu v ponul 51
[3.4.6 Typereflection| 53
3.4.7 Data reflectionl 54
[3.4.8 OTKpbITble CTPYKTYPbI| 55
[3.4.9 VIcknroYeHuss 1 OTKpbITAs Mepapxusl| 55
[3.4.10 JlerkoBecCHble YaCTU4YHbIE CTEK-TPEUCHI| 57
[3.4.11 KacTtoMmmampyembie OLLINOKN TUOM3auum| 58

[4 Twnbl gaHHbIX 59
[4.1 BapuWaHTHOCTB| s 59
4.2 Wsomopdumam| 61
[4.2.1 KapAnHaNbHOCTb. CyMMbl, NPON3BEAEHNS, SKCNOHEHTLI| 62
[4.2.2 Anrebpandeckoe NpeACTaBAEHME TUMA| v o v v v v . 63

[4.3° PekypcuBHbIE TUMbI| 65
[4.3.1 TIpOCTO CIMCOK| o e 65
[4.3.2 HenoABWM)XHasl TOYKA DYHKTOPA| v v i i e e 67
[4.3.3 CxeMbl PEKYPCUW| 68

[4.4 Bce uepes CBEPTKU| 70
441 Deforestation & fist fusion 71
[4.4.2 Visitor pattern| 73

4.5 Bce yepe3 pasBeEPTKY| 74
[4.5.1 AOCTpakTHble TUMbl JAHHbIX 75
452 Stream fusionl 76

[4.6 Besgecylmin ayanuaMm|o e 7’
[4.6.1 Push vs pull streaming| 78
462 Datavscodatal 78

[4.7 TlpnnoxeHne: KaTeropus anrebp| 80

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

1

o
w

104

105

106

107

108

109

110

111

112

113

b WMurtepnperatopsl 83

(5.1 WHTepnpeTaTopbl KAK OCHOBA OCHOB|« . . v i it e e 83
(5.1.1 bBawHs MHTEPNPETATOPOB| o o o o e e 83
[5.1.2 VHTepnpeTaTopbl MOBCHOAY| - « - « v v v v v e e e e e 84
[5.1.3 VHTepnpeTaTopbl 1 CEMAHTUKA 513bIKOB MPOrpaMMUpoBaHmsl 85
[5.1.4 BcTpoeHHble foMeHHO-CcneunduyHble s3biku (eDSL)| L. 87
5.1.5 Tlpumep: bnbanoteka Acceleratelo 89

5.2 Twunbl 3HAYeHWIl 89
[(5.2.1 Untyped tagless interpreters| 89
[5.2.2 Typed tagged interpreters| 90
[5.2.3 Typed tagless interpreters| 90

5.3 CBaA3bIBaHMSA N MYHKUMW NEPBOMO KAACCA|l . . « « © v v o v e e e e 91
B.3.1 CeMaHTMka UMEH| 91
[5.3.2 [logCTaHOBKUM| 92
5.3.3 OKpYXXEHWE 93
B.3.4 3aMblKaHUsl 94
[5.3.5 TwvnuampoBaHHbIA KOHTEKCT|« o o o i e et e e e 95
[5.3.6 Meta-circular untepnpetaumsl L 95
[5.3.7 CWHTAKCUC BbICLLIErO MOPSAAKA|l v o o v et e e e 96
5.3.8 Cepuanuzaums @YyHKUWAA[. L o7

[5.4 Tagless final nHtepnpeTaTopbl| 08
[5.4.1 Pa3Hble nHTepnpeTauun ansa shallow embedding| 98
5.4.2 JHoWTW A0 KOHLA| o 99
[5.4.3 BoccTaHoBneHne KOMNO3WUWOHHOCTN CEMAHTUKW| 100
[5.4.4 Typed tagless final interpreter] 101
[>.4.5 BcTtpeyaem ctapbix gpy3en: Applicative, Monad| 102

5.5 Expression problem| 104
[5.5.1 KonpousBegeHne MYHKTOPOB| 105
[5.5.2 TlpomsBemeHune anrebdp| 106

6 MpoponxeHus (continuations)| 108

(6.1 KoHUENUMS NMPOAOSIKEHWIA| 108
6.1.1 Reduction semanticsl 109
6.1.2 Continuation semantics 111
[0.1.3 TlpogosiXeHns NEPBOrO KNACCA| v o v v e et e et 112

6.2 TlpogonxkeHnst CBOMMUW PyKaMUW| 115
[6.2.1 JleyHKUMOHAAN3AUNSA U aKKYMYASTOPbI| 116
[6.2.2 Monad Contl. 117
6.2.3 call/ccl., 119

6.3 Delimited continuations 119
[06.3.1 Peanmzaums onepaTopoB| e 121

114

115

116

117

118

1

—
©

120

121

122

1

N
w

124

125

126

127

128

129

130

131

132

133

134

(6.4 TlpynoxeHust NPOAOSDKEHWI| 123
[6.4.1 Bce 4epe3 npodo/KEHNS| e 123
0.42 [he motherof all monadsl 125
[0.4.3 TeHepaTopbl M KOPYTUHbI| 127

6.5 IDddekTnBHAS paboTa C MPOAO/DKEHUSAMM| o o i e 128
[6.5.1 Contiguous stack| 128
06.5.2 CerMeHTHbIN CTeKl. e 128
[6.5.3 Finite state machine (FSM)| 128

[/ DdphbekTbl M MOAYbHbIE MHTEPNPETATOPDI| 130

[7.1 TloHaTue abdeKTal e 130

[7.2 XeHanepbl SDMEKTOB| o 132
[7/.2.1 XeHAonepbl 4epe3 OorpaHnyeHHble NPOAOJIKEHNS| 133
[7.2.2 DM@EKTUBHAA peann3aumns XeHANepoB| 133
[7/.2.3 BcCTpoeHHble XeHANEPbI KaK sIBHAsl KAWEHT-CeEpBEpPHasi KOMMYHUKauus| . . . 134
[7/.2.4 Pacwupsiemble COODLLEHNS 1 nepecbikal 135
[7.2.5 CBobogHble MOHAAbI 136
[/.2.6 XeHanepbl 4epe3 CBODOAHbIE MOHAAbI| 137
[7.2.7 TlpunoxeHnsa XeHONEPOB| 138
[7.2.8 TpaHcopMepbl MOHA[| o o 139
[7/.2.9 Anrebpan4HOCTb U 3(PMEKTbI BbICIUMX NOPAAKOB| 139

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

166

167

168

BeepneHune

MHorne cnoXHble KOHLENUUN B AN3aliHe A3LIKOB 1 MPOrpamMM MOryT ObiTb MOHATLI KAk YaCTHble
CNly4an HEKOTOPbIX MPOCTbIX (hyHAAMEHTANIbHbIX NMPUHLMNOB, KOTOPbIE, Kak MpaBuiO, CHUTALOTCS
00LLEeN3BECTHBLIM (DOSILKIOPOM, He TPeBYHOLLIMM JONOAHUTENbHbLIX NOsiCHeHUA. OAHAKO, CIOXKHOCTb
B TOM, 4TO 3TV 3HAHWUSI pacCesiHbl MO KHUIaM, CTaTbaAM U “KynbTOBbIM" Baor-nocrtam, n TpebyeTcs
JIOBOJIbHO MHOIO BPEMEHU U CUN AN BOCCTAHOBNEHUS LIENOCTHOW KAapTUHbI.

Llenb naHHoro kypca — cobpaTb B OAHOM MecCTe Takune pOoNbKAOPHbIE 3HAHUSA U OPraHM30BaTb
X B HEKOTOPYO cuctemMy. Kypc byaeT siBHbIM 0Opa30M OnNMpaThbCs Ha Kilaccuyeckne paboThbl, UC-
clneytoLne NpUHUNUNbI MOCTPOEHUST SA3bIKOB, U MOMOraTh B UX U3y4deHun. [TpocMoTp ynoMmnHaembIx
CcTaTell SABNSAETCS BaXKHOW 4aCTbo CaMOCTONATENIbHOW paboThl B paMKax Kypca.

[Mon pyHKUMOHANBHBIM MPOrPaMMUPOBAHNEM, BbIHECEHHBIM JlaXKe B 3ar0/I0BOK Kypca, NOHUMa-
eTCsl TpeneTHOe OTHOLLUEHWe K MOHATUIO adpdekTa, koTopoe B PI1, B oTAnMYMe OT APYrux LLUKON
MbICI, HE CHUTAETCS aKCMOMATUYECKOW AAHHOCTbLIO, HO MPeAMETOM [Jist U3YYeHUs, CO3HaATENb-
HOrO KOHCTPYMPOBAHUSA U aKKypaTHOrO obpalleHns. DTOT MOAXOA OKa3bIBAETCS OYeHb MOJIE3HbLIM
ANS N3YHEHUS S13bIKOB, NOCTPOEHUNSA MOTYLLECTBEHHbIX S3bIKOBbIX KOHCTPYKLUMA, a TaK »Ke SABASETCS
OCHOBOIi ANst NPOAYKTUBHOIO CTUAS MPOorpaMMunpoBaHunsi. Kpome Toro, yHKUNOHANbHbIE SA3bIKYK
CPaBHUTENBLHO MPOCThI, B Pe3y/bTaTe Yero HOBble UAEN U NOOXOAbl HEPEAKO 3apPOXKAAtOTCsl B HUX 1
PacnpoOCTpaHSAOTCA nanee.

B kauyecTBe 0CHOBHOro sA3blka Kypca BblbpaH Haskell, Tak kKak OH, C 0fjHOli CTOpPOHbI, BOMJIOLLIAeT
B cebe MHOrune KOHUENUMn, 4acTo J0BeAEeHHbIE 10 HEKOTOPOro JIOrMYeCKOro 3aBepLUeHnst, n JocTa-
TOYHO MOTYLLECTBEH ANs KoanpoBaHus apyrux. C agpyroli CTOPOHbI, BCE eLLE SIBASAETCS NPUKIagHbIM
NPOMbILLNEHHbLIM SA3bIKOM NMPOrPaMMUPOBaAHUS.

B cBA3M C WnpoToli KOHTEKCTa, AaHHbI Kypc He Bcerfa siBasieTcst rnybokum. Tak, geTanu
peanu3auunm B8 GHC nnmn Teop-kaTeropHble OCHOBaHWs BELLEl MOTyT JaBaThCsA B 00LleM Buae 1 6e3
KOHKPETWKIK. B TO e BpemMs, B NAOCKOCTU S3bIKOBOIO AM3aiiHA Yepe3 ONTUKy OyHKUMNOHANBHOIO
NPOrpaMMIMpPOBaAHNS KYPC MNbITAaeTCsl OblITb MAaKCMMaNbHO NOAPOOHbLIM.

Takum 06pa3oM, JaHHbIA KypC MOXET ObITb MoJie3eH TeM, KTO UHTEPecyeTCs AM3aliHOM si3bl-
KOB N KPacuBbIMK 0OOBLLEHVSIMU MPOrPaMMUCTCKMX KOHLIENLWUIA, XO4eT YyayylluTb CBOW HaBbIKM
npoekTupoBaHusa API, nnn nnaHupyeT BeCTU NPaKTUYECKYIO AEATENbHOCTb Ha (PYHKLMOHANbHbIX
SA3bIKax.

[MpepekBN3NTOM K MPOXOXKAEHUIO KypCa SABNASIETCSA 3HaHWE OCHOB (DYHKLIMOHANBLHOIMO MPOrpam-
MUPOBaHUSA: anrebpanvyecknx TUNOB AaHHbIX, MAaTTEPH-MaTUYNHIa, CBEPTOK, NapaMeTPUYECKOro no-
nmopdur3ma, KnaccoB TuMnNoB, 6a3oBbIx MoHaAd. JononHnTenbHO ByAeT NONE3HbIM YMEHNE YNTaATb
TUNoBble APobU, 3HAKOMCTBO C NMOAUMOPMHLIM A-UCHUCNEHNEM 1 KOAMPOBaHUeM Hépya.

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

186

187

188

190

191

192

193

194

1 BocnomuHaHunsa o @Il

B aTom pasgene Mbl BCMOMHUM OCHOBHblE KOHLEMUUN (DYHKLMOHANBHOIO NporpaMMpoOBaHns
n a3bika Haskell.

1.1 Tepmbl n pepykums

B ®I1 nporpammbl npeactaBnsitoT coboii BbipaXkeHust. BbinonHeHne nporpamm — peaykuus
TaKMxX BblpaxkeHnn o 6onee “npocTtbixX’. BbipaxkeHnss MOXXHO NPeACTaBNSATb Kak B BUAE JIMHENHOW
3anncu CUMBOJIOB, TaK U B BUAE AepeBa, 415 MOHMMAHNS KOTOPOro He TpebyeTcs 3HaHMS BCMOMO-
raTeNbHbIX NPaBWJl aCCOLUMATUBHOCTIM 1 MPOMY.

[MpocTelwnii PyHKUNOHANbHBIA SA3blK — A-UcHncaeHune. BblipaxeHns B HEM Ha3blBAlOTCA A-
TepMamu, KOTOpble COCTOSAT W3 BePLUMH Tpex BMAoB (V' — MHOXECTBO BalMAHbLIX NWAEHTUMDUKATO-
poB, A — MHOXXECTBO A-TEPMOB):

lNepemeHHble x € A\, echn x € V X
A
]
AobcTtpakumsa (Ax. M) e A, ecimm x € V,M € A\ M
©
/ \
Annavkauma (M N) e A\, eciu M e A, N € A M N

B Npon3BOSbHOM BbIPaXKEHNN MOXXHO 3aMEHUTb HEKOTOPbLIA ero parMeHT Ha opMasbHbIii
napameTp, KOTOpbIlfi AOMKeH ObiTb 3aAeKIapyupoBaH Bbille MO AEPEBY C MOMOLLLIO CMeunabHol
BeplWuHbl A. BmecTo dopmanbHoro napameTpa MOXHO B AafbHEAWEM MOACTABASTL Pa3/inyHble
KOHKPETHblE MapaMeTpbl C MOMOLLbIO BEPLUMHbI-anmankaumy @, To eCcTb Mepencnonb3oBaTb 3TO
BbIPaXKEHNEe ANs Pa3anyHbixX ueneit (Hanpumep, cM. puc. [1]). Pegykuns kak pas onpegensietcst kak
cneflytolliee NpaBuio NEPEnnNCLIBAHNS: ULWETCS NPUMEHEHNE A-(DYHKLMM K apryMeHTY 1 B €€ Teso
OCYLLIECTBISIETCS MOACTAHOBKA apryMeHTa BO BCe CBOBOAHbIE BXOXKAEHWS NEPEMEHHOM, CBS3aHHOM
nsmbgoii (puc. |2)).

1.2 Twvnbi

[MporpammHoe obecnedeHne — 3TO CNOXKHO. [103TOMY NOCTOSIHHO U HEN3DEXXHO B MpOrpamMmax
BO3HUKAIOT OWMNOKK. VIX MOXXHO MCKaTb, B TOM 4YKCe, CTaTUYECKN, TO eCTb 6e3 3anycka nporpam-
Mbl. OAHUM U3 BUIOB CTAaTUYECKOro aHasn3a SIBSIETCS aHaAn3 TUMOB.

N A
NG Lom .
N A
10/ \4 y/ \2 TN

Puc. 1: Bblpa)keHune C NOMOLLbIO A BepLUMHbI NpeobpasyeTcst B PpyHKLUIO OQHOrO aprymeHTa.

M [x — N M

Puc. 2: Penykumsi nepenucbiBaeT AepeBO NYTEM MOACTAHOBKM KOHKPETHOIrO apryMeHTa BMECTO
dhopmanbHOro napamMeTpa.

195

196

197

198

199

200

201

202

203

204

205

206

207

y 2

Puc. 3: epeBo cooTBeTCTBYIOLEE BblpaxxeHnto (Ay. x + (y +2)) 3.

Q:int
/ \
A int — int 3:int

t —

o o y int

/ \
X int + :int
/r V‘\
y:int 2:int

Puc. 4: Jepeso Bbipaxketust (Ay.x + (y +2)) 3 nocne npunucbiBaHNst TUNOBbLIX METOK.

Npest aHann3a TUNOB COCTOUT B TOM, YTO Ka)XkAOl BepLUVHE AepeBa NporpamMMbl Mbl NbITaeMCs
NPUNNCaTb HEKOTOPYHO CUHTAKCUYECKYO METKY MO onpefenéHHbIM npasunam. Ecnm Takum obpasom
KaXX[Ooli BEPLUMHE MOXHO MPUNMCcaTbh METKY, TO Mbl CHMTAEM, YTO MporpamMma NpOXOAUT MPOBEPKY
TUNOB, 1 OHa “xopowas”. Hanpumep, Ha pucyHke [3| npeacTaBneHo Bbipa)keHUe, a Ha pPUCYHKe
Ka)XA0W BepLUMHE MPUMMUCaHbl METKK B COrace C HEKOTOPOI CUCTEMOW TUMOB.

Cucrema TMNOB onpefensieT CUHTAKCUC TUMOBbLIX METOK 1 MpaBuia, No KOTOPbIM UX MOXHO
npunucbiBaTb. CMHTAKCUC OObIYHO OMUCLIBAETCS B Kaaccumyeckux HoTauusix a na BNF, a npa-
BUWJA B BUAE TUMOBLIX Apobeii. Hanpumep, Tak BbIFAAAT ApoOU Ans NPOCTO-TUMU3MPOBAHHOMO
A-NCHUCNEHNS:

(x:o)el [EM:io—T [EN:g . X:O}UTEM:T
FFx:0 Fr-EMN:T elm FTFXMXC M0 — T

intro —

TunoBble METKN MMEIOT YACTO-CUHTAKCUYECKYHO NPUPOAY, OAHAKO UX MOXXHO NMPONHTEPNPETUPO-
BaTb. Camas nonynspHast UHTEpPNpeTaLnst — BOCMPUHUMATL TUMOBYIO METKY Kak MHOXECTBO. Tak,
MeTKe int — int MOXXHO MOCTaBWTb B COOTBETCTBME MHOXECTBO (DYHKLNIA MeXay MHOXeCTBaMu
uenbix Yucen Z — 7.

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

1.3 ®yukuum B Haskell

B cBoeli ocHoBe Haskell npeactaBnsieT coboli paclunpeHHOe TUMU3NPOBAHHOE A-UCHUCNIEHME,
JOMNOSIHEHHOE NMPUMUTUBHLIMU TUMAMU, BO3MOXHOCTbLIO [IEKNAPUPOBATh HOBbIE UMEHA, CTPYKTypa-
MW AAHHbIX U K1accamun TUMOB.

Mpumepbl A-abcTpakunii B REPL okpy»xennn GHCi:

1 ghci> (\x -> x + 1) 4
2 5

MoXHO y3HaTb Tun yHKUMM B nHTepnpeTaTope (B peanbHOCTY YKUcaa NOSMMOPMdHbIE, HO 06
5TOM fJafee):

1 ghci> 1t \x -> x + 1
> \x ->x + 1 :: Int -> Int

DYHKUMSAM MOXHO [aBaTb MMeHa. VIMeHamM MOXXHO MpunucbiBaTb TUMbl, 3TO PEKOMEHIYeTCs
JenaTb SIBHO ANl Aeknapauuii Ha BepxHeM YpoBHe halifioB NCXOAHOIro KoAa:

1 £ :: Int -> Int
2 fx=x+1

Ecan umMs Tvna HauMHAeTCst C MaNeHbKOW OYKBbI, TO 3TO HE KOHKPETHbLIV TWM, a TUNoBas ne-
pemMeHHasl, CnocobHast NPUHUMATL Pa3NYHbIe 3HAYEHNA B 3aBMCUMOCTM OT MeCTa Bbi30Ba. |akas
BO3MOXXHOCTb Ha3blBAaeTCs NapamMeTpmuyeckmm nojmmopdunsmMmom. Tak, dyHKUUS, KOTopas Npo-
CTO BO3BpALLAET CBOW apryMeHT, HUKaK He OrpaHMyMBaeT Tun aprymeHTa. Ho B TO »xe Bpems Tun
pe3ynbTaTa [OJIXKeH CoBnajaTb C TUMOM aprymMeHTa:

1 id :: a -> a
2 1d x = x

3 ghci> :t id 5
4 1d 5 :: Int

DyHKUUM MOTYT NPUHUMATL Apyrie yHKUMN B Ka4eCTBe apryMeHTOB (Takune pyHKUMIN Ha3biBa-
toTcs chyHkumamum Boicumx nopsigkos (higher-order functions). Vima dyHKUmMM MOXeT cocToATb
N3 crneumanbHbIX CUMBOJIOB, TOMAA OHA CHMWTAETCSt ONEPAaTOPOM U MOXKET MPUMEHSATLCA K CBOVM
onepaHzam B WH(MUKCHOM CTUNE:

1 ($3) - (a->b) ->a ->b
> £ P x=°fx

[Mpumep pekypcrBHOU OYHKLUN, NCNONb3YHOLLLE OXpaHHble BblpaXKeHUs Ans oTandeHns 6a3o-
BOrO Clly4ast pekypcun:

228

229

230

231

232

233

234

235

236

237

239

240

241

242

243

244

245

1 factorial :: Int -> Int

2 factorial n

3 | n <1 =1

4 | otherwise = n * factorial (n - 1)

YnpaxHenune 1 Y70 BbiBegeT 3anpoc ghci> :t uncurry (flip const)?

YnpaxHeHue 2 Y710 BbiBegeT 3anpoc ghci> :t first . first npu
; first :: (a -> a') -> (a, b) -> (a', b)

YnpaxHenune 3 Peanusyiite hakTopmaa C NOMOLLbI TEXHUKU aKKyMYIUPYHOLLEro napameTpa.

1.4 [dannble B Haskell

B Haskell ecTb BCTpoeHHasi BO3MOXXHOCTb 0O bSIBAATH HOBblE TUMbl AAHHbLIX HA OCHOBAHUW ApY-
rTMX TUMOB, a TaK »e Co3JaBaTb WX 3K3eMMAsAPLI.
3a4aauMM TUN AAHHBbIX, ONUCBIBAKOWMA XUBOTHBLIX:

1 data Animal
2 = Cat String Int
3 | Dog String

Mbl 3agann Tvn AaHHbIX Animal 1 ABa cnocoba co34aThb 3HAYEHUS 3TOro TUNna: ANst KOLIEK U
cobak. Cat U Dog — 3TO KOHCTPYKTOPbI AaHHbIX. OHW npeacTaBnstoT coboii yHKUMK, peanu-
3aLMs KOTOPbIX HAXOAUTCS Ha CTopoHe s3blka. OHU BbIAENSOT NaMATb MO 9K3EMMSPbl AAHHOTO
TUNa 1 NO3MLUMOHHO Pa3MeLlatoT KOMMOHEHTbI. Kollek Mbl OMMWCbIBAEM WMEHEM K OCTaBLUMMCS
KOJIMYECTBOM >KN3Hel, a cobak — TOJIbKO NMEHEM.

1 Cat :: String -> Int -> Animal
2 Dog :: String -> Animal

HT00blI BOCNONb30BATHCA MHDOPMALIMEN, COXPAHEHHON B CTPYKTYPE AaHHbIX, TpebyeTcsa AeKOH-
CTPYMpOBaTb €€ C NOMOLLbIO NaTTepH-MaTHNHra. Mbl conocTaBnsieM 3Ha4eHWe Tuna c obpasLom.
Ecnn obpasel noxoxk Ha TO, Kak ObINO CKOHCTPYMPOBAHO 3HAYeHNE, TO OH BblIbUpaeTCcsa cpean Apyrux
0bpa3LoB 1 NepeMeHHble, 3a4eKTapupOBaHHble B HEM, HAa4YNHAKOT CCbINIAaTbCS HA COOTBETCTBYOLLEE
NO3MLMOHHO COAEPXKUMOE CTPYKTYPbl AAaHHbIX:

1 show :: Animal -> String

2 show animal = case animal of

3 Cat name nlLifes -> "This is cat " ++ name ++ " " ++ show nLifes
4 Dog name -> "This is dog " ++ name

B Haskell ecTb cneymanbHblii CUHTAKCUC Aas1 OO BbABAEHUSA NOAeH C UMEHOBAHHBIMU METKAMU.

10

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

1 data Penguin = Penguin { getName :: String, getAge :: Int }
> penguin = Penguin { getName = "Andrey", getAge = 500 }

Haskell reHepupyeT dyHKLUN-aKCeCCOPbl ANS AOCTYNa K NoasiM obbekTa:
1 ghci> :t getName :: Penguin -> String

HacTo yHKUMM B MPOrpaMMIUPOBaAHNN HaCTUYHbIE — MPU HEKOTOPbLIX 3HAYEHUAX apryMeHTOB
OHW MOTYT BEPHYTb Pe3y/NbTaT, a Npu HEKOTOPbIX — HeT. [laBaliTe MOAENMpPOBaTb 3TO C MOMOLLbIO
crneumanbHOro TMna JaHHbIX. Ecnm ecThb BellecTBeHHbIR pe3ynbTaT, byaeM Bo3BpalWwaTh ero. Ecam
HeT, OyaemM BO3BpallaTb CMeLManbHO BblJeIeHHOE KOHCTAHTHOE 3HaYeHne 3TOro Tuna.

1 data MaybeD = NothingD | JustD Double
2 sqrt :: Double -> MaybeD
3 sqrt x = if x < O then NothingD else JustD (calcSqgrt x)

MO>XXHO 3aMeTuTb, 4YTO TakK HaM NpUAETCA 0bbaBNATE no Tuny MaybeT ana kaxgoro tuna T.
lMoaTomy Haskell no3sonsieT abcTparmpoBaThCs B TUMNE, aHANOrMYHO TOMY Kak MOXHO abcTparu-
pPOBATbLCSl MO 3HAYEHUSIM B TEPME.

1 data Maybe a = Nothing | Just a
2 sqrt :: Double -> Maybe Double
3 sqrt x = if x < 0 then Nothing else Just (calcSqrt x)

3ameTbTe, 4TO ceilyac Maybe — 3TO He COBCEM TUM, TaK KaK Tenepb Hy>XHO nepeAaTb TUMNOBOL
napameTp, 4Tobbl MONYyYNTb KOHKPETHbIV Tun. Maybe Ha3biBatOT TUMOBbIM KOHCTPYKTOPOM.

BmecTe ¢ abcTpakumneld Ha ypoBHe TWUMOB MOsIBUMAChL U annaukaumst Tuna K Tuny. A 4To ec-
NN AaTb MEHbLUE NMapamMeTPoOB TUMOBOMY KOHCTPYKTOPY, Yem oxxupaaeTcsa? A 4To ecnu bonblue?
KOHTPONb 3a KOPPEKTHOCTLIO TUMOBbLIX annAnKaumii obecnednsaeT cmcTema kaitnaog'| 3To npo-
cTeiilume “Tunel Ans TUNOB', TO €CTb CUHTAKCMYECKME METKW, KOHTPOJIMPYHOLINE KOPPEKTHOCTb
3anuncaHHbIX NPOrPaMMUCTOM TUMOB. Tak, 0ObIYHbIE TUMblI UMEIOT MeTKy (KaliHg) *. TunoBble KOH-
CTPYKTOPbl MMEIT CTpenoYHble KailHabl. Hanpumep, Maybe :: * -> *. Annaukaumst TUNOBOro
KOHCTPYKTOpPA K TUNy NOAXOASLLEro KaHAa youpaeT oAHy CTPenky:

1 ghci> :k Int

2 Int :: *
3 ghci> :k Maybe
4+ Maybe :: *x -> %

5 ghci> :k Maybe Int
6 Maybe Int :: *

KpoMe coBepLLUeHHO HOBbIX TUMOB AaHHbIX, B Haskell MoXxHO 0ObsBNATL TUNOBbIE CUHOHUMBI.
ITO VMEHA, KOTOPblE MOXXHO UCMOJIb30BaTb BMECTO APYrnx TUMOB, €CAN, HanpuMep, 3annucb opu-
FMHANbHOIO TUMNA CAULLKOM AJIMHHASA AN MOBCEMECTHOrO HaMUCaHUs:

“MHoraa B pycckossbI4HON NUTepaType KaliHgbl Ha3biBalOT PoAamu TUMOB, HO Mbl He ByJeM Tak roBopUTb

11

266

267

269

270

271

272

273

274

275

276

277

278

279

280

281

282

1 type T a = VeryLongType Int (a -> AnotherLongType a)

Ecam Tun AaHHbIX COAEPXKNT TOJIbBKO OANH KOHCTPYKTOP N TOJIbKO OAHO MOJIE, TO OTCYTCTBYET
HeO6XO,£I.I/IMOCTb B aJloKauun HOBOW NaMsiTu, CO,D,GD)KaLLI,eM TEr KOHCTPYKTOPa Ha6op CCbIJIOK Ha
nonsi. B Takom CNy4dae, B Ka4eCTBE 3HAYEHNA TaAaKOro Tuna MOXHO BCerga npocTto NCnoJjib30BaTb
3Ha4eHNne O60pa‘-IVIBa€MOFO TnNa, OCTaBAASI HOBbIA TUN NMPUCYTCTBOBATb NCKHOHYNTENIbHO BO BPeEMA
KOMNaAUnn, CHMXXasA HArpy3ky BO BPEMA NCNOJHEHUA. ,B,)'IFI 00BbsABNEHNSA TaKUx TI/II'IOB—O6épTOK
HY>XHO BOCMOJ1b30BATbCA KAOYEBbLIM CZIOBOM newtype BMECTO data:

1 newtype Courseld = Courseld Int64
2 newtype Moduleld = Moduleld Int64

Ynpaxuenue 4 Onpegennte KaiiHg KOHCTpYKTOpa Tuna

; data Free f a = Pure a | Free (f (Free f a))

1.5 Knaccbel Tunos B Haskell

MapameTpuydecknii nonnmopdrnamM No3BONASET UCMOAb30BAaTb OAUH U TOT XKE KOA ANS pa3fny-
HbIX TUMOB BXOAHbIX AaHHbIX. Knaccbl TUNOB Xe MO3BONSIOT OLHOMY WAEHTUMUKATOPY CCbiNaTb-
Csl Ha pasHble peanusaunmn Aasi pasHbiX TWUMOB AaHHbIX (YTO aHaNOMMYHO MEXaHW3MY MeperpysKu
(overloading) B apyrux si3bikax). Knaccbl TUNOB, Kak roBOpsIT, SIBASAIOTCS MeEXaHU3MOM Cheuuasib-
Horo (ad-hoc) nonnmopdmama. Tak, Mbl MOXKEM 3aAeKNaprpoBaTb CUMBOJ ==, BbIOOP peanunsa-
LN KOTOPOro 3aBUCUT OT Bblbopa TuMNa aprymMeHTOB a:

1 class Eq a where
2 (==) :: a -> a -> Bool

,D,J'IF! Ka>X4oro Tmna MOXHO 00BsIBUTbL CBOIO CO6CTB€HHyPO peann3aynto Eq:

1 instance Eq Courseld where
2 Courseld x == Courseld y = x ==y

3 1instance Eq a => Eq [a] where
4 [] == []1 = True
5 X:!XS == y:ys = X ==y && xs == ys

Tenepb B 3aBUCMMOCTUW OT KOHKPETHOrO TWUMa a B MeCTe Bbi30Ba, OyaeT BbiOpaHa noaxoasLlas
peannsaymns aas 3Toro Tuna:

1 ghci> Courseld 1 == Courseld 2

2 False
s ghci> [Courseld 1, Courseld 2] == [Courseld 1, Courseld 2]
2 True

12

283

284

285

286

287

289

290

201

292

293

294

295

296

297

299

300

301

302

303

304

305

306

307

308

309

310

PaccMoTpeHHble paHee napaMeTpuyeckn-nofinmMopdHble OYHKLMM HAYEro He MO AenaTb CO
CBOWMM aprymMeHTaMi, KpOMe Kak BO3BpaLllaTb UX B Ka4eCTBe pe3y/ibTaTa Uav nepefasaTh B Apyrue
nonmmopdHble yHKUMKM. HTobblI YMeTh AenaTb YTO-TO €€, HY)XHA Kakasi-TO AOMNOJIHUTENbHAs
NHopMaLMst NPO TUM, NOTOMY YTO MHAYe HET HUKAKOW rapaHTuM, YTO HaJ OO bEKTOM AAaHHOIO TuNa
MOXXHO JlenaTb BCe HeobxoAaumble onepauun. Tak, ddyHkUMst suc n = n + 1 He OyageT paboTaTb
ANsi CTPOYeK, MOTOMY YTO A/ HUX, OYEBWUAHO, He onpeneneHa onepauuns cnoxerus. [losTomy
HEKOPPEKTHO ByaeT NpunucaTb NOAMMOPMHbLIA TN suc :: a -> a.

Knaccbl TUNOB, B OTANYMNE OT NEPErpy3Kn, B TOM YUC/E SBASKOTCS MEXAaHU3MOM OrpaHNYeHus
noAnMOpHOCTY PYyHKUMA. Mbl MOXXEM SIBHO 3a4aTb, YTO OYHKUMS TpebyeT He NPOU3BObHbIV TUN
Ha BXO/l, @ NMPOU3BOJIbHbLIA TWUMN, ANt KOTOPOro onpefefieHbl 00s3aTeNbHO HY>XXKHble HaM onepauuu.
Tak, Anst Tuna suc A0CTATOYHO OrPaHUYUTL TUM YCAOBMEM HAAUYUS Naroca Anst Hero (onepaumst
obo3HayaemMasi CMBOJIOM + 0ObsiBNeHa B Kaacce TWMoB Num):

1 suc :: Num a => a -> a

YnpaxdeHune b Peanusyiite byHKUMIO, NPOBEPSIHOLLYHO PABEHCTBO BCEX 3/1EMEHTOB JAHHOIO CIC-
Ka.

YnpaxHeHue 6 PeasnusyiiTe uHCTaHC nNoayrpynmbl 4151 OyHKUUIA.

YnpaxHeHune 7 Peanv3yiite npoBepKy paBeHCTBa (OyHKLWNIA.

1.6 Monaabl B Haskell

Knacc Tunos Functor oObsABASETCSA AN KOHCTPYKTOPOB TUMOB 1 MO3BONSET 3aMEHUTL B HEKO-
TOPOM KOHTEliHEpe BCE 3NEMEHTbI OAHOIO TWMA Ha BCE 3/1EMEHTbI APYroro, OCTaBAssA CTPYKTYpYy
KOHTENHEPA HEU3MEHHOM.

1 class Functor (f :: * -> %) where
2 fmap :: (a -=>b) ->fa->fb

s instance Functor [] where

4 fmap :: (a -> b) -> [a] -> [b]
5 fmap _ [1 = []

6 fmap f (x:xs) = f x : fmap f xs

B Haskell ntobasi doyHKLMSI NPOCTO BbIYUCASAET pe3ynbTaT HekoToporo Tuna. OaHako B Nporpam-
MUPOBAHUS HaCTO TPebytoTCa PYHKLUN, KOTOPbIE HE TONBKO BbIYNCASIKOT pe3ynbTaT, HO U AenatoT
4YTO-TO elle. Hanpumep, U3MEHSIOT Kakoe-TO COCTOSIHWE WAW MULLYT B KOHCOJb. VIHbIMUW CnoBa-
MU, NPou3BOAAT noboyHble ahpdekThl. B ntobom cnydae B Haskell Mbl MOXXeM TONBKO BEPHYTbH
13 OYHKUUWN TONbKO Pe3ynbTaT, NO3TOMY Takue nobouHble 3hdeKTbl Mbl KOAMPYEM B KadecTBe
JIONOSIHNTENBHOW CTPYKTYpPbl, 0DopaYvnBatoLLell YNCTLIA pe3ynbTaT. T.e. ecnm byHKUMs 6e3 nobou-
HbIX 2bheKTOB BO3Bpalllafia Kakol-To Tun a, To nocne aobasneHns Nobo4YHbIX 3PDEKTOB B €€
peannsauunto, oHa byaeT BO3BpaLLlaTb HEKOTOPLIV TUN BbiyucaeHni £ a.

13

311

312

313

314

315

316

317

318

319

320

321

o Ecnan dyHkuma kKnaaeT ownbky, To £ = Maybe.
e Ecam dpyHkumsa ymTaeT rnobanbHoe cocTtosiHne Tuna e, To f = e -> _
e Ecan dbyHKUMS ynTaeT rnobanbHOE COCTOsIHME 8 U obHoBNsAeT ero, Tof = s -> (s, _).

CtaHnpapTHast bubnunoteka Haskell npepgocTtaBnsieT HECKONBKO KMACCOB TWUMOB Aast paboTbl CO
3HaveHusMu Buaa £ a. OHUM No3BONSIOT abCcTparmpoBaThbCs OT CTPYKTypbl £ 1 paboTaTb CO 3Ha-
YeHUsIMN a BHYTPW, KakK OYATO HET HUKAKOU JOMOSNHUTENbHOW CTPYKTYpbI.

[MepBbIli Takol KNacc TUMNOB MO3BOSET NUCAThb BbIPAaXKEHUsT Haj BbluncaeHusmmn £ a.

1 class Functor f => Applicative (f :: *x -> %) where
2 pure :: a -> f a
3 1iftA2 :: (a -=>b ->c) ->fa->fb->1fc

4+ 1nstance Applicative Maybe where
5 pure :: a -> Maybe a
6 pure = Just

7 1iftA2 :: (a -> b -> ¢) -> Maybe a -> Maybe b -> Maybe c
8 1iftA2 _ Nothing _ = Nothing
9 1iftA2 Nothing = Nothing

10 1iftA2 £ (Just x) (Just y) = Just (f x y)

BTODOVI K1aCC TUNMOB MO3BOJIAET A€N1aTb NOCAeJOBaTE/IbHYKO KOMNO3NLUKO BbIYUCAEHUA B NM-
NEPATUBHOM CTUNE:

1 class Applicative m => Monad (m :: * -> %) where
2 (>>=) ::ma->(a->mb) ->mb
3 newtype State s a = State { runState :: s -> (s, a) }

4+ 1instance Monad (State s) where

5 (>>=) :: State s a -> (a -> State s b) -> State s b
6 m >>= k = State \s ->

7 let (s', x) = runState m s in

8 runState (k x) s'

Tenepb ecnn Mbl onpeaenum 6a3oBble onepauumn paboTbl C COCTOSIHMEM, Mbl CMOXEM MUCATb
KOJZl B MMEPATUBHOM CTuJie C NOOOYHBIMUN dchhekTamu.

1 get :: State s s
> get = State \s -> (s, s)

3 put :: s -> State s (O
4+ put newS = State \oldS -> (newS, ())

14

322

323

324

325

326

5 example :: State Int Int
6 example =

7 get >>= \x ->

8 put 42 >>= \(O ->

9 get >>= \y ->

10 pure (x + y)

11 ghci> runState example 1
12 43

,D,J'IFI TaKNX MOHaANYECKNX LEMOYHEK CYLLECTBYET CheunanbHbIl CUHTAKCUYECKNTA Caxap:

1 example :: State Int Int
2 example = do

3 x <- get

4 put 42

5 y <- get

6 pure (x + y)

YnpaxHeHue 8 Peanusyiite 1iftA3 Yepes 1iftA2.

YnpaxHeHnue 9 Peanusyiite >>= 4yepe3 join u Ha0bOPOT.

VYnpaxHenune 10 /|sa ynucna c kKoHconw, nogennTe oAHO Ha APYroe Hauesao v pacrnedatante pe-
3y/IbTAT, €C/IM OCTATOK HE HY/NIEBOW, pacrnedyaTaiite ero TOXe.

15

= 2 [lapameTtpunyecknin nonnmopcdunsm

328 Hukakoe HeTpuBManbHOE CBOMCTBO MPOrpamMM He MOXeT BbiTb anropuTMU4eckn nposepeHd]
320 YTOObI OCTaBaTLCS paspelnmMbiMy (B CMbICIE MPOBEPKM TUMOB /UNKN BbIBOAA), MHOTVE CUCTEMBI
330 TUMOB »KEPTBYIOT MOMHOTOW 1, MOMUMO HEKOPPEKTHbLIX NPOrpaMmM, OTBEPratOT MHOIO KOPPEKTHbIX.
31 B TO »Ke BpemMsi cucTtembl TUMOB TakXXe CTapatoTCa NpeAoCTaBsiTh pa3findHble BO3MOXHOCTH,
332 MO3BOJISAOLINE MPOTUNU3UPOBATL KaK MOXHO 6osiblile KOPpPeKTHbIX nporpamm. OaHa U3 HUX —
333 MapaMeTpUYeCcKnii nonumMopunsm.

334 [Mon napametTpuyeckum nosmmopdmnamMom Mbl Oyaem nofpasymeBaTb BO3MOXXHOCTb Koja
335 €ANHO0BPa3HO paboTaTb C NPOU3BOJLHLIMU TUNamu AaHHbix (Strachey [2000], |(Cardelli and Wegner
336 [1985], 4To No3BoNsieT BO MHOrMX cny4vasix n3beraTob AyOAnpoBaHUs KoAa.

337 B aToli rnaBe Mbl pacCMOTpPUM, Kak ONUCbIBAOT NOJMMOPAMU3M B CaMOM NPOCTOM BUJE — B TU-
33 MU3MPOBAHHOM A-UcHUCNeHUU. VI3ydum pasnnydHble hopMbl NapamMeTpuyeckoro noammopdusma u
339 COMYTCTBYHOLLME TEXHUKM BE30MaCHOro NporpamMmmMmnpoBaHus. NpoaHannanpyem BO3MOXKHbIE CMOCO-
340 Obl 9(O(PEKTUBHON peann3ayum napamMeTpuyeckoro noanmopduramMa. /1 B 3aBepLueHe pacCMOTPUM
31 NoNMMopdr3M No paHTalM-NpeacTaBaeHnto, “‘nonnmopdramM no nonnMopgusmy”.

« 2.1 TMapametrpuyeckunii nonumopdnsm B si3bike

343 A-abCTpakumsa no3BonsieT 0000LWaTh BbIPaXKeHWsA MO 3HAYEHUSM, Kaxkjasi abcTpakuns aobas-
34 JIAET CTPENIKY B TUM BbIPaXKeHUs, anninKaumnsa e CHUIMaeT CTPeSKy:

x:1T,ITFM:o ! r-M:17—0 FI—N:TA
(XX : T M:T—0 am F'EMN:o PP

us B TO »xe Bpemsi A-abcTpakums no3BonsieT 060bLaTh BblpaXKeHUs no Tunam, A00aBnsisi KBAHTOP
ss B TUN ([M-abcTpakunto), a nprMeHeHre Tepma K Tuny (yHuBepcanbHas annaukauus (universal
w7 application)) nosgonsieT BbIGPaTb, C KAKUM KOHKPETHBLIM TUMOM 3TOT TEPM MAAHUPYETCS NCMOSb-
us 30BaTb [Plerce, 2002, rnasa 23|:

r-M:1 T [FM:Voa.1
A M Va1 ' TEMo:[a—o]T

App

349 Takum obpasom, Hanpumep, pyHKUUA Id dDaKTUYECKN NPUHUMAET ABa aprymMmeHTa: TUM v 3Ha-

350 YEHUe.
id Voa.ao — o

id=No.Ax:a.x
id nat : nat — nat
id nat 42 : nat

351 B Haskell Tunosble abcTpakumm v annankaumy npunucbiBatoTCA HESIBHO MEXaHW3MOM BbIBO/A
32 TUNOB. OAHAKO, eCTb pacCLUMpPEHNS s13blKa, KOTOPbIE MO3BONIAIOT UX HanucaTb sABHO: [TypeAbstractions),
353 | [ypeApplications. 9To MOXXeET NOMOYb, HanpuMep, Korga UHhoOpPMaLUUn U3 TepMa He JOCTaTO4HO,
354 4YTOObI BbIBECTU TWM. Tak, MOXHO SIBHO CNeLUnann3nupoBaTh id Ha HY>XHbIV Tun:

Shttps://en.wikipedia.org/wiki/Rice%27s_theorem

16

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/type_abstractions.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/type_applications.html
https://en.wikipedia.org/wiki/Rice%27s_theorem

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

1 id :: forall a . a -> a
2 ghci> :t id @Int
3 1d @Int :: Int -> Int

KBaHTOPbI TakXXe MPUNUCHLIBAIOTCA HESIBHO B Hadaje Tuna, cliefyst KOHBEHLWUM WUMEHOBAHUS:
KOHKPETHbIe TUMbl Ha4YMHAOTCA C BoNbLUOW BYKBbI, @ NOAMMOPQHbLIE — C MaNleHbKOoW. AHanoruny-
HO, Y MONIb30BaTENS eCTb BO3MOXHOCTb SIBHO MpunucbiBaTh forall'bl C MOMOLLBIO pacLUNpPeHNs
ExplicitForAll. 2To MoxxeT noHagobutbcs nnbo 3a Tem, 4TOObI 3a4aTb BPYYHYHO MOPSIAOK TUMO-
BbIX abCcTpakuuii, n1nbo, 4Tobbl UMETb BO3MOXHOCTb COC/IaTbCs Ha abCTparnpoBaHHbIA TUN B Tene
dyHkummn (pactumpenne Scoped TypeVariables).

MonumMopdHble TUMbl AAHHbLIX 3aJatOTCA C MOMOLLLIO APYroli KOHCTpyKuuu. Ecnn paHee mbi
yNpaBAsAN TUMOM C YPOBHSI TEPMOB YHUBEPCAbHOI annankauuneld, To Tenepb Mbl XOTUM YNPaBAATb
TUMOM Ha ypoBHe TUNoB. [ns 3TOro Mbl BBOAUM A abCTpaKUUKO B TUMNax, anmnavkauuio B Tunax
n, cooTBeTCcTBEHHO, B-peaykumnto. CucTema KaiiHgoB (noka) npeacTaBnsieT coboil nMpocTeiillyto
“cuctemMy TUNOB Ans Tunos” 1 obecnevnsaeT well-formedness TuNoB n cTporyto HOpMaﬂVI3yeMOCTij.
Hanpumep, Mbl MOXKEM HanucaTb TUMN Napbl, abCTparnpoBaHHbIA OT KOHKPETHbLIX TUMOB KOMMOHEHT,
4TOObl NONL30BATENb MOT BbIOPATb HY>XKHbIE eMY:

Pair : x — % — %

Pair = XT" 0" NVy.(T =0 —7) = v

pair :Va B.aa — B — Pair a B

pair = Aa* B*. x® yP (ANY* NFOP2Y f x y)
fst:Va B.PairafB— o

fst=Aa* B \p"" 2P pa (K ap)

B Haskell BbluncnnTenbHyto cCeEMaHTUKY NOAMMOPMHbBIX TUMOB MOXXHO NPOCNeANTb B CUHOHMMAaX
TUMOB:

1 type Pair a b = forall ¢ . (a -> b -> c¢c) -> ¢
2 intPair :: Pair Int Int -- forall ¢ . (Int -> Int -> c) -> c

OO6blYHble KOHCTPYKTOPbI TUMOB HOMWUHaTWBHbLI. Hanpumep, (Int, Int) wam Maybe Int Hukyaa
Jlanee He BblYNCNATCS.

Haskell He no3BonsieT co3gaBaTh (DYHKLMKM HA TUMax Mo MecTy C MOMOLbIO SIBHOW TUMOBOIA
J'IFlM6,£I,b BBUAY NPo6eMaTUYHOCTUN 3TOW KOHCTPYKLUUN Ans BbiBoga Tunos. O4HAKO UMEHOBAHHbIE
byHKUMM Ha TUNax ecTb, W Mbl paccMoTpuM ux aanee [3.2] B Scala cyuiecTByeT HeTpuBUansHbIi
Tprovm, KOTOPbI NO3BOMSET 3TOro ob6UThCA. Scala3, oHako, BKAOYMAA 3TY BO3MOXXHOCTb HEmno-
cpeacTsento B A3bIKY]

SCrporasi HoOpManu3syeMocTb — nt060i NOPAAOK peayKumii NPUBOANT K HOPManbHOl hopme.

7https ://stackoverflow.com/questions/4069840/lambda-for-type-expressions-in-haskell

8(stackoverflow) Scala type lambdas.

https://stackoverflow.com/questions/9443004/what-does-the-operator-mean-in-scala
Ohttps://docs.scala-lang.org/scala3/reference/new-types/type-lambdas.html

17

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/explicit_forall.html#extension-ExplicitForAll
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/scoped_type_variables.html#extension-ScopedTypeVariables
https://stackoverflow.com/questions/4069840/lambda-for-type-expressions-in-haskell
https://stackoverflow.com/questions/8736164/what-are-type-lambdas-in-scala-and-what-are-their-benefits
https://stackoverflow.com/questions/9443004/what-does-the-operator-mean-in-scala
https://docs.scala-lang.org/scala3/reference/new-types/type-lambdas.html

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

2.1.1 Dmynsumsa TUNoBbIX abcTpakumii n annavkaumii (Proxy)

B Haskell pacwunpeHnus, no3sonstolime BpyHHyO 3a4aBaTb TUMOBbIE annankKauum n abctpakumum
NOSIBUNNCH CPaBHUTENBHO HenaBHoE. 1o 3TOro Nofb30BaNNCh CNEAYHOLLENR TEXHNKON.

B ctanpapTHoli 6ubnnoTteke onpeaenéx Tun Proxy C OAHUM MapamMeTpoM. DTO (haHTOMHbINA
TUMNOBOI NapamMeTp — 3HaYeHUs1 COOTBETCTBYIOLIEro TUMA He XPaHATCS B CTPYKTYPE AaHHbLIX, OH
TONbKO NO3BONSET pa3MellaTb AONONHUTENBHYIO MHOPMALINIO HA YPOBHE TMHOEE]. CooTBeTCTBEH-
HO, HEMH(OPMATNBHYHKO KOHCTAHTY Proxy MOXXHO MPOAHHOTUPOBATb HY>XHbIM TUMOM W NepeaaTb
B (OYHKLMIO, Y4TODObI Cneunani3npoBaTh TUMOBOW NapaMeTp Ha HYXXHbI Tun. VInm MO)XHO NpUHATL
Proxy n Bocnonb3oBaTbcs Scoped TypeVariables anst TMnNoBbIX curHaTyp B naTTepHaﬂ.

1 data Proxy a = Proxy

2 1id :: Proxy a -> a -> a
s ghci> :t id (Proxy :: Proxy Int)
1+ id (Proxy :: Proxy Int) :: Int -> Int

5 1id (Proxy :: Proxy [a]) x = (x :: [a)

VHorpa npokcu-tun oCTaBAAtoT NoanMopdHbiM, 4Tobbl He 3aBuceTb OT Data.Proxy. BmecTto
KOHKPETHOrO 3Ha4eHWst UHOrAA MepedatoT Cheumann3npoBaHHOE 3HadeHue 1, a nojaydaTenb, He
3Hast TUM, He CMOXeT ero gopcupoBaTb (0f4HaKo, tobble BXOXKAEHUS | B TEPM CANLIKOM HAcTo-
PaXKNBatoT, MO3TOMY 3TO CKOpPee He OYeHb XOpollast MPaKTKKa).

1 id :: proxy a -> a -> a
2 id (U :: proxy a) x = (x :: a)

5 ghci> :t id (undefined :: Proxy Int)
4+ id (undefined :: Proxy Int) :: Int -> Int

2.1.2 First-class polymorphism

CyuiecTByeT BO3MOXHOCTb NMUCaTb (OYHKLMW, KOTOPbIE MPUHUMAOT ApYrie nofnMopdHble hyHK-
LM B KA4ECTBE apryMeHTOB. T UMbl Takux pyHKUWIA Ha3biBatOTCs TUNamm Bbicwiero paxra (higher-
rank types), yx MOXHO MCMosb30BaTb C paclmpeHvem RankNTypes. Tak, TunoBoi napameTp
dyHKUUN g onpefenseT dyHKUUA £, a He BbI3blBAtOWNA DyHKLUIO f:

1 f :: (forall a . a -> a) -> (Int, Char)
2 f g = (g @Int 42, g Q@Char 'a') -- yHuBepcaJbHas ANIIUKANUS [AJIs HATJISTHOCTH
s ghci> £ (\x -> x)

I TypeApplications, |TypeAbstractions.

%https://wiki.haskell.org/Phantom_type

13T nnoeblii NnapameTp Ha camMoM Aene uMeeT noaumopdHble Kaiina data Proxy (a :: k) = Proxy, 4Tobbl 3Ta
TexHuKa paboTana C TMNaMK NPON3BONbLHBLIX KaliHAoB (CM. ganee .

18

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/scoped_type_variables.html#pattern-type-signatures
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/rank_polymorphism.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/type_applications.html#extension-TypeApplications
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/type_abstractions.html#extension-TypeAbstractions
https://wiki.haskell.org/Phantom_type

395

396

397

398

399

400

401

402

404

405

407

408

409

410

411

412

[Mpobnema TUNOB BbLICLIEro paHra B TOM, YTO WX BbIBOA HepaspellnM, TO eCTb rnobanbHblii
BbIBOA TUNoB Haskell B 3Tom cnyyae nepectaét paboTaTb. Ho ecnm Tunbl BbICLLIErO paHra npunucaTh
BPYYHYIO, OCTasIbHOW BbIBOA OyaeT paboTaTh Kak paHblle. Hanpumep, Yncna HYepya nmetoT BbiCLLWIA

pan

1 suc :: (foralla . (a ->a) ->a ->a) -> (a ->a) ->a -> a
> sucnsz=s (ns z)

YnpaxHenue 11 Kakoii paHr umeet Tun Int -> (forall a . a -> a)?

OT MHorux npobsieM conyTCTBYHOLIUX TUMNAM BbICLLMX PAHIOB MOXXHO M30aBUTbLCS, eClv Co3a4a-
BaTb AnsA Hux obepTkn. Hanpumep, ansa 4ncen Hepya MOXHO co3aaTb 0BEPTKY newtype Church.
Tenepb Koa, paboTatowinii ¢ OOEPTKON, MOXET ObiTb MPOTWUMU3MPOBAH TUMAMU MEPBOrO paHra,
TONBKO KOHCTPYKTOP MMEET TUMN BbICLIEro paHra:

1 newtype Church = Church (forall a . (a -> a) -> a -> a)
2 (+) :: Church -> Church -> Church -- rank 1

AHanornyHelii Ko MoXKHO HanucaTtb 1 B Java (Kotlin):

1 interface Church { fun <a> fold(s: (a) -> a, z: a): a }
> fun plus(n: Church, m: Church): Church = object : Church {
3 override fun <a> fold(s: (a) -> a, z: a): a = n.fold(s, m.fold(s, z))

"

[To ymMONn4aHuO TUMNOBbIE NapaMeTPbl MOXHO CMeLMann3npoBaTbh TONBKO Ha KOHKPETHble TU-
nbl. Pacwunperne Impredicative Types| no3eonsieT cneunann3npoBaTb TUMOBbIE NapaMeTpbl Ha Mo-
ArMopdHble Tunbl (BkAtoYatowme forall'sl BHYTpU cebsi) — MMNpeanKaTUBHOE NMPUMEHEHNE.

1 runST :: (forall s. ST s a) -> a
2 ($) :: forall ab . (a ->b) ->a ->b
s foo = runST $... -- Tunmswupyerca Tombko ¢ ImpredicativeTypes

Higher-rank Tunbl MOXXHO MCNonb30BaTb Kak type-based escape analysis, uHa4ye roBopsi, He
NO3BOJIATL MOMIbL30BATENO NepefaBaTh HEKOTOPOE 3HadeHWe BOBHE OMpefeNiéHHOro ckoyna. Tak,
Hanpumep, Haskell npepoctaBnsieT achdekTuBHyro MoHaay ST, NO3BONSIOLLYIO B paMKax OrpaHu-
4yeHHOro ckoyna paboTtaTb C MyTabenbHbiMK sA4delikamu namsATw [Launchbury and Peyton Jones
[1995][Maguire, ja, 7.2, ST trick]:

1 newtype ST s a = ST (I0 a)
2 runST :: (forall s. ST s a) -> a

Yhttps://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
15TioboMy nHTepecytoLeMycst A3blkaMi NPOrpaMMUPOBaHUs NMpeanaraeTcs NpoeecTu Ha caiite Onera Kucenéea He
OAVH MecAL, Xn3Hu: https://okmij.org/ftp/README. html.

19

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/impredicative_types.html
https://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
https://okmij.org/ftp/README.html

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

3 sumTo :: Int -> Int

4+ sumTo n = runST do

5 ref <- newSTRef O

6 forM [0..n] \i -> modifySTRef ref (+ i)
7 readSTRef ref

3amMeTuM, 4YTO eCan NonbiTaTbCst BEPHYThb M3 runST CCbIIKY Ha MyTabeNbHYHO siHeliky, TO pe3y/b-
Tupytowmnii Tun He npoaeT well-formedness npoBepky, Tak Kak byaeT coaep»kaTb DaHTOMHbI na-
paMeTp s, KOTOPbIA He DyAeT HUrAEe CBS3aH:

1 newSTRef :: a -> ST s (Ref s a)
> ghci> runST (newSTRef 0) :: Ref s Int -- ommbxa

Ha npakTuke, 4TOObl OTAMYATL TakWe IOKASIbHO CBSI3aHHbIE TUMOBbIE MEPEMEHHbIE, NCMOb3YIOT
koHuenuunio yposHel™|[Jones [2019).

Twnbl BbICLIMX PAHrOB BMECTE C UMMNPEANKATUBHBLIM NpUMeHeHeM obpasytoT noammopcusm
nepsoro knacca (first-class polymorphism), koraa noanmopdHsie Tvnbl MOTYT NCNOIL30BATLCA
no4Tn TakK »ke cBoboAHO, KaK U ntobble apyrve. Knaccuyeckuii anropuT™m rnobanbHOro BbiBOAA
Xunann-Muntepa He cnpasnsieTcst (1 B obLiem ciyyae 3ajaqa Hepa3peLriMa), Tak YTO CyLLECTBY-
eT 00/blLIOe KONMYECTBO pPeLLEHUA, AeNatoLnX pasnnyHble koMnpomuccbl. MoXHO cenaTb BbIBOA
TUNOB JIOKA/NIbHbIM, OMMPAOLLEMCS TONBKO Ha cocefHue Hoabl AST 1 BCnomoraTesbHble TUMNOBblE
aHHoTaumu Pierce and Turner| [2000], |Christiansen| [2013], Dunfield and Krishnaswami| [2019]. JTn6o
Xe MOXXHO MOoMbITaTbCs MOMOYb FN0banbHOMY BbIBOAY AoMoNHMUTENbHOU npegobpaboTkoii (Quick
LookE] Serrano et al.|[2020], peann3oBaHHbIii B Haskell ¢ HepaBHero BpeMeHun) nau AonoaHUTENb-
HbIMW peryanpyowmnmMmn koHcTpykumusimu (FreezeML Emrich et al.| [2020]).

2.1.3 Higher-order/kinded polymorphism

Haskell nosBonsieT Takxe abcTparmpoBaTbCA NO TUNAM MPOU3BObHbLIX KaliHAOB, @ He TOJbKO
Type, Kak B data geknapauusax (higher-order/kinded types (HKT)ED, TaK N B NOANMOPMHbLIX

dyHkumax. lanee Mbl BCTpeTUM Hemano npumepos. Tak, Fix nmeeT kahng (Type -> Type) -> Type,

a KaTaMopdusm abcTparmpoBaH Mo TNy CTPENOYHOro KalHaa:

1 newtype Fix f = Fix (f (Fix £))
> cata :: forall (f :: Type -> Type) a . Functor f => (f a -> a) -> Fix f -> a

[lanee Mbl pacCMOTPUM TEXHIKY, MO3BOSIOLLYIO TWMbI BbICLLIUX NOPSIAKOB 3aKOAMPOBATb B 53bl-
Ke, X He noagepxuvgatoliem (cm. (3.1.8]).

Ohttps://okmij.org/ftp/ML/generalization.html
1 (youtube) A Quick Look at Impredicativity (Simon Peyton Jones)
®https://serokell.io/blog/kinds-and-hkts-in-haskell

20

https://okmij.org/ftp/ML/generalization.html
https://youtu.be/ZuNMo136QqI?si=qp8PAEeeF-bioCB_
https://serokell.io/blog/kinds-and-hkts-in-haskell

435

436

437

438

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

2.1.4 00606weéHHbIe anrebpanyeckme Tunbl gaHHbix (GADTS)

O606wEHHble anrebpanyeckne Tunbl gaHHbIx (generalized algebraic data types, GADTs) nos-
BONAIOT MPUMUCBLIBATb JaHHbIM HA ypoBHe Tunos 6onbliue nHdopmauun. B KavecTBe MogenbHOro
nprvMepa BO3bMEM CUHTAKCUC KPOLUEYHOrO si3blka NMpOorpamMMupoBaHnst. 3aJagnuMcs LeNbiO He [o-
NYCTUTb BO3MOXXHOCTU KOHCTpyMpoBaHus B Haskell HEKOpPEKTHbBIX C TOYKM 3peHNS TUMNOB CUHTAK-
CNYECKNX AePEBLEB.

1 data Expr = Const Int | IsZero Expr | If Expr Expr Expr

KaK Mbl 3HaeM, KOHCTPYKTOpPbI AaHHbIX B Haskell — 2To 0Obl4Hble PyHKLUM C TOW NULLb pas-
HULEA, 4TO NX peannsaumnsl reHeprpyeTcst KOMNUASTOPoM (annokauus NnaMaTi, pasMeLleHre no-
neli. ..). Y dyHkumnii ects Tun. Hanpumep, IsZero :: Expr -> Expr.

B Haskell ecTb cuHTakcuc onpegeneHnsa data depes 3agaHue TUMNOB KOHCprKTopoﬂ. OH co-
BEPLLUEHHO aHaNOrMYeH PaCCMOTPEHHOMY paHee, TONbKO ropa3fo bonee yagobeH ANnst CNOXKHO opra-
HW30BaHHbLIX CTPYKTYP AaHHbIX. PAacCMOTpeHHbIA paHee Tun TepMoB Expr OyaeT BbIrNAAeTh cnefy-
toLLMM 0bpa3oMm:

1 data Expr where

2 Const :: Int -> Expr

3 IsZero :: Expr -> Expr

4 If :: Expr -> Expr -> Expr -> Expr

Ans nonnMopdHbIX CTPYKTYP AaHHbIX, Ha NMPUMEPE CNUCKA, NCNONb3YETCS CNeyroLniA CMHTaK-
cnc. Nimsa elem HY)KHO WCKAOYUTENbHO ANSA AOKYMEHTauuu 1 60onblle HWKAK ero MCnoib30BaTb
HeNb3sl, OHO TO/IbKO MapKMpYeT Haauyme TUNOBOrO NapameTpa U NO3BOJSISET eMy BPYYHYHO 3a[aTb

KaiiH A9

1 data List (elem :: Type) where
2 Nil :: List a

3 Cons :: a -> List a -> List a

[obasnm K Expr (paHTOMHbIA TUNOBOWA mapameTp ty, obosnaqarowmii Tun Haskell, B KoTo-
pbili AOJXKHO ObITb MPOVHTEPNPETMPOBAHO [aHHOE Bbipa)keHWe, n ¢ nomotllbto GADT 3agaanm
KOHKPETHbIE 3HA4YeHNs ty pe3yIbTUPYIOLMM TUMAM KOHCTPYKTOPOB. TakK, Mbl FOBOPUM, YTO NpO-
rpaMMa CKOHCTPYMPOBaHHas C NOMOLLbI Const BbIYMCASAETCS B YNCNO, IsZero BbIYUCNSETCS B
OyneBO 3Ha4YeHUe, a YCNOBHOE BblparkKeHNe — B TUM BETOK:

1 data Expr ty where

2 Const :: Int -> Expr Int

3 IsZero :: Expr Int -> Expr Bool

4 If :: forall ty . Expr Bool -> Expr ty -> Expr ty -> Expr ty

eval :: Expr ty -> ty

o

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/gadt_syntax.html#gadt-style
2Kalg MOXHO He nucaTb. JIMBO MOXHO He MMCaTb WMEHa MapaMeTpoB 1 MPOCTO MPUNACATL KaliHA TUMOBOMY
KOHCTpYKTOpYy: data List :: Type -> Type where

21

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/gadt_syntax.html#gadt-style

457

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

Tenepb Mbl MOXXEM HanUCaTb GE30MaCHbI TUNN3MPOBaHHbIN nHTepnpeTaTop. O6paTnTe BHU-
MaHwe, 4TO MpU CONOCTABNEHNN C 06Pa3LaMU KOHCTPYKTOPOB, Y HAC YTOUHSIETCS nHMDOPMaLMs O
Tunosom napametpef]

1 eval :: Expr ty -> ty
> eval = \case

3 Const x -> x -- ty ~ Int
4 IsZero t -> eval t == -- ty ~ Bool
5 If c t e -> if eval c then eval t else eval e

Hanee mbl paccmoTpum Kak GADT B Haskell BbipaxkatoTcst 4epe3 6onee 6a30Bble MeXaHU3MbI

a3bika B.4.4]

2.1.5 CrpykTypbl Ha ypoBHe Tunos, data promotion

YT106bI 06pecTn 6oNbLING KOHTPOJIb KOPPEKTHOCTU MPOrpaMmM, Hay4YMMcCs KOAUPOBATL MPoun3-
BOJIbHbIE CTPYKTYpPbI JJaHHbIX Ha YpOBHE TUMOB. B KadyecTBe MoAenbHOM 3a4a4mn 3a4aanM CTPYKTYpPY
JlaHHbIX, MOJENNPYHOLLYH BEKTOP, HO C KOHTPOJEM ANUHbI.

[nst Ha4ana onpegennm HaTypasibHble YMCNa Ha YpoBHE TUNOB B cTue [leaHo:

1 data Zero
2 data Suc n

Ynpaxuenune 12 Ckosibko obutatenei tuna Suc (Suc Zero)?

Terlepb Mbl MOXXEM 3adaTb TWM BEKTOPaA, COJJ.GD)KE)LLI,I/IVI I/IHdDOpMaLI.I/IPO O ANTNHE!

1 data Vec (size :: Type) (elem :: Type) where
2 VNil :: Vec Zero a
3 VCons :: a -> Vec n a -> Vec (Suc n) a

4 example :: Vec (Suc (Suc Zero)) Int
5 example = VCons 1 (VCons 2 VNil)

[nst Takoro Tuna, HanpruMep, MOXXHO HanucaTb He3onacHyto PyHKUMIO zip, paboTatoLlyto TONb-
KO Ha BEKTOpax OJVNHAKOBOI AJINHbI:

1 vzip :: Vecna ->Vecnb ->Vecn (a, b)
2 vzip VNil VNil = VNil -- n ~ Zero
3 vzip (VCons x xs) (VCons y ys) = VCons (x, y) (vzip xs ys) -- n ~ Suc n'

3aMeTbTe, H4TO B OCTaJIbHbIX BETKAX vZip AOJXKHbI BO3HUKHYTb 3KBUBANIEHTHOCTW, HA4YMHAOLLN-
€Csl C pa3/INYHbIX KOHCTPYKTOPOB, Hanpumep, Zero ~ Suc n. [10CKONbKY HEBO3MOXXHO NMOCTPOUTL
Takne aprymeHTbl pyHKumm, Haskell no3BosisieT COOTBETCTBYOLLNE BETKN HE pacCMaTpPUBaTb.

21TyT ucnonb3ayetcs yaobHoe paclunperne LambdaCase, nosgonsitollee He BBOAUTL JNLLHAE UMEHA.

22

https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/exts/lambda_case.html

474

476

477

478

480

481

482

483

484

485

486

487

489

491

492

494

495

496

VYnpaxHenue 13 Hanuvwmte pyHkunro f0OaBAEHUS B KOHEL 31EMEHTA BEKTOpA. []Buraiitecb rno-
C/1e40BaTE/IbHO, 3aM0JIHSISI TUMOBbIE [biPbl Y OTCAEXXNBAS BO3HUKAIOLLNE SKBUBAIEHTHOCTMY.

Ceiiyac A3blK KaliHOOB, KOTOPbLI AOMKEH KOHTPOAMPOBATL TUMbI, CNULIKOM beaeH. [elicTBu-

TenbHO, KaHg Suc — Suc :: Type -> Type, COOTBETCTBEHHO HUYTO He MellaeT HanucaTb Suc (Maybe Int)

B TO >Ke BpeMsi OH CAULLIKOM OrpaHnYnBarOLLNIA, MOCKOBKY HE NOAAEPXKUBAET NOANUMOPGU3M, HTO
[,aN10 Ha4ano bonbLIoMy KOMYecTByY Aybnmposanwnii a s Typeable (ty :: Type), Typeablel (ty

CoBpemeHHbili Haskell nmeeTt pacwuperne TypeData, nossonsitoliee o0bsABASATL HOBblE TUMbI
N KaliHAbl NOAODOHO TOMY, Kak data No3BONSET 0OBSABNATH HOBbIE TUMbI.

1 type data Nat = Zero | Suc Nat

Tenepb BEKTOPY MOXXHO NMpunucaTh 6onee TOYHbIV KaliHA:

1 data Vec (size :: Nat) (elem :: Type) where
2 VNil :: Vec Zero a
3 VCons :: a -> Vec n a -> Vec (Suc n) a

YnpaxHeHnue 14 Y7o BbiBegeT ghci> :k Vec?

[pyrum BapuaHTOM A0OUTLCS TOro »Ke camoro siensietcs ucnonb3sosanune DataKinds [Yorgey
et al. [2012]. DTo paclumpeHune aBToMaTU4eCKy nNpoasuraeT (promotion) Bce data Aeknapauumn Ha
ypOBeHb Bbille. A UMeHHO: 00OV KOHCTPYKTOP TWMa TakXKe CTaHOBUTCS KalHAOM, a KOHCTPYK-
TOP AaHHbIX — KOHCTPYKTOPOM Tuna. Tak, B NpuMMepe C YnCnamMu, Mbl MOXEM 3a[eKNaprpoBaTb
HaTypasbHble YKCNa KaK 0ObIYHO U NCMNOMb30BaTb HA YPOBHE TUMOB:

1 data Nat = Zero | Suc Nat
2 ghci> :k Suc :: Nat -> Nat -- TyT mDOEHATHO YTO SUC HCHONB3yeTCd KaK THII

lMockonbKy Tunbl U Tepmbl B Haskell)KnBYyT B pa3HbiXx NPOCTPAHCTBAX UMEH, MOXHO Ha3blBaTb
KOHCTPYKTOPbI TUMOB 1 AaHHbIX oAnHakoBo. OAHAKO ecnun NPOABUHYTb TaKoW TWUN AaHHbIX, BO3HUK-
HET HEOAHO3HAYHOCTb: Mbl UMEEM B BUAY TUM WUAW NPOABUHYTbI KOHCTpPYKTOp. Haskell nozgonsier
yKa3aTb SIBHO, YTO peyb UAET O NPOABUHYTOM KOHCTPYKTOPE C MOMOLLbIO OAVHAPHON KaBbIYKN.

1 data T = T Nat
2 ghci> kT

s T :: Type -- IIpO KOHCTPYKTOp THIIa
4 ghci> k 'T
5 'T :: Nat -> T -- mpo HOponBHHYTEHI KOHCTPYKTOP IaHHBIX

He ntobble data geknapauuum nNoaxoAsT ANS NPOABUXKEHUS, B TO »Xe BpeMs type data Aekna-
paLun NO3BONAOT SIBHO 3aNpoOCUTb CTPYKTYPY YPOBHSI TUMOB U MONYUYUTb BHSATHbIE OLLUWOKK, eCau
JeKnapauns HanncaHa HenpaBuJIbHO.

B ciydae npoasukeHust nofMMopHOro TUna, Ml nosyyaem noanmMopdHsie Kaitas (PolyKinds):

23

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/type_data.html#extension-TypeData
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/data_kinds.html#extension-DataKinds
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/poly_kinds.html

497

498

499

500

501

502

503

504

Term Type Kind
Zero Nat Type
[Zero, Suc Zero] [Nat] Type
(] forall a. [al Type
() forall a. a -> [a] -> [a] Type
'Suc 'Zero Nat
"['Zero, 'Suc 'Zero] [Nat]
'[Int, Double] [Typel
'] forall k. [k]
") forall k. k -> [k] -> [k]

Puc. 5: Tpumep npoasuxeHuii 8 Haskell.

data [a] = [0 | (:) a [a]
ghci> :k '(:)
'(:) :: forall k . k -> [k] -> [k]

MprMepbl NPOABUXKEHNS PA3IUYHBIX KOHCTPYKLMIA MOXKHO yBUAeTs B Tabnuue [5
B kauecTBe npumepa, 3a4aanM reTeporeHHblli CNMCOK, UHAEKCUPOBAHHbLIA TUNAMUN 1EMEHTOB:

data HList (tys :: [Typel]) where

HNil :: HList '[]
HCons :: ty -> HList tys -> HList (ty ': tys)

example :: HList '[Int, Bool, Double]
example = HCons 42 $ HCons True $ HCons 12.5 HNil

CTpyKTypbl AaHHbIX TOXXE MOTYT ObITb NONMMOPHBIMY MO KaliHAaam. PaccmoTpum Tun Tagged,

NO3BONAIOLLNIA AONONHUTE TUN 3HAYEHUS LOMONAHUTENbHBIM TUNOBLIM Terom. KaliHg Tera MoxkeT
ObITb NPOU3BOJIbHLIM, MNO3TOMY, HAaNPUMEP, MOXEM UCMOJIb30BaTb BCTPOEHHbIE B CUCTEMY TUMOB
KOHCTaHTbI [Typelits (apyroii npumep MCNonb30BaHWS NONMMOPMHBLIX KaliHAOB Mbl BUAENN paHee
2.1.1)):

1

2

3

newtype Tagged (tag :: k) (a :: Type) = Tagged a
ghci> :t Tagged
Tagged :: forall k (tag :: k) a. a -> Tagged tag a

example :: Tagged ("dbId" :: Symbol) Int
example = Tagged 42

CoBpemeHHblii Haskell B nTore npuiwén kK ToMy, 4TO CUCTEMA TUMOB He [ieNlaeT pasfnyunii Mexxay

so5 TUMAMU 1 KaliHgamm (puc. |§[) B yacTHocTu, Type :: Type. DTO HY>KHO ANSt PACLUVPEHNSI BO3MOX-
HocTeli Haskell B cTOpOHY MporpamMMmnpoBaHus C 3aBUCUMbIMU TUNaMN NyTEM J0OABNEHUS HECUH-

506

24

https://hackage.haskell.org/package/tagged-0.8.8/docs/Data-Tagged.html#t:Tagged
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/type_literals.html

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

TaKcU4ecknx sKkeuBaneHTHocTeli ans kaiingos (TypelnType). System FC 6bina npeactasneHa B
paboTe Weirich et al.| [2013]PF]

Terms Types

String
) Num Int
Nothing

42 Maybe Integer

Right False :kind

‘type Maybe a

Just “Ok” Maybe String Either a Bool

3.1415926 “Hello”

Monad ¢onstraint

Double
Type

Puc. 6: Tunbl n kaliHabl — oaHo (Bragilevsky)).

2.2 Peanusauma napameTtpuyeckoro nonmmopcdunsma

KoHBeHUus Bbl303ﬂ npencTaBasieT coboi Habop cornatleHnini Mexxay TeM Kak (OyHKLNS KOM-
MUANPYETCA N Kak JOJKHA BbI3bIBaTbCA. Hanpumep, dyHKUUS NPUHUMAET ABa apryMeHTa, KaX<Abli
Pa3MepoM B MALUMHHOE CNOBO, W BO3BPALLAET OAMH Pe3yNbTaT Pa3MepPOM B MALLUHHOE CNOBO. [o-
rAa CreHepVPOBAHHbIA HU3KOYPOBHEBBIA KOA 3TOM (DYHKLMUN MOXKET, Hanpumep, oXunaaTb, 4To oba
aprymeHTa nepefatoTcs 4Yepes cneumanbHyto napy perncTpoB, a CKNaAblBaTb pe3ynbTaT OH byaeT
B TpeTuii. B TakoM cny4ae BbI3biBatOLWWI KOA 00A3aH NPefOCTaBUTb apryMeHTbl B MPABUIbHbIX
PeErncTpax v OXXnAaTb pe3yabTaTa B HEKOTOPOM TPETbEM, 3apaHee OroBOPEHHOM PErncTpe.

B obliem cny4vae, KOHBEHLMS BbI30Ba (DYHKLMM 3aBUCUT OT TWUMOB apryMeHTOB W pe3ynbTaTa.
Hy><HO 3HaTb Kak MUHUMYM MX pasmep, 4Tobbl NOHATL, pa3MeLLaTb NX B PErNCTPax UK Ha CTEKe.
Hy>kHo 3HaTb, 3To yka3aTenb (reference type) nan 3HadveHve camo no cebe (value type), 4TobbI
MOHMMAaTb, Kak C HUM paboTaTb. B CTpyKTypax AaHHbIX HY>KHO 3HATb CMeELLeHns nonelii.

Takum obpasom, peanusauyns napaMeTpruyeckoro NoanMopduramMa B A3blke — 3TO HE TPUBU-
anbHasa 3aga4va. PasHble A3bIKM UCNONBL3YIOT pa3an4dHble NOAXOAb!, BCE CO CBOUMU JOCTOUHCTBAMM
M HeJoCTaTKaMU.

2.2.1 MoHomopcusauns

MoHomopdumsaumnsa — caMmblli NPSIMOANHERHbLIVE NOAXOA, KOMNUANPYEM NONNMOPdOHbIE PYHKLIN
N CTPYKTYPbI ANS1 KaXKA0oro Habopa TUMNOBbLIX apryMeHTOB. TaK, ec/iv pa3finyHbiX HAOOPOB TUMOBLIX

22(youtube) MuHun-kypC Ha pycckom s3bike npo pa3suTue Haskell B cTopoHy 3aBucumoli Tunnsauum.
23(youtube) MuHmM-KypC Ha pyCCKOM A3blke — cucCTeMa Bbigoga Tunos Haskell.
2*https://en.wikipedia.org/wiki/Calling_convention

25

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/poly_kinds.html#extension-TypeInType
https://www.youtube.com/watch?v=ISGENChlA4M&list=PLvPsfYrGz3wufQguebnCduYgQQ9UMeJRt
https://www.youtube.com/watch?v=_HYI7zjkrEs&list=PLvPsfYrGz3wuVAGhNf6-i7uafXg56oqM5&index=1
https://en.wikipedia.org/wiki/Calling_convention

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

5

Gl

3

554

555

556

557

558

559

560

561

562

5i

o)

3

5

<)

4

apryMeHTOB, C KOTOPbIMYU 3Ta (byHKLUS Bbi3biBaeTCs, Hanpumep, 100 (4TO 3anpoCcTo MOXET ObITh),
TO €€ Kof OyaeT KOMMUANPOBATLCS CTO pa3 W 3aHMMaTb B OMHApHUKE B CTO pa3 bOofblie mMecTa.
Tak penatoT, Hanpumep, C++ 1 Rust.

Ha camom nene BCE ellé xy»>ke. Ecnm npoekT MHOrOMOAY/bHbIA U COCTOUT U3 MHOXECTBa eau-
HUL, KOMIUASUMK (KYCKOB, KOTOPbIE KOMNWAUPYHOTCS OTAENbHO), TO OfHa U Ta Xe cneunannsaums
YHKLMM Ha TUNOBbIE apryMeHTbl OyAeT KOMNUANPOBATLCA 3aHOBO BO BCEX €ANHULAX KOMMUASALNN,
re Takas cneumanmsaums Hy>xHa. A 3aTem, nnHkep byaeT 3aHMMaTbCS yaaneHnem aybamkaTos, 4TO
TOXKE He camblli ObICTPbIT 1 3ddEKTUBHBIN NpoLuecc.

+
+

[MopoxxaaeMblii KoJ MakCUMaibHO 3hdEKTUBEH AN KaXKAOro TUNa;

Jlerko Ha aTane KOMNUASLUMK OTpabaTbIBAtOT is-MPOBEPKM 3HAYEHWUI HA MPUHALNEXHOCTb
onpeaenéHHomMy Tuny (B OCTaNbHbIX NOAXOAAX C OTUM BCE CNOXKHO);

Bpems komnunaumm KpaliHe BEIVKO;

CyLLLeCTBEHHO YBENNYMBAETCS pa3Mep pe3ynbTupytolero buHapHoro gaiina, 4To MoXeT ObITb
KPUTUYHO ANS1 HEKOTOPbIX MPUJIOXKEHNIA;

MoxeT HeadhbekTBHO paboTaTh N3-3a 3aCOPEHUs Kella Kojga B NPOLECCOpPE;

B nHTepdelicax He MOXXeT ObiTb NOAMMOPMHLIX METOLOB, TakK Kak Mbl HE 3HAaeEM B MeCTe
BbI30Ba, K KAKOMY UMEHHO HacneAHUKY OTHOCUTCS Bbi3bIBAaEMbIA METO/, U KaKOW KO HY»HO
cneyranusnpoBaTth (aHanornyHo, He pabotaeT higher-rank nonumopdsm);

K noanMopHbIM hyHKUMSM HeNb3st ANHaMUYECKN TMHKOBATLCS (Y HUX HET Kofa 4O Creuw-
anusaumn);

B obuem cnydae Henb3si nogaepaTh variance, NOTOMY YTO KOJ KOMMUAUPYETCS AN KOH-
KPETHOro Tuna u B oblleM cliydae He MOXeT paboTaTb Aasl MPOU3BOJILHOIO MoATWMNA WK
cyneptuna (ecnu reference u value TUNbl MOTYT HaxoAUTLCS B OAHOW Mepapxuu NoATMNM3a-

umn).

HekoTopbie si3bikn (Hanpumep, C++ u Zig) He AenatoT UHCTaHUMALMIO CKPLITOR AeTanblo pe-
ann3auumn A3blka, a NPefoCTaBASIOT €€ KaK MHCTPYMEHT MONb30BaTENsAM. DTO AAET cleaytolime
BO3MOXHOCTU:

Ecnamn paspewnTb ncnonb3oBaTb 3HAYEHUS B TUMaX, MHCTAHLMALUA MOXET MCNONb30BATbCA
KaK MEexXaHW3M Bbl4YUCAEHUIA Ha 3Tane KOMMIUASLNN.

Ecnn oTnoxxuTb npoBepky oWNOOK Ha CTaAMtO UHCTAHUUUPOBAHUSA, TO Mbl NMOJYYUM CBOErO
poAa CTaTUYECKYIO YTUHYIO TUMNM3auuto. DTO MO3BOJUT HE OMNUCbIBATb COXHbIE CUTHATY-
pbl NofMMOpPHbIX byHKUMA. OnHako Toraa pyHKUMK AN TECTUPOBAHUS NPUAETCS BPYUHYHO
MHCTAHUUNPOBATb NPOTUB BCEBO3MOXHbIX TUMOB, UHAYE HENb3S MOHATH CTAaTUYECKN, KOMMU-
JIMPYETCA NN OHa XOTSA Obl NPOTUB 3TUX TUMOB UN HET.

2.2.2 CrupaHwue TMNa

MoxxHO BCE caienaTb HaobopoT, YHUMDUUMPOBAB 3HAYEHUS, KOTOPbIE NMPUXOAAT Ha BXO[MOJW-
MOPMHBLIM PYHKLMSAM U XPAHATCS B NOANMOPMHbBIX CTPYKTYpPaX AaHHbIX, BMECTO TOrO, YTObbI KOM-
NUANPOBATb KOA MOA KaxKAbl/A Tum.

26

565

566

5

o)

7

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

MMycTb Kaxkgoe 3HayeHue OyAeT anfouMpoBaHO B Ky4de U MepefaBaThCs MO yKasaTento. Torja
Mbl CMOYXEM MEPENCMNOSIb30BATh OAUH U TOT »Ke KOA 4SSt Pa3HbIX TUMOBbLIX apryMeHTOB — OH NMPOCTO
OyneT oXXuaaTb yKasaTenu.

+ Kaxxaast dyHKLUS KOMNUANPYETCS POBHO OAWH pa3 — ObICTPO;

+ MOXXHO AMHAMUWYECKN 3arpy»<aTb HOBble MOAMMOPMHbIE PYHKLUN U TUMbl U UCMNONL30BATb
UX APYT C APYrom;

4+ ['MBKOCTb — BapMaAHTHOCTb, NoNNMOpdHbIE MeToAbl B nHTepdeiicax, higher-rank types u T.4.
NpocTo paboTatoT;

— Annokauusi B Ky4e 1 pa3bIMEHOBaHUE YKa3aTeNst MOXKET OYeHb CUIbHO 3aMeAINTb KOA,

— [lockonbky MHOPMaLUA O TUNax CTUPAETCS, HENMb3S1 HUYEro CAenaTb C TUMOBLIM apryMeH-
TOM, He umesi ero obuTaTeneli (HanpumMep, 3anpocuTb pedekcneidl nHpopMaLno AN Cae-
NaTb is MPOBEPKY).

Takoro noaxopa npuaepxusatotca JVM, Haskell un, kak npasuno, apyrve dyHKLMOHANbHbIE
A3bIKN BBUAY €ro MMOKOCTU 1 CKOPOCTU KOMMUASILINN.

Ocobyto npobnemy Bbi3biBaeT paboTa C NpuMUTUBAMKU U ApyrumMu value-Tunamu, NOTOMYy 4TO
Ka)K[J0€ 3HAYeHUe MPUXOANTCS cHadana H6okcuTb (MepeHoCcUTb B Ky4dy), @ MOTOM Y>Xe UCMOJb30-
BaTb B NOAMMOPGHOM KOHTeKCTe. [103ToMy sA3bIKM BOPIOTCS C 3TUM Kak MoryT. HekoTopble si3bikK
ype3aloT AMana3oHbl 3HAYEeHUn NpUMUTUBOB, YTODObLI 3ape3epBUpoBaThb OWT, ONpedenstoLnii, 3T
yKasaTesb Uan 3HadeHue. Koa KOHCYyAbTUPYeTCs C 3TuM BuTom anst paboTbl (noxoxe Ha [2.2.4]).
Tak genatoT, Hanpumep, OCaml n Kokal. ArpeccuBHbIi MHNARHUHT BMECTe C APYrUMin ONTUMK3a-
umsiMn Toxxe nomoratoT Blanchet [1999]. Java, Hanpumep, Takxxe NbiTaeTCst akKKypaTHO ABUraTbCA
B CTOPOHY BO3MOXHOCTW MOHOMopdpmaumvE@.

2.2.3 ['mbpuaHbiA noaxopn,

C# peanunsyeT rmdopuaHblii nogxozE]. OHU pa3nnyatoT 3HaYeHUs, XpaHUMble B Kyde — reference
types, 1 3HauyeHusl, XpaHUMble Ha CcTeke — value types. [lns nepBbIX OHW FEHEPUPYIOT OAHY Cre-
Lunanmsayuto, paboTarollyto ¢ ykasaTenamu. ns kaxporo Habopa value-TunoB OHW reHepupytoT
JIEHNBO, B paHTaliMe, cneunannsaumm.

To ecTb cnefbl A)XEHEPVKOB B TakKOM MOAXOAE €CTb U npoMexxyTodHoMm npeactasnedun CIL, n
B paHTaiMme.

+ value-Tunbl xpaHATCS 1 NepeaaroTcs as-is 6e3 bokcuHra;

+ [ocTynHa pednekcns no mxeHepurkam;

+ Hebonblioe BpeMst KOMNUASILAN;

— WHcTaHumaums B paHTalime 3aMennsieT NCNONHEHME;

— Variance paboTaeT Tonbko ansi reference types (4To cTpaHHO — ecTb “npaBuibHas” NoaTw-
nu3auusi, a eCTb "HenpaBuabHas").

25Type Specialization of Java Generics - What If Casts Have Teeth?
2https://cr.openjdk.org/~ jrose/values/parametric-vm.html
27Generics in the runtime (C# programming guide).

27

https://koka-lang.github.io/koka/doc/book.html#sec-value-types
https://youtu.be/JI09cs2yUgY?si=MLkRs31mN1koXIu1
https://cr.openjdk.org/~jrose/values/parametric-vm.html
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generics-in-the-run-time

600

601

602

603

604

605

606

607

608

609

610

611

612

613

struct value_witness_table {
size_t size, align;
void (xcopy_init) (opaque *xdst, const opaque *src, type *T);
void (xcopy_assign) (opaque *dst, const opaque *src, type *T);
void (xmove_init) (opaque *dst, opaque xsrc, type *T);
void (xmove_assign) (opaque *dst, opaque *xsrc, type xT);
void (xdestroy)(opaque xval, type xT);

Puc. 7: Swift value witness table.

Example:

func f<T>(_ t: T) -> T {
let copy = t
return copy

}

Implementation:

void f(opagque *result, opaque *t, type *T) {
opaque *copy = alloca(T->vwt->size);
T->vwt->copy_init(copy, t, T);
T->vwt->move_init(result, copy, T);
T->vwt->destroy(t, T);

b

Puc. 8: Koa nonumopdHoli yHKLM, NOPOXKAAEMbIVE KOMOUASTOPOM Swift.

2.2.4 WNcnonb3oBaHne BUPTYasibHOW Tabsmubl CBOACTB TUMNOB

Swif@ BMeCTe C KaXKJbIM TWMOBLIM NapameTpoM nepenaéT value witness table (puc. . 270
Tabanua co BcCeli Heobxoanmol nHbopmalmeld o Tune: pa3Mep U BblPaBHUBAHWE, YTO HY»XHO CAe-
NaTb NPY KOMUPOBAHWM U NepemelleHnr obbekTa (HanpuMep, UHKPEMEHTUPOBATbL CHETUMK CCbi-
NoK). TakuM 06pa3oM, CKOMNUANPOBAHHbIVE KOJ NOCTOSIHHO ObpallaeTcs K 9Toi Tabavue n aenaet
BUPTYasibHble Bbi30BbI (DYHKLWIA 13 Heé (puc. .

Hebonblioe BpeMsi KOMOUASLNN;

Mpeackasyemasi appekTUBHOCTL (He NMPYBOAUT K HEOXKMAAHHLIM Nay3aM B paHTaiiMe);
JdbekTrBHAs paboTa ¢ value-3HadyeHUsMU;

Bbicokast rmbkocThb;

VIHbopMaumst o Tunax He CTUpaeTcs;

— Cepbé3Hblli KOHCTAHTHbIA OBepxel, Ha AMHAMUYECKUE BbI30BblI Yepe3 Tabnuuy, 3hdekTns-
HOCTb OY€Hb CU/IbHO 3aBUCUT OT KOMMUASTOPHbLIX ONTUMU3ALNIA.

+ o+t

CBoero poga peanusaunst napaMeTpuyecKkoro noanmMopduamMa Yepes cneumnanbHbiii.

28(youtube) 2017 LLVM Developers’ Meeting: “Implementing Swift Generics”

23

https://youtu.be/ctS8FzqcRug?si=y_ZYnuUOulA33d_X

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

2.3 TMonumopchn3sm no KOHBEHL M BbI3OBa

Kak Mbl yxe obcyxaanu Bbile [2.2.2| napameTpudecknini nonmmopdunsm B Haskell peannsyetcs
cnefyrolnm obpa3oM: BCE 3HAYEHUST XPAHATCS B Ky4de U MepefatoTcst B NOANMOpPdHbIe yHKLNN
no ykasatento. OgHako, ecan Anst BbIYUCAUTENBHONO KOJa Ba)<Ha MPOW3BOAUTENBLHOCTL, TaKoiA
NOAX0o[He roanTCs BBUAY DOMLLUOA Harpy3Ky Ha NOACUCTEMY YNPaBAEHUS NaMSATbLIO U MHOXECTBa
nHanpekuunii. NMoatomy Haskell no3BonisieT Takxke nncaTh KoJ, C UCNOJIb30BaHeM unboxed 3Ha4YeHNIA.
A ecnn KOHBEHUUS BbI30BA He MPUHLMNMANbHA, MOXHO MO Hell abCTparnpoBaThCsl U NUCaTb OAUH
kof Anst boxed n unboxed 3HaveHuii |Eisenberg and Peyton Jones [2017].

2.3.1 PasHoBupagHoctn runtime npeacrasnennii B Haskell

Boxed Unboxed

_ Int
Lifted Bool
Unlifted | ByteArray, ?ffjr
]

Puc. 9: Buabl 3HaveHnii 8 Haskell ¢ npumepamu [Eisenberg and Peyton Jones| [2017].

Ha pucytke [9 moxHO yBuaeTb knaccudrkaumio 3HadeHuit B Haskell ¢ npumepamu Tunos.
Unboxed Tunbl — u1x 3HadeHns1 yaep>KMBAtOTCA U nepenatoTcst no 3HadeHunto. Boxed, cooTBeT-
CTBEHHO, HAaObOPOT, NepesatoTCs MO yKa3aTesto U XpaHaTcs B Kyde. OOblYHbIl Int SBAsSieTCs Npo-
CTO JiekNapauueli cnenyrollero Buaa, rae I# — 3To 0OblYHbIVE KOHCTPYKTOP C HEODbIYHBIM UMEHEM,
cofepxxalunii unboxed 3HayeHuUe.

1 data Int = I# Int#

Lifted Tunbl — copepxaT L B KadecTBe 3HayeHus. VIHaye roBopsi, MOryT COAEPKAaTb OT/OXKEH-
Hble BblYMCneHnst (3TO ANSt HUX CreumranbHbiM 06pa3oM obecneymBatoT KOMMNUASITOP W PaHTaiMm).
Unlifted Tnbl — HaobopoT, He MoryT 6bITb OTAOXKEHHbIMU. Onepaunn, NPon3BoAsiLLME 3HAYEHNUS
unlifted Tunos Bcerga sHepruynbie. CeoiicTo lifted/unlifted HasbiBatoT levity. HTobbl pacnpo-
CTPaHWUTb AafibHelillee N3N0XKEHNE HA SHEPTUYHbIE A3bIKU, MOXXHO levity 3amMeHnTb Ha boxity n Bcé
OCTaHeTCs CnpaBea/INBbLIM.

B UMeHax TUMNOB N PYHKLUIA — 3TO KOHBEHLUS, NOKa3blBatoLlasi, YTO rae-TO psiiloM Npounc-
XoOuT paboTa ¢ unlifted 3Haqu|/|ﬂM|/Ff].

Takxe B Haskell ecTb unboxed kopTexu, KOTOpbIX He CyLIeCTBYeT Ha 3Tane UCnoaHeHus. Ha-
npumep, cneayrollas dyHKUMS Kak Obl BO3BPpaLLAeT napy 3HaYeHU, HO B AeCTBUTENBHOCTN KOM-
MUAATOP MOXET UX PAa3MeCTUTb, Hanpumep, B nape pernctpos. COOTBETCTBEHHO, NATTEPH-MATHMHI
No TaKMM KOpPTEXXaM, NPOCTO MO3BOSET COCNATLCA Ha KaXKA0€E U3 3TUX 3HAYEHWUNA.

29Hy>KHO MOAKNYUTBL pacluupeHne MagicHash, 4Tobbl nonb3oBaThCA # B NAEHTUdUKATOPAX.

29

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/magic_hash.html

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

1 divMod# :: Int -> Int -> (# Int, Int #)
> case divMod# n k of (# quot, rem #) ->

COOTBETCTBEHHO, HET HMKAKOrO Pasfiniyns Mexay no-pa3HoMy BJIOXKEHHbIMU unboxed kopTexxamu:

1 (# A, #B,C#) = ##(A, B#), C#) = (# A, B, C #)

2.3.2 Knaccudcdmnkaumsa 3HadeHnin no runtime npeacraBieHunio

3HavYeHUst pa3anYHbIX TUMNOB MOTYT ObITb Ha 3Tane UCMNOSHEHNST YCTPOEHbI NO-pa3HOMY. 10 eCTb
HaM Hy>KHa HekoTopasi cuctemMa knaccudpumkauum Tunos. Ho Takas cuctema B Haskell yx ectb —
KaliHabl. Onuwem B BUAE CTPYKTYP AAHHbIX NPeAMETHYO 061aCTb, @ NOTOM NPOABUHEM HA HY>KHbIl

ypoBeHb ¢ nomoulbto DataKinds [2.1.5]
CranpapTHas 6ubnunoteka Haskell npegoctaBnsieT cneaytouine TUMbl AaHHbIX:

1 TYPE :: RuntimeRep -> Type

> data Levity = Lifted | Unlifted
s data RuntimeRep = BoxedRep Levity
IntRep | DoubleRep

|

5 | TupleRep [RuntimeRep]
| SumRep [RuntimeRep]
|

s type LiftedRep = BoxedRep Lifted

o type Type = TYPE LiftedRep

TYPE — 3TO Maruyeckuii Tvn, onpeaenénHoli B komnunstope. OH napameTpusosaH runtime-
npeAcTaBieHMeM 3Ha4veHunii. Tenepb NpuBbIYHLIA Type — 3TO YacTHbI cny4daii ¢ boxed lifted 3Ha-
YeHUsIMU.

e Int :: TYPE (BoxedRep Lifted) wam :: Type

e IntRep 1 DoubleRep COOTBETCTBYIOT NPEACTABAEHUIO YUCNEHHBIX KOHCTAHT (B 3aBUCAMOCTY
OT apXMTEKTYypbl MPOLECCOpa, LUenble YMUCiia 1 YWUCiia C MJIaBatoLleid 3anAaTol MOXET ObiTb
HeoBXoAMMO pacnonaraTb B Pa3fnyHbIX CNeUranbHbIX PErncTpax)
Int# :: TYPE IntRep

e Maybe Int :: Type

e Maybe :: Type -> Type

e TupleRep n SumRep — unboxed anrebpanyeckue Tunbl, NPeACTABAEHNA NAPAMETPU30BaHbI

NPeACTaBAEHNAMN XPAHUMbIX 3HAYEHUA

(# Int, Bool #) :: TYPE (TupleRep '[LiftedRep, LiftedRep])

[ns npocToThl, TUMNbI BAOXKEHHbIX KOPTEXER HE YHUPULMPYIOTCH

30

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/representation_polymorphism.html

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

1 (# Int#, (# Int, Double# #) #)
2 :: TYPE (TupleRep '[IntRep, TupleRep '[LiftedRep, DoubleRep]])

2.3.3 Representation polymorphism

BbicTaBuB runtime-npencraBieHne B CTPYKTYpPe KalHAOB, Mbl Tenepb MOXEM MapaMeTpu30o-
BaTbCs MO HUM. Hanpumep, Kalina (yHKUMOHANLHOW CTPeNKu BIFNSANT CheayroLnmM obpasoM)

1 ghci> :k (->)
2 (->) :: forall {q :: RuntimeRep} {r :: RuntimeRep}. TYPE q -> TYPE r -> Type

YnpaxueHnue 15 [Togymariite, nodemy cpyHkumsi umeet boxed Tun. MoxeT iy 6biTb nHave? MoxeTt
2N 3TO ObITb MONE3HBIM?

K coxxaneHuto, Haskell BbicTaBasieT AOBO/LHO CTPOroe orpaHn4yeHune: CBSA3bIBATENN HE MO-
ryT UMETb TUM, NOAMMOPMHbLIA No runtime npeacTasneHnto. MoXXHO nerko npeanofioXXnTb, node-
MY, — HeJNib3s1 CreHepupoBaTb KoA (OYHKUMK Anst paboTbl C NapaMeTPOM NMPOU3BOJIbHOIO paHTaliM-
npeacTaBfieHnsi. DTO MOXXHO PeLUNTb TONbKO MoHoMopdu3auwveid [2.2.1, Ho Haskell nsberaet atoro
noaxonal] CoobluecTBo Takxke NbiTaeTcs HaiiTu apyrue peerust (4to-To spoge [2.2.4).

Hanpumep, nsHa4anbHO onepaTop annavkauuy 6ein 060bLIEH TONLKO NO BO3BPALLAEMOMY TU-
ny. 9TO He NOpoXXAAaeT NpobaeM, Tak KakK BbI3blBAOLLUNA KOA CMOXET BbIBECTW NpeACTaBAeHMNE 1
CreHepupoBaTb NOAXOASILLNIA KOZA:

1 ($) :: forallr a (b :: TYPEr). (a ->b) -> a -> b

2 f$=fX

OpfHako, 66110 3aMeYeHo, HTO ANS onepaTopa anmanKaLun MOXHO NOAYYNTb APYrYHO peann3aLuio,
He 1Cnofb3ytoLLyto levity-nonnmopdHoe cBA3biBaHNE]

1 ($) :: forall rarb (a :: TYPE ra) (b :: TYPE rb). (a -> b) -> a -> b
2($)f=f

Takum obpasom, B Haskell nonumopdusm no npeacTaBieHnsIM HECKOIbKO BbIPOXIEH 1 MOMOra-
eT NNLb B HEDONBLLOM KOJIMYECTBE C/ly4aeB, OfIHAKO HeMasloBaXKHbIX. Ecnm no3sonnTbs MOHOMOp-
dumzaumto no RuntimeRep napameTpam, NOJyHMTCSA CUCTEMA aHANOrMYHaa r’mbpuaHol peannsayum
napamMeTpuyYeckoro nonmMmopdusma [2.2.3| Tonbko ¢ 601bLLIMM KOHTPOJIEM CO CTOPOHbLI NMPOrpam-
MUCTa Ha4 MOHOMopdU3aumnen.

3OBbMﬂmHMTbprOuwHMﬂZghci> :set -fprint-explicit-foralls -fprint-explicit-runtime-reps
3https://gitlab.haskell.org/ghc/ghc/-/issues/14917
3https://mail.haskell.org/pipermail/haskell-cafe/2023-January/135770.html
33https://gitlab.haskell.org/ghc/ghc/-/merge_requests/10131

31

https://gitlab.haskell.org/ghc/ghc/-/issues/14917
https://mail.haskell.org/pipermail/haskell-cafe/2023-January/135770.html
https://gitlab.haskell.org/ghc/ghc/-/merge_requests/10131

6

¢4

1

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

3 Cneumanbhbiii (ad-hoc) nonmmopdunsm

Kak-To Joe Fasel B pasrosope c Philip Wadler Bbickazan ngeto Toro, 4to neperpyska yHKLNNA
(overloading) monxKHa HaxoauTb CBOE oTpaxeHue B Tunax. Wadler noHsin ero HenpasuasHo [Hudak
et al.| [2007]. Ho To, 4TO OH noHsan, — okasanock knaccamu tunos Wadler and Blott| [1989].

Christopher Strachey BBén knaccudprkaumto nonmmopguramMa Ha ase kaTteropun Strachey| [2000].
[MapamMeTpu4ecKnii — ofivH 1 TOT »Ke KOZ paboTaeT C AaHHbIMU pPa3NnyHblxX TvNos. CneumnasnbHbINA
(ad-hoc) nonumopduam — kog BoibripaeTcs B 3aBUCMMOCTM OT Tuna. Hanpumep, oavH n TOT »e
CUMBOJI YMHOXEHWSI NMO-Pa3HOMY [eliCTBYET Ha Lefible Y/Ca U Ha Yiucia C naaBatolleli TOYKOIA.

[Neperpy3ka B s13blkax 0603HAa4YaeT BO3MOXXHOCTb HAa3BaTb HECKONBKO (PYHKUWUA C pa3nnyHbIMU
Habopamu BXOAHbIX NapaMeTPOB OMHAKOBO. B MecTe BbI30Ba KOMMNUAATOP CTAaTUYECKM OonpeaensieT
Nno TWNaM apryMeHTOB, KaKy U3 HUX AeliCTBUTENbHO CheayeT Bbi3BaThb.

1 string toString(x: int) { ... }
> string toString(fmt: String, d: double) { ... }

Knaccbl TUNOB 0053YHOT CHavana 3aJeK1aprpoBaTh UMEHOBAHHYHO CyLLIHOCTL (COBCTBEHHO, KNnacc
TWUMNOB), BKJ/OYAOLLYIO B CeDsi nayvky Aeknapaunii yHKUWA, KOTopble MOryT ObiTb Neperpy>KeHbl
ANS Pa3fINyHbIX TUMOB.

1 class Show a where
2 show :: a -> String

3 1instance Show Int where
4 show :: Int -> String
5 show =

Heobxoanmo 3amMeTuTb, YTO AekNapauunsi Knacca TUMOB COAEP)XUT (hOpMasibHbI TUNOBOW Ma-
paMeTp, Mo BXOXIAEHUAM KOTOPOro B TUM PyHKLUMUK, CODCTBEHHO, BbIOMpaeTCsa neperpyska. Takux
napamMeTpoB MoXeT 6biTb MHoro (MultiParamTypeClasses), oHW MOryT UMETb CTPeNoYHble KaliH-
Abl. Hanpumep, B cny4ae knacca Tunos Applicative, Bbibop peannsaumm onepauum pure dygeT
NPOUCXOANTb MO TUMNOBOMY KOHCTPYKTOPY pe3y/nbTaTa, TO €CTb [ake He MO NOJHOLEHHOMY TUny.

1 class Functor f => Applicative (f :: Type -> Type) where
2 pure :: a -> f a

4+ 1instance Applicative Maybe where
5 pure :: a -> Maybe a

Takxe, B OT/IMYME OT NEPErpy3KM, KacCbl TUMOB COBMECTUMbI C MapamMeTpPUYecKumM noanMop-
dusmom. Tak, B TuUne nofnMopdHOR hyHKLMN HENb3s YKa3aTb, YTO AAs TUMNa A0/KHA NMPUCYT-
CTBOBATbL ONpeAeNiéHHasi neperpy3ka. Knaccbl TUMNOB Xe NO3BOSOT OrpaHnYnTb HAOOP BO3MOXKHbIX
TUMNOBLIX APryMeHTOB TEMU, A1 KOTOPbIX Peasn30BaH UHCTAHC HY>XXHOIO Kjacca TUMOB:

32

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/multi_param_type_classes.html

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

1 showPrefixed :: Show a => a -> String -> String

Ecnn cpaBHuBaThb knaccel TUnoe ¢ nepeonpegenerviem (overriding) 8 OOI si3bikax, To pas-
pelleHne Bbi30Ba BUPTYanbHOU (DYHKLMM NPOUCXOAUT C MCNONb30BaHUEM TabnuLbl, XpaHsLLeAcs
obbekTe nepeoro napameTpa (nosyyaTens Bbi30Ba, receiver). Knaccbl TUMOB »Ke ONMpPatOTCs UC-
KNHOYUTEALHO Ha TUM, NO3TOMY, HanNpuMep, BO3MOXXHO OnpeAeneHne KOHCTaHT B Knaccax TUnos |

1 class Enum a => Bounded a where
2 minBound :: a
3 maxBound :: a

B To »xe BpeMsi, Knaccbl TUNOB HE SABASIOTCA TUNaMW, a, CKOpee, NpeankaTamMu Ha Tunax. Tun
YAOBNETBOPSIET TAKOMY NPeanKaTy, U CBONCTBY, €CNN 4SSt HEFrO eCTb COOTBETCTBYHOLWNI MHCTAHC.
[MoaToMy, B 4aCTHOCTU, NpuBbIYHbLIA cnocod B OOIT co3aaTh reTeporeHHyo KOANEKLNIO 9N1EMEHTOB,
NMetoLLmx obwmnii nHTepdeinc, HanpsiMyto He cpaboTaeT ¢ Kiaccamy Tunos. Hanpumep, Takon Tun
He BbyneT KoppekTHbIM: [Show]. Mbl BepHEMCS K 3Tol npobneme B|3.4.2|

3.1 Knaccbl TMNOB B s13blKe

HecmoTpsi Ha nopa3nTenbHOe MOrYLLECTBO, UAEs peann3alnn KlacCoB TWUMOB KpaliHe npocTa.
OHa 6blna y>xe BO BCeli NoAHOTe NpeAcTaBieHa B nepsoii paboTe Wadler and Blott [1989)]. B ganb-
HeMLWMX paboTax YTOUYHANCS MeXaHU3M BbiBOAA TWUMOB B BUAE CBEAEHUS K KJTACCUYECKOW CUcTeMe
Tunoe B cTune Hindley-Milner Hall et al. [1996]. OcTanbHble paboTbl, B OCHOBHOM, MpeasaratoT
OrpoMHOe pa3HoOobpasmne pasNUYHbIX pacluvpeHuii n npunoxennii |Jones et al.| [1997].

3.1.1 CnoBapnu

PaccmMoTpym uaeto peanmsauumn KNaccoB TUMOB Ha NpuMepe noanmopdHoi copTuposku. Cop-
TUPOBKA ANt CNCKA DJIEMEHTOB KOHKPETHOrO TWMa MULLETCS TPUBUANIBLHO:

1 sort :: [Int] -> [Int]

2 sort = \case [] -> []; x:xs -> insert x (sort xs)

3 where

4 insert x xs = let (1, r) = List.partition (<] x) xs in 1 ++ x : 1)

B peannsaunn egmnHcTBEHHAA MHOPMaLNS O TUMNE, KOTOPOU Mbl NONb3YEMCS — MOPSAAOK Ha ero
obutaTensax. Takum obpasom, nNpu nepexoae K NONNMMOPEHON COPTUPOBKE, HaM HY>XXHO MPUHATL
CNoBapb C NpeanmkaTamMu, 3afaroWUMU HY>KHbIVE NOPSALOK ANt AAHHOTO TUna.

1 data OrdDict a = OrdDict { less :: a -> a -> Bool }

» sort :: OrdDict a -> [a]l -> [a]

34CospemenHble OOT S3bIkU, TeM He MeHee, CTPEMSATCA NoAAepKaTb cTaTudeckne byHKLUUM B UHTepdeiicax, 4To
nenaet ux OavKe K Knaccam TUMOB 1 NMO3BOJISIET AeNaTh noxoxue Belwn. Hanpumep, Swift.

33

3

4

5

725

sort d@0rdDict{ less } = \case [] -> []; x:xs -> insert x (sort d xs)
where

insert x xs = let (1, r) = List.partition ([less | x) xs in 1 ++ x : r

Terlepb, 4ToDOblI BOCMOb30BAThLCS COpTVIpOBKOM Ha CMNCKE 4ncen, HyXXKHO CKOHCTPYNPOBATb HYXK-

726 HbIlli PEKOPA W BbI3BAaTb C HUM (DYHKLIMIO HA CMUCKE KOHKPETHbLIX TWUMOB:

27

intOrd :: OrdDict Int
int0rd = 0OrdDict { less = (<) }

ghci> sort intOrd [3, 2, 1]

Bo3moxHa cuTyauusi, Korga WHCTAHC AAst OAHOrO Twuna 3aBUCUT OT WHCTaHCaA AN ApYyroro

78 HanpumMep, Nopsiiok Ha CNMCKaX MOXHO MOJyYUTb aBTOMATUYECKU, 3HAs MOPSAOK HAa deMeHTax.
70 B cnyyae cnoapeit Mbl 3TO MoaenupyeM yHKLMER Mexay CNoBapsiMU:

730

731

732

733

listDict :: OrdDict a -> OrdDict [al

listDict d = OrdDict { less = ...)

Tenepb Mbl MOXEM COPTUPOBATb CANCOK CMUCKOB, KOHCTPYUPYS HY>KHbIi CNoBapb
ghci> sort (listDict intDict) [[3, 2], [2, 1], [0]]

CpaBHeHMe sIBHOW nepefadn COBapeit N KNacCoB TUMOB MOXHO YBUAETL B ClieAytoLLeln Tabauvue:

1. Onpepenerune cnosaps yHKLUNIA 1. OnpeaeneHune knacca TUNoB
1 data MyOrd a = MyOrd 1 class MyOrd a where
2 { less :: a -> a -> Bool } 2 less :: a -> a -> Bool
2. JK3eMnasp cnoapst 4N KOHKPETHOrO 2. ObbsBNeHMe TuUNa nNpeacTaBUTENEM
TMNa KJlacca TUMNoB
e |IMeHOBaHHOE 3Ha4eHne e He nmeeT nmenn
1 intMyOrd :: MyOrd Int 1 instance MyOrd Int where
> intMyOrd = MyOrd { less = (<) } 2 less = (<)
3. SABHbI napameTp dyHKUMNN 3. HesBHbIli napameTp yHKLUN
1 sort :: MyOrd a -> [a] -> [a] 1 sort :: MyOrd a => [a] -> [a]
4. [lepenaétcs nofb3oBaTeNEM 4. Tlepenaétca KOMNUNATOPOM

1 test = sort |intMyOrd| [3, 2, 1] 1 test = sort [3, 2, 1]

Takum obpasom, cnoeapb — 3To cBuAeTeNb (witness) nin [oKa3aTeNnsCTBO TOrO, HTO TUM

734 YAOBJIETBOPAET OrpaHNYHE€HNIO.

735 YnpaxHeHue 16 Kakoii cnosapb 6ynet cootBeTcTBOBaTh higher-kinded knaccy Tunos Functor ?

34

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

3.1.2 HesaBHble aprymMmeHTbI

Moy)KHO fIyMaTb Tak, 4TO CfleBa OT => NEepPeAatoTCs HESABHbIE apryMeHTbl OYHKUWIA, BbIBOANMbIE
KOMMUAATOPOM N3 KOHTEKCTa. To eCTb, Hanpumep, He CTOUT YAUBASATLCA BXOXKAEHUSIM => B TUMNe
aprymeHTa, 3TO NPOCTO PYHKLUUSA C HESABHLIM apryMeHTOM. TaK, Cneayrolnii Koa He CKOMMUANPY-
€TCA, NOTOMY YTO B MECTE UCMNOJIb30BaHNSA NEPEMEHHOW Vv HET 3HA4YeHUA Tuna Show b:

1 £ :: (Show b =>b) -> b

> fx = -- ommbxa

MOo>XKHO 3TO 3HauyeHue NMPUHATL B dDyHKLI,VIVI f, TOr4a OHO aBTOMATUYECKMN nponarnpyeTca B y:

Show b => (Show b => b) -> b

x = [x]

PacwupeHnune ImplicitParams naéT BO3MOXHOCTb [leNaTb HEKOTOPbIE apryMeHTbl (DYHKLUUN HesiB-
HbiMU. PaKTUYECKW, 3TO peann3auus AMHAMUYECKOro CBsI3bIBaHUS B CTAaTU4YeCKOM si3blke Lewis
et al|[2000] (cm. panee[5.3.1)). HesigHble aprymeHTbl 6epyTcs 3 cKoyna no WMEHW 1 NOACTABsH-
FOTCS aBTOMATUYECKN:

1 £
f

2

1 sortBy :: (a -> a -> Bool) -> [a] -> [al

> sort :: (Zcmp :: a -> a -> Bool) => [a] -> [a]
s sort = sortBy 7cmp

Haskell Takxe npPegoCTaBIAECT BOSMOXHOCTb COXPAHATL C/N10Bapu B CTPYKTYPbl AaHHbLIX!

1 data ShowDict a where
2 ShowDict :: Show a => ShowDict a

s f :: ShowDict b -> (Show b => b) -> b
s+ f d x = case d of ShowDict -> -- B CKOyIe JLOCTyIeH HHCTaHc Show b

YnpaxHeHune 17 Bo3MoxHa v UMEHHO Takasi CEMaHTUKa B SHEPru4yHOM s3bike? [Toyemy?

3.1.3 BbiBoa, nHcTaHCOB

YT100bI BbI3BaTbH OrpaHuydeHHo-noanMopdHyro dyHkuuto, GHC nponssBoanT BbIBOA MHCTAHCOB
UK, NHAYe roBOPSl, aBTOMATUYECKN KOHCTPYMpYeT cBuaeTeneli. BbiBog MHCTAHCOB TECHO MHTErpu-
poBaH c obLeii cuctemolii BoiBoga Trnos Haskell |[Peyton Jones| [2019].

B nelicTBUTENbHOCTU BbIBOJ UHCTAHCOB 3TO He YTO WHOE, KaK 3agada HaceneHus tuna. [en-
cTBUTENLHO, nocne TpaHcasuun B Core (npomexyTodHoe npeactasnerne 8 GHC), knaccel Tunos
nNpeacTaBAstoT coboii cnoBapu yHKUMIA. Y HAC B KOHTEKCTE UMEIOTCS KOHKPETHbIE CIOBapu 1
YHKLMW, NO3BONAIOLLME U3 OAHUX CNOBAPER nonyyaTb apyrue. TpebyeTcst HAUTW TEPM, KOHCTpPY-
NPYHOLLNIA CNOBApb HY>KHOrO TuUNa.

35

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/implicit_parameters.html

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

[MycTb, Hanpumep, BHyTpU cdyHkumn £ :: Show a => .. NPOUCXOAUT BbI3OB OrpaHNYEHHO—
nonmmopHon yHkuumn g :: Show [a]l -> ... ToecTb, y Hac umeetcd cnosapbdl :: ShowDict a,
a Tak xe yHkums d2 :: ShowDict a -> ShowDict [al], npuwenwas u3 vuvlnopTodﬂ Heob-
XOMMIMO CKOHCTpyMpoBaTb TepM Tuna ShowDict [a]. O4eBmaHO, 3TO ByaeT NPOCTO annanKauum
OfHOro K agpyromy: d2 di.

BbiBOA4 MHCTAHCOB NponcxoanT pekypcuBHo. HTobbl BbiBecTu ShowDict [a], BbIBOAUTCA CHa-
4yana nocblika ShowDict a. To eCTb NOJYHaeTCs pekypcust no CTpykType Tuna. VHade roeops,
BbIBOJ, MHCTAHCOB MOXHO 3KCMyaTWPOBaTb KaK BblYUCAUTENbHbIA NPUMUTUB YPOBHS TUMOB. Tak,
HanpyuMep, Mbl MOXXEM OMyCKaTb UH(OPMaLMo U3 Tunos B TepmMbl (aHanornyHo GHC. Typelits):

1 type data Nat = Zero | Suc Nat

> class KnownNat (n :: Nat) where
3 natVal :: Int

4+ 1nstance KnownNat Zero where
5 natVal = 0

¢ 1instance KnownNat n => KnownNat (Suc n) where
7 natVal = 1 + natVal ©Cn

s ghci> natVal @(Suc (Suc Zero))
o -- BeBegeTca natVal {knownSuc (knownSuc knownZero)}

B obuiem cnydae npouecc HaceneHus Tuna, Kak MOXHO MPEeAnoSIoOKUTL MO BbIYUCANTENLHOW
aHanoruu, HepaspewunM. [oatomy GHC HaknagbiBaeT O0NbLLIOE KOIMYECTBO OFPaHUYeEHNn Ha B
WHCTAHCOB, KOTOPbIE rapaHTUPYHOT TOTaNbHOCTb BbIBOAA. [10oapoOHO 3TW OrpaHUYeHUst onmncaHbl
B Sulzmann et al.| [2007a]. Takxxe GHC npegocTaBasieT pasanyHble pacliMpeHnsi, ocnabnstoLime
3TU OrpaHUYeHnst 1 nepekaabiBatoLiie YacTb OTBETCTBEHHOCTMW Ha Mieyu nporpaMMMCTﬂ. Ha-
npumep, ¢ Undecidablelnstances MoxHO nerko HanncaTb pa3BOPOT CAKWCKA TUMOB Ha 3Tane KOMMu-
NAUMK, KaK 1 o0y APYryto yHKLMNIO:

1 class Reverse (acc :: [Typel]) (tys :: [Typel]) where
2 showReverse :: String

3 1instance ShowT acc => Reverse acc '[] where
4 showReverse = showTypes Qacc

5 instance Reverse (ty : acc) tys => Reverse acc (ty : tys) where
6 showReverse = showReverse Q(ty : acc) Otys

35/lHcTaHChl MOXHO MMMIOPTUPOBATL MYCTbIM UMMAOPTOM: import Module ().
30nttps://downloads.haskell.org/ghc/latest/docs/users_guide/exts/instances.html

36

https://hackage.haskell.org/package/base-4.20.0.1/docs/GHC-TypeLits.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/instances.html#extension-UndecidableInstances
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/instances.html

773

774

775

776

T

778

779

780

781

782

783

784

785

786

787

789

790

791

792

793

794

795

7 ghci> showReverse @'[] @' [Char, Int, Double]

MOXXHO 3aMeTUTb, YTO NMPOLLECC BbIBOJA KAACCOB TUMOB OYeHb MOXOX Ha BbIYWCAEHME NOTrnYe-
CKUX nporpamm, Hanpumep, Ha Prolog, Tonbko 6e3 backtracking'a (nepebopa pasnuyHbix BapuaH-
TOB pelleHnii B nouckax noaxoasiiiero). Kak, snpoyem, u Bbiog Tunos B Haskell Peyton Jones
[2019] B uenom: cobpaHHble MO NpOrpaMMe 3KBUBANEHTHOCTN MOXXHO PaCcCMATPKBaTb Kak Noruye-
CKYIO MporpamMmy, peLleHne 3TO CUCTEMbI TUMOBLIX YPAaBHEHUA — KaK UCMOJIHEHWE STOW nporpam-
Mbl.

Mexay knaccamu TUMOB ¥ BbIBOAOM TUMOB CyLLECTBYET WHTepecHasi CrHeprusi (puc. E]
icxopast 3 TepMoB, BbIBOASATCS TUMbl. 3aTeM, WCXOAS U3 TWUMOB, BbIBOASATCS WHCTAHCbl KJ1acCoB
TUNOB. TO €CTb Mbl NULLIEM KaKOW-TO UHTEPECHbI MHTENNEKTYaNbHbIA KOZ, a NapannefibHo C HaMu
KOMMNUNASATOP BbIMUCbIBAET HEUHTEPECHbIN KOA,.

type nference

N

terms ‘tti,rpe_s

N

instance inference
Puc. 10: Knaccbl TVNOB + BbIBOJ MHCTAHCOB = KOJOreHepaLys.

BbiBog MHCTaHCOB onupaeTcsl TONbKO Ha BUA ‘TONIOBbLI" AeKfapauun — cnpaBa oT =>, a OrpaHu-
YeHUs1 cieBa NPUMEHSIIOTCS NOCTMaKTYM. DTO MOXHO MUCMOJIb30BaTb, YTOOLI NucaTh 6onee obLine
WMHCTaHCbI. Tak, HanpuMmep, paboTaeT constraint trick{?_g], No3BOJIANOLLNGA pe30osiBUTL ad-hoc nonun-
MopdHble DYHKLMM B NapaMeTPUYecKm-noIMMophdHOM KOHTEKCTE.

3.1.4 TlocTpoeHmne TUNa Mo 3Ha4eHUIO

Mocne TOro Kak Mbl Hay4YUINCb ONYCKaTb 3HAYEHUs U3 TUMOB, 3aKOHOMEPHO Hay4YUTbCst obpaT-
HOMY — MOAHWMAaTb 3Ha4YeHUs B Tunbl. Bocnonb3yemcst TexHukoi, onucaHHoi B |Kiselyov and Shan
[2004]. Cywectsyet cooTseTcTaytowas 6ubanoteka Data.Reflection (cm. panee [3.4.7).

B neAcTBUTENbHOCTU Mbl, KOHEYHO, HE MOXXEM YECTHO MOAYUYUTb CUHTAKCUYECKN TUM HY>KHO-
ro pasmepa, NPoCTO MOTOMY, YTO TUMbl CYLLIECTBYIOT CTPOro O cTaaum ucnonHenums. OpHako,
KaK Mbl 3HaeM, COBapu KaCcCOB TWUMOB UMEOT BOMJOLLEeHMe B paHTaliMe (ciydaid noanMopdHoii
PEKYPCUM — KaK pa3 Npumep, Korfga 3Toro Hesb3st NOJHOCTbIO U3bexaTs). [MosToMy BOCMoNb3y-
emcs continuation passing style, koTopblli 6yaeT noapobHO paccMOTpeH Aanee B rnase [6f BMecTo

37(youtube) Hackett: a metaprogrammable Haskell.
%8https://chrisdone.com/posts/haskell-constraint-trick/

37

https://hackage.haskell.org/package/reflection-2.1.6/docs/Data-Reflection.html
https://youtu.be/5QQdI3P7MdY?si=VAgqyD7iycALTrz_
https://chrisdone.com/posts/haskell-constraint-trick/

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Toro, 4yTobbl BEPHYTb pe3ynbTaT, NPYMeM NPOAOCKEHME, yMmeroLee paboTaTe C N0bbIM TUNOM C
KnownNat (Nofb3yemcst TUNOBbIMY abCTpakUMAMY U annankauusamu, CMm. ﬁ:

1 reify :: Int -> (forall n. KnownNat n => a) -> a
2 reify n k

3 | n <= 0 =k @Zero

1 | otherwise = reify (n - 1) \@n' -> k @(Suc n')

[MpoponxeHune, nepefaBaemMoe B PEKYPCUBHbIV BbI3OB, 3aXBaTbIBAET C/AOBAPb A/ TWMA n U KOH-
CTpyuUpyeT CnoBapb Anst Suc n.

HakoHeL,, MOXXeM HanucaTb CAeAyOLLYIO YANBUTENbHYIO TOXAECTBEHHYIO OYHKLMIO, NOAHMMA-
fOLLYO CHa4dafa 3HadeHue B TWUM, a NMOTOM OnycKatollee Tun obpaTHO B TEPMbI:

1 wonderId :: Int -> Int
» wonderId n = reify n (\@t -> natVal 0t)

3.1.5 WMmnnncuntbl n KOrepeHTHOCTb

Knaccbl TUNOB MOXHO He AenaTb CrneunanbHbIM A3bIKOBbIM MEXAaHU3MOM, HO BMECTO 3TOro
NpefoCTaBfiATbL Ha A3bIKOBOM YPOBHE HEABHbIE MAPAMETPbl U HAaCEeNeHne, AOCTAaTOoYHble AN1A pea-
JM3aunm KnaccosB TUMOB.

Tak, B Scala cyuiectsyeT MexaHuam umnancutos (implicits) [Krikava et al. [2019]@. MapameT-
pbl (PYHKLUMIA MOTyT ObITb MOMEYEHbI KOYeBbIM CNOBOM implicit, Torga Scala nonbiTaeTca ux
BbIBECTW CAMOCTOSATENBHO C NMOMOLLBIO AOCTYMHbIX B Ckoyne implicit geknapauwnii. O6bsBneHns
nepemMeHHbIX, (OYHKLUNUA 1 KOHCTPYKTOPOB OO BEKTOB TaKXe MOryT ObITb NOMeYeHbl implicit, Torga
OHU ByAyT MCNONBb30BATLCA NPU HAaceneHnn. Tenepb Mbl MOXXEM CMOLENNPOBATL CIOBApPb (PYHKLNIA,
Hanpumep, ¢ NoMoLlbto nHTepdeiicos (koTopsle B Scala HasbiBatoTca trait) u OOI cuHrNTOHOB,
4T0bbI Nony4nTh KNaccel Trnos Oliveira et al.| [2010]:

v // Iauka QyHKIHIH.
> trait Show[T] {
3 def show(x: T): String

s // 06épTka nms ymobcTBa BH30BA.
6 def show([T](x: T)(implicit ev: Show[T]): String = ev.show(x)

7 // 06beKT-CHHKITOH, 3HAYEHHe IJIS IaYKY (GYHKIIHUIH.
s implicit object intShow extends Show[Int] {
9 def show(x: Int): String = x.toString

0}

39B ne cambix cexxux Bepcusx GHC noTpebyeTcs BOCNoNb30BaThLCA TexHUKol Proxy us(2.1.1]
40 lnzaiin HesBHLIX NapameTpoe B Scala3 usamennncs (youtube) Scala Implicits Revisited, Martin Odersky.

38

https://youtu.be/dr0PUXQhg3M?si=pCydSikA_gnnCMrq

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

Ord o

instance Ord o 2> Ord Lal nstance Eq a 2> Ord &

Ord Lol Eq a

instance Eq Lal => Ord Lal instonce Eq a => Eq Lal
Eq Lol

Puc. 11: KOFepeHTHOCTb NHCTAHCOB — AWarpaMmMa KOMMYTUPYET.

1 def showAll[T] (xs: List[T]) (implicit ev: Show[T]): String =
12 xs.map (show(_)).join(", ")

Kak Mmbl roopun patee (2.1]), paboTa ¢ TMNoBbIMU NapameTpamn noxoxa Ha paboTy ¢ 0bbIy-
HbIMW. Tak)xe, BbIBOJ TUMOB MOXXHO PacCMaTpUBaATb KakK MPOLLECC BOCCTAHOBAEHUS MPONYLLEHHbIX
TUNOBbLIX annavKauui. 3aMeTuM, 4TO NMPUMEPHO ITUM >Ke 3aHUMAETCsl U MeXaHW3M BbiBOJA UM-
nancuToB. Takum obpasom, Npu nonbITKe caenaTb MYHKUUU C UMAIUCUTAMU PYHKLMSMI NEPBOro
Knacca, byayT BO3HUKATb CJIOXHOCTYU CXOXMeE CO CnoxxHocTsAMU first-class nonnmopdusma ((2.1.2)).

B A3blkax C 3aBUCUMbIMU TUMAMU HesiBHble napameTpbit| 0COBEHHO HyXHbI, MOTOMY YTO, Ha-
npuMep, TUMbl — 3TO POBHO TaKue »Ke napaMeTpbl OYHKUMK, KaK U BCe oCTalibHble. [loaTomy
BbIBOJ] TUMOB — 3TO (PaKTUYECKM BbIBOJ HESIBHLIX apryMeHTOB hyHKLUWIA. Bonee Toro, 3aBnucrnmble
yHKLUMK, BMECTe C apryMeHTaMi 4acTo NPUHUMAOT AOKa3aTeNbCTBA KaKMX-TO CBOWCTB 3TUX apry-
MEHTOB, KOTOPbIE TOXKE XOUETCS MO BO3MOXHOCTW BbIBOAUTL M3 KOHTEKCTA aBTOMATUYeCKN. Takoli
MEXaHN3M BbIBOAA MOXHO Mepencrnosib30BaTh A SMYIMPOBAHUSA K1aCCOB TVlﬂOBEZI Devriese and
Piessens| [2011]. B obpaTHyto CTOpoHY Toxke paboTaeT — MOXXHO MeXaHU3Mbl 3aBUCUMOIA TUnm3a-
umn amynmpoBaTb knaccamu Tunos McBride| [2002].

Kak Mbl YBUAMM [aniee, HesiBHblE NapaMeTpbl camu Nno cebe ToXKe Hy)KHbl KaK CTaTu4eckas an-
NPOKCUMALMUS AVHAMUYECKUX CBODOAHBIX NepeMeHHbIX A5 peanusaunn cuctemsl ahdekTos (cm.
nanee 7?7). OgHako, UMeTb KJI1ACCbl TUMOB OTAENbHOV S3bIKOBOW BO3MOXHOCTbLIO BCE XKe MOJE3HO,
HECMOTPS Ha TO, YTO OHU, BpoAe Obl, NPeACcTaBAAtOT COOO Te »Ke HesiBHble mapaMeTpbl (NyCTb U C
PEKYPCUBHBLIM MEXaHU3MOM HaceneHust). Tak, MOXXHO MoAAep»XaTb Ba)KHOE CBOMCTBO Mpu cobto-
JEeHUN BCEX OrpaHuyeHuli, T.e. npyn oTcyTcTBUM orphan instancesF_gl. KorepeHTHOCTb NMHCTAHCOB
(coherence) — ans ofHOro TUna BCe WMHCTAHCHI JAHHOMO Kaacca TWMOB, MOJlydYeHHble pasHbIMM
cnocobamu, HeoTAn4MMbl (puc. . COOTBETCTBEHHO, HE MMEET 3HaYeHUsi NMPOUCXOXIEHNE TOro
WAN MHOrO WMHCTaHca. VHayve roBopsi, 06 3TOM MOXHO He AyMaTb, 3TO CHUMAET CyLLIeCTBEHHOe

“https://agda.readthedocs.io/en/v2.7.0.1/language/implicit-arguments.html
42nttps://agda.readthedocs.io/en/v2.7.0.1/language/instance-arguments.html
“3https://stackoverflow.com/questions/3079537/orphaned-instances-in-haskell

39

https://agda.readthedocs.io/en/v2.7.0.1/language/implicit-arguments.html
https://agda.readthedocs.io/en/v2.7.0.1/language/instance-arguments.html
https://stackoverflow.com/questions/3079537/orphaned-instances-in-haskell

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

KONMNYECTBO KOTHUTWBHOI HArpy3ku 1 ynpoLaeT peraKTOpVIHI'@. B To Bpemsi Kak oCcTafbHble NOA-
X0[lbl TPEDYIOT TPENeTHOro OTHOLLEHNSI K KOHTEKCTY BbI30Ba, MOTOMY YTO W3 HErO MOXET MPUIATK
HeOXXWaHHAsA peannsauus.

3.1.6 Mpaeuna (rules) n cneymnanunsauns

GHC no3BonsieT NpsiMo B Kofie, C MOMOLLbIO CNeLnanbHO nparmbl, yKa3bliBaTb ONTUMU3UPYOLLE
npaBwja NnepenunucbiBaHns Ans KOMI'IVIJ'IFITOp&fEI Jones et al.| [2001]. Hanpumep:

1 {-# RULES

2 "map/map" forall f g xs. map f (map g xs) = map (f . g) xs

3 "map/append" forall f xs ys. map f (xs ++ ys) = map f xs ++ map f ys
4 #-}

[NepBblil 3aKOH NpeACcTaBAseT cCObOW He HTO MHOE, KaK 3aKOH (pyHKTOPOB. B naeane, mbl hopmy-
JIMPpYyeM 3aKOHbl Ha aTane au3aiita Maguire [b], npoBepsiem 1x BbINOSHEHWE C MOMOLLIbIO property-
based testingﬁ”_], a NOTOM WCMOJIb3YeEM UX AN ONTUMN3ALNIA.

MoxkHO nepenucaTb MOAUMOPGHYHO BEPCUIO (DYHKUUU HA CREeUnann3vpoBaHHYHO, €Can TUuMbl
noaxoasT. [Anst 3Toro Hy»KHO peann3oBaTb CNeUnaNn3vpoBaHHYrO Bepcuto (COoBMafeHne CeMaHTV-
KN — MOJIHOCTbIO OTBETCTBEHHOCTb NPOrPaMMIKCTa) 1 3aJaTb COOTBETCTBYHOLLEE MPABUIO Nepenii-
CbIBaHUSA:

1 genericLookup :: Ord a => Table a b ->a ->b
2 intLookup - Table Int b -> Int -> b

s {-# RULES "genericLookup/Int" genericLookup = intLookup #-}

OcHoBHoli 3dbeKT Takoli oNTUMU3aLMN — rapaHTUPOBAHHOE NpeBpalleHne AUHAMUYECKUX Bbl-
30BOB (DYHKLIMIA KIAaCCOB TWUMOB B CTaTuyeckue (MOTOMY YTO TWM W3BECTEH, CAel0BATENbHO, — U
COOTBETCTBYHOLLMNIA eMy ClI0Baphb).

3.1.7 OrcrynneHne: gedpyHKuMoHan3aums

OedyHkumonanusaums (defunctionalization) — TexHuka n3baBneHus oT yHKUU BbICLLINX
nopsiikos B nporpammeﬁ] Xial. Bnepsble npeanoxeHa B Reynolds| [1972, |1998].

Vnes 3akntovaeTcst B TOM, 4TOObI 3aMEHUTb Kaxkaoe co3aaHne nambaa-hyHKLUMN BbI3OBOM KOH-
CTPYKTOpa HEKOTOPOro anrebpanyeckoro Tuna AaHHbix. A Kaxxabili call-cite doyHKLMM 3aMeHUTb Ha
BbI30B cneunanbHoii first-order doyHKUMM apply, UHTEPNPETUPYIOLLEN JaHHbI anrebpanyeckuii Tun.

PaccmoTpym npumep 13 OyHKLMUW BbICLUMX MOPSAKOB map W ABYX KOJICATOB, CO3AatOLLUX
nsamoéaa-yHKUNN:

44Edward Kmett - Type Classes vs. the World.
“Shttps://downloads.haskell.org/ghc/latest/docs/users_guide/exts/rewrite_rules.html
48(youtube) John Hughes - Keynote: How to specify it!
4https://en.wikipedia.org/wiki/Defunctionalization

40

https://youtu.be/hIZxTQP1ifo?si=aG2Lk2eb-5E5SOLb
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/rewrite_rules.html
https://youtu.be/G0NUOst-53U?si=vdcKVUi9vSPBY0Jz
https://en.wikipedia.org/wiki/Defunctionalization

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

1 map :: (Int -> Int) -> [Int] -> [Int]
> map f = \case [] -> []; x:xs -> f x : map f xs

5 examplel xs = map (\x -> x + 1) xs
1+ example2 y xs = map (\x -> x * y) XS

[na kaxkgoro nambaa-nutepana 3aBOAUM MO KOHCTPYKTOPY, XpaHsLLEMY 3aMblikaHne. Annankaumnto
3aMeHsieM Ha BbI30B apply. Takum obpasom noayymnm yHKLMO map NepBoro nopsiaka.

1 data Fun = F1 | F2 Int
2 apply :: Fun -> Int -> Int
3 apply df x = case df of F1 ->x + 1; F2y ->x *xy

4 map :: Fun -> [Int] -> [Int]
5 map df = \case [] -> []; x:xs -> apply df x : map df xs

¢ examplel xs = map F1 xs
7 example2 y xs = map (F2 y) xs

3.1.8 3Smynsaunsa nonumopdmn3mMma BbICLLNX NOPSIAKOB

[laneko He BO BCeX si3blkaX €CTb NMOAUMMOPMU3M BbICLLErO paHra, HO UHOrAA OH ObiBaeT none-
3eH. Camoe pacnpoCTpaHEHHOE ero NpUMeHeHe — 3MYASLUST KJTAaCCOB TUMOB CTPENOYHbIX KaliHa0B
BpoAe Monad.

3aMeTVM, Y4TO TUMOBbI KOHCTPYKTOP KailHaa Type -> Type — 3TO DyHKUMS HA Tunax, npu-
HUMatoLWAs OAUH TuM, ¥ Bo3Bpallatollas apyroli. [NpuMeHum aedyHKUMOHANN3aLUMIO, YTOObI U3-
OexxaTb HeoOXOAMMOCTW NMapamMeTpu3oBaTb OAWH TUMOBLIA KOHCTpYKTOP Apyrum [Xia, [Yallop and
White| [2014].

[MocTaBMM B COOTBETCTBIME TUMOBOMY KOHCTPYKTOPY List Tun-"cumeon” ListSym (ana npumepa
ncnonssyem Kotlin):

1 class ListSym

3aBenéM TuM, COOTBETCTRYHOLLMI annanKaLumum CUMBOJA K TUMY, XPaHSLLUA OpUrMHaibHOE 3HaYeHne
CO CTEPTbIM TUMOM:

1 class Apply<Sym, T>(val value: Any)

YcTaHoBUM I/I3OMOpCbI/I3M MeEXay N3Ha4aJibHbIM TUMOM, MNOJIYHEHHbLIM TUMOBOWA al'll'lJ'IVIKaLI,MEVI KOH-
CTPYKTOpPa, " HOBOW annanKaumer CI/IMBOJ'IBI@

1 fun <T> List<T>.to(): Apply<ListSym, T> = Apply(this)
> fun <T> Apply<ListSym, T>.from(): List<T> = this.value as List<T>

48CneBa OT TOYKM B feKNapaLMu YKa3bIBAETCH AOMOJHUTENbHbIN apryMeHT dYHKLNM C CUHTAKCUCOM Mepesaqn CoB-
najatolMM C BbI30BOM MeTofa Ha obbekTe. V13 Tena yHKLUMM Ha HEFO MOXXHO CCbIJIAaTbCs C MOMOLLbLIO this.

41

875 Tenepb Mbl MOXKEM 00bsABUTL MHTEpPEiC MOHAA 1 3aaTb peann3aLnto aas Chmncka ¢ NoMOLLbHO
g76 ODBEKTA-CUHIITOHA:

1 interface Monad<M> {

2 fun <T> pure(x: T): Apply<M, T>

3 infix fun <T, R> Apply<M, T>.bind(k: (T) -> Apply<M, R>): Apply<M, R>
'

5 object ListMonad : Monad<ListSym> {

6 override fun <T> pure(x: T): Apply<ListSym, T> = 1ist0f(x).to()

7 override fun <T, R> Apply<ListSym, T>.

8 bind(k: (T) -> Apply<ListSym, R>): Apply<ListSym, R> =

9 this.from().flatMap { k(it).from() }.toQ

10 }

gz HaKOHEL Mbl MOXEM NNCaTb beHKLI,VII/I Had NPpON3BOJIbHbIMI MOHa}J,aMI/Iilﬂ

1 fun <M> Monad<M>.go(x: Apply<M, Int>): Apply<M, Int> =
2 x bind { it -> pure(it + 1) } bind { it -> pure(it + 2) }

3 fun test(xs: List<Int>): List<Int> = ListMonad.go(xs.to()).from()

878 He nuwHum OyaeT OTMETUTL, YTO Pe3YNbTUPYIOLWWIA KoL BbIFIAANT HECKONBKO YyAOBULLHO.
sro CKOpee BCEro, NCMnosib30BaHWe 3TO TEXHUKU He OKymnaeT cedsl U Hy>KHO BbIOUpaTb APYroi CTub
g0 MPOrPaMMUPOBAHNS.

& 3.2 Cemencrsa

882 Vnes ad-hoc nonumopcdmnama B TOM, 4TOObI B 3aBUCMMOCTU OT TuUMa MNOAy4YaTb Pa3NUYHbLINA
sz Kof. CeMelicTBa HauyMHaINCL KaK MPOMOJIKEHME STOW MAEW B MJOCKOCTb AAHHLIX W TUMOB. TaKk,
gsa ACCOLMMPOBAHHbLIE CHOHUMbI TUMOB — Pa3/ivyHble TUMbl AN Pa3ANUHbIX UHAEKCOB (TUMOBLIX Ma-
sss pameTpoB) (Chakravarty et al.|[2005a]. AccounmnpoBaHHble data — pa3nuyHble NPeACTaBNEHNS AN
sss PA3ANYHbIX MHaekcos (Chakravarty et al.| [2005b]. B koHue koHLOB 3Tu ugen 6binn 0606LeHbl A0
ss7 OTKPbITbIX cemeiicTs (Schrijvers et al.| [2008], noTom Obinn BBeAeHbl 3akpbiTbie [Eisenberg et al.
s [2014].

889 MO)XHO cuUnTaTb, 4YTO cemeMCTBaﬁjﬂ — 3TO TWUMOBbIE KOHCTPYKTOPbLI, 3aJatoLine MHOXKECTBO
g0 TUMOB. KOHKPETHbIA TUN U3 MHOXECTBA MOXHO BblOpaTb, NepeaaB TUMOBOW NapameTp, Ha3bliBae-
so1 Mblli MHOEeKcoM. CpaBHUTE C OObIYHbIMUK NOANMOPMHBLIMI KOHCTPYKTOPaAMK TUNa, KOTOpble BeayT
82 Ce0s1 OAMHAKOBO BHE 3aBUCMMOCTMN OT TUMOBbLIX NMapaMeTPOB.

893 Bonblloe Konm4yecTBO MHTEPECHBIX MPUMEPOB UCMOJIb30BAHNSA MOXHO HaliTu, Hanpumep, B|Kiselyov
sos et al. [2010]

49 AprymMeHTbI CleBa OT TOUKM YMEIOT CAMOCTOSTENBHO 3anpbirnBaTh B NoCieaytoLme Bbi308bl. COBCTBEHHO FOBOPS,
OHW SABAAIOTCA HESABHbIMU MapaMeTpamu.

*Ohttps://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/type_families.html

Shttps://serokell.io/blog/type-families-haskell

42

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/type_families.html
https://serokell.io/blog/type-families-haskell

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

3.2.1 Data families

Data families nossonsAtoT BbIOUpPaTh Aeknapauuto anredbpandeckoro Tuna B 3aBUCMMOCTU OT
TUNOBOro UHAekca. Hanpumep, ans 6onee achbdeKTUBHOW peannsaunm CTPyKTyp AaHHbIX. DTO Ha-
noMuHaeT cneumnanmnsauuto wabnoHos B C+ + .

1 data family XList elem
> data instance XList () = IntList Int
3 data instance XList Bool = BoollList ByteArray

EanHcTBeHHbIM cnocob paboTaTh ¢ data family — pa3mecTuTb peanusaunto B Knacce TUMOB,
4TOObl OHa COMPOBOXJasia 3Ha4YeHne C TOro MOMEHTa, KOrAaa TUMOBOW UHAEKC KOHKPETHbIN.

1 class XListOp elem where
2 xelem :: elem -> XList elem -> Bool

3 instance XListOp () where
4 xelem () (IntList size) = size > O

5 1instance XList Bool where
6 xelem key (ByteArray bs) =

7 xelemAll :: XListOp elem => XList elem -> [elem] -> Bool
s xelemAll xs = all (“xelem” xs)

K COXaNeHNK, B OTJInHMEe OT cCneunmanmaunin L|Ja6J'IOHOB, HENb3A 3aA4aTb OonpeaeneHme no-
yMONl4aHuto Bpoae data instance XList a = AList [a].

3.2.2 Synonym families

Synonym families (cemeiicTBa TUNOB) hakTUHECKU ABASAIOTCS PyHKUUsIMU Ha Trnax. OHu HbiBa-
FOT OTKPbITbIMY, 3aKPbITLIMUA U aCCOLMMPOBaHHbIMU. OTKpPbITbIE CEMENCTBA OTKPbITbI B TOM CMbIC-
Jle, YTO WMHCTaAHCbl MOXXHO MUCaTb OTAENbHO OT JAeknapauun, NofobHO KnaccaM TUMOB. 3aKpbl-
Thble, HA0DOPOT, NMONHOCTBLIO OMUCLIBAOTCA B OAHOM MECTE, KeliCbl YynopsilodeHbl CBEPXY BHU3, YTO
HECKOJIbKO OC/labnsieT OorpaHnyeHnst Ha NaTTepHbI.

1 type family Plus (n :: Nat) (m :: Nat) :: Nat where
2 Plus Zerom = m

3 Plus (Suc n) m = Suc (Plus n m)

YHT00bl MOCMOTPETL, BO YTO BbIYUCASAETCS HEYTO Ha YPOBHE TWUMOB, MOXXHO BOCMOJIb30BAThLCS
chnepytolein komaHaoli B ghci:

43

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

1 ghci> :k! Plus (Suc Zero) (Suc (Suc Zero))
2> Plus (Suc Zero) (Suc (Suc Zero)) :: Nat
3 = Suc (Suc (Suc Zero))

AccouunmnpoBaHHble cemelicTBa paboTatoT aHANOMMYHO, TONLKO OO BSABASIOTCA B paMKaxX HEKOTO-
POro Kjlacca TUMOB, SBASSCb HEKOTOPOW PYHKLMOHANBHOW anbTepHaTueoli FunctionalDependencies
Jones [2000] (koTopble BbIMASIAAT CKOpee PefsiuMoHHO). VIHave roBopsi, NO3BONSAIOT MOCTaBUTL B
COOTBETCTBME TUNY, ANS1 KOTOPOrO HanuWcaH WHCTAHC, APYroi Tun. Hanpumep, Konnekuum — Tun
€€ 3JIEMEHTOB:

1 class Container c where
2 type Elem c
3 elements :: ¢ -> [Elem c]

4+ 1instance Container [a] where
5 type Elem [a] = a
6 elements = id

7 instance Container ByteString where
8 type Elem ByteString = Word8
9 elements = ByteString.unpack

B coBpeMeHHbIX SA3blKax 4aCTO BCTPEYAOTCS aCCOLUNPOBAHHbIE CEMENCTBA Noj BUAOM acCoL-
NPOBaHHbIX Tvmoelﬂ Tak, Swift cnnbHO nonaraeTcst Ha aCCOUMMPOBAHHbIE TUMbI, BOBCE He Noaaep-
XKIBAs IXKEHEPUKN B MPOTOKOIAX (MHTepcbeMcax)ﬁ. B To e BpeMs Scala nbiTaeTcs OTCNexnBaTh,
B NMPUCYTCTBUMN 3K3UCTEHUNANbHBLIX TUMNOB (MHTEPENCOB), U3 KAKOrO MMEHHO 3HAYEHWs MPULLEN
TOT UM WHOI accouMmpoBaHHbIli TUN ¢ noMollbto path-dependent types |Amin et al.| [2014].

3.2.3 WMubeKkTuBHbIe cemencTsa

CewmelicTBa TUMNOB OT/IMYAKOTCA OT TUMOBbIX KOHCTPYKTOPOB NMPUMEPHO TakK »Ke, Kak (DyHKLUN OT
KOHCTPYKTOPOB AaHHbIX. KOHCTPYKTOPbI MAacCcuBHbI U He pefyunpytoTcst (Maybe Int), B TO Bpems
KakK (DYHKLMN BbIYUCASIOTCS B Kakoli-To pe3ynbtaT (e.g. F Int ~ Bool). B 4acTHOCTW, Kak 1
dyHKUMK, ceMellcTBa He 0bA3aTeNbHO NHBEKTUBHbI.

Jns TUNOBbLIX KOHCTPYKTOPOB, 3HAsl, YTO CKOHCTPYMPOBAHHbIE UMW TUTMbI SKBUBANEHTHbI, MOXHO
BbIBECTU, YTO TUMOBbIE AapryMeHTbl SKBMBANEHTHbI Toxe. Hanpumep:

1 Maybe a ~ Maybe b = a ~ b

O‘-IGBVI,EI,HO, 4TO ONA KNaCCoB TUMNOB 3TO CBOWCTBO MO YMOJIHaHWNIO HE BbINOJIHAETCA:

52ACCOL|'V|V|DOBaHHb|e TUNbl ABNAKOTCA CbaKTVl“IeCKVl IK3UCTEHUMANBbHBIMI ThMNaMW, NX CBA3bIBA€T C acCoUnMNpoOBaH-
HbIMU CeMelicTBaMU NOrMYeckuii MpoLecc cKoaemMnsaLmm.
53(youtube) 2017 LLVM Developers’ Meeting: “Implementing Swift Generics”

44

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/functional_dependencies.html
https://youtu.be/ctS8FzqcRug?si=y_ZYnuUOulA33d_X

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

044

945

946

947

948

949

950

951

952

1 type family NonlInjective a where
2 NonInjective Int = Double
3 NonInjective Char = Double

Haskell npepoctaBnsaeT sABHbIA CUHTAKCUC ANt OO bSABNEHUS UHBEKTUBHbLIX CEMENCTB TUMOB, Ha-
noMuHatoWnii hyHKUMOHaANbHbIE 3aBUCMMOCTI B Knaccax Tunos (TypeFamilyDependencies) Stolarek
et al.|[2015]. KoHe4HO, KOMNUASTOP NPOBEPUT, HTO peannsaumnst nHbekTueHa. CMHTakcuc TpebyeT
CBs13aTb pe3y/bTaT MMEHEM Yepe3 PaBEHCTBO U YKa3aTb, aHanorn4dHo |[FunctionalDependencies, 4Tto
pe3ynbTaT onpeaenseT Kakue-To U3 TUNOBLIX UHAEKCOB CeMelicTBa:

1 type family InjectiveBa b =1 [r -> b

2

3.2.4 CemeiicTBa nepBoro kKJjacca

[TOMVMO NHBEKTUBHOCTW, KNAaCChl TUMOB Takxe He 06s13aTeNbHO obnafatoT CBOMCTBOM generavity,
KPUTUYECKN BaXKHbIM ANst BbIBOAA TWUMOB, — OAWMH W TOT »Ke pe3yabTaT He 0bsa3aTeNbHO nosyyeH
N3 TOro »Ke CaMoro cemelicTBa:

1 fa~ga==f~g

BmecTe nHbekTuBHOCTL U generavity — matchability. Korpga Haskell paboTaeT ¢ Tunom ctpe-
JIOYHOTO KaliHaa, oH noapasymeBaeT, 4To 3ToT Tun matchable. CooTBeTCcTBEHHO, CeMelicTBa He
MOryT NepeaaBaThCsl B KAUECTBE NapaMeTPOB, a BCE X BXOXAEHWUS [OJIXKHbI ObITb MONHOCTbLIO NPU-
MeHEHHbIMU Ko BceM aprymenTam (fully saturated). JZIubo Hy»KHO sIBHO yka3aTb, YTO CEMeCTBO
BO3BpALLAET KOHCTPYKTOP (B 3TOM KOHKPETHOM MECTE CEMAHTUKA 3aBUCUT OT MepeHoca aprymeH-
TOB HamMpaBo OT : :):

1 type family ToCtor (s :: Symbol) :: Type -> Type where
2 ToCtor "maybe" = Maybe
3 ToCtor "identity" = Identity

OaHnm 13 cnocoboB 0bOTU 3TO OrpaHuYdeHne sBasAeTca aedyHKUMoHanm3auus cemencTs [Xia,
Eisenberg and Stolarek| [2014]. Kak Mbi n 06cy>xaanu paree(3.1.7), BMeCcTo (DyHKLMM NEPBOIO Kacca
3aBOANTCS HEKOTOPbLI CUMBOJ, 0603HaAYAOLLINIA €€, 1 (PYHKLNSA MHTEPNPeTaLUmN, YMetoLLas caenaTb
JeliCTBME, COOTBETCTBYIOLLEE 3TOMY CUMBOJY. B naHHOM cnydae dyHKuUneld nHTepnpeTauun byneT
OTKpbITOe cemMelicTBo Apply |[Maguire, ja, rnasa 10].

B Haskell sBegyTcs pa60TbE] no ycTpaHeHwuto saturation orpaHuyerus Kiss et al.| [2019]. dna
3TOro Hy>KHO pa3nnydaTb matchable n unmatchable Tunosbie dyHKUMKM. DTO NpegnaraeTcst genatb
[OMONHUTENbHBIM NHAEKCUPOBAHWNEM CTPENoYHbIX KaiHaos: —=—M n —-»=—Y. N, koHeyHo, 3Tn
NHAEKCBI MOTYT BbITb NOAUMOPOHbLIMMN.

S4GHC proposal: Unsaturated Type Families.

45

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/type_families.html#extension-TypeFamilyDependencies
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/functional_dependencies.html
https://ghc-proposals.readthedocs.io/en/latest/proposals/0242-unsaturated-type-families.html

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

1

data Matchability = Matchable | Unmatchable

hMap
it forall (m :: Matchability) (c :: Type -> Constraint)

forall (£ :: Type ->" Type) (as :: [Typel)

A1l as ¢ => (forall a. c a => a -> f a) -> HList as -> HList (Map f as)

3.3 KawnmHp Constraint

,ﬂ,aBHO NOABAANNCE NMPEANOXKEHNA ﬂ,06aBI/ITb B GHC nogacp>XXKy CMHOHUMMOB AJid KOHCTPENHTOB,

cemeiicTB koHcTpeuHToB 1 T.4 (Orchard and Schrijvers| [2010]. B ntore 6bin npeﬂnomeﬂ n pea-
nm3osa@ HEKOTOPbLIA MeXaHU3M YHUMbUKaLMKM TUMOB U KOHCTPEUHTOB. Taknm obpa3om, BCE, 4TO
paboTano Anst TUNOB, CTano paboTaTb U AN KOHCTPENHTOB.

1

2

3

B GHC c ConstraintKinds 6bin gobasneH cneumanbHblii KaiHg Constraint:

Knacc TUNOB KOHCTPYMPYET KOHCTpeuHT: Monad :: (Type -> Type) -> Constraint;
JKBUBAJIEHTHOCTb SABNSIETCA KOHCTpenHToM: (a ~ b) :: Constraint;

[TycToli KOPTEXX KOHCTPENHTOB SIBASIETCA KOHCTpenHToM: () :: Constraint;

KopTexX KOHCTPenHTOB sBnsdeTca KoHcTpenHToM: (Eq a, a ~ b) :: Constraint.

Tenepb, HanpumMep, Mbl MOXeM perduLMpOBaTh COBapb Kak 06bekT A3bikal’]

data Dict (c :: Constraint) where

Dict :: ¢ => Dict c¢
BcnomMHuM reTeporeHHbIli CNUCOK, PacCMOTPEHHbI paHee [2.1.5]
data HList (tys :: [Typel]) where

HNil :: HList '[]

HCons :: ty -> HList tys -> HList (ty : tys)

DTa CTPYKTYypa AaHHbIX siBasieTcs first-class aHanorom variadic generics B8 C+ + nnn Swifﬂ (cob-
CTBEHHO, CMbIC/] BapuaAnkoB — He paboTaTb HList-noaobHbIMK CTPYKTypamu Hanpsmyto). Hanpu-
Mep, Mbl MOXXEM HanucaTb map ANSl TAaKOW CTPYKTYPbI, €CAN BCE TUMbI YAOBETBOPSIOT ONpeaeneH-
HOMY orpaHu4deHuto. [nst 3Toro cHa4ana peannsyem CeMeliCTBO, reHEPUPYIOLLIEE KOPTEXK KOHCTpe-
NHTOB NS KaXXA0ro Tuna u3 Cnucka:

1

2

3

4

type family A1l (c :: k -> Constraint) (tys :: [k]) :: Constraint where
All ¢ '[1 = O
A1l ¢ (ty : tys) = (c ty, All c tys)

-- A1l Show [Int, Double] ~ (Show Int, (Show Double, ())

SShttps://gitlab.haskell.org/ghc/ghc/-/wikis/kind-fact
0http://blog.omega-prime.co.uk/2011/09/10/constraint-kinds-for-ghc/
*"https://hackage.haskell.org/package/constraints-0.14.2/docs/src/Data.Constraint.html#Dict
“https://github.com/swiftlang/swift-evolution/blob/main/proposals/0398-variadic-types.md

46

https://downloads.haskell.org/ghc/9.2-latest/docs/html/users_guide/exts/constraint_kind.html
https://gitlab.haskell.org/ghc/ghc/-/wikis/kind-fact
http://blog.omega-prime.co.uk/2011/09/10/constraint-kinds-for-ghc/
https://hackage.haskell.org/package/constraints-0.14.2/docs/src/Data.Constraint.html#Dict
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0398-variadic-types.md

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

Terlepb MOXEM PEAJIN30BATb map:

1 hmap :: forall c res tys . All c tys

2 => (forall ty . c ty => ty -> res) -> HList tys -> [res]
3 hmap f = \case

+ HNil -> []

5 HCons x xs -> £ x : hmap @c f xs

6 ghci> hmap OShow show (HCons (1 :: Int) $ HCons 'a' HNil)

Bonblue Takoro poga ynpa)HeHUn B reTeporeHHbIX KOHCTPYKLUAX MOXXHO HaliTu B|de Vries and
Loh[[2014].
KOHCTpenHTbl Takxke MoryT bbITb r|apameTpmquKm—nonmmopchblMVE] Bottu et al.| [2017]:

1 data Rose f x = Rose x (f (Rose f x))

> instance (Eq a, forall b. Eq b => Eq (f b)) => Eq (Rose f a) where
3 Rose x1 rsl == Rose x2 rs2 = xl1 == x2 && rsl == rs2

3.4 Wcnonb3oBaHue ad-hoc nonnmopdunsma

HacTo A3bIKU, UMEIOLLINE HYTO-TO HAMOMUHAOLLEE KNACChbl TUMOB, CTPEMSTCSA BbIpa3nTb Yepe3
HUX KaK MOXKHO 6osiblle ApYrux sA3bIKOBbIX BO3MOMXHOCTEN 1 mnofie3Hbix TexHuk. Oka3biBaeTcs,
5TO Ha yAWBNEHWE MOLLUHbIA MexaHu3Mm. PaccMmoTpum B 3TOM naparpade HekoTopble U3bpaHHble
npumMepsbl.

3.4.1 Cepwanusauyus

Knaccmyeckum npuMepoM KCMob30BaHWst KNacCoOB TUMOB SABNseTCcA cepuanusauus. Mpobne-
Ma B TOM, 4YTO Aecepuann3aums NpousBOANTCS, Koraa camoro obbekTa ewé HeT (yulepOHblii Java
NoAxoA 3anosHeHnst obbekTa AedONTHLIMU 3HAYEHUsIMU C Nocaeaytolleli MmyTauueli Mbl He pac-
cmaTpuBaeM). [MoaTomy HeT Bo3aMoxkHoCTM HannucaTb OOI unTepdeiic Serializable.

CTaHpapTHast bubnmnoTeka cepuanmsaunm B Kotlir@] NpeaoCcTaBAsieT CyLWHOCTb KSerializer,
KOTOpasl sIBASieTCS UHTepdeiicoM anst oTaenbHoro obbekTa-cepuanvsaTtopa Hauwero Tuna (ans
acbbekTrBHOCTU TYT Ucnonb3yetcs CPS B Buae notokos cobbiTuii encoder n decoder, BepHéMCs

K 9ToMy nogxogy fanee |4.4.1)):

1 interface KSerializer<T> {

2 fun serialize(encoder: Encoder, value: T)
3 fun deserialize(decoder: Decoder): T
4}

9https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/quantified_constraints.html
%Ohttps://github.com/Kotlin/kotlinx.serialization

47

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/quantified_constraints.html
https://github.com/Kotlin/kotlinx.serialization

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

O4yeBNAHO, 4TOObLI CKOHCTPYMpPOBAThL CEPUANN3ATOP NOAMMOPGHOro TUna, Hy»XHbl cepuanmn3a-
TOpbl TUNOB-NApPaMeTPOB. YTO y)xe OTHETANBO HANOMWUHAET KIACCbl TUMOB.

1 class PairSerializer(

2 keySerializer: KSerializer<K>,
3 valueSerializer: KSerializer<V>,
4): KSerializer<Pair<K, V>> { ... }

OpaHako B Kotlin HeT knaccoB TUNOB, a 3HA4YUT CO3/JaBaTb CEPUANN3ATOPbI NPUAETCS BPYUHYHO.
C 3TuM, OAHAKO HECKOJ/IbKO MOMOraeT mnayka TexHosornii: inline fun, reified AXxXeHepuku, pe-
nekcnst 1 KOMNUNATOPHbIV NnarnH BUOANOTEKMN, KOTOPbLIA, OAHAKO He Be30MnaceH C TOYKMN 3pPeHns
TUMNOB.

3.4.2 JSk3ucrteHumnasbHbie TUMbI

KBaHTOp CyLLECTBOBaHMSI B TUNAX SIBASIETCS MeXaHU3MOM uHkancynsuun [Piercel 2002, rnasa
24]. Tak, Mbl MOXeM B TWMe T 3aMEHUTb BXOXKAEHWUsI MOATWNA O Ha MEPEMEHHYIO O U MONYYUTb
do. 7', roe [ao — o] 7/ = 7. Takum 06pa3oM, Mbl CKpbIAKU OT MONL30BATENS HacTb TuNa.

Hanpumep, MOXXHO C MOMOLLbIO 3K3UCTEHLMANbHBIX TUMOB NMPUBECTU pa3Hble TUMbl K OAHOWA
dbopMe 1 CNOXUTb KX 3Ha4eHust B oauH cnucok. B Haskell ak3ucTeHumanbHbIi TUN Bbipa)<aroT
Yyepe3 data Aeknapauunto, B KOTOPO NoAnMMopHbIi KOHCTPYKTOP AaHHbLIX U MOHOMOPMHbIN TI/II'E.
Tak, TpMBMANbHbLIA 3K3UCTEHUMANbHBIA TUN Ja. & MOXXHO nonyyuTb B Haskell B Buage Tmvna Any,
3a/l1aHHOr0 caeaytoLnmMm obpasom:

1 data Any where
2 Any :: forall a . a -> Any -- mormvyecku skBHBaJeHTHO (exists a . a) -> Any

s list :: [Any]
1+ list = [Any 42, Any "Hello", Any (Just Nothing)]

B MmecTe pekoHCTpympoBaHust Any, OyaeT AOCTYMHO 3HAYEHWE HEKOTOPOrO HEW3BECTHOMO TU-
na. O4eBMAHO, C TaKUM 3HAYEHNEM HUYero caenaTb Henb3s. OfHaKo, NOMUMO 3HAYeHUs!, MOXHO
NOJIOXKNTb B KOHCTPYKTOP CBUAETENLCTBO O TOM, YTO 3TOT HEW3BECTHbIA TWM YAOBNETBOPSET HEKO-
TOPOMY KJjlaccy TMHOB@.

1 data Has (c :: Type -> Constraint) where
2 Has :: c a =>a -> Has c

3Ha4deHune Tuna Has CBUAETENLCTBYET O TOM, YTO CYLLECTBYET HEKOTOPLI HAaCENEHHbIV TUN a,
KOTOPbIA NpUHAANEeXUT onpeaeNéHHoMy Knaccy TunoB. Hanpumep, paccmoTpuM Show:

51MonobHo nanome type erasure B C+ + .
52MopobHo Rust fat pointers (napa U3 ykasaTens Ha AaHHble U yKa3aTens Ha Tabauly BUPTYanbHbIX OyHKLMUA) 1
OOIT obbekTaM.

48

1 showAll :: [Has Show] -> String
> showAll = List.intercalate "," . map \(Has x) -> show x

1009 B obuiem cnydae, 4ToObl 3IMMUHUPOBATL TakoW TUM JaHHbIX HY>KHbI TUMbI BbICLUUX paHroB [Pierce,
w0 2002, rnaBa 24.3]:

1 foldHas :: Has ¢ -> (forall a . c a=>a ->b) ->b
> foldHas (Has x) k = k x

1011 MoapobHee MmoxHO nocmoTpeTb B [Maguire, |a, rnasa 7] u [Pierce, 2002, rnasa 24].

w2 3.4.3 Pa3speweHne numéH

1013 Mpouecc paspelueHnss uMeH (name resolution) B s3blkax NpoOrpaMMUPOBaHUST OMPEAENseT, C
1014 KaKOW NMPOrpaMMHON CYLLIHOCTbIO CBsi3aTb TO WK UHOe ynoTpebneHne umeHun. PaspelueHne nmeH
1015 PAaCcCMaTPUBAET MMMNOPThI, NEPAPXMIO MPOCTPAHCTB UMEH 1 CKOYMOB, TWMbI BbipaXkeHuid. . . Kak npa-
1016 BWNO, 3TO CNIOXKHbIA NpOLECC, HEOTAENUMBIA OT BbIBOJAA TUMOB.

1017 OpHako, B GHC cTaagus paspelleHnst UMEH AOBONBLHO MpocTasi u oTpabaTbiBaeT A0 BbIBOAA
w018 TUNOB. Ha e€ TpuBmanbHyto CyTb HAMEKAET €€ Ha3BaHWe — Renamer — OoHa NPOCTO NepenuncbiBaeT
019 MMeHa B nporpamme Ha fully-qualified umeHa, onupasicb Ha UMNOPTHI.

1020 C opHoi cTopoHbI, NpocToTa — 3TO xopowo. C Apyroii — cTporoe oThAeneHne OT BbIBOAA
1021 TUMOB HaKNa[blBAET HEMPUSATHOE OrpaHNYeHmne: TUMbl HE MOryT y4aCcTBOBATb B Pa3peLLEHNN NMEH.
1022 Haunbonee ocTpo aTa npobnema CTOUT C MeTKaMu noseli B pekopaax. [1puxognTcs Ha3biBaTb BCE
1023 MONSE B MOAYNE NO-Pa3HOMY, YTODObI N3bexxaTb KELLEN.

1024 YT100bI 3aCTaBUTb pa3pelleHne UMEH 3aBnceTb oT Tunos, Haskell cHoBa npuberaeT K Knaccam
1025 TUNOB. A MMEHHO, onpefensieTcs knacc TunoB IsLabel, KOTOPbLIA 3aBUCUT OT CUMBOMA U OXWAA-
1026 €MOIo ThNa:

1 class IsLabel (s :: Symbol) a where
2 fromLabel :: a

1027 [nst BbI3oBa fromLabel ecTb crHTakcuyecknii caxap (OverloadedLabels):
1 #name = fromlLabel @"name"
1026 Tenepb paspellueHiie UMeHn name 6yaeT yunTbiBaTb T}

1 data Pet = Pet { name :: String }
> instance IsLabel "name" (Pet -> String) where

3 fromLabel Pet{ name } = name

1+ data Person = Person { name :: String, pets :: [Pet] }
5 instance IsLabel "name" (Person -> String) where

6 fromLabel Person{ name } = name

7 ghci> #name pet

63410661 N36aBUTLCA OT OWMBKK NepeonpeaeneHus, Hy>kHo BkatounTb NoFieldSelectors|

49

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/overloaded_labels.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/field_selectors.html#extension-FieldSelectors

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

3.4.4 HecuHTaKCM4YECKME TUNOBbIE 3KBMBaneHTHocTn, System FC

CoBpemeHHbIli Haskell sBnsieTcs cuHTakcnyeck 6oraTbiM SA3bIKOM, KOTOPbIA, OfHAKO, HECMOT-
psi He MHOroobpa3sune KOHCTPYKLUWUIA, TPAHCAUPYETCS B MafeHbKUA TUMW3UPOBAHHbLIA BHYTPEHHWIA
A3blK. D70 s3bIk System Fc Sulzmann et al.|[2007b], pacwupseTt System F ([2.1]) HecuHTakcuye-
CKUMW 3KBMBaNIEeHTHOCTAMU TunoB. OKa3bIBAETCS, 3TOr0 AOCTATOYHO, YTOObLI NoAJep)KaTh Takue
BO3MOXKHOCTK Haskell kak 0000LLEHHBbIE anrebpanyeckne TUMbl, aCCOLUMNPOBAHHbIE CEMENCTBA TW-
noB, (PYHKLIMOHANbHbIE 3aBUCUMOCTA 1 T.A.

A VIMeHHO, BBOAUTCS BCTPOEHHbLI KOHCTPEUHT ~, CBUAETENLCTBYHOLWNA O 3KBUBANEHTHOCTU
JBYX Tmnoﬂ. Hanpumep, Tnn dpyHKUmMn id Mo)eT ObITb 3anucaH TakuM CTPaHHbIM 0bpa3omMm:

forall ab . a~b=>a->b
= id

1 £
2 f
Ha camom pene 3To byHKUMA OT 4YeTbIPEX MapaMeTpPoB: [BYX TUMOBLIX MNapaMeTpPoB, KOepLun u
aprymeHTa. Koepumnsi — 3T0 3HayeHne pa3Mepa 0, aBTOMATUHYECKMN BbIBOAMMOE KOMMUAATOPOM,
KOTOpOE SIBNSIETCS CBUAETENbCTBOM TOrO, YTO [IBA COOTBETCTBYHOLUUX TUMNA SKBUBANIEHTHbI.

Hanpumep, GADT wu3 paccaxapuBaeTcst cieaytolm obpa3om:

1 data Expr ty where

2 Const :: Int -> Expr Int

3 IsZero :: Expr Int -> Expr Bool

4 If :: forall ty . Expr Bool -> Expr ty -> Expr ty -> Expr ty
5 -- TpaHCIHpPyeTCs B

¢ data Expr ty where

7 Const :: forall ty . ty ~ Int => Expr ty

8 IsZero :: forall ty . ty ~ Bool => Expr Int -> Expr ty

9 If :: forall ty . Expr Bool -> Expr ty -> Expr ty -> Expr ty

/1 nocne naTtTepH-MaTYMHIa MO KOHCTPYKTOPAM, KOHCTPEUHT SKBUBANEHTHOCTM MOMNaAET B BETKY 1
NO3BONIUT CUCTEME BbIBOAA TUMOB CAENATb HEOOXOANMbIE MEPENUCHIBAHNS.

[po BLIBOA TWUMOB MPY HANMUYUN NIOKANBHBLIX NPEANONOKEHUT MOXHO MOYNTATL B KI1ACCUHECKOI
ctaTee Outsideln(X) Vytiniotis et al| [2011].

OueBunaHo, 4To Haskell MOXXeT HacenMTb KOHCTPEUHT SKBUBANEHTHOCTU Cledyst pedpeKCBHO-
CTV, CUMMETPUYHOCTU 1N TPAH3NTUBHOCTU. TakXKe, KOMMUASTOP MOXET FeHeprpOBaTL HOBbIE akK-
cromMbl (NMOsIb30BaTeNb HAMPSIMYO CBOU aKCWOMbI 3anucaTh He MOXET). Hanpumep, no cemeiicTay
TUNOB KOMMUASITOP FEHEPUPYET aKCUOMbI PABEHCTBA anniMUMPOBAHHOIO KOHCTPYKTOpa CeMelicTaa
PE3YALTUPYIOLLUM TUNAM:

1 type family Plus (n :: Nat) (m :: Nat) :: Nat where

2 Plus Zerom = m
3 Plus (Suc n) m = Suc (Plus n m)
4 -- packpoeTrcs B

5%https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/equality_constraints.html

50

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/equality_constraints.html

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

5 axliom Plus Zerom ~ m
¢ axiom Plus (Suc n) m ~ Suc (Plus n m)

3.4.5 Koepuun n ponn

Haskell nmeeT noafep>xky generative type abstractions B Buze newtype feknapaunii. OTa Tex-
HVKa NO3BO/SET 3aJaBaTb AOMEHHO-CNeUndrYHbIE TUMbI, KOTOPbIE BO BPEMSI UCMOHEHUS HE OTN-
4UMbl OT oDOpavYMBaEMbIX TUMOB, HO MO3BONSAIOT Pa3aMyaTb UX. Tak, Mbl MOXXEM BBECTU OOEPTKM
NS YUCEN, KOTOPble B NMPeAMETHON 0bnacTu NpeAcTaBastoT cobol naeHTUMOMKATOPbl Pa3nYHbIX
CyLHOCTeli. Tenepb cucteMa TWUMOB He JACT WX NepenyTaThb.

1 newtype Moduleld = Moduleld Int64
2 newtype Courceld = Courceld Int64

CylecTByeT KpaliHe HejooLieHEHHAs NPaKTUKa NPOrpaMMIPOBaHISC), Koraa y Hac B MporpamMme
€CTb Y€TKas rpaHuLa, Ha KOTOPOW MPOUCXOAUT MAPCUHI AAHHbIX U3 BHeWHero mupa. [locne Heé
Cblpble HECTPYKTYPUPOBAHHbIE AaHHble ODOrallatoTCA CTPYKTYPOA M MPUHUMAKOT CMbICA BHYTPU
npeamMeTHol obnactu. JInbo »xe Mbl OTBEPraem 3TW [aHHblE Kak HEKOPPeKTHble. B ocTaBLuencs xe
4aCTW NPOrpamMMbl Mbl Y>KE€ NONb3YEMCHA TUMU3NPOBAHHBIMU JAaHHBIMW, CBOMCTBA KOTOPbLIX Y>XKE YCTa-
HOBJEHbI U rapaHTUPOBaHbl. Hanpumep, Mbl MOXXeM 6bITb yBepeHbl, 4TO 4ncno Moduleld cTporo
fonblle Hyns.

OpHako, ecnn y Hac eCTb KoeKUMst OBEPHYThIX AaHHbIX, @ Mbl XOTUM C Hell NnopaboTaTb Kak C
KOMNEKLMER CbIpbiX, TO HaM MPUAETCA TPAHCHOPMUPOBATL KOMNEKLMIO, HECMOTPA Ha TO, YTO 3Ta
TpaHcdopMauus HuYero He genaeT. OnTummnsaTop Haskell He cnpaBUTCS €€ 3AMMUHUPOBATL, NOTO-
My 4TO paboTaeT C TUNU3NPOBAHHBLIM MPOMEXYTOUHbBIM NPEACTABNAEHNEM U HE CMOXXET N36aBUTLCSA
OT Npeobpa3oBaHNs, MEHSIOLLEro Tum.

1 newtype Csv = Csv { unCsv :: String }

2 concatC :: [Csv] -> Csv
3 concatC = Csv . concat . unCsv

[MoaTomy B Haskell ecTb MmexaHn3m 6e30nacHbIX KOEPLUT MeX Iy TUNaMu, Y KOTOPbIX O4NHAKOBOE
npeAcTaBfieHe BO BPEMSI UCMOIHEHUS. DTO Pean30BaHO C MOMOLLIbIO Marm4eckoro Kaacca TUnoB
Coercible. Ero nmnnemeHTrpyeT KOMNUASTOP aBToMaTuyeckn (cMm. puc. [12)).

1 class Coercible from to where
2 coerce :: from -> to

Tenepb, MOXXeM U30aBUTLCS OT JIMLLHENR TpaHcOpMaLUK CNKCKa:

1 concatC :: [Csv] -> Csv
2 concatC = coerce concat

%https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/

51

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/

1073

1074

1075

1076

1077

1078

1079

1080

1081

The most important rules that GHC uses to solve Coercible constraints are as follows
(the full rules are given in Figure:

(1) The unwrapping rule:

» For every newtype NT = MKNT t, we have Coercible t NT if and only if the
constructor MkNT is in scope.

(2) The lifting rule:
» For every type constructor TC r p n, where
— rstands for TC’s parameters at a representational role,
— p for those at a phantom role and

— n for those at a nominal role,
if Coercible rl r2, then Coercible (TC r1 p1 n) (TC r2 p2 n).

(3) Coercible is an equivalence relation:

» The reflexivity rule: Coercible a a.
» The symmetry rule: If Coercible a b then Coercible b a.
» The transitivity rule: If Coercible a b and Coercible b c then Coercible a c.

Puc. 12: MpuHUMAbI NOCTPOEHWst NHCTaHCOB Coercible Breitner et al.| [2014].

BesonacHocTb koepunii obecnedymsaeT cmcrtema ponen. Kaxxibii TUNoBOW napameTp mmeeTt
cneunanbHoOe CBOMCTBO — POJib.

Ponb phantom vmetoT haHTOMHbIE TUNOBbIE MapameTpbl. VIX MOXXHO CBOBOAHO KoepcuTb (HeT
NpepeKkBU3NTOB A/t MHCTAHCOB Coercible):

1 data Phantom h = Phantom
> data NestedPhantom b = MkNP [Phantom b] | SomethingElse

3 1instance Coercible (Phantom a) (Phantom b)
4+ 1instance Coercible (NestedPhantom a) (NestedPhantom b)

TwvnoBoW NnapameTp MMeET posib representational, ecnm TUNOBOR KOHCTPYKTOP MOXKHO KOEPCUTb
TOMIBKO MPU YCNIOBUMN, YTO MOXXHO KOEPCUTb apryMeHTbl:

1 data Maybe a = Nothing | Just a
> instance Coerce a b => Coerce (Maybe a) (Maybe b)

Ponb nominal nmeeT TUnNoBoW napameTp, €CAN TUMOBO KOHCTPYKTOP MOXXHO KOEPCUTb TOJIbKO

Npv YCNOBWW, YTO apryMeHTbI 9KBMBAJIEHTHbI. DTO TpebyeTcsl, eCivi TUMOBOW apryMeHT NHAEKCUpPYeT
CEMEICTBO WS KOHCTPEUNHT.

52

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1 type family F a
2 data Applied a = Applied (F a)
3 instance (a ~ b) => Coercible (Applied a) (Applied b)

4+ data ShowDict a where
5 ShowDict :: Show a => a -> ShowDict a
¢ 1instance (a ~ b) => Coercible (ShowDict a) (ShowDict b)

VIHoraa KOoMNUANAaTOp BbIBOAWUT HEMPABU/IbHYIO pOJb TUMNOBOMY MapamMeTpy. Hanpumep, ecnn uH-
BapWaHTbl CTPYKTYPbl 3aBUCAT Ha KOHKPETHYIO MMMAEMEHTALMNIO KAaKOro-TO Kaacca TUMNOB ANs Tu-
MOBOrO apryMeHTa, 4TO COBEPLUEHHO He BUAHO B Aekflapauun camoro Tuna. B Takom caydae, ponu
MOXHO yKa3aTb SIBHO:

1 type role Map nominal representational
2 data Map k v =

MospobHee MoxxHO npouuTaTh B Breitner et al.| [2014] v [Maguire, [a|, rnasa §].

3.4.6 Type reflection

Pednekcnss — 3To A3bIKOBOU MeXaHU3M NoJiydeHunst MHopMaLmn O TUNax BO BPEMSI MCMOJIHEHUS
(Ha ypoBHe TepMOB). 3BY4UT 3HAKOMO, U AeAcTBUTENBHO, Haskell peanusyeT 3TOT MexaHU3M yepes
knaccbl TUNoB Peyton Jones et al. [2016)].

BubnnoTteka npegocTaBnsgeT Marn4eckuini knacc Tunos Typeable, KOTOPbIA peannsyeTcs Kom-
MUAATOPOM [NS KaXXAOr0 KOHKPETHOro Tuna yepes deriving. HYT1obbl nony4nTb nHpOpMaLMto O
TUNe, B CKOyne Ao/keH OblTb MHCTaHC Typeable ans 31oro Tuna. CTpykTypa Tuna npeacTasie-
Ha TuNoM-cyMmbl TypeRep, KOTOpPbI/i NpeaoCTaBAAET BO3MOXHOCTb AOMOJHUTENBHOrO TUMNOBOIO
KOHTPONISA C NOMOLLIbIO OB0BLLIEHHBIX anrebpanyecknx TUNOB [JaHHbIX U TUMNOBbLIX TEroB.

1 class Typeable a where
2 typeRep# :: TypeRep a

Hanpumep, cneayrouwimm obpa3omM MOXKHO MONYUUTb UMSI KOHCTPYKTOpa Tuna:

1 typeName :: forall a. Typeable a => String
> typeName = tyConName $ typeRepTyCon $ typeRep $ Proxy Ca

s ghci> typeName @Int
YnpaxHeHue 18 OO6bsBuTE Knacc THNoB, KOTOPbLINA NO3BOASET pPacnedaTaTb CIUCOK TUIMOB.

C nomolblo CTPYKTYpbl NPeACTaBAEHUS TUMa W 3K3UCTEHUMaNbHbIX Tunos B Haskell MoxxHO
SMY/IMPOBATL ANHAMUYECKYHD TUNMU3auuto. A UMeHHO: Ntoboi Tun MoXeT ObiTb Npeobpa3oBaH B
Dynamic, a notom 6e3onacHo npeobpa3osaH 0bpaTHO.

53

https://hackage.haskell.org/package/base-4.20.0.1/docs/Type-Reflection.html
https://hackage.haskell.org/package/ghc-internal-9.1001.0/docs/src/GHC.Internal.Data.Typeable.Internal.html#TypeRep

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1 data Dynamic where
2 Dynamic :: Typeable a => a -> Dynamic

s fromDynamic :: Typeable a => Dynamic -> Maybe a

IT0 MOXeT ObiTb MOJIE3HO, HAMpUMeEp, ANt OnpeleNeHNs TeTEPOreHHOro XpPaHuanLa KJoY-
3Ha4eHue:

1 data Store = Map Key Dynamic
2 data Ref ty = Ref Key
s get :: Typeable ty => Store -> Ref ty -> Maybe ty

3.4.7 Data reflection

Kak Mbl obcy)xaanu paHee, B CBOWCTBO KOr€peHTHOCTW TrapaHTUPYET, YTO KaxkAOMy Tuny B
Haskell cooTBeTCTBYEeT POBHO OAUH MHCTAHC ONPeNenEéHHOro Kiacca TUnoB. Vl eAMHCTBEHHbLIR Cno-
cob 0b6bsiBUTL MHCTaHC B Haskell — peknapauuveid Ha BepXHEM YPOBHE, TO €CTb OH HE MOXXET
3aBUCETb HUN OT KaKMX NoKanbHbIX AaHHbIX. OgHako B Haskell ectb 6ubnnoreka Data.Reﬂectioﬂ,
KOTOpasi MO3BONSET CO3/1aBaThb JIOKAJIbHble UHCTAHChI A1t CBEXUNX, YEPHOW Maruneli creHepupoBaH-
HbIXP7] TUNoB.

OHa nonb3yeTcs naeeit "NOAHATIA 3HaYeHWn B Tunbl”, 06Cy>KAEHHOR Hamu paHee (cm. [3.1.4)),
HO B HeckoJibko bonee obulem Buae. BmecTo 3aBefgeHnst KnaccoB TUMNOB BUAa Known_, BBOAWUTCS
OAWH KNTAacC TUMOB, WHAEKCMPOBAHHbIV TUMOM TEPMOB terms, KOTOPble CMYCKAtOTCS U3 TUMOB:

1 class Reifies ty terms | ty -> terms where
2 reflect :: Proxy ty -> terms

Takxxe, C NToOMOLLbIO ChneaytoLlen dyHKLMK, BUbAMOTEKa NO3BOJISIET CreHeEPNPOBaThL CBEXUIA TUN
N WHCTAHC Reifies, KOTOPbIA NO 3TOMY CBEXXeMY TUMY BO3BPALLAET AAaHHOE 3HAYEHUE TUMNA a (rle—
peAaHHoe NepBbIM aprymMeHToM). [ToCKONbKY OH NepefaéTcst B (hyHKUMIO BbICLIErO paHra, CBEXWuii
TUN He MOXET yTeuyb U3 ckoyna [2.1.7]

1 reify :: a -> (forall fresh . Reifies fresh a => Proxy fresh -> res) -> res

YHT100bI BOCMOJIb30BATLCS HECTAHAAPTHLIM MHCTAHCOM KJacca TUMOB IS HEKOro TUMNa a, Hy»HO
00bsIBUTbL HOBLIV TUN (HanpyuMep, C NOMOLLbLIO newtype), COAEPXXALMIA AaHHbIA, U HanucaTb ANs
HEro Hy>xHbIli MHCTaHC (cM, Hanpumep, Down). Mbl He XOTUM OO6BSBAATL NO HOBOV Aeknapauum
ONS KaXKA0ro ciiyyasi, No3ToMy 3aBeféM 0DEPTKY, noxoxxyto Ha Data. Tagged, koTopas nossonseT
N006aBNATb PAaHTOMHbIA TUNOBOW Ter K Tuny 3HayeHusi. Bapbupysi Ter, MOXXHO MONYYUTb CKOJb
YroAHO MHOIro TWUMoB, 060paYnBatOLLINX AAHHbINA.

1 newtype Wrapped tag a = Wrapped { unwrap :: a }

®®https://www.tweag.io/blog/2017-12-21-reflection-tutorial/
5"https://www.schoolofhaskell.com/user/thoughtpolice/using-reflection

54

https://hackage.haskell.org/package/reflection-2.1.6/docs/Data-Reflection.html
https://hackage.haskell.org/package/base-4.20.0.1/docs/Data-Ord.html#t:Down
https://hackage.haskell.org/package/tagged-0.8.8/docs/Data-Tagged.html
https://www.tweag.io/blog/2017-12-21-reflection-tutorial/
https://www.schoolofhaskell.com/user/thoughtpolice/using-reflection

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

Obbsasum TN 06€pTKM Wrapped tag a NpeicTaBMTENEM HY)KHOrO knacca Tunos. Kog ans
peannsaumm byaem ¢ nomoulbto reflect nony4aTb NO TUMYy Tera B BMAE YECTHOrO CIOBaps.

1 data ReifiedOrd a = ReifiedOrd { compare :: a -> a -> Ordering }

> instance Reifies tag (ReifiedOrd a) => Ord (Wrapped tag a) where
3 compare = coerce $ compare $ reflect $ Proxy Otag

HakoHeL, MOXeM BbI3BaTb (DYHKLNIO COPTUPOBKM, NMOAMEHUB NIOKAJIbHO NMOPSIIOK Ha 0BpaTHbINA:

1 sort :: Ord a => [a] -> [a]

> sortReverse :: forall a . Ord a => [a] -> [a]

s sortReverse xs =

4 let dict = ReifiedOrd { compare = flip compare } in
5 reify dict \(Proxy :: Proxy fresh) ->

6 coerce $ sort @(Wrapped fresh a) $ coerce xs

3.4.8 OTkpbiTble CTPYKTYpbI

B anHamMmnyeckunx si3blkax MOXHO CO3/1aBaTb OObEKTbI HA XOAy, NOCAeN0BaTENbHO AOMNNCLIBAs B
HUX CONEPKNMOE, 1 HEe BBOAS NpeaBapuTenbHo aeknapaunto. B Haskell Toxe Tak MOXHO, MCNOAb3ys
napbl Ans npousBefeHnii n Either ana cymm. Hanpumep, MoXXHO [006aBUTbL HOBOE MoJie, CO3/4aB
HoByto mapy: (oldObj, newField).

OpHako, Takasi peasm3auusi He ONTMMasbHA Kak C TOYKM 3peHust apcekTmeHocTr (0 Bosee
2(pheKTUBHBIX peann3auunsix MoxXHoO nountatb B [Maguire, [a, rnaea 11]), Tak U C TOUYKU 3PEHUS
yaobCTBa UCNONL30BaHMS. A MUMEHHO — MOPSAOK Moneli nMeeT 3HadeHume U Ha Tunax B Haskell
HET OTHOLIEHNS NOATUNM3AUUN (Hanpumep, Heb3sl NepeaTb 3HaYeHUe C MEHLLUNUM KOMYECTBOM
noseii NAN BapuaHToB). HO MOXHO 3aMETUTb, YTO KOHCTPEUHTbI JINLLEHbI STUX HeJOCTaTKOB. [1o-
3TOMY MOYXHO OPraHW30BbIBATb TUM CTPYKTYPbl AaHHbIX, HAaNpumep, TakumM obpa3om:

1 (Int, Double) zamenseM Ha (Member Int d, Member Double d) => Prod d

3.4.9 WcknouyeHns n oTKpbITasi nepapxmsi

BaxxHbili acnekT paboTbl C oWMOKaMK 3aKIOYAETCS B TOM, YTO MHOIME M3 HUX obpabaTbl-
BAlOTCS eAnHOOOpa3Ho. Takum obpa3oM, OLWKOKKM A0KHbI 0O6pa30BbLIBATEL Mepapxuto Hanomobue
Toii, koTopasi B OOIT A3blkax Nosy4aeTcst C NOMOLLI HacneAoBaHNs, YTOOblI UMETb BO3MOXXHOCTb
pearnpoBaTb Cpa3y Ha rpynny owunbok oAHMM KOAOM. TaK, BO3HWUKAET 3ajada MOAeNnpoBaHMs
nonobHoli nepapxun B Haskell.

Bonee Toro, cratnyeckn TMNM3npoBaHHble OWNOKN 3TO akTUBHas obiacTb nccnegoBaHnii, oy-
[eM roBopuTb 006 3TOM B pamkax cuctemM achekToB (cM. ganee ??). Knaccnyeckne NCKIOHEHNS e

55

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

AVHAMUYeCKn TUNu3npoBaHHble. OCobeHHO XOPOLLIO 3TOT BapuaHT NOAXOANT ASt OLLIMOOK Nporpam-
MWUCTa, KOTOPble MO-XOPOoLLEMY He [0/KHbI 0bpabaTbiBaThbCs B NporpaMMe KpoMe Kak 3akpbliTuem
PECYpCOB.

[Monnep>kka NCKAKOYEHUI NPUCYTCTBYET B cucTemMe ncnonHennst Haskell kak npoctoro n npuebly-
Horo cnocoba 0bpaboTKM UCKNOUUTENBHbLIX CUTYaLWii: OLWOOK NPOrpaMMINCTa, UCNONHEHUST HEMON-
HOrO MATTEPH-MATUUMHIA, aCUHXPOHHBIX CUCTEMHbIX curHanos Marlow et al.| [2001]. . . VickntodeHns
AVHAMUYECKN TUNM3KpoBaHHble N obpasytoT nepapxuto Marlow| [2006]. Ecnn nopoanTb uckatode-
HMEe MOXET M YUCTbI Ko, Tak Kak L, no cemaHTuke Haskell, HacenseT ntoboli Tun, To noMmMaTb
NCKAOHEHNE MOXKXHO TOﬂbKﬂ B 10 |Jones [2001], ucnonb3ysi cneumanbHble NPUMUTUBbLI S3bIKa.

H106bl cienaTb TUN UCKIOYEHNEM, HYXKHO OOBABUTbL MHCTAHC Exception ANS Hero:

1 class (Typeable a, Show a) => Exception a where

2 toException :: a -> SomeException

3 toException = SomeException

4 fromException :: SomeException -> Maybe a
5 fromException (SomeExcetion e) = cast e

[0e SomeException — 3TO 3K3UCTeHUMaNbHasi 06eépTka Hanogobue Dynamic (cMm. 3.4.6)), B KO-
TOPYIO 3aBOPAYVBAETCS KOHKPETHbIA Tun uckatodeHns. JloBa SomeException, MOXHO MoiMaTb
nroboe nckntodermne (cast Bceraa cpaboTtaer).

1 data SomeException where
2 SomeException :: Exception a => a -> SomeException

s 1instance Exception SomeException

Cuctema ucnonHernns Haskell npegoctaBnsieT MHTPUHCKUKIL AN KWAAHUS Y TOBAN UCKKOYEHNNA,
0bepHEM 1X ANs noafaepxku noboro Exception Tuna:

1 throw :: Exception e => e -> a
> throw = primThrow (toException e)

s catch :: Exception e => I0 a -> (e -> I0 a) -> I0 a

1+ catch io handler = io “primCatch” \e -> case fromException e of
5 Nothing -> throw e

6 Just e' -> handler e'

7 ghci> throw "error" “catch™ (e :: String) -> putStrln e

B npocTeiiwem cnyyae CBOR TN UCKNOHEHNSA MOXKHO peann3oBaTb B ABe CTPOYKMU. HTobbI ero
nomMaTh, HY>KHO Ao NOBUTL CaM 3TOT Tun, Anbo SomeException, NOTOMY 4TO ANA HUX 0BOUX
fromException Ha obbekTe Bnaa SomeException MyError BepHET Justﬁﬂ

58 (stackoverflow) Why can Haskell exceptions only be caught inside the IO monad?
%9instance Exception SomeException where fromException = Just

56

https://stackoverflow.com/questions/3642793/why-can-haskell-exceptions-only-be-caught-inside-the-io-monad

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1 data MyError = MyError deriving (Show, Typeable)
2 1nstance Exception MyError

Hobasnm uncknodeHne ArithException n ewe oanH 6onee oBOWMIA TUN WNCKIOHYEHUA Mex-
Ay HUM 1 SomeException — SomeArithException (Takum obpasom, byaeT Tpu crnocoba noii-
MaTb ArithException). [Jns sToro caenaem SomeArithException 3K3MCTeHUMANbHON OGEPT-
KOW, a Kakgoe ncknroyeHne Tuna ArithException Oyaem aBTOMaTum4deckum obopaymBaTb B HeEE.
B fromException Ha Ka>KAOM YPOBHE BJIOXEHHOCTU ByAeM MbITaTbCA NOAYUYUTbL 0bopadnBatoLLnii
KOHCTPYKTOP PEKYPCUBHbLIM BbI3OBOM.

1 data SomeArithException where
2 SomeArithException :: Exception a => a -> SomeArithException

3 -- SomeException - 6asoBbii (peanuszanusd IO YMOJYaHHD)
4 1instance Exception ArithException

5 data DivisionByZero = DivisionByZero deriving Show
¢ 1instance Exception DivisionByZero where

7 toException = toException . SomeArithException
8 fromException e = do

9 SomeArithException e' <- fromException e

10 cast e'

Tak, Bo BpeMs bpocaHusa DivisionByZero OyaeT KOHCTPYMPOBATbLCA OOBbEKT BMAA:
1 SomeException (SomeArithException DivisionByZero)

PeaJ'II/ISHLI,I/IFI fromException ONA KOHKPETHOIo Tuna yMeeT y6e,£l,I/ITI:>CFI B HaIN4NnN COOTBETCTBYHO-
LEero KOHCTPYKTOPa B PE3YJ/IbTUPYHOLLEM 00bEeKTE UCKOYEHUS.

3.4.10 JlerkoBecCHble 4aCTU4YHbIE CTEK-TPENCHI

3abaBHoli akcnnyaTauneld knaccoB TunoB B Haskell saBnsaroTca nerkoBecHble YaCTUYHbIE CTEK-
TpeVICbm. Boobue anst cbopa TpelicoB Hy»KHa NofJep)Kka paHTaliMma, 4To B ciydae Haskell ycnox-
HAETCS elE N TeM, YTO MOJENb BbIHUCIEHUI, peayKuns rpadoB, peasibHbIX TPENCOB He COAEPKUT
N X NPUXOANTCS dIMYNMPOBaTh. Mbl »xe nony4nm Tpeiickl 6e3 noaaep»xKu paHTalima.

B cTanpapTHoli bubnnoTteke onpeaenéH KOHCTpeunHT GHC.Stack.HasCallStack, NO3BOASIHO-
WM NONYyYUTb MHOPMALNIO O MECTe Bbi30Ba PYHKLMK. DTy nHbopMaLmnto pakTUYeckn pasme-
LLLaeT KOMNUASATOP B NpoOLIECCe BbIBOAA UHCTAHCOB. Ecnm B MecTe BbI30Ba AOCTYMNHA UHOPMaLMs C
YPOBHSI BbILLE, KOMOUAATOP PaCnNpoCTpaHseT e€ aanblue. Takmm obpa3om, AOCTynHa nHdopMauns
TONbKO HA ONpeAeneHHYo rNybuHy CTeka BbI3OBOB.

Ohttps://downloads.haskell.org/ghc/latest/docs/users_guide/exts/callstack.html

57

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/callstack.html

1 myHead :: HasCallStack => [a] -> a
> myHead [] = error "empty"
s myHead (x:xs) = x

4+ bad :: Int
5 bad = myHead []

6 ghci> bad
7 fkkx Exception: empty
s CallStack (from HasCallStack):

9 error, called at Bad.hs:8:15 in main:Bad
10 myHead, called at Bad.hs:12:7 in main:Bad
11 -- no information about bad call site here
1182 HasCallStack — 3To npocto umnancuT (cMm. [3.1.2)), npo KOTopbIii 3HAET KOMIUAATOP:

1 type HasCallStack = (7callStack :: CallStack)

uss 3.4.11 Kactomunsumpyemblie owumbkn Tunusaumm

1184 [Mpy NporpaMMmnpPOBaAHNN CNOXKHbBIX C TOYKW 3peHnNs TUNoB bBubNnoTek, KenaTeNbHO NpesoCTaB-
uss JISTb NOSb30BaTeNsM 6onee MHMOPMATUBHbIE OLINOKNM TUNU3ALMK, HYEM OLUMOKU MO YMOMYAHUIO.
uss Anst atoro B GHC ectb MmexaHnam B GHC. Typelits, no3BonsitoLLnii CKOHCTpYUpOBaTh CheLnanbHbli
usr TUM, UHDOPMALMA N3 KOTOPOro nonager B coobuleHne ob owmndbke. Hanpumep, 3TOT TN MOXHO
1ss BEPHYTb 13 synonym family npu HekoppekTHOM Habope aprymeHToB. Mnn »ke MOXXHO BOCMOJIb30-
s BaTbCs constraint trick (cm. [3.1.3) u pa3mecTTb Takoil TUM B KayecTBE MOCLIIKN B MHCTAHCE.
100 ECAM MHCTAHC nogowen n KOMNUASATOP Hadan obpabaTbiBaTb OrpaHUYEHNs CneBa, 3HAYNT, YTO-TO

uor Moo He Tak [Maguire| [a, rnasa 12].

1 instance (TypeError
2 (Text "Attempting to show a function of type "

3 :<>: Text "'" :<>: ShowType (a -> b) :<>: Text "'"

4 :$$: Text "Did you forget to apply an argument?"

5)) => Show (a -> b) where

6 show = undefined -- peanusanua He BaxHa, O HCIOJHEHHS LeJO He LOHLET

58

https://hackage.haskell.org/package/base-4.20.0.1/docs/GHC-TypeLits.html

1w 4 Tunbl gaHHbIX

1103 B aToit rnaBe cobpaHbl HekoTOpble ObLLME 3HAHMA O TuUNax. [akxe, Mbl NOAYYUM Pa3NYHblE
1104 DKBWBAJIEHTHbIE MPeACTaBNEHNS] PEKYPCUBHBIX TUMOB AaHHbIX (MHaye roBopsi, konnekuuii). MHuorune
1105 KOHUENUMN ABASIOTCS YAaCTHbIMU ClyHasiMi 3TOro MHoroobpasusi.
1196 Pasgensi [4.1] B ocHoBHOM creaytoT [Maguire| [, rnaga 1].

nr 4.1 BapuaHTHOCTb

1108 B aTom naparpade mbl 6ynem paccMaTpriBaTb TEMY C TOUKIM 3peHns nporpammMmpoBatust [Maguire,
oo (@, rnaBa 3|, He oTAaBasi AOHKHOMO Teopumn KaTeropuwii. BocnonHuTb npoben MOXHO C NMOMOLLGHO
1200 3aMeYaTesNbHONM CTaTbU, HANWCAHHON B »KaHpe nbeckl [Hinze et al.| [2012].

1201 KoBapunaHTHbIV (byHKTOP — napa 13 HEKOTOPOro TUMOBOIO KOHCTPYKTOpa F 1 onepaunn Ha
202 PyHKUMAX fmap :: (a -> b) -> (F a -> F b). [ntoc 3akoHbl 0 ToM, 4TO fmap yBaxaeT id u
1203 KOMMO3NLUWMIO.

1 class Functor f where
2 fmap :: (& -=>b) -> (f a -> f b)

p
A = B

Punap £

1204 KoHTpaBapuaHTHbIV (pyHKTOP — napa 13 TUNOBOro KOHCTPYKTOPA U onepaunn Ha OyHKLKSIX,
1205 Pa3BoOpadmMBatoLLeli cTpenky. [11roc CoOOTBETCTBYOLINE 3aKOHbI.

1 class Contravariant f where
2 contramap :: (a -> b) -> (£ b -> f a)

A — B
contramap £

F A< FB

1206 TrnnoBoli KOHCTPYKTOP MOXXHO 0OBSABUTH KOBAaPUAHTHbLIM UAN KOHTPaBapUaHTHbIM (DYHKTOPOM
1207 (MW HUKAKUM U3 HUX) OTHOCUTENBHO HEKOTOPOro TUMOBOrO MapaMeTpa B 3aBUCUMOCTU OT BMAA

59

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

JeKNapaLnn CoOOTBETCTBYOLNX KOHCTPYKTOPOB AaHHbIX. A MUMEHHO, OT 3HaKa NO3uLWiA, B KOTOPbIX
BXOAWUT 3TOT TWMOBOW NapaMeTp B TuM.

Pa30BbEM MHTYUTUBHOE MOHUMAaHNE 3HAKOB MO3VLNA. Tun A BXOAUT B NONOXKUTENBHOW NO3U-
UMM B B ecnm ero 3HayeHne MOXKHO u3Bne4db n3 B. 1 Hao6opoT, Tun A BXOAUT B OTPULATENLHON
No3nLMK, eCNn ero 3HavdeHne Hy»KHO, HaobopPOT, NPefOCTaBUTL. PacCMOTpMM 3HaKU NO3MLINA TUMNOB
B 6a30BbIX TUMOBbLIX KOHCTPYKTOPaX:

Twun 3HaK No3uuum A | 3HaK no3unuynn B
Either A B + +
(A, B) + +
A ->B - +

JeAcTBnTENBHO, N3 CyMMbI U NPON3BEAEHNS MOXHO U3BNEYb KOMMOHEHTbI C MOMOLLIbIO NaTTEPH-
MaTUYUHIa, @ U3 CTPENKM MOXHO NMONYYUTb NPaBbId TUM annanumMpyst e€ K aprymeHTy. B To xe Bpems
3Ha4YeHMe Tuna CaeBa OT CTPESIKM HY>XHO NPefoCTaBUTb.

Ha natoc n MuHyC AelicTBYHOT UHTYUTUBHbIE anrebpanyeckine 3akoHbl Npu paccMoTpeHun bonee
CNIOXHbIX TUNoB. PaccmoTpum Ha npumepe £ :: ((A, B) -> C) -> (D, E).

e [Intoc Ha natoc faéT natoc. [JelicTBUTENBHO, HY)KHO Wb NPUMEHNTL [BE SNMMUHALNN BMe-
CTO OAHOI, YTOObI NONYYNTb 3aBETHbIV TuUN. B HaweM npumepe, 4ToObl NOAYYUTb D, HYXKHO
CHavaNa annanuMpoBaTh (DYHKLMIO, @ MOTOM pa3obpaTb napy.

e [lntoc Ha MuHyC (M HaobopoT) AaéT MuHyc. [lelicTBUTeNbHO, C HaM HY>XXHO MpefoCTaBUTb:
f (\ab -> provideC).

e MuHyc Ha MuHyc gaet nntoc. lMapy (A, B) Ham npepoctasastoT: £ (\ab -> ...).

YnpaxHenune 19 Vbegutecb 4To naroc Ha MUHyC AET MUHYC.

Bos3Bpalwasacbk K dhyHKTOpaM, ecnm TUMNOBOW napamMeTp BXOAUT B AeKJapaluto TONbKO B MOO-
YKUTENbHbLIX MO3NLUAX, TUNMOBOW KOHCTPYKTOP MOXHO 0O BABUTL KOBapUaHTHLIM (DYHKTOPOM OTHO-
CUTeNbHO 3TOro napameTpa. Ecnm B ToNbKO B OTpULLATENbHBIX — KOHTPaBapvaHTHbIM PYHKTOPOM.
Ecnmn B 0bounx, TO HUKaKuM hyHKTOPOM 0ObsIBUTL HeNb3st. COOTBETCTBEHHO, BynemM Ha3biBaTb TU-
NoBble MapaMeTpbl KOBAPUAHTHLIMU, KOHTPABaPUAHTHLIMU 1 MHBAPUAHTHBLIMNA.

YnpaxhHenue 20 O6bssute instance Contravariant Fgrgdata F a =L (a -> ()) | R Int.

Taknm 0bpa3oM, MOXXHO MOHUMaTb KOBAPUAHTHbLIA (OYHKTOP KaK BbIYUCAEHUE, pe3ynbTaT Ko-
TOPOro MOXHO MOCT-06paboTaTb, a KOHTPaBapUaHTHbIM (DYHKTOP — KaK BblYMCAEHWE, apryMeHThI
KOTOPOro MOXKHO npea-obpaboTaTs.

Twun oT ABYX NONOXKUTENbHbIX MAPAMETPOB MOXXHO 00bsIBUTL OUDYHKTOPOM:

1 class Bifunctor f where
2 bimap :: (a -=> ¢c) > (b ->d) ->f ab ->f cd

Twun oT ABYX NapaMeTpPoB, MNOJOXUTENBHOMO N OTPULIATENIbLHOrO, — NPOPYHKTOPOM:

60

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1 class Profunctor p where
2 dimap :: (¢ -=>a) -> (b ->d) ->pab->pcd

[MpobyHKTOPLI SABASIOTCA HEKOTOPbIMU 06006LLEHNAMN hyHKLMOHANbHOW cTpenkn. Hanpumep,
ecnn y Hac ectb SQL 3anpoc, KoTopblii NO AaHHLIM BO3BpPALLAET pe3ynbTaT, ero MOXXHO 00bsIBUTL
NPOMYHKTOPOM C CEMaHTUKOW — [00aBUTb Npel-o06paboTKy BXOAHLIX AAHHLIX W NOCT-06paboTKy
BbIXOAHbIX:

1 dimap serialize deserialize (query :: Sql Text Text) :: Sql Age [User]

Tak>xe NOHATUE BAPUAHTHOCTU YacTO BCTPeYaeTCst B 0O beKTHO OPUEHTUPOBAHHbLIX si3bikax (fa
1 BOODLLIE B TeOpUW NOATMNN3AUNN) 415t 0OO3HAYEHUST BO3MOXHOCTY AOMNOJAHUTL OTHOLLEHWE MOJ-
TUAN3aLUMN HA NOAUMOPHbIE TUMLI.

HelicTBUTENBHO, OTHOLWIEHUE noaTuNn3auumm B <: A roBOpUT O TOM, 4YTO 3HayeHwe Tuna B
©e30nacHO UCMNoJib30BaTb B NO3ULMNW, TAE OXXNAaeTcs 3HadeHne Tuna A. /lHade roBopsi, CyLlecTByeT
dyHKUMA upcast :: B -> A. Ecam TunoBoi KOHCTpyKTOp F a KOBapmaHTeH OTHOCUTENbHO Nnapa-
METpa a, TO No upcast HalngeTca upcast’ :: F B -> F A. To eCTb OTHOLUEHME NOATMNN3ALNN
TakxKe aBToMaTu4deckn BrkatodaeT F B <: F A. KoHTpaBapuaHTHbIW ciydal aHanorm4yHo.

YnpaxdeHnune 21 Ybegutecb B Bawiem at0OUMOM S3bIKE C MOATUNU3AUNEN W TTOAAEPIKKON Bapu-
AHTHOCTU, YTO MUHYC HA MUHYC AAET rJHOC.

4.2 WN3omopdpusm

[MyCcTb HaM HY>XHO CMPOEKTUPOBATb (OYHKLUIO UK MOJEeNb AaHHbIX. Mbl HAUMHAeEM C AekNlapauum
TUNa, Kak e€ BbiOpaTb U 13 Kakux BapnaHToB? [lns Hayana noiiMém, Korja [Ba Tuna B3aumo3ame-
HUMbI, AN 9TOrO PAaCCMOTPUM MOHATUS n3omMopdurama.

[Ba Tuna A v B Ha3biBatoTCs ndomMmopdHbiMu (0603HavatoT A = B) Toraa v TOAbKO Torja,
KOrfla CyLLleCTBYeT Takas napa pyHkumi to :: A -> Bu from :: B -> A, ‘-ITd7_TI

1 to . from = id
2 from . to id

iHaue rosopsi, Mexxay obuTaTensaMm Takux TUMOB MOXHO YCTAaHOBUTb B3aWMHO-O4HO3HAYHOE
cooTBeTCTBUE. JIerko MoHATb, YTO CO CMbIC/OBO/ TOYKWU 3PEHUs HE MPUHLUNWANBLHO, KakoW 13
N30MOPMHbLIX TUMOB NCMOMb30BaTb — WX MOXHO 3aMeHsITb APYr Ha Apyra, AoOaBnsisi BbI30BbI
dyHKUWI nepexona. Takune ABa Tuna 3akaro4atoT B cebe oaMHaKoBoe “Konm4ecTBo nHdopmauumn”.
Hanpumep, Tunbl Bool n Maybe () B 3TOM CMbIC/Ie COBEPLLEHHO B3anMo3aMeHuMbl. [lokaxkem 370,
npeabsaBUB Napy B3aUMOODOpaTHbLIX d)yHKLLmVFE]:

"Mop paBeHCTBOM TEPMOB MOXHO MOHNMATL pasHoe, Hanpumep, a3Y-3KBNBANEHTHOCTb. Mbl ByaeM nonb30BaTLCS
3KCTEHCMOHAJIbHBIM PaBEHCTBOM /15 (DYHKUNIA — ABe hyHKUMM paBHbl, KOr4a pPaBHbI X Pe3yabTaTbl Ha BCEX BXOAAX.
https://ncatlab.org/nlab/show/functiont+extensionality

"?Hy>kHO He 3abbITb NoKa3aTb B3aMMOOBPAaTHOCTb (PYHKLUIA, HO 3TO AeNaeTCsl TPUBMANLHO NepebopomM BXOAOB (Mo-
MET BbITb C MOMOLLBIO MHAYKLUN) 1 PEAYKLMED.

61

https://ncatlab.org/nlab/show/function+extensionality

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1 to :: Bool -> Maybe ()
> to b = 1if b then Just () else Nothing

s from :: Maybe () -> Bool
4+ from m = case m of Nothing -> False; Just () -> True

HecMOTpst Ha CMbICNOBYHO B3aMMO3aMEHUMOCTb, A1 KOAUPOBAHNSA MHAOPMaUUM O TOM, nepe-
Aan N NoNb30BaTeNb NPpOrpaMMe onpeaenéxHbIin dhnar, Mbl, CKopee BCEro, BOCMNOAb3YyeMCSt TUMOM
Bool BBMAY HedyHKLMNOHANbHbLIX CoOobparkeHnli 0 YnTabenbHOCTU Koaa. AHANOMMYHO MOXHO pac-
CMaTPUBaTb COODpParkeHUst SPPEKTUBHOCTH.

C KaTeropHbIM B3r15140M Ha Nponcxodsiliee MOXKHO o3HakoMuTbest B |Hinze and James| [2010].
Mbl e Npuaep)XxMBaeMcst TEOPeTUKO-MHOXECTBEHHON MHTepnpeTaLun TUMNOB.

4.2.1 KapJJ,I/IHaﬂbHOCTb: CyMMbI, Nnpon3BeneHns, 3KCNMNOHEHTbLI

Trnbl MOXXHO BOCMPUHUMATL Kak CUHTAKCUC A1 3aNUC/ MHOXECTB, a HaCeNsroLme nx TepMbl —
KaK CMHTaKCU4YeCKMe 3annCu 31EMEHTOB 3TUX MHOXECTB. Tak TepM (True, False) — 3anucb ane-
MEHTa MHOXECTBA Nap, 3aN1CbIBAaEMOro B CUHTaKcKUce TUNoB kak (Bool, Bool) (BMeCTo MaTema-
Tnyeckoro B x B). nn xe Tepm \x -> x + 1 siBAsIETCA 3anncblo hyHKUMU NprbaBasitoLLei ean-
HULY N3 MHOXXeCTBa (PYHKUUIA HaZ LenbIMU YUCAaMU, 3aMUCbiBAEMOro Kak Integer -> Integer
(BMecTo MaTemMaTuyeckoro Z — 7).

3amMeTuM, 4YTO ABa Tuna U30oMOpPHbI, €CI COOTBETCTBYHOLLME UM MHOXECTBA UMEKOT OfVHa-
KOBOE KOJINYECTBO 2/1eMeHTOB. bonee Toro, Takmx nsomopdpunamMos n! B cnyvae KOHEHYHOCTU MHO-
»ecTB. Hayuumcs onpeaensTe KoNM4ecTBO Takux 3aemeHToB. C noMouybto | - | Byaem 3anmceiBaThb
KapAWHANBHOCTb TUMNA — KOJNYECTBO 3JIEMEHTOB B COOTBETCTBYHOLLIEM MHOXECTBE.

Twn v ero geknapauus KapAWHaNbHOCTb
data Void 0
data Unit = Uni 1
data Bool = False | True 2

nest anrebpanyecknx TUMOB JAHHbIX B TOM, YTO C/OXHbIE TUMbl MOXHO CTPOWUTb W3 NPOCTbIX
c nomoubio onepaunn + (“uan”) u onepaunn x (‘v

Tun KapAvHaNbHOCTb
data Either a b = Left a | Right b |al + |b|
data Pair a b = Pair a b la| x |b]

MocunTaem KONMYECTBO ObUTaTeNen pa3nnyHbiX TUNOB (Bbl MOXeTe yOeaAnTbLCs B CNpaBeain-
BOCTM 3aKJHOYEHNs nepebpas BCe TEPMbI BPYUHYHO):

e |Either Unit (Eigher Bool Bool)| = [Unit| + (|Bool| + [Bool|) = 5.

73Unit 3anucbiBaeTcs B Haskell ¢ noMoLLblo cneumanbHoro cuHTakcnca (), 03HayatoLleM Kak Obl NycTol kopTex.
"*https://stanford-cs242.github.io/f18/lectures/02-2-algebraic-data-types.html

62

https://stanford-cs242.github.io/f18/lectures/02-2-algebraic-data-types.html

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

e Pair (Either Bool Unit) (Pair Unit Void)| = 0 — Tun Void He HacenéH, Kak u Kop-
TeX, ero BKJIKOYatoLLWiA.

e Ecnn data Example = FirstAlternative Bool | AnotherOne Unit Bool Bool, TO
|Example| = |Bool| + [Unit| * [Bool| * |Bool| =2 + 1 %x 2 % 2 = 6.

PYHKLMOHANBbHYO CTPENKYy Ha3blBatOT SKCMOHEHUMaNbHbIM Tunom. JleicTButensHo, kKomObrHa-
TOPHO KOJIMYECTBO obuTaTeneli A -> B BbIYUCASETCS KakK

|A— B| =B
Tak Kak »e NpoeKkTMpoBaTb TUMbI? TOMY eCTb HECKOJIbKO COODParKeHUIA:

e B Tune gomkHO 6bITb HE MeHbLLE 3IEMEHTOB, YeM B NpeaMeTHON obnacTu, Bce Heobxoanmble
00bekTbl bbbl NpeacTaBUMbI.

e B Tune fonKHO BbITb KaK MOXHO MEHbLLE S1EMEHTOB, KOTOPbIX HET B NpeAMeTHOI obnacTtu,
4TOObI MPOCTPAHCTBO OLUMOOK ObIIO MUHUMANBHBIM.

e [lanee cpean n3oMOpdHbIX TUMOB BbIOMPAETCS ONTUMANBHbIA NCXOAst N3 HEPYHKLMOHANBbHbBIX
TpeboBaHWiA.

[Mpexxge 4em paboTaTb C HEKOTOPbLIM OOBEKTOM MpeaMeTHOM obnacTu, NHPoOpPMaUNo O HEM, B
COOTBETCTBUN CO BTOPbIM MPaBWUJIOM, CAelyeT NPUBECTU B MAaKCUMalbHO CTPYKTYpPHOE NpeacTas-
NleHune, gatoulee Hanbosbluee KONNMYEeCTBO rapaHTmVE].

4.2.2 Anrebpanueckoe npeacraBjieHUe Tuna

Kak Mbl yBUAeNN Bbllle, 4TODObI NOKa3aTb Hanyme n3omMopdramMa Mexxay ABYMst TUMaMu MOX-
HO NMOO NpeabsBUTL Napy B3anMoobpaTHbIX DYyHKLUKA, 16O Noka3aTb, YTO KapANHANBHOCTY 3TUX
JIBYX TUMOB CoBMNajatoT. B 2ToM pa3gene Mbl HayunMcsi CONOCTaBNSATb TUMY HEKOTOPYHO anrebpanye-
CKYHO 3aMnCb, OTPAXKaOLLLYHO €ro CTPYKTYPY U KapAWHANbHOCTb. TaK, Mbl CMOXXEM CUHTAKCUYEeCKUMU
npeobpa3soBaHuAMN opMyn NoydYaTb IKBUBANEHTHbIE 3aMWUCK, U3 KOTOPbLIX DyaemM BOCCTaHaBAMU-
BaTb TUMbI, 3aBEAOMO M30MopchHble AaHHOMY|™?|

B ocHoBy anrebpanyeckoro npeacTaBfieHUsT MOJOXKUM BblYMCIAEHNE KAPAWHANBHOCTW TUMOB.
PaKTn4eckn Mbl 3abbiBaeM HECYLLIECTBEHHYO ANt M3oMopu3Ma MHOpMaLno 06 MMeHax KOH-
CTPYKTOPOB faHHbIX 1 KOHCTPYKTOPOB TUMOB, TO €CTb MEPEXOANM K CTPYKTYPHOU TUMNM3aLWN.

Twun anrebpaundeckas dpopmyna
data Void 0

data Unit = Unit 1

data Bool = False | True 1+ 1 (obo3Hauum Kak 2)
data Maybe a = Nothing | Just a 1+a

data Either a b = Left a | Right b a+b

data Pair a b = Pair a b axb

a->b b?

"https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
"®https://codewords.recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types

63

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://codewords.recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

sums
X40=2X X4+Y=2Y4+X
(X+Y)+Z=2X+(Y+2)
products
Xx12X 0xX>20 XxY=2YxX
(X xY)xZ=2Xx(Y xZ2)
product over sum
(X+Y)xZ=(XxZ)+ (Y x Z)
exponentials
1 >~1 x~1 x'xx
ZXHY o zX o zY (zY)X x> gXxY
exponential over product
(VY x 2)X 2 vX x zX

Puc. 13: 3akoHbl WKoMbHOI anrebpbl HocTanbruv paau Hinze and James| [2010].

YnpaxHeHue 22 3anuwinte B anrebpandeckom BUAE CAEAYHOLNIA TUM:

; data T a b = Undefined | Defined a (a -> b)

B kayecTBe OTHOLLIEHNS SKBUBANEHTHOCTM, DyaeM MCNONb30BaTb N30MOP(U3M COOTBETCTBY!IO-
Wux TunoB. B Takoli nHTepnpeTaunmn, Knaccndeckne CBOMCTBA anredbpanyecknx onepaunii coxpa-
HatoTca (puc. [13). HdelicTBUTENBHO, Hanpumep:

. -- (Cb)a ~ Ca><b

2 to :: (a->b ->c¢c) -> (a, b) -> ¢
3 To = uncurry

+ from :: ((a, b) ->c) ->a ->b ->c¢

5 from = curry

YnpaxHenue 23 [lokaxuTe, 4to (a+ b) +c=a+ (b+c).
VYnpaxHenune 24 [lokaxuTte, 4To c?TP = c? x cb.

VIHTepecHbIM HabatoaeHneM MOXKET BbITb TO, YTO OYHKLMN MOXKHO UCMOSIb30BaTh KaK CTPYKTY-
Pbl JaHHbIX, B COOTBETCTBME C n3oMopdusaMom c?P = c? x cP. [elicTBuTenbHo, B Takom cnyyae
aprymeHT byHKUWM BbICTYNaeT UHAEKCOM (ero KapAuHaAbHOCTb AOJ/PKHA COBMafaTb C Pa3MepoM
KONEKLIN).

1 -- axaXa®

> get :: (a, a) -> (Bool -> a)

5 get (x, y) idx = if idx then x else y
4+ tabulate :: (Bool -> a) -> (a, a)

5 tabulate f = (f True, f False)

64

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

KaHoHnuyeckum npeacTtBJi€EHNEM TUNA (canonical representaion) Ha3blBAlOT CyMMY MNMpon3-

BeJEHWA TUMOB:
E I I tij
i

KaHoHnYeckoe npeacTaBfieHNe SIBASIETCS CBOEro poja HOpMasbHOW hOpMOIA, B KOTOPOW MOXKHO
3anucblBaTh anrebpavyeckue Tunbl (Noboii anrebpandecknii TUMN MOXHO MO MpaBuiaM NPUBECTY
K Heid). Jlerko y3HaTb B HEM BuA data Aeknapauwii B Haskell.

VANBUTENBHO, HO laXKe NPON3BOAHAA anrebpanyeckoro Tuna UMeET BMNOJIHE MOHATHYHO CEMAHTU-
Ky. DTO KOHTEKCT 3unnepa (zipper), CTPyKTypbl AaHHbIX Hanogobvie ntepaTopa, NO3BONAOLLENA Ha-
BUIMPOBATLCS MO CTPYKTYpe AaHHbIX npon3BosibHOW dhopmbl Huet [1997], McBride [2001], Abbott
et al. [2003].

4.3 PekypcuBHbIE TUMDI

PekypcuBHble Tunbl, Hanogobue pekypcrBHbLIM TepMaM, MOryT BKJOYATb cebs B CBOMX onpe-
aenernsx. ViHade roBopsi, pekypCuBHbI TUN N30MOPGEH KAaKOMY-TO ApPYyroMy TUMy, B KOTOPbIA OH
CcaM BXOAMUT KaK NoAaTumn.

1 facn=ifn<=1then1elsen*(n—l)
2 data Nat = Zero | Suc

Mbl B OCHOBHOM MOCMOTPUM Ha PEKYPCUBHbIE TUMbI C MPAKTUYECKON TOUKN 3peHns. OgHako, nx
dopMaNibHOE TEOPETUKO-TUNOBOE ONUCAHNE, TEOPETUNKO-KAaTErOPHAsi U TEOPETUKO-MHOXKECTBEHHAS
VHTepnpeTauun NpeacTaBastoT oTAenbHbIl nHTepec [Pierce, 2002, yacTs 4].

4.3.1 TpocTto cnucok

PaccmMoTpyM Knaccuyeckuini doyHKUMOHaNbHbIA cnncok. Cnncok 3To Nnbo KOANEKUUS U3 HyNs
3/IEMEHTOB, MO0 0fHOro, NMbO ABYX. .. Anrebpanyeckn 3To 3anNULIETCS CleayroLmM obpa3om:

—1l4+a+a>+a>+...

DaKTNYeCK Noay4Yman Tun ¢ OeckoHevyHoW 3anucbto. [lopaboTaemM C HUM Kak C popMabHbIM
psiaoM. BbiHecem a 3a ckobKu:

L=1+ax(1l+a+a+..)

3aM€TI/IM, HYTO BbIpa>XEHNE B Cckobkax npeacTtaBadaAeT coboli cnucok, NnoNyHMM TaKOE PEKYPCUBHOE

ypasHennd '}
L=1+axL

Jlerko BuAeThb, 4TO 3TO Ha CaMOM Jiefle 3HaKoOMOe HaM onpefeneHne cnucka n3 Haskell:

TJInbo MOXHO MOMYH4NTL TO XKE CamMoe, 3aMEeTUB, YTO Mbl MEEM [eno C psaoM Teiinopa https://codewords.
recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types|

65

https://codewords.recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types
https://codewords.recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1 data List a = Nil | Cons a (List a)

[Mony4ynm KoOHeYHOe HepeKypCcuBHOE NpeacTaBneHune Tuna L. @akTUYecKn, HaM HY>KHO MONYy4YUTb
TUN N30MOpPdHbIZ TNy, BKAOYAtOLWEMY B CeBS NCXOAHbIN:

L=1+axL

Pacwupum s3bik Tnos abcTpakumeid (NonmmMopruaMom) 1 peLnm noiyHeHHoe peKypCMBHOE ypaB-
HEHNE B CTUNE A-UCHUCNEHNSA, C MOMOLLBIO HEKOTOPOro KOMBUHATOPA HEMOABVXXHOW TOYKN:

L=FIXAr.1+axr

3akoanpyem 3To Ha Haskell. B kadecTBe kKomMbUHaTOpa pekypcun Bo3bMéM data FixList a:

1 type Shape a r = Either () (a, r) -- Aar.l+axr
> data FixList a = In (Shape a (FixList a))
3 -- FixList a = Shape a (FixList a) = Shape a (Shape a (FixList a)) =

4+ example :: FixList Int -- [1, 2, 3]
5 example = In (Right (1, In (Right (2, In (Right 3, Left ())))))

Takum o6pa30M, Mbl pasgennanm onpeaceneHne Cnnmcka Ha AB€ 4aCTtu. OHa OTBEHAET 34 cbopMy
TWNa, agpyrad — 3a peKypcmro@. CDOpMy MOXXHO NeEPENCNONIb30BATb, B ONnpegenceHmnm CBépTKI/IZ

1 foldr :: (Either () (a, r) -> r) -> FixList a -> r
> foldr phi (FixList shape) = case shape of

3 Left () -> phi (Left ()

1 Right (x, xs) -> phi (Right (x, foldr phi xs))

5 -- CpaBHHTE C KJIaCCHYECKHM OIpeZesIeHHEeM
¢ foldr :: r > (a ->r ->r) > [a] >
7 foldr ini f list = case list of

8 [:| -> ini

9 x:xs -> f x (foldr ini f xs)

LencTBnTenbHO, CBEPTKA B OOLLIEM CMbIC/IE NO3BONSET 3aMEHNTb KaXK/bll/i KOHCTPYKTOP AaHHbIX
B [lepeBe Ha HeKoTopyto yHKUMIO. B pe3ynbTaTte nonyyvaeTcs BblHUCAEHME, MMEKOLLEE AOCTYN KO
BCEMY COAEPXKMMOMY CTPYKTYPbl JaHHbIX, ¥ BO3BpallatolLlee pe3ynbTaT arperayuu:

foldr f z

v oYy
1l v
2 v iy
3 v iy
4 v
5 I

"8 TexHUka abCTparnpoBaHuns Mo “peKkypCcrBHOIL CCbiNke Ha cebs” Ha3biBAETCS OTKPbLITON peKypcumeii. Tak, Mbl Npeao-
CTaBJIsieM NoJsib3oBaTeNto Oosiblie KOHTposs. Hanpumep, Ha ypoBHE TEpMOB KOMOUHATOP PEKYPCUN MOXKET MOACHUTbI-
BaTb KOJIMYECTBO PEKYPCUBHbLIX BbISOBOB U 0OOPBaTb BbIYNC/EHNE NMPY MPUBLILLEHNN KAKOrO-TO JMMUTA.

66

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

To eCTb KONMYECTBO U TUMbI APryMEHTOB CBEPTKM 3aBUCAT OT “hopMbl’ CBOpaYMBaEMOro Tuna.
B cnydae cnucka TpebyeTcs HonbapHas pyHkUMA BMecTo Nil n OuHapHas BMecTo Cons. Mbl xe
3TN ABe PYHKUMW NPeACTaBAsieM B KakK OfHY C nomolbto Tuna-dopmbl. CpaBHUTE:

1 foldr 0 (\e r ->e +r)
> foldr (\case Left () -> 0; Right (e, r) -> e + 1)
4.3.2 HenogBuxHas Touyka pyHKTOpa

AbcTparnpyem FixList no Tuny-copme:

1 newtype Fix :: (Type -> Type) -> Type
> newtype Fix f = In { out :: f (Fix £f) }

3 data ListF a r = Nil | Cons a r
4+ type List a = Fix (ListF a)

YnpaxHeHue 25 Kakue tunsl 6yayT y In v out?

MoyxkHo nokasaTb, 4To [a] = List a:

1 to :: [a] -> List a

2 to = \case

3 [l -> In Nil

4 x:xs -> In $ Cons x (to xs)

5 from :: List a -> [al

¢ from (In shape) = case shape of
7 Nil -> T[]

8 Cons x xs -> x : from xs

Tun dopMbl MOXKHO caenaTb (YHKTOPOM MO MOC/eAHEMY MapameTpy. TO NO3BOMUT HaM B
JlaNbHENLIEM 3aMEHATb BXOXKAEHWSI NOAAEPEBLEB HA YTO-TO MOJIE3HOE.

1 instance Functor (ListF a) where

2 fmap :: (rec -> other) -> ListF a rec -> ListF a other
3 fmap f = \case

4 Nil -> Nil

5 Cons x xs -> Cons x (f xs)

YnpaxHeHue 26 Bripasute craegyroujee 4eEpEBO KaK HEMOABUXHYIO TO4YKY ¢yHkTopa. ObbsasBute
VHCTaAHC (byHKTOpA A/1s1 TUNa-copMbi.

: data Tree a = Leaf a | Node a (Tree a) (Tree a)

67

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

4.3.3 Cxembl peKkypcun

[MogobHO TOMy, Kak CTPYKTYpHOe MMMepaTUBHOE NMPOrpaMMUpOBaHNe, B CpPaBHeHUU C Becno-
PAAOYHBIM MCMNONBb30BaHNEM goto, MOMOraeT pacCy»kAaTb O NPOrpaMMax, Tak CXEMbl PeKypcum
NO3BONAIOT anrebpanyeckn onncbiBaTb CBOMCTBA PEKYPCUBHBLIX (DYHKLWIA, B OTAMYME OT “HECTPYK-
TypHoi” peKypcmvEJ] Meijer et al.|[1991], Meijer and Hutton| [1995].

[nobanbHast naes coctosiia B TOM, 4TOObl hopMynmpoBaTh TpebyemMble CBOWCTBA U BblYMC-
NIATb HY>XKHble MPOrpamMMbl NOAOOHO TOMY, Kak MaTeMaTUKU HaxXOAAT pelleHust anddepeHumnanb-
HbIX ypaBHeHWid. OfHaKo, 3Ta WAest He Hallfla HY>KHOIO Pa3BUTUS 1 NpuMeHeHns (0fHaKo, BNaAeTh
anrebpanyecknmM nNoaxoAom B Lenom nonesHo Maguire| [b]). Tem He MeHee 3TO 3HaAHWE, C OAHOM CTO-
POHbI, AAET Bonee rnybokoe NOHUMaHWE PeKYpPCUn, C APYroi, NPUroanTCst HaM ANt PACCMOTPEHUS
N pelleHnst TNaBHoO nNpobnemMbl 3TOro Kypca — expression problem.

YHuBepcanbHasa CBEPTKA Ha3biBaeTcsi katamopdunamom. Katamophusm cHavana pekypcuBHoO
CBOPaYMBaeT NoALepeBbs, A0OMPAsACH K HUM C NOMOLLbLO fmap, 1 OCTaBNAET pe3ynbTaTbl CBEPTKY
TUNa a BMECTO ObIBLLVX BXOXAEHWIA noaaepeBbes. [1onydaeTcs 3HaveHne Tuna £ a, rae £ — Kakoi-
TO yHKTOp hbopMmbl. [lanee npumeHsieTcs dyHKUus Tuna £ a -> a, KOTOpas onpefensieT, Kak
CBEPHYTb OJVH C/IOW PEKYPCUBHOW CTPYKTYpPbl, KOrga NoALepeBbst Y»Ke CBEPHYThI.

1 cata :: Functor f => (f a -> a) -> Fix f -> a
> cata phi = phi . fmap (cata phi) . out

NHave roBopsi, cata 3aMeHsIET BCe KOHCTPYKTOPbl In Ha (byHKUMIO phi, KOTOpast Coaep)XuT
NHOPMaLIMIO O TOM, KaK pearnpoBaTb Ha pa3Hble BapMaHTbl KOHCTPYKTOPOB B [epeBe:

1 example = In (Cons 1 (In (Cons 2 (In (Cons 3 (In Nil))))))
> cata phi example =g phi (Cons 1 (phi (Cons 2 (phi (Cons 3 (phi Nil))))))

Hanpumep, cymma cnucka 6ygeT BoirnsaeTs cnegyrowum obpasom (puc. [14)):

1 sum :: List Int -> Int

2 sum = cata \case

3 Nil -> O

4 Cons x result -> x + result

®dyHkuynto £ a -> a HasbiBatoT f-anredbpoin. [elicTBuTensHO, ecnm B KadecTBe byHkTOpa f
B35Tb CUrHATypy anrebpbl, a B Ka4yecTBe a HocuTenb, To f-anrebpa OyaeT 3ajaBaTb HEKOTOPYHO
NHTEPNpeTaUnto CUrHATYpbI:

1 data MonoidSig carrier = Mempty | Mappend carrier carrier

2 interpretSig :: MonoidSig Int -> Int
3 interpretSig = \case Mempty -> O; Mappend 1 r -> 1 + r

YnpaxHeHune 27 C nomoLbto Kakoii anrebpbi MOXHO CKOMUPOBAaThL CTPYKTYPY AAHHbLIX?

"“https://reasonablypolymorphic.com/blog/recursion-schemes/index.html

68

https://reasonablypolymorphic.com/blog/recursion-schemes/index.html

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

Puc. 14: Katamopdhur3mM nepencnonb3yeT BXOXIAEHUS PEKYPCUBHbLIX MOAJEPEBLEB, YTODbLI XPaHUTb
pe3ynbTaTbl CBEPTKU COOTBETCTBYHOLLMX NOALEPEBLEB.

YnpaxHeHue 28 C nomotuybto Kakoii anrebpbi MOXHO pacriedaTtaTb CIIMCOK B CTPOYKY?

B npoTUBONONOMXHOCTL YHUBEPCANbHON CBEPTKE, MOXKHO NOCTPOUTL aHaMopdn3mM — yHUBEp-
canbHyto pa3BepTKy (aHanormyHo unfold Ans cnucka). 3aeck f-koanrebpa (cTpenodka B obpaT-
HYFO CTOPOHY) MOKa3bIBaeT, Kak U3 HEKOTOPOro 3HAYEHUS-3epHA NOYHUTb OAWH CAOI CTPYKTYpbl
JaHHbIX, rAe BMECTO PEKYPCUBHbLIX CCbIIOK OyayT 3EPHbLILLKUA, U3 KOTOPbIX MOTOM MPOpPacTyT MoA-
nepeBbsi. AHaMOpU3M Kak pa3 CHavana pa3BopaymBaeT OAUH CJOW, a NOTOM PEKYPCUBHO Pa3BO-
pauMBaeT BCE MOAAEPEBbS:

1 ana :: Functor f => (s -> f s8) -> s -> Fix f

> ana psi = In . fmap (ana psi) . psi

3 -- CpaBHHTE C KJIACCHYECKHM OIpeLeJIeHHEeM pa3BEPTKHU CIHCKA
4+ unfoldr :: (s -> Maybe (a, s)) -> s -> [al

YnpaxHeHue 29 Peannsyiite aHamopguam, cTposiiymii cnvcok ot 0 4o 3agaHHOro n.

Takxe BeoasT runomopdmsm (hylomorphism), koTopbie NO3BONAOT oNucaTb NPOV3BOSILHOE
PEKYpPCUBHOE BblumnciaeHmne. [nnomMopdram 3a0aéTcsa Kak KOMMNO3uUMs aHamopdusmMa 1 Katamop-
du3ma. CHavyana aHamopuaM CTpoOUT sSIBHOE [epeBo, NpeacTaBastollee coboli fepeBO BbI3OBOB
HEKOTOPOIl peKypCUBHOI NpoLieaypbl, 3aTeM KaTaMopn3M CBOPAYMBAET €ro B pe3ybTaT.

1 hylo :: Functor f => (a -> f a) -> (f b ->b) ->a ->b
2 hylo psi phi = cata phi . ana psi

Hanpumep, BblYnCneHne dpakTopmrana MoXeT ObiTb peann30oBaHO CledyroLM 0Opa3oMm:

1 fac n = hylo
2 (\n -> if n > 0 then Cons n (n - 1) else Nil)
3 (\case Nil -> 1; Cons n acc -> n * acc)

MOXHO BBECTY eLLé MHOTO Pa3NNyHbIX PEeKypPCUBHBIX cxeMPY 1 onucaThb ux ceolicTa. OfHaKo,
Mbl MOKa OCTaHOBUMCS.

NHTepecHbll hakT: KaTaMopdu3M npeacTaBaseT coboli TeopeTUKO-MHOXECTBEHHbIV NMPUHLMN
VHAYKUMKW, @ aHaMOpdU3M — KOUHAYKLWMW, €CN B Ka4eCTBE BJIOXKEHUSI MHOXECTB B3ATb (DYHK-
unto [Pierce, 2002, rnaga 21].

80https://wiki.haskell.org/Zygohistomorphic_prepromorphisms

69

https://wiki.haskell.org/Zygohistomorphic_prepromorphisms

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

4.4 Bcé 4yepe3 CBEPTKN

OkKa3bIBaeTCsl, 4TO C MOMOLLbIO KaTaMOpU3Ma MOXKHO NMOAYUYUTb N30MOPOU3M MeXAY CTPYK-
TypaMy AaHHbIX U WX CBEPpTKaMu: Fix f = forall a . (f a -> a) -> a.

1 to :: Functor f => Fix f -> (forall a . (f a -> a) -> a)
2 to = flip cata

3 from :: (forall a . (f a -> a) -> a) -> Fix f
4+ from g =g In

Hanpumep, cnepytoline ABa CNUCKA 3KBUBANEHTHbI (BCE KOHCTPYKTOPbI In 3aMeHsieM Ha JaHHYHO
anrebpy):

1 data ListF elem rec = Nil | Cons elem rec

> xs1 :: Fix (ListF Int)
3 xs1 = In (Cons 1 (In (Cons 2 (In (Cons 3 (In Nil))))))

4+ xs2 :: (ListF Int a -> a) -> a
\alg -> alg (Cons 1 (alg (Cons 2 (alg (Cons 3 (alg Nil))))))

5 XsS2

6 ghci> xs2 @Int \case Nil -> 0; Cons x acc -> X + acc
7 6

Tenepb n3basumcs ot yHKTOpa HOPMbl. ITO HEPEKYPCUBHbIA TUM, KOTOPbLIA MOXHO MpeacTa-
BUTb B KaHOHUYecKoli chopme (cm. |4.2.2)):

fazs ZH(t’j a)

Torpa anrebpa MoOXeT ObITb 3anncaHa caeyrolmm obpa3om:
fa—saZ™ aZiHj(tij a) ~ H aHj(tij a)
i

OcTannck NpounsBefeHnst, 0T KOTOPbIX MOXHO N30aBUTLCS C MOMOLLbIO KAPPUPOBAHUS, 1 MONYYNTb
Church encoded cTpykTypbl gaHHbIX. Hanpumep, ans cnucka nmeem:

(a)e/em
a1+e/em><ag axae/emxaN(aa) a

(ListF elem a -> a) -> a™=a a o

~Za -> (elem -> a -> a) -> a

Mbl NOAYyYUAM HEe YTO MHOE, KaK CMMCOK ‘-Iépqm. CTpyKTypy AaHHbIX, 6€3 e4NHOro KOHCTPYK-
Topa!@ [MepenniiemM 3HAKOMBbI HaM CMUCOK eLle pas:

8lhttps://en.wikipedia.org/wiki/Church_encoding

82https://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html

83Ha camom gene B 3TOM HET HUYEro yAMBATENLHOO, €C/IN BCMOMHUTB, YTO (hyHKLMM NEPBOro Knacca NpeAcTaBs-
tOTCS KaK 3aMblkaHUs, coaepkalime faHHble. Mbl MONy4uan TOT e OfHOCBA3HbIA CINCOK, TONBKO Ha 3aMbIKaHNSIX.

70

https://en.wikipedia.org/wiki/Church_encoding
https://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1 xs3 :: a -> (Int -> a -> a) -> a
> xs3 =\ini f -> £ 1 (f 2 (f 3 ini))

VYnpaxHeHue 30 Kakas 3Hakomasi BaM CTaHAapTHasi byHKums paboTbl CO crvckamu no data
CMUCKY BO3BpaLlaeT cnncok Yépua?

MonpobyeM WHTYUTWBHO MOHSATb, YTO 3TO BCE 3HAYUT. 3aMETUM, 4TO CNUCOK Hépya npuHu-
MaeT (DYHKLMW, COOTBETCTBYHOLINE BETKAM MaTTEPH-MaTUYUHIA AN apryMeHTaM CBOpaduBatoLLel
hyHKLUUN. BMeCcTo KOHCTPYKTOPOB »Ke Cpa3y BbI3bIBAIOTCSA COOTBETCTBYOLLNE PyHKUMK. TO eCTb,
BMECTO TOro, 4Tobbl CO34aTb CTPYKTYPY AAHHbIX U JOCTAaBUTb €€ K MEeCTYy [OEKOHCTPYMpOBaHUS
(NaTTEPH-MATUYUHTY), Mbl JOCTaB/ASIEM MECTO JEKOHCTPYMPOBAHUSI K MECTY KOHCTPYWUPOBAaHUS W
OKa3bIBAETCS, YTO HUYEro KOHCTPYMPOBATL MO UTOrY U He HaJo.

Mbl y)xe paboTanm ¢ obpaTHbIM npoueccoMm, AedyHKUNOHANU3aUneR, Korga PyHKLMKM NepBoro
Knacca npeBpaLLannCb B BbI30Bbl KOHCTPYKTOPOB, @ UX TefNa — B BETKM naTtTepH-maTyuHra [3.1.7]
MO)XHO 3aMeTUTb, YTO TYT Mbl UMeeM feno C obpaTHbIM npoueccoM, pedpyHKLMOHann3aumen,
KOr/[la BMECTO BbI30BOB KOHCTPYKTOPOB CPa3y BbI3bIBAETCSI COOTBETCTBYHOLUNIA MHTEPNPETUPYIOLLNTA
ko [Danvy and Millikin| [2009].

C TEeXHWYEeCKO TOYKW 3PEHUsi, Mbl MOHSMN, 4TO ycnoBHoe BeTBneHue (if, maTTepH-MaTyuHT,
KOHCTPYKUMsST switch) v BUpTyanbHble BbI30BbI (BbI30BbI 3aMblKaHWA, METOAOB Ha WHTepdelicax)
B3aVIMO3aMEHUMbI.

CTouT TakXKe OTMETUTb, 4YTo n3oMmoppuam Fix f ~ forall d . (f d -> d) -> d ABnseT-
cst 06o6lleHnem nsomopcusma a ~ forall r . (a -> r) -> r (npu £ = Const a), KOTOPLII
sensieTcst ocHoBoit CPS TpaHcdopmauun, paccmMaTpreaemMoli Hamu ganee B riase [6]

4.4.1 Deforestation & list fusion

B dyHKUMOHaNBEHOM NpOrpaMMUpPOBaHNN Mbl CTPOUM HOBblE (PYHKLUN MYTEM KOMMO3MPOBAHUS
nmetoLnxcsl, boniee NpocTbIX, PYHKLUWIA. DTOT NOAXOS NO3BOJISIET NEPENCNONb30BaTh Peann30BaH-
HYtO (DYHKLIMOHANBbHOCTb, CHUXKAsi CIOXKHOCTb KOJa U BEPOSITHOCTb olnbok. OaHako, OH MOXET
NPVBOANTL K U3NNLWIHUM HaKNaAHbIM pacxofaM Ha aNNoKaLUKo U AEKOHCTPYMPOBAHUE MPOMEXY-
TOYHbIX CTPYKTYP AAHHbIX.

Hanpumep, cpaBHUTEe cneaytouime aBe peanusauuun. [epsas npeanoyTUTeENbHA C TOYKM 3peHNs
KayeCTBa KoZa, OAHAKO OHa MOPOXKAAET MPOMEXYTOUHbIA CNNCOK BO BpeMsi paboTbl:

1 all p xs = and (map p xs)

2 -- mau fused Bepcud

5 all p [] = True

4+ all p (x:xs) = p x && all p xs

QOueBunHO, 3TO 3a/a4a ONTUMU3NPYIOLLIErO KOMMUASTOPA NpeBpaLlaTh XOPOoLWi Ko ¢ abcTpak-
uMsiMn B BbICTpbIil kog. OnTrMmu3auus, nsbasastoulast nporpamMmmel 0T (MPOMEXYTOUHBIX) CTPYKTYP
LaHHbIxX (AepeBbeB) Ha3biBaeTcsl pedhopecraumeii (deforestation). B pesynstate age dyHkuuy,
Kak rosopsiT, “‘cnnasasatotca’ — fuse.

71

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

append (append zs ys) zs

transforms to

ho zs ys 2s
where
ho zs ys 23 = case zs of
Nil : by ys zs
Cons » zs : Cons z (ho zs ys 2s)
hy ys zs = case ys of
Nil P28
Consyys : Consy (h ys zs)
fiip (fiip 2t)
transforms to
ho 2t
where
ho 2t = case zt of

Leaf = : Leaf z
DBranch xt yi : Branch (hg zt) (ko yt)

Puc. 15: Mpumepbl paboTbl gechopectupytoulero anropntma Wadler [1988].

TepMuH 1 nepBblil gecbopecTupytownii anropnt™m obin npeanoxxed Philip Wadler Wadler| [1988],
OH OCHOBAH Ha HECKOJIbKMX MPOCTbIX NMpaBuiax NePenncbiBaHnNs, HaLENeHHbIX NOAYYUTb CUTYaLNUto
case K args of ..., 1 arpeccrBHOM WHNalHUHIe (CM. NpuMepbl paboTbl Ha puC. . OpaHako,
3TOT aJifOPUTM MOXXET MPUBOAUTL K SKCMOHEHLMANbHOMY pa30yxaHUtO Koda U WMEET LUaHC He
3aBEPLUNTCS NPU HaNNYUKU PEKYPCUBHbBIX Bb|3osoﬂ. YHT100blI aNropuTM 3aBepLUaNCcs NporpamMmebl
JOJ>KHbI ObITb HanucaHbl B HEKOTOPOI CTporol hopme nog Ha3BaHueM treeless.

Cdbokycnpyemcst Ha CNuCKax 1 pacCMOTpuUM Oosiee nMpakTUYHble peLueHm;ﬁ. [MepBbIM O4eBU-
HbIM peLleHremM Obifo Obl NS KaXXA0W napbl yHKUWIA, paboTaroWwmx co cnuckamu, 4ob6aBuTh cre-
LMaNbHOE MpaBUIO MepenncbiBaHns (Cm. , necopecTupytoLiee C NOMOLLIO anredbpanyeckimx
CBOWCTB CMUCOYHbIX TpaHcopMauwnii. OgHako, Takux npaeun 6yaeT 3KCMOHEHUUAIbHO MHOIO.

1 {-# RULES

84 NlehopecTaums SBASETCA HaCTHLIM Cydaem cynepkoMnuasumum PoMaHeHKo, KoTopas B CBOIO ouepefb SABASETCA
0606LLeHUM BONBbLIOrO KOMNYECTBA KOMMUAATOPHbIX ONTUMU3ALNIA.
85https://markkarpov.com/tutorial/ghc-optimization-and-fusion.html

72

https://markkarpov.com/tutorial/ghc-optimization-and-fusion.html

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

std::variant<Msgl, Msg2> 1 template<class Impl>

deserialize(bytes bs) { 2 auto deserialize(bytes bs) {
if (.0 A s if (.. A{
return std::variant{Msgl(...)};4 return Impl::processMsgl(...);
else { 5 else {
return std::variant{Msg2(...)};s return Impl::processMsg2(...);
} 7 }
} s}

Puc. 16: Py4dHas pgedopectaums B C+ +.

2> "map/map" forall f g xs. map f (map g xs) = map (f . g) xs
3 #-}

CoBpemMeHHas TexHuKa gedopectupoBaHus B Haskell — fold/build list fusion |Gill et al.|[1993] —
BMECTO UCMOJIb30BaHNS MHOXECTBA anredbpandecknx npasus, onpeaensieT yHUBepcaibHblA cnocob
KOHCTPYMPOBaHWSA 1 AEKOHCTPYMPOBaHMA Cnncka. [1eKOHCTpympoBaTb CMUCOK OyaeM C MOMOLLIbHO
foldr. KoHCcTpyupoBaTb Oyaem C nomMoLLbto pyHKLMM build:

1 build :: (forall b . (a ->b ->b) ->b -> b) -> [a]
> build g = g (:) []

Hanpumep, cnncok [1, 2, 3] n pyHKUMA map Tenepb 3anuLlyTCs CAelyoLnm o6pa3owﬂ:

1 1ist123 :: [Int]
> 1ist123 = build \s z ->s 1 (s 2 (s 3 2))

3 map :: (a -> b) -> [a] -> [b]
+ map f xs = build \s z -> foldr (\x acc -> s (f x) acc) z xs
Mo>HO 3aMeTnTb, Y4TO Ha BxoA build nepefaétca cnucok Yépya, oTCloAa He yANBUTENEH 3aKOH:

1 foldr f ini (build g) = g f ini

Takum 06pa3om, Mbl N36aBUANCE OT KOHCTPYMPOBAHUSA CANCKOB NMYTEM 3aMeHbl BbI30BOB KOH-
CTPYKTOPOB Ha BbI30BbI CBOPAYMBAIOLLNX DYHKLWIA.

JebopecTauymio TakKe MOXKHO Mpou3BoANTL BpyUHYto (cMm. [16)).
4.4.2 \Visitor pattern

PaccMOTpUM HEKOTOPOE fIEPEBO N €ro CBEPTKY:

1 data Tree a = Leaf | Node a [Tree a]
> foldTree :: Tree a ->r -> (a -> [r] -> 1) -> 1T

86B cTangapTHOW 6ubnnoTeke Haskell byHKLMU paboTbl CO CMMCKaMU HanNWCaHbl HOPMAsbHO, HO PSAOM HaMMCaHb!
npasuna RULES (cwm. (3.1.6]), koTopble noameHstoT ux peanusaumio Ha fold/build.

73

1476 HeperIVILLIeM N nepenMmeHyem:

1 data Visitor a r = Visitor { onlLeaf :: r, onNode :: a -> [r] -> r }
2 visitTree :: Tree a -> Visitor ar -> r
1477 YT100bI 370 ewe bonee Bhirnsaeno B OOl cTune, camo AepeBO A0/KHO 3a[aBaThCs CBEPTKOWA

1478 (KaK Obl nHTEPdERCOM C DyHKUMER visit), @ pa3Hble BEPLUMHBI — KOHKPETHLIMI €€ peann3aumnsimu
1470 (OBBbEKTAMU-HACEAHKAMMU):

1 data Tree a = Tree { visit :: forall r . Visitor ar ->r }

2 leaf :: Tree a
3 leaf = Tree { visit = \Visitor{onLeaf} -> onlLeaf }

4 node :: a -> [Tree a] -> Tree a
5 node x ts = Tree { visit = \v@Visitor{onNode} -> onNode x (map (“visit™ v) ts) }
1480 Hns HarnsaHOCTW, NOKaXkeM 3TOT Koj ellé 1 Ha Kotlin:

1 interface Visitor<a, r> {

2 fun onLeaf(): r

3 fun onNode(x: a, subtrees: List<r>): r

4}

5 interface Tree<a> {

6 fun <r> visit(visitor: Visitor<a, r>): r

T}

s class Leaf : Tree<Nothing> {

9 override fun <r> visit(visitor: Visitor<Nothing, r>): r = visitor.onLeaf ()
0}

11 class Node<a>(val value: a, val subtrees: List<Tree<a>>) : Tree<a> {

12 override fun <r> visit(visitor: Visitor<a, r>): r =

13 visitor.onNode(value, subtrees.map { it -> it.visit(visitor) })
14

ua 4.5 Bcé yepe3 pa3BépTKy

1482 BcnoMHuM, 4TO CylLeCTBYeT yHUBepCasbHasi pPa3BEPTKA — aHaMoOpr3M, KOTOpast MO reHepu-
g3 PYHoLLEl npoueaype No3BOSIET NOAYHUTL LENYI CTPYKTYpY AaHHbIX (cm. [4.3.3)).

1 ana :: Functor f => forall s . (s -> f s) -> s -> Fix f
> ana psi = In . fmap (ana psi) . psi

1484 MpuBeaémM byHKUUIO ana K TUMy BUAga A -> B, 4TOObI 3aTeM npoLle ObII0 NCCNeaoBaTh CTPENKY
ugs B -> A. [1ns 3TOro cAenaem uncurry v NepeHecém KBAHTOP HANeBO OT CTPeNKU (OH U3MEHWUTCS
1456 Ha NMPOTUBOMOJIOXKHbINA):

74

1487

1 ana :: Functor f => (exists s . (s, s -> f s)) -> Fix f

3aKoAmnpyeM KBaHTOP CyLLIECTBOBAHMS C MOMOLLbIO HOBOro Tuna (cMm. [3.4.2)) n nepenniiem aHamop-

uss (OV3M Ha paboTy C HUM:

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1 data Box f where

2 - exists s. (s, s -> f s)

3 Box :: forall s . s -> (s -> f 8) -> Box

4 ana' :: Functor f => Box f -> Fix f£

5 ana' (Box currSeed psi) =

6 In $ (\nextSeed -> ana' (Box nextSeed psi)) <$> psi currSeed

Tenepb NOCTpoOMM U30MOPOU3M MEXAY CTPYKTYPAMU AAHHbIX U UX TPUBUANbHBIMUW Pa3BEPTKAMMU,
BO3BPALLUANOLLNMU KaXKAbIA pa3 CAelytoLnii CNoii gaHHol CTpykTypbl, Fix £ ~ Box f:

1 to :: Fix f -> Box £
2 to x = Box x out

3 from :: Functor f => Box f -> Fix £
ana'

4+ from

Taknum 06pasoM, Mbl MOAYHNUAN CBUAETENLCTBO TOTO, HTO JOBYIO PEKYPCUBHYIO CTPYKTYPY AaHHbLIX
MOXHO XOTsl Obl TpUBMANbHLIM 06pPa30M MpPeACTaBUTbL Kak Box f. MHorga Takoe npescTasneHue
Ha3sbiBatoT co-Church encoding Gibbons| [2008].

Hanpumep, GeckoHeuHbIli NeHUBbIVE CMCOK HATYypasibHbIX HYUCEN MOXET ObiTb 3afaH Cleayto-
WwyM obpa3oM. 3aMeTbTe, UTO TyT Mbl HE M0AaraeMcsi Ha JeHMBOCTL Haskell, a 3HaUNT MoXKeM
NCMNOJb30BaTb 3TY TEXHUKY W B SHEPrUYHbLIX S3blKaX.

1 nats :: Box (ListF Int)
> mnats = Box 0 \curr -> Cons curr (curr + 1)

YnpaxHeHnue 31 Peanusyiite neHUBYrO yHKLMIO
take :: Int -> Box (ListF Int) -> Box (ListF Int).

Haye roBopsi, 6eckoHeYHble CTPYKTYPbl AaHHbIX NPeACTaBMMbl Kak NpoLeaypbl, JEeHUBO reHe-
PUPYIOLLNE CNO PEKYPCUBHOWM CTPYKTYPbl 32 CZI0EM MO 3anpocy.

4.5.1 AG6CTpaKTHble TUNbI JAHHbIX

PaccmoTpum cnyyald, koraa dpyHkTOp dhopMbl NpeacTaBnseT coboli nponsBeneHune:

S

s >fs=([[(ts)] 2[[(s—ts)

i i

75

1503 10 eCTb Koanrebpa aKBMBaNeHTHa KopTexy yHKUniA. Takum obpa3om, Box 3TO He YTO UHOE, Kak
1504 AOCTPAKTHBIA Ty gaHHbIx (ADT): oH BKNtOYAET B cebSt CKPbITOE COCTOSIHNE HEV3BECTHOM NPUPOAbI
1505 W Habop onepauuii ans paboTbl ¢ HUM |Gibbons [2008]. Ha camom gene Mbl y>xe BCTpeyanyt Takyto
1506 KOHCTPYKLMIO paHee, Korga roBopun Npo 3K3ucTeHumanbHble Tunbl [3.4.2| (Tam Mbl ©CNoab30Banu
1507 VIHCTAHCbI KJ1aCcCbl TUMOB B KaYeCTBE KOpPTEXel pyHKUWIA).

1508 OOI1 06bEKTBI TOXKE MOXHO pacCMaTpuBaTh vYepe3 koanrebpol. [oapobHee Npo COOTHOLLEHWE
1500 OBBEKTOB U abCTPaKTHbIX TUMOB AaHHbIX MOXXHO nounTaThb B |Cookl [2009].

150 4.5.2 Stream fusion

1511 PaHee mMbl paccmaTtpusanu foldr/build list fusion onTuMU3auuto, SANMUHUPYIOLLYO MPOMEXXY-
1512 TOYHblE CUCKU (CM. . OpHako, 3Ta TexXHMKa He NOAXOAUT ANS MHOTMUX MOnyAsipHbIX OyHK-
1513 Ui, Hanpumep, zip (HYXHO KOPYTWHWTL MeXAy AByMsi anrebpamu) nan take (Hy>kHO obopBaThb
1514 CBEPTKY B OMPEAENEHHbIA MOMEHT).

w5 [osamee Bbina NpeanoXeHa TexHUka UCMONb30BaHNA KO-CTPYKTYPbl CIMCKA — Pa3BEPTKM UM
56 Streanf’|[Coutts et al| [2007]:

1 data ListF a r = Nil | Cons a r

2 type MyStream a = Box (ListF a) -- ds . (s -> ListF a s, s)
;3 -

1+ data Step a s = Done | Yield a s

5 data Stream a where

6 Stream :: forall s . (s -> Step a s) -> s -> Stream a

7 stream :: [a] -> Stream a
s stream xs = Stream (\case [] -> Done; x:xs -> Yield x xs) xs

9 unstream :: Stream a -> [a]
10 unstream (Stream next s) = case next s of
1 Done -> []
12 Yield a s' -> a : unstream next s'
1517 Vigess B TOM, 4TO Tenepb yHKUMM paboTbl CO CTpUMaMy HEPEKYPCUBHbLI N NEFKO MOABEpPra-

1518 tOTCS1 6a30BbIM KOMMUAATOPHBIM AecbopecTrpytowum TpaHchopMaumusim B ctune Wadler| [1988].
1510 JlelicTBUTENbHO, BMECTO PEKYPCUBHOIO BbI30Ba Mbl 3aMOMUHAEM COCTOsIHUE ANS CAeayroLlen nte-
1520 PaLnn.

1 mapS :: (a -> b) -> Stream a -> Stream b
> mapS f (Stream next s) = Stream next' s
3 where

4 next' s = case next s of

5 Done -> Done

8https://markkarpov.com/tutorial/ghc-optimization-and-fusion.html

76

https://markkarpov.com/tutorial/ghc-optimization-and-fusion.html

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

Yield x s' -> Yield (f x) s'

O6Lwwnii nannaiiH BbIFAANT clieayrolnmMm obpa3om:

1.

3.

Mbl nuwem Bce OyHKLUN paboTbl CO CNMUCKaMWN Yepe3 CTPUMBI:

map :: (a -> b) -> [a] -> [b]
map f = unstream . mapS f . stream
C nomoubto RULES (cm. [3.1.6)) 3apaém npaBuio nepenucbiBaHusi stream/unstream, ABoii-

cteeHHoe foldr/build: stream . unstream = id.
Manee cnpasnsitoTcs obblyHble KOMAUASTOPHbIE onTuMnsaumu Y

HT10bbl Nogaep>aTb HEPEKYPCUBHYIO (DYHKLNIO DuabTpaumm, obbl4HO [00aBASIOT OTAENbHbIN
BUJ LIAroB:

1 data Step a s = Done | Skip s | Yield a s

> filterS :: (a -> Bool) -> Stream a -> Stream a
s filterS p (Stream next s) = Stream next' s

where
next' s = case next s of
Done -> Done
Skip s' -> Skip s'
Yield a s' -> if p a then Yield a s' else Skip s'

B cTangapTHoli 6ubnnoTeke Haskell Bcé-Takn ucnonssyerca foldr/build fusion, ogHako cyuie-
CTBYET MHOXXECTBO MPOMbILLNEHHbIX BubnnoTek ctpumos |Bragilevsky, rnasa 14].
Bonblue npo cTpyMbl MOXXHO noynTaTb y Onera chenésaﬂ.

4.6 Be3pecywun pyanusm

Mbl paccMoTpenu Tpu popMbl PEKYPCUBHbLIX JaHHbIX:

® Fix f — 0OblYHble PeKypCUBHbIE TUMbl JaHHbIX, KOHEYHbIE B SHEPTUYHbIX SA3bIKaX;
e Va . (f a -> a) -> a — Church encoding, KOHeYHble CTPYKTYpbl 3aJlaHHble CBEPTKAMU,
e ds . (s -> f s, s) — co-Church encoding, noTeHunanbHO BeCKOHEYHbIE CTPYKTYpPbl AaH-

HbIX, abCTpakummn No JaHHbIM (paboTaem Yepe3 nHTepdeiic Hal COKPLITLIM NPEACTABNEHVEM).

B aTOM pasgene Mbl paCCMOTPUM HEKOTOPbIE MPaKTUYECKUE NPUMEPbI, B KOTOPbIX MPOCTPAHCTBO
peleHnidA 3ajaHo AyasibHbIMU NPEACTABNEHNSAMMN KONNEKLNIA.

88MoxHO rapaHTMpoBaTh NOAHYIO AecbopecTaunio ¢ nomoLlbto staging (cm. ganee 7?) Kiselyov et al.|[2017).
8https://okmij.org/ftp/Streams.html

7’

https://okmij.org/ftp/Streams.html

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

4.6.1 Push vs pull streaming

PaccmMoTpyM pasnunyHble NpeAcTaBieHnsl CIVCKOB UK, Kak UX UHOMAA HA3bIBAtOT, MOTOKOB CO-
6biTuii. MNMoapobHee cpaBHeHne MoXKHO nocMoTpeTh TyT [Kiselyov et al., 2017|, naparpad 3].

Church encoding ans cnuckos gaét push stream, unu internal iteration, nnn Observer pattern®)
(B HEKOTOPOM CMbIC/E YaCTHbIN cyyaii Visitor pattern, Koraa Mbl pernctpupyem obpabotym-
Ka cobbITui, a konnekumus BbisbiBaeT (push) Ha HEM meToabl. [MprMepamu push NOTOKOB SIBAAIOTCA
Java Stream API®Y] Closure Transducerd™]

1 events.observe(object : Observer<Event> {

2 override fun onComplete() { .. }
3 override fun onNext(elem: Event) { .. }
4 1)

co-Church encoding ana cnuckos paét pull stream, nnn external iteration, vnn lterator
pattern. HTobbl NoNy4UTb CNefyrOLIWIA SEMEHT, €ro Hy>KHO SIBHO 3anpocuTb (pull) noTpebnstole-
My KoZdy. DTO NpeACTaBeHe YaCTO ropasao yaobHee C TOUKM 3peHns ucnonbsosatns (cm. [4.5.2)%]
OHAKO C/NIO)KHee Ha CTOPOHE UMMIEMEHTALMMK, MOTOMY YTO HY)KHO BbIAENNTb U NOAAEPKNBATL K-
31CTEHUMaNbHOE COCTOsIHME B Koanrebpe. [eHepaTopbl NpM3BaHbl aBTOMATU3MPOBATL BblAeneHne
3TOr0 COCTOSIHMS, TaK KaK MOXXHO 3aMeTUTb, 4TO 3To continuation BbluncneHus (cm. ﬂanee.
Hepeako paboTy C NOTOKaMu Ha3blBaloT peakTUBHLIM NPOrpaMMupoBaHnemM” |

4.6.2 Data vs codata
BcnomMHum dyHKTOp-hopMbl ANt Cnncka:
1 data ListF a r = Nil | Cons a r

C nomollblo KNHOYeBOro cfioBa data Mbl ONpeaensieM HOBbI anrebpanyeckuini Tun AaHHbIX
Yyepe3 cnocobbl ero CKOHCTpyupoBaTh. [lanee, ¢ nomoulbto pattern-matching Mbl MOXXeM [eKOH-
CTPYMpPOBATb 3HaueHus anrebpanyveckoro TWMna [AaHHbIX U BOCMOJIb30BATLCA XPaHSLLENCA B HEM
NHopmaLmeil.

1 data List a where
2 List :: ListF a (List a) -> List a

3 fold :: (ListF ar ->r) -> List a ->

4+ fold alg xs = case xs of

5 Fix Nil -> alg Nil

6 Fix (Cons y ys) -> alg (Cons y (fold alg ys))

Ohttps://learn.microsoft.com/en-us/dotnet/api/system.iobserver-1?view=net-9.0
Thttps://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream. html
9https://clojure.org/reference/transducers
%https://github.com/pulldown-cmark/pulldown-cmark/?tab=readme-ov-file#why-a-pull-parser
9% (youtube) React 2014 : Erik Meijer - What does it mean to be Reactive?

78

https://learn.microsoft.com/en-us/dotnet/api/system.iobserver-1?view=net-9.0
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://clojure.org/reference/transducers
https://github.com/pulldown-cmark/pulldown-cmark/?tab=readme-ov-file#why-a-pull-parser
https://youtu.be/sTSQlYX5DU0?si=Xhfi62ScXHBBjdBx

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

OaHako, TakXKe MOXXHO ONpeaensTh THM AaHHbIX Yepe3 cnocobbl ero 4EeKOHCTPYNPOBATL C MOMO-
LLbtO KNIOYEBOrO CoBa codata (B BOOOpaxKaeMoM si3bike). Tak, y KO-CMMCKa MOXXHO NoTpeboBaThb
nokasaTb ClelytoLunii cnoii cTpykTypbl. CKOHCTPYMPOBATb TaKOM TUM AaHHbIX MOXKHO C MOMOLLbIO
co-pattern-matching'a, onucas Kak JeKOHCTpyupytoLlast PyHKUMS JOKHA BECTH Ccebst Ha KOHCTPY-
upytowiem Tepme (unfold coalg s)™

1 codata ColList a where
2 force :: ColList a -> ListF a (CoList a)

3 unfold :: (s -> ListF a s) -> s -> Colist a
1+ force (unfold coalg s) = case coalg s of

5 Nil -> Nil

6 Cons x s' -> Cons x (unfold coalg s')

Mo cyTn, codata npeacTaBasieT CobO cnoBapb OYHKLWIA, KOTOpbIe 3aXBaTbIBAOT HEKOTOPOE
COCTOSIHME, HEODXOANMOE ANS reHepaL i CAeayoLnX CNOEB CTPYKTYpbl. Tak, codata MOXXHO CpaB-
HUTb ¢ OOl nHTepdelicamn, a co-pattern-matching ¢ aHoHUMHOI peanun3auvein nHTepdeiica.
Mpeablayline ABa Npumepa MOXHO 3anucaTb, Hanpumep, B Kotlin cneaytouwimm obpasom (dop-
Ma CMNCKA KOAUPYETCst Kak Pair<a, r>7, ybeauTecb CAaMOCTOSITENLHO, YTO 3TOT TUN U30MOPMEH
ListF).

1 class List<a>(val layer: Pair<a, List<a>>7)

> fun <a, r> fold(alg: (Pair<a, r>7) -> r, xs: List<a>): r =

3 if (xs.layer == null) alg(null)

4 else alg(Pair(xs.layer.first, fold(alg, xs.list.second)))

5 1interface ColList<a> { fun force(): Pair<a, ColList<a>>7 }

¢ fun <a, s> unfold(coalg: (s) -> Pair<a, s>7, ini: s): ColList<a> =

7 object : Colist<a> {

8 override fun force(): Pair<a, ColList<a>>7 {

9 val layer = coalg(ini)

10 return if (layer == null) null else

11 Pair(layer.first, unfold(coalg, layer.second))
12 }

13 }

DYHKLMOHANBHBIA CTUAb NPOrPaMMUPOBaHE B OCHOBHOM OMNeprpyeT HanpsiMyro Habarogaembl-
MU JaHHbIMK data, a OOIlT — ckpbIBaeT AaHHble 32 HTepdelicamu codata. OaHako, 0be KOHCTPYK-
UMM UMEIOT CBOWN MOHATHbIE 0BNACTU NPUMEHEHUSA N UMW HE CTOUT npexHedbperaTb BHE 3aBUCUMOCTY
oT npeanoymnTaemoro ctunsa [Downen et al. [2019]@.

9 (youtube) CS410 2017 Lecture 15 Coinduction and Coalgebras
%https://reasonablypolymorphic.com/blog/review-codata/

79

https://youtu.be/ZCdYIEwcna0?si=XEQSBFhnehQFZPxy
https://reasonablypolymorphic.com/blog/review-codata/

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

B a3blkax C NpOBEPKON TOTaANbHOCTU (DYHKUUIA pasaensatoT WHAYKTUBHbLIE N KOUHAYKTWUBHbIE
onpeaenenuns. Ana HAX UCNONL3YIOTCA NAaTTEPH-MATYUHE U KO-NMATTEPH-MATYUHT, MPUHLNM UHOYK-
umn (kaTaMopuram) 1 NpuHUMN KouHaykuuy (aHamopnam). VIHayKTUBHbIE onpeAeneHunst 3aaatoT
KOHEYHbIE CTPYKTYPbI AaHHbLIX, MPOBEPKA TOTANLHOCTY NMPOBEPSET, YTO PEKYPCUBHbIE BbI3OBbLI AeNa-
IOTCA Ha CTPYKTYPHO MEHbLLMX nogTepMax. KOMHAYKTUBHbLIE OnpefeneHns 3a4at0T NOTEHNLMNANBLHO
BeckoHeUHbIe CTPYKTYPb! JAaHHbLIX, A1 HUX MPOBEPSETCA NPOLYKTUBHOCTL — MOPOXAAtOLLAA YHK-
LM BCeraa nocne pekypCuBHOro Bbi30Ba NOPOANT HOBbI koHcTpykTop [7]

4.7 [MpunoxeHne: kKateropusi anarebp

OT0 haKyNbTaTUBHbIA pa3fen, He ABASOWNIACS HeOOXo0AUMbIM AN NMOHUMaHWS Kypca B Aajb-
Hewem. OgHAKO, NoNie3eH ANt NOHUMAHUS 4acTo ynoTpedbumMoli TEpPMUHONOTUN.

KaTteropusi — 370 Konnekuusi obbekToB U KoNNekuns ctpenok. [ns kaxpgoro obbekta X
CYLLIeCTBYET TOXJECTBEHHAs1 CTPeska, a Ast KaXKAoW napbl CTPENOK CyLLECTBYET CNOCOD NONyymnTh
nux komnosuuuto: f 1Y -2, g X Y =fog: X = Z.

OnpegensaroT KaTeroputo, cootBeTcTByrolyto Haskell — Hask. Ha camom pgene 3710 nnoxas
KaTeropusi C TOYKW 3PEHNst Teopuu, HO ANS HALUMX HECTPOrux paccyxxaeHuit nopoiaétsl Ob6b-
ekTamm B Hask aBnsatoTcs Tunbl a3bika Haskell, a mopduamamm — Tepmbl, 3agatowime QyHKLUNN
MeX/ly COOTBETCTBYIOLLMMMK TUNaMnu. ToXAECTBEHHbIA MOPpU3M — id, KOMNO3NLNA 3a[AETCS KaK
f.g=\x->1f (gx).

YnpaxHeHue 32 Kak B Takoll kKaTeropuu npeacTaBuTb KOHCTaHTbI?

DYHKTOPOM Ha3bIBAeTCS OTOOpaXkeHNe Mexay KaTeropmsimm, KoTopoe obbekTam OAHOW KaTe-
ropun ConocTaBasieT 0O bEKTLI APYrol, a CTpeNikamMm ogHoll — cTpenkun gpyroin. B Haskell Tunostie
KOHCTPYKTOPbI 3a4at0T oTobparkeHne mexay obbekTamu, a fmap — mexay cTpenkamu. PyHKTop
JIOJI>KEH COXPaHSATb TOXAECTBEHHbIA MOPOU3M 11 KOMMO3ULMNIO.

&

A = B

Puop £
F A——>> F B

Anrebpoii B kaTteropun C Ha3biBaeTcsl napa u3 obbekTa KaTteropum X € Obj(C) n mopdrsma
¢ F X — X, rne F — dyHkTop. Cam mopcpuam F X — X HaswieatoT f-anrebpoir. Anrebpamu
B CMbIC/Ie KAaTEropuini MOXXHO ONMUCbIBaTb anredbpbl. Tak, B kadecTBe obbekTa X DEepém HocuTeNb
anrebpbl. B kauectBe cbyHKkTOpa F — curHaTypy anrebpbl B BUAe Tuna-opmbl. Torga MophusMmom
OyneT uHTepnpeTaunein CurHaTypsbl.

9https://rocq-prover.org/doc/V8.18.0/refman/language/core/coinductive. html
%®https://math.andrej.com/2016/08/06/hask-1is-not-a-category/

30

https://rocq-prover.org/doc/V8.18.0/refman/language/core/coinductive.html
https://math.andrej.com/2016/08/06/hask-is-not-a-category/

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

Mopdunsmom anrebp Ha3biBaeTCsl Takoli MOppU3M mexay Hocutensmu h : X — Y, 4To cneay-
folas gnarpaMmMa KOMMyTupyeT. [0BOpST, 4TO AMarpaMmMa KOMMYTUPYET, €C/IN BCE BO3MOXXHble
nyTW MO CTpeSikaM B Hell paBHbI.

fmop h

B mMopdusme anredbp Mo)xKHO 0ObHApYy»KUTb 3HAKOMbIE YepTbl FOMOMOPMU3MOB, TO €CTb onepa-
LW Mexay HOCUTeNsIMU, KOTOopble “yBaXkatoT onepauun CUrHaTypbl aarebpanyeckon Teopun.

Anrebpbl Hag KaTeropueli C obpa3yroT KaTeEropmio anredp, B KOTOPol 0bbekTamMu ABAAIOTCA
anrebpbl, a MopduamaMmn — Mopdpu3mMbl anrebp.

HauanbHbiM (MHUUMANBLHBIM) 06BEKTOM KaTEroput Ha3blBaeTCsl OOBEKT, N3 KOTOPOrO B KaXK-
Ablii Apyroii 06 bekT CylIeCcTBYeT yHUKanbHas cTpeska. TepMuHanbHbiM (buHaNbHbIM) 00bEK-
TOM KaTeropumn HasblBAeTCA OOBEKT, B KOTOPbLIA N3 KaXKAOro Apyroro obbekTa KaTeropum cylie-
CTBYET YHUKaNbHas CTpeska.

VHnumanbHbIA 1 TEPMUHANBHBIA 0O BEKTbI KaTeropun He 0bsi3aTeNbHO NPUCYTCTBYIOT B €AUH-
CTBEHHOM 3kK3emnnspe. Ho Bce nHnumanbHble 06beKTbl N30MOPMHbLI APYr APYrY, Kak U BCE TEPMU-
HaJlbHblE.

YnpaxHenune 33 [lpuBeaute HavyasibHbIi U TEPMUHAIbHBLI 0O BEKTLI KaTeropun Hask.

PekypCuBHbI TN — 3TO TWUM, 3HAYNT MY COOTBETCTBYeT 00bekT B KaTeropun Hask. X asns-
€TCS PEeKYPCUBHLIM TUNOM C hopMOli F, ecnn MMeeT MEeCTO ClieAyoLWnii M30MOPU3M:

X~FX

Mo)XHO 3aMeTuTb, YTO CBUAETENb U30MOpdU3Ma crnpaBa HaneBo HanoMuHaeT f-anrebpy, a
cneBa HanpaBo — f-koanrebpy (BCE TO e camoe, TONbKO BCe CTPENKU B 0OpaTHYHO CTOPOHY).
I pedcTBUTENBHO, NOoAxoAsaLNi 06bekT X JoJixeH ObiTb MO0 HavaNibHbIM OO BLEKTOM KaTeropum
anrebp, MMbo TepMUHaNbHbIM 06BEKTOM KaTeropuu koanrebp (c cooTBeTCTBYHOLWMMY MOpdhu3ma-
mu). epBblii BapraHT COOTBETCTBYET KOHEYHbIM CTPYKTypaM [aHHbIX, BTOPO — MNOTeHLUMUa bHO
OeCKOHEYHbIM.

HavanbHbiM 0b6bekTOoM KaTeropuun anrebp Hag Hask ana dyHkTOopa f ABNsieTCA cneaytoulas
anredpa: (Fix f, In)m. [elicTBUTENbHO, ANA KaXXAOro Tuna a u ans kaxaol f-anrebpbl phi
Mbl MOXXEM NMOCTPOUTb Takoil Mopcu3m cata phi :: Fix f -> a, 4TO cneayrowasa gnarpamMmma
OygeT KOMMYTUPOBATb:

%https://bartoszmilewski.com/2017/02/28/f-algebras/
100https://ncatlab.org/nlab/show/catamorphism

81

https://bartoszmilewski.com/2017/02/28/f-algebras/
https://ncatlab.org/nlab/show/catamorphism

Pmap (cata Phi)

£ (Fix B > £ o
out T\l/ In \L phi
Fix £ = o
cota phi
1629 Mokaxkem, 4To (Fix f, out) sABASETCS TepMUHaNbHLIM OBBLEKTOM KaTeropuu koanrebp (6na-
1630 rofapsi nenmBocTu Haskell). AHanornyHo, anst kaxxgoro obbekTa a u f-koanrebpbl psi HalgéTca
mMoppu3m ana psi :: a -> Fix f:

{—\mo\lo (ana Psi)
fa—=L (Fx H

S

a—=>Fix £

OO Psi

1631

82

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

5 WHTepnpertaTopsbl

IckyccTBO mMporpaMMmpoBaHUs BO MHOFOM COCTOWUT B YMEHUWU YNPaBAsiTb CAOXHOCTbIO, U B
paMKax aHHOIro Kypca OCHOBHbIM UHCTPYMEHTOM A1 3TOro Mbl OyAeM paccMaTprBaTb NOCTPOEHNE
SA3bIKOB U WHTEPMNPETATOPOB.

5.1 WHTepnpeTaTopbl KAK OCHOBA OCHOB

Mbl HauHEM C 0bO30pa PoSIv UHTEPNPETATOPOB B NPOrPaMMUPOBAHNN.

5.1.1 balHa nHTepnpeTaTopoB

CambiM 6a30BbIM UHTEPNPETATOPOM SABMSIETCS MPOLIECCOP, OH BOMJIOLWIEH (DU3NYECKIN B XKeNe3e.
Emy Ha Bxo4 nofaéTcst nporpaMma Ha HEKOTOPOM si3blke, Hanpumep, X86, OH 3a4nNTbIBAeT KOMaHAbI
1 NpeBpaLlaeT UX B AeliCTBUS Haa namaTero. OHAKO, YenoBeKY COXHO MPOrpaMMMpoOBaTh Ha 3TOM
SA3blKe, HYXKEH HOBbIi S13bIK, WHKAMNCYNNPYOLLNA YaCTb COXKHOCTU 1 CKPbIBAOLLWIA NNLLIHWE AETaN.

Y7006bl MONYYUTb HOBbI $A3bIK, Mbl CTPOUM MPOrpamMMHbIA nHTepnpeTaTop. NMporpamMmHbIni
uHtepnperatop U, — 370 nporpamMma Ha si3bike M@ nosydatoLasi Ha BXoZ NporpamMmy Ha si3bike
N v Bxoa Anst Heé — maHHble U3 D, 1 BO3Bpallatollasi pe3ybTaT BbIMNOJIHEHUST 3TOW NporpaMmbl

Ha 3TNX JAaHHbIX:
UN:NxD—=D

A3blk peanunsauum nHTepnpetatopa M Mbl byaem Ha3biBaTb MeTa-s3bIkOM, a L — onpepe-
nsiemMbIM. [1po NHTEPNPETATOP MOXHO UHTYUTUBHO AyMaTb CAefytolmnmM obpa3oM: 3TO MOHATHOE
MeTa-sA3blKy 0ObSICHEHNE TOrO, YTO 3HAYAT KOHCTPYKLMW ONpefensieMoro A3blka. VIHbIMu cnosamu,
KaKnNe MHCTPYKLUMN META-A3blKa HY>KHO UCMNONHUTL, YTODbI MONYHYUTb HYXKHYIO CEMAHTUKY WHCTPYK-
UM ONpeaensieMoro sA3blKa.

Hanpumep, y Hac eCTb nporpamMma py W AaHHble Ans Heé dj,, Pe3yNbTaT WCMNOJIHEHUS STO
nporpaMmmbl dy,r MOXHO MONYHUTb Kak

dout - U/\I\/I] <er din>
——

ENxD

Ho nHTepnpeTaTop 37O ToXe nporpaMmma. Kak eé 3anyctuTb? Bo3bMméEM Halwl 6a30BbIli MHTEP-
npetaTtop UX®, y Hero HeT A3blka peannsaumnm, Tak kak OH peann30BaH B xxeNese, a He MPOorpaMMHo.
Bo3bMéM nHTepnpeTaTop s3blka acceMbnepa, peann3oBaHHbIA B kogax x386, UXA856m, nporpamMmy Ha
acceMmbnepe pasm W BXoA Anst Heé d;,. BcnomMHuMm, 4TO nporpaMma — 3TO TOXE AaHHble, MPOCTO B

HEKOTOPOM CneunaabHOM cbopMaTe. Tor,u,a peE3yNbTaT NPUMEHEHUA PAsm HA AAHHBIX Mbl NOJyHUM

101Mon 93bIKOM Mbl TYT MOHMMaeM MHOMXECTBO MPOrpaMM Ha 3TOM S3blKe, MHA4e roBops, MHOXECTBO [epeBbLEB
onpeaenéHHoro Buaa.

83

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

cnegyrowinm o6pa30|v| .
€EAsm €D

x86 Asm T T
dout =U Ux86) <pAsmy di >
—— ——
€x86 eb
Ho s13bik accembnepa, Toxxe He O4eHb NpusiTeH Anst nporpaMmmupoBarns. OAHAKO, Ha HEM MOXHO
y>Ke HanncaTb UHTepnpeTaTop s3blka nocnoxHee. 1 Tak ganee. lNonyyaem b6aiiHO MHTEPNpETATO-
pPOB, Ha BepPLUNHE HAXOAUTCS A3blK, HA KOTOPOM Mbl XOTUM Y>XKE pellaTb HEMOCPEACTBEHHO Hally
3a4a4y:
__ | /Xx86 Asm C Has
Aoyt = U (<Ux86 ; <UAsm' <UC {PHas, di”>>>>)

Ha npakTuke 4acTo si3blK 3a4atoT Yepes TpaHcasuuto (komnunsuuto) B apyroii. OnHako, aanee
Mbl OyeM POKYCMPOBATLCS HA BCTPOEHHbLIX A3bIKaxX 1 MOHATNE UHTepnpeTaTopa OyaeT Ham nones-
Hee. Kpome TOro, CyLleCTBYOT YHUBEPCAJIbHBIE TEOPETUYECKME CMOCODBLI MOCTPOEHUS KOMMNUAATOPA
no MHTepnpeTaTopszz] (cm. panee ?7), Tak 4TO AN HAC OHU CXOXN.

5.1.2 WHTepnpeTatopbl NoBcloay

Xopowo, Mbl MPULAN K $13blKy Hallero cepaua (Xackenny), no4emy e Mbl NPOAOCXKAEM [O-
BOPUTL 00 MHTepnpeTaTopax? [MoTOMy 4TO ONS pelleHnss KOHKPETHbIX bu3Hec-3aja4 nNpukiagHble
S13bIKM BCE eLLE CNNLLKOM LiepeMOHNaIbHbI — NPOrpaMMUCTY NPUXOANTCS AyMaTb O DONbLIOM KO-
NINYeCTBe BELLE, HepeneBaHTHbLIX ero npeameTHolr obnactn n pewaemoit 3agade. CNOXKHOCTL —
rNaBHbIA Bpar NporpaMMuUCTa, NOTOMY YTO PECYPChbl YENOBEYECKOrO MO3ra HECOMOCTaBMMbI CO
CNIOXKHOCTbIO peanbHOCTU, KOTOPYH NMPUXOANTCS ONUCLIBATLCA B MporpamMmax. Takum obpasom, B
paboTe MOCTOSIHHO MPUXOAUTCS OMUCbLIBATbL HOBbIE SA3blKW, Hanbonee NOAXOAsLUME AN peLleHus
KOHKPETHbIX MPpUKAaAHbIX 3a4a4. A HOBble A3bIKU Mbl 3aJaéM C NMOMOLLbIO UHTEPNPETATOPOB.

Kak BbIFrNAANT KNAaCCUYECKUA peKypCcuBHbIA nHTepnpetaTop? OH nofy4aeT nporpaMmmy B BUae
HEKOTOPOTro [lepeBa N PEKYPCUBHO OOXOANT €ro, cHMTast pe3ynbTaTbl noaaepeBbes. Korga oH noce-
LLLaeT BEPLUNHY AepeBa, OH ONpefensieT e€ TUMN U NOHMMAET, Kakue AeACTBUS HY»XHO UCNOAHUTL. To
€CTb TWUMN BEPLUUHbI AWCNATHYUT, HABUTUPYET, UCMONIHEHNE UHTEPNpPeTaTopa Ha HY>XXHbIA Koa. Tak,
WHTEPNPETATOP NPOCTON A3bIKa BbIpaXXeHU UMeET CnelayroLnin Bua:

1 eval :: Expr -> Int

2 eval prog = case prog of

3 Const x -> x

4 Plus 1 r -> eval 1 + eval r

BuagHo, 4To 3TO noxoxe, HanpuMep, Ha paboTy YTUAUTLI KOMaHAHOW CTPOKM — pa3bupaem ap-
FYMEHTbI, ONpeAenisieM, YTO U KaK HY>XHO clienaTb, genaeM. Kak Hu cTpaHHo, dpunococdbus Unix, B
4ACTHOCTW, 3aK/IOHAETCS B MOCTPOEHUN ManeHbKUX A3bikoB (yTuanT ¢ TekcTtoBbiM API), pelwato-
LLMX XOpoLo oAHy 3aaady [Bentley [1986]. Ewié aTo noxoxke Ha 06paboTky 3anpoca web-cepsepom —
onpeaensieM poyT Ha KOTOPYO MpULLEN 3anpoc, BbIMOMHAEM COOTBETCTBYIOLLEE AeAcTBMEe. To ecTb

102https://en.wikipedia.org/wiki/Partial_evaluation

84

https://en.wikipedia.org/wiki/Partial_evaluation

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

He TakK pPefKo Mbl B peanbHOW XXU3HW nuLleM nHTeprnpeTaTopbl. Mbl NPOCTO HE BUAUM, HYTO TO, YTO
Mbl MULLIEM — 3TO Ha CaMOM Jlefle MHTEePNpPeTaToOp HEKOTOPOro s3blka. B obuiem cny4dae, CBEPTKY
CTPYKTYpPbl JaHHbIX yXKe MOXKHO paccMaTprBaTb Kak uHTepnpeTauuto (Gibbons and Wu| [2014].

Bonee Toro, kKak Mbl ybeaumcs B gansHeiweMm (5.4, HanucaHue ntoboli hyHKUMM — 3TO yxKe
3ajlaHne HOBOro s3blka. BoT 6bin s3bIK, B KOTOPOM Hesb3si Obl10 400aBUTbL NOAb30BaTENS B NpU-
noxerwne. Hanucann dpyrnkunio registerUser — nosiBUIACh HOBAas KOMaHAA B A3blke — A00aBUTb
nonb3oBaTens. Janee mMbl hoOpManbHO MOKaXKeM, TO TakoW cnocob 3KBUBaJIEeHTEH A0DaBAEHUO
HOBOII HOAbl B CMHTAKCUYECKOe AEPEBO S3blKa . Icnonb3oBaHue yHKUWI sBNsieTCs npu-
MEpPOM BCTPauMBaHUs s13blKa, KOrAa Mbl BMECTO TOro, 4ToObl JenaTb HOBbIi OTAENbHbI A3bIK, €ro
peannsyeM Kak bubnnoTeky ANs yxxe CyllecTBytolero s3bika (Gibbons [2013].

Kak Mbl ybeammcs B TedeHne Kypca, MHOTrMe 3a4a4 MOXXHO pacCMaTpuBaTb Kak NpuayMbiBaHUe
s13blKa W peannsauunto MHTepnpeTaTopa. 3Ha4YNT, eCi Mbl HAY4YMMCS1 XOPOLLO MUCaTb MHTepnpeTa-
TOPbI, Mbl Hay4MMcCsl fenaTb cpa3y Kydy Bcero! [/l ocHOBHble Halwmn ycunus OyayT HanpaBaeHbl Ha
N3y4eHne CpeacTB MNOCTPOEHUA UHTEPNPETATOPOB BCTPOEHHbIX SA3bIKOB.

Bo Bpemsi noBecTBOBaHWSI Mbl YacTO nofb3yemcst npuemom Hutton's Razor, kKoTopbiii noapa-
3yMeBaeT pPacCMOTPEHME A0 CMELLUHOrO MaNeHbKOro si3blka ANst U3YYEHUST CJIOXKHbIX KOHLIEMLWIA.
VTBEp)XAAeTCs, YTO AN N3yYeHns OONbLINHCTBA BOMPOCOB MOXXHO CKOHCTPYMPOBATb TAKOW s13bIK,
JlENAtOLLINA BCE Ba)KHOE MAKCMMANIbHO HArNSAHbIM.

5.1.3 WHTepnpeTaTtopbl 1 CEMAHTUKA $13bIKOB NMPOrpaMMMNpPOBaHNS

CeMaHTuKa A3bIKOB NPOrPaMMUPOBaHIS 03— 3TO Hayka, U3y4atoLlast CBOCTBA S3bIKOB 11 CMbIC/
nporpamMm, ero cBolicTBa 1 cnocobbl onucaHns. OTANYHBIM BBEAEHWEM MOXXET MOCNYXUTb CEpUs
khur Software Foundationg™|Pierce et al| [2010]. CywecTeyeT MHOrO pasnndHbix CTUNeR onuca-
HUSI CEMAHTUKU NPOrpaMM, AJist HAC BaXKHeWnM OyaeT AeHOTAUMOHHAs CeEMaHTUKA.

HenoTaumonHas cemanTuka " 07| onnckbiBaeT CMbICA NPOrpamMM MyTEM COMOCTABACHNS UM
00 bEKTOB HEKOTOPOrO MHOXECTBA, CEMAHTMYECKOr0 AOMEHA. VIHade roBopsi, AeHOTaLUNOHHas ce-
MaHTUKa si3blka L — 3TO TOTalbHasi PYHKLUMA U3 NPOrpaMMbl Ha 3TOM SI3blKe B 3/IEMEHT JOMEHA
D:

[o] : L — D
[loMeH BbibrpaeTcs mcxofs M3 sidblka U MHMDOPMALIMKU, KOTOPYHO XO4YeTCst W3BNEKaTb U3 Npo-

rpamMm. Hanpumep, 4ToObl y3HATL pa3Mep Nporpammsbl (TYT, BbIPAXKEHNSI CO COXEHUEM), B Kade-
CTBE JJOMeHa MOXKHO B3sTb HaTypaJsibHble Yucha:

[n] =1
[I+r] = 1+max([/,[r])

103https://en.wikipedia.org/wiki/Semantics_(computer_science)
04%https://coq.vercel.app/ext/sf/
105https://en.wikipedia.org/wiki/Denotational_semantics
100https://en.wikibooks.org/wiki/Haskell/Denotational _semantics
107 (youtube) The Lost Art of Denotational Semantics — Eric Meyer.

85

https://en.wikipedia.org/wiki/Semantics_(computer_science)
https://coq.vercel.app/ext/sf/
https://en.wikipedia.org/wiki/Denotational_semantics
https://en.wikibooks.org/wiki/Haskell/Denotational_semantics
https://youtu.be/pQyH0p-XJzE?si=TUEzrpHhJZfO7dTF

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Ecnm Hac NHTEPECYET KOHEYHbI pe3yNbTaT, MOXXHO NMOCHNTATb €ro:

[n] = n
[1+r] = []+1[]

Ecan y nporpammbl ecTb Bxoa, aomeHoM byaeT dyHkuma N — N:

[AD(m) =N
[/ +r[(m) = [1}(m) + [r](m)
[input](m) = m

Takum o6pa30M, rnporpamMmma ABJIAETCA JINLLb CUHTAKCUYECKOM 3aMyCbio AJ151 HEKOTOPOro 3Jie-
MEHTa CEMAHTNHECKOIro JOMEHA. BapI/IaHTOB AOOMEHOB MHOIO, 3TO MOTYT ObITb Aaxxe Mrpr@.

YnpaxHeHue 34 B kakoli JoOMeH pa3yMHO MPOUHTEPNPETUPOBATL MPOrPaMMbl Ha SI3bIKE C LIEI0-
YUCAEHHBIMY MYyTabesIbHbIMU NEPEMEHHBIMUY A Ha HEAETEPMUHUPOBAHHOM SI3bIKe?

Jlerko 3aMeTUTb, 4TO AEHOTALMOHHAS CEMAHTUKA A3blka — 3TO NPOCTO UHTEPMNPETATOP, TONLKO
HaMWCaHHbI Ha s3blke MaTeEMATUKWU. Takne UHTEePNPeTaTopPbl CTAaBSAT B OCHOBY OallHW UHTepnpe-
TaTOPOB, KOrAa Lieb NCCNeAOoBaTh CBOWCTBA S13bIKOB U MPOrpaMMm, a He UCMOJIHATL UX.

Takxe, MOXKEM peasin30BbiBaTb UHTEPMNPETATOP HA KAKOM-HUOYb peasbHOM SA3bIKE U OH TOXE
OyneT 3ajaBaTb CEMAHTUKY onpeaensieMoro s3bika. OaHako hopManbHOCTb TaKoro onpeneneHns
OyneT 3aBUCETb OT (POPMaNbLHOCTU OMMCAHWS CEMAHTUKU MeTa-sA3blka. lakne MHTeprnpeTaTopbl
Ha3blBalOT ONPEAENAIOLLMMIN, OHN 33Jat0T CEMAHTUKY s13bIKa, KakK NpaBuUo, XepTBysa 3 dhekTnB-
HOCTbIO paan HarnsAAHOCTU. B3auMooTHOLLEHNS onNpeaensieMoro s3blka U MeTa-s3blka U3y4aroTCs
B Knaccudecknx ctatbsax Reynolds| [1972, [1998]%7]

Mbl OyneM MCNoNb30BaThb OMNpeAensitolne UHTEPnpeTaTopbl ANs 3afaHUs CEMAHTUKU HOBbIX
S13bIKOB 1 B Ka4eCTBe MeTa-s3blka byaem ncnonb3oaTh Haskell. A B kauecTBe gJoMeHOB Oyaem bpaTh
Tunbl Haskell. VI nHTepnpetnpoBaTh nporpaMmMy He B MHOXXeCTBO (OYHKLMUIA Mexay HaTypasibHbIMU
yncnamm, a, ckaxem, B Tun Nat -> Nat B s3bike Haskelll] Tak, geHoTaumoHHas cemaHTuMKa
s13blKa CyMM C BXOAOM OyAeT 3annchbiBaTbCA Cneaytolm obpa3om:

1 eval :: Prog -> (Nat -> Nat)

2 eval = \case

3 Val n -> _ -> n

4 Plus 1 r -> \m -> eval 1m + eval r m
5 Input -> \m -> m

CemaHTUKa Ha3blBaeTCs KOMNO3uUMoHHOW (compositional), eciv cMbiCh KOHCTPYKUWiIA 3aBU-
CUT TOJIbKO OT CMbIC/Ia NOAKOHCTPYKUWA. VIHaye roBopsi, ecnm AeHOTaUMOHHAs CEMaHTMKA npef-
CTaBAsieT coboit CcBEPTKY nmporpammbl (puc. [17]) n MoxeT ObITb 3anncaHa B TepMUHAX KaTamop-
dhusma 4.3.3]

108https://en.wikipedia.org/wiki/Game_semantics
109 AkTIBHO MCMOMb3yeMOe aBTOPOM MOHATWE NPOAOSKEHUS ByAeT pacCMOTpeHO Aanee B 3ToM Kypce (pasgen @
Ohttps://okmij.org/ftp/Denotational . html

86

https://en.wikipedia.org/wiki/Game_semantics
https://okmij.org/ftp/Denotational.html

Add

AN A

eval [Val 1 Add

NN

6

Puc. 17: JleHoTaunoHHas CEMaHTUKA ONPEAENseT CMbIC CUHTAKCUYECKNX KOHCTPYKLNIA Yepes one-
pauun Hag gomeHom Hutton [1998].

1741 [pyrviM nonyasipHbIM CTUIEM OMUCAHNS CEMAHTVKUN SIBASIETCS ONepaLMOHHasl CEMAHTUKA, KO-
1722 TOPast NPeACTABASET CMbICA MPOrpamMMbl B BUAE NOCNEA0BATENBHOCTU LIArOB BbIYUCAEHWA. DTO
1743 MOXET OblTb Kak MOCNeJOBaTENbHOE NePeniCbiBaHNE CaMOrO BbIPaXKEHUs, TaK 1 MEPEnuChbIBaHNe
1744 COCTOSIHUSI HEKOTOPOW abcTpakTHO MawwmHbl. OnepaunoHHas cemaHTrKa, B CBOKO o4epeb, 3aja-
1745 €TCA KaK pa3BépTka (M aHamopdusm NOCNeOBATENbHOCTU LWIArOB BbIHYUCAEHNS U3 MPO-
1746 TPAMMbl. TyT OTYETANBO BUAHA HEKOTOPAsi ABONCTBEHHOCTb MEXAY AEHOTALWNOHHONM 1 onepaLyoH-
1747 HO cemaHTukamm [Hutton| [1998].

s 5.1.4 BcTpoeHHble gomeHHo-cneumnduyHbie s3biku (eDSL)

1749 Moa pomeHHo-cneundmnyHbiMK si3bikamm (domain specific languages, DSL)E 4aCTO MNOHU-
1750 MatOT CMeunann3npoBaHHble A3bIKU AN KOHKPETHbIX NpeaMETHbIX obnacTeld, HanpumMep, 3anNpocoB
w1 K B mnn cbopMmaTupoBaHns AOKYMeHTOB. Kak npaBuio, Takuhe si3blKi He SIBAAKOTCS NOJHLIMU MO
172 | bIOPUHTY.

1753 B aTom Kypce, ogHako, Mbl ByaeM cHnTaTb JOMEHHO-CNeUnduYHbIM S3bIKOM 0Dy JOMEHHO-
175 CNeUMUYHYIO Cnelmann3sanmnto a3blika obLero Ha3HaHeH|/|;FE]. ITO CneayeT U3 TOro coobpakeHus,
1755 YTO KOJ, [IOJIKEH YMTATbCS Kak rpaMoTHasi Mpo3a C YMECTHbIM C/IOBOYNoTpebaeHnemM, npefocTas-
1756 NSIOLLAS YATATENO TOJIbKO HEODOXOAMMOE KOMYeCTBO MoApOOHOCTEN, CKpblBasi HECYLLECTBEHHOE
1757 32 YMOJHAHUSAMU U TEPMUHONIOTMEN.

1758 CamocrosTenbHble gomeHHo-cneunduyHbie a3bikm (standalone domain specific languages)
1750 — SI3bIKW, UMeOLLNE CBOW CODCTBEHHbII KOHKPETHbIE CUHTAKCUC, A TaK XKe UHCTPYMEHTbI Nporpam-
1e0 MupoBaHus (IDE, ucnonnsitowas cpega. ..). Mpumepsl: SQL, AWK, Antlr. . m

1761 BcrpoeHHble pomeHHo-cneunduyHble s3bikn (embedded domain specific languages, eDSL)

Hlhttps://en.wikipedia.org/wiki/Domain-specific_language

2https://en.wikipedia.org/wiki/Language-oriented_programming, Ha PyCCKOSI3bIYHYIO CTpaHuULy TOXe
cnepyeT 3arnsHyTb.

U3Ecrh oTnnunas npuknaaHas kHura Nystrom, pacckasbiatowjast 0 NOCTPOEHUM UHTEPNPETATOPOB 11 MPOCTbIX BUP-
TyasbHbIX MallnH. B To ke BpeMsi OHa MOKPbIBaeT CO3HaHWE MOJHOLEHHOrO A3blka BO BCEX €ro acnekTax, OT CUHTakK-
CUYECKOro aHaiu3a A0 ynpaBaeHUs NamATbIO.

87

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Language-oriented_programming

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

— S3bIKW, NOJIb3YHOLLMECS MOAAEPXKKON NHMDPACTPYKTYpbl Apyrux s3bikoB. OObIYHO peann3ytoTcs
Kak BMbanoTekn Ans NporpaMm Ha y»xe CYLIEeCTBYHOLIEM SA3blke 0OLLEro HasHadeHus. He nmetoT
NMONIHOCTBI COOCTBEHHOIO KOHKPETHOro cuHTakcuca. MNpumepbl: ORM, dyHKUUM 06paboTKM CTPOK,
onbnanoTeka napcep-koMbUHATOPOB. . .

Deep eDSL — Tepmbl Ha TakoM sA3blKe CTPOSAT AepeBO abCTPaAKTHOro CUHTAKCUCa ANs Aalib-
Helileli nHTepnpeTaunn:

1 £ :: Int -> Int
2 f = eval $ Const 1 “Plus” Input

IHTepnpeTaTopbl, KOTOPbIE MPUHMMAIOT AEPEBLSA HAa BXOA U MHTEPMNPETUPYIOT NX B CEMAHTUYe-
CKWIA JOMEH, Ha3bIBatOT VIHVILI,VIaanbIMV@, Mbl X Takxe Oyaem HasbiBaTb “knaccudeckummn”. C
HUX Mbl 1 OyaeM HaudnHaTb. Knaccuyeckne MHTEPNpPeTaTOPbl NONE3HbI, HANPUMEP, KaK ANs peanu-
3aunn “nocnefHero sA3blka’ — uHTepdelica NporpaMMbl BO BHELLHWIA MUpP, U KaK pyHAAMEHT ans
HaLWWX AANbHERLLINX NOCTPOEHNIA.

OaHaKo, MOXXHO 3aMETUThL, YTO MPOMEXYTOYHOE EPEBO, KOTOPOE MOJYHaETCsH, HAC, Kak NnpaBu-
N0, He nHTepecyeT. HaM Ba)KHO TONIbKO MONYYUTb SNEMEHT JOMEHA, KOTOPbLIM Mbl YXKE YMEEM MOb-
30BaTbCs HenocpeacTeeHHo. Shallow eDSL mMuHytoT cTagnto nocTpoeHus aepesa 1 cpasy CTPOsT
3HayeHne B CEMaHTNYECKOM AoMeHe. Takune HTepnpeTaTopbl Mbl OyaeM Ha3biBaTb (PUHANIbHLIMW.

1 cnst :: Int -> (Int -> Int)
2 cnst x _ = X
3 input :: Int -> Int

4+ 1nput env = env

5 plus :: (Int -> Int) -> (Int -> Int) -> (Int -> Int)
6 plus 1 r env = 1 env + r env

7 £ :: Int -> Int
s f = cnst 1 “plus”™ input

NIHTepnpeTaTopbl 4acTo Ha3biBatoT HabnopaTensamu (observers), KOTopble aHaNU3NPYIOT Tep-
Mbl U AatoT UM HekoTopblil cmbich (Gibbons| [2013]. MoxHo 3ameTuTh, 4To ans deep eDSL MoXKHO
HanucaTb CKOJib YrOHO MHOIO pa3nunyHbix HabntogaTeneir. OgHako B cnydae shallow embedding
HabntopaTenn Bcerga id. Mbl byaem obcyxaTb BO3MOXKHbIE peLLEHUst 3TOW npobnembl aanee B
pazgene 5.4.1]

Ob6cy»xaeHe TEPMUHONIOMUN 1 CPAaBHEHUE NoAX0A0B K nocTpoeHnto DSL moxxHo HaiTn B|Gibbons
[2013]. KpaTkoe onucaHune TepMuHOB — B KOHCMeEKTe Kypca Language Engineering [Hutchinson,

Beeaém ewié ogHo BaxxHoe noHATue. Meta-circular MHTepnpeTaTor.PE]— 3TO UHTEpPNpEeTATOP,
onpeaenstolnii KOHCTPYKLMN ONpeaeNsieMoro s3blka 4Yepe3 KOHCTPYKUuMuM MeTa-sA3bika [Reynolds
[1972]. Hanpumep:

14T un cuHTakcmca 3afiatHblii ¢ NOMOLLbIO data ABASAETCS MHULMANbHBIM OBBEKTOM KaTeropuii MHTepnpeTaLmii.
WShttps://en.wikipedia.org/wiki/Meta-circular_evaluator

88

https://en.wikipedia.org/wiki/Meta-circular_evaluator

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1 interpret term = case term of
2 App £ t -> (interpret f) (interpret t)
3 If ¢ t e -> if interpret c then interpret t else interpret e

CBolicTBa MeTa-A3blka B TAKOM CJly4ae BO MHOTOM OMpeaensitoT CBOCTBa 00bekTHOro |Reynolds
[1972,|1998]. Mbl bynem B 3TOM Kypce CTPEMUTLCS! KaK MOXXHO OoJiee NepPencnonb30BaTb BO3MOX-
HOCTU MeTa-s13blKa.

YnpaxueHue 35 [Ipegnonoxure, kKakue CBOWCTBA HAaC/AeAyeT ONpenensieMblii S13blK U3 NpumMepa
BbILLIE.

5.1.5 Tpumep: 6mbanoreka Accelerate

VIHTepecHbIM NpMEPOM BCTPOEHHOTO s13blKa, HaxoAsLerocs rae-to mexay deep u shallow sie-
naeTca 6ubnnoTeka Accelerate{T_fG] [Marlow, 2011} rnasa 6]. OHa nossonsieT Ha Haskell onucaTb
Bbl4YMCNEHNS, KOTOpble ByayT MCNONHATLCA Ha GPUE].

YHT100bI CNONHUTL 4TO-TO Ha GPU, Hy>XHO nopoanTb U ckomnuanpoBaTb koa Ha Cuda. Takum
obpasoMm, a3blk Accelerate fonxxeH 6biTb deep embedding, 4ToObI UMeTbL AEpPEBO BbIYUCAEHUSA ANS
TpaHcnaumm B Cuda Hanbonee achbhekTUBHBIM 0Opa3oM.

B To »xe BpeMsi onncbiBaTb YUCAEHHbIE BbIYMCIEHUST KaK [EepeBO KpaiHe HeyaobHo. Hennoxo
OblN0 6bl UMETL NPUBbLIYHLIE ONEPATOPbI U PYHKLUN BbICLLUX NOPSAKOB ANst paboTbl C MacCMBaMu
Ha GPU. MNoaTomy Accelerate npegoctaensieT Ha camom fene shallow nHTepdeiic ans nocTpoeHus
JepeBbeB. Tak, ANl AepPeBLEB BbIPAaXKeHWIi onpedeneHa peann3auns YNCNEeHHbIX KNacCoB TUMOB,
Hanpumep, Num, rge onepauuy NpoCTO JOCTPanBaOT AEPEBO:

1 example :: Acc (Vector Int) -> Acc (Vector Int) -> Acc (Vector Int)
> example xs ys = A.zipWith (+) xs ys

5.2 Twunbl 3HaYeHUN

PaCCMOTpVII\/I, Kakune ecTb Cnocobsbl peann3aunn A3blIKOB, 3HAYEHUA B KOTOPbLIX MOIyT UMETb
pa3finyHbl€ TUMbI.

5.2.1 Untyped tagless interpreters

Jns Hayana pacCMOTPUM HEKOTOPbLIA TPUBMAbHbIA HETUNN3UPOBATHbLIA sA3bIK. [loa HeTUNU3M-
POBAHHOCTbIO MOHUMAEM OTCYTCTBUE NMPOBEPKU TUMOB KaK [0 WCMONHEHWS MPOrpaMmbl, Tak 1 BO
BpeMsi. ADCTPaKTHbIi CUHTAKCUC 3TOro A3blKa 3a4aAVM CHeayoLM obpa3oM:

UOhttps://hackage.haskell.org/package/accelerate
17 Npyroii noaxog: Java code reflection, 4Tobbl B paHTaliMe m3BnekaTb Mogenb koga. OAHAKO, TakoW Moaxon He
NpefoCTaBAAET CTAaTUYECKN FapaHTWiA NporpaMMUCTy n TpebyeT rayboroko BHeApPEHUs1 B MeTa-A3bIK.

89

https://hackage.haskell.org/package/accelerate
https://youtu.be/6c0DB2kwF_Q?si=-nB7AkCsDWB_Q-hy

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1 data Expr = Const Int | IsZero Expr | If Expr Expr Expr

3HayeHns, BO3HUKAIOLLINE BO BPEMsI UCMONHEHUS NMPOrpamMM Ha 3TOM sA3bike OyaeM npeacTas-
NATb 3HadeHuamu Tunos Bool n Int a3bika Haskell. CooTBeTCTBEHHO, CEMAHTUYECKUM LOMEHOM
NporpaMmMbl Ha 3TOM si3blKe siBAsieTCst b0 Bool, nmbo Int, B 3aBUCMMOCTU OT CaMOli NporpamMmel.

1 evalUnsafe :: Expr -> forall res . res

2 evalUnsafe = \case

3 Const val -> unsafeCoerce val

4 IsZero cond -> unsafeCoerce $ evalUnsafe ©@Int cond == O

5 If c t e -> if evalUnsafe c then evalUnsafe t else evalUnsafe e

3aecb unsafeCoerce MCNONb3yeTCs, 4TOObI 0OMaHyTb CTaTuyeckyto cuctemy Tunos Haskell
N NPOCTO WCMOSIHATbL NMPOrpaMMbl Ha HalleM HETUMU3NPOBAHHOM si3blke. Mbl MMeeM MpaBo Tak
AenaTb, NockoNibKy Int 1 Bool B Haskell umetoT ognHakoBbIi pa3mep. HeBepHoe HanucaHne npo-
rPaMMbl Ha 3TOM A3blKe UK BbIDOP HENPABUIBHOIrO AOMEHA UHTEPNpeTaLny NPUBOAAT K NaLEHNIO.

5.2.2 Typed tagged interpreters

HT100bI 4OONTLCA HEKOTOPOI BE30NACHOCTN UCNONHEHUS, OyaeM NPUNUCLIBATbL 3HAYEHUAM Teru,
KOTOpble ByayT AOCTYMHbI BO BPEMsI UCNONHEHUS. 3aBeAEM CneayoLlnii anrebpandeckunii Tun:

1 data RtValue = RtBool Bool | RtInt Int

Tenepb ceMaHTU4YeCKUM AOMEHOB y Hac byaeT Tun RtValue, a MHTepnpeTaTOp CMOXET MpPOBe-
PSATb TUMbl BO BPEMSI UCMOJIHEHUS:

1 evalRt :: Expr -> RtValue

> evalRt (IsZero expr) = case evalRt expr of
3 RtBool value -> error "Type error"

4 RtInt value -> RtBool (value == 0)

5 R

CuTyaums ¢ 6e30nacHOCTLIO NMPOrpaMMbl ONpeaeneéHHo cTana ayylle, OAHAKO NMPOBEpPKa TWUMOB
BO BPEMS MUCMOJIHEHUS — 3TO Y>Ke NO3AHO: TpebyeT AONONHUTENbHbLIX PACXOA0B NPON3BOANTENBHO-
CTU N yIOPOXKAeT TeCTUPOBaHME.

DTOT NOAXOA HaCTO Ha3bIBAOT AMHAMMYECKON TUNM3aLen, Koraa Mbl aTpubyTupyem 3HaueHns
HEKOTOPOV TUNOBOV MHDOPMALIMER AN MCNOb30BaHUS BO BPeMsl UCMOHeHMsT (CM. TaKkxe .

5.2.3 Typed tagless interpreters

Onuniuem CUCTEMY TWNOB HalWlero ManeHbKOro A3blika.

n: Int n:int c:bool t:T e:T

Const n:int Const IsZero n: bool IsZero Ifcte:T

If

90

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

MoxxeM B KayecTBe TUMOBbLIX TEFOB NEpPencnosib3oBaTh Tkl Haskell:
int ~~ Int, bool ~ Bool

3amMeTyM, 4TO C NoMoLLbio 0606LWLEHHOTO anrebpanyeckoro Tuna AaHHblX Expr ty (2.1.4]), mbl
KakK pa3 3akoAupoBaan 3TN NpaBu/ia BbIBOAA. VIHave roBops, Mbl NOAYYUAN CTAaTUHECKU TUNN3NPO-
BaHHbI A3bIK NPOrpPaMMUPOBaHNs, NepPencnonb3oBaB cucTtemy Tunos Haskell.

1 data Expr ty where

2 Const :: Int -> Expr Int

3 IsZero :: Expr Int -> Expr Bool

4 If :: forall ty . Expr Bool -> Expr ty -> Expr ty -> Expr ty

5 eval :: Expr ty -> ty
¢ eval = \case

7 Const n -> n
8 IsZero e -> eval e == 0
9 If c t e -> if eval c then eval t else eval e

Bnarogaps cTaTuyeckoit TUNU3auun, Mbl MOXXEM OTKa3aTbCs OT TErmpoBaHWs 3HaydeHuli BO
BpeMsi nHTepnpeTaumm 6e3 notepn 6€30MNacHOCTH.

5.3 CasasbiBaHus n oyHKLMM NEPBOro KJacca

B aToMm naparpade Mbl pacCMOTPUM TEXHUKU U MOHATUSA, OTHOCALLMECS K peann3aunn pyHKLni
NepBOro KJjlacCca n CBs3blBaHU B obuieM. [1oCKonbKy 3Ta (PYHKLNOHANIBLHOCTb Y>KE, KAk MpaBuo,
peann3oBaHa B MeTa-sA3blke, Mbl OyaeM CTPEMUTLCSI €€ MaKCUMaslbHO NePencnonb30BaThb.

let-CBA3bIBAHNSA MOXHO MPeACTaBUTb Yepe3 (OyHKLUMM NEPBOro Kiacca cneaytowmm obpasom:

let x =Nin M= (Xx. M) N

HanomHum, 410 OT hyHKLNIA NeEPBOro Knacca MOXHO U30aBUTLCS C MOMOLLBIO AedyHKLNOHa-
An3auun, paccMoTpeHHoii paHee [3.1.7]

5.3.1 CemaHTuKa NMEH

CyLLecTByeT HECKOIBKO CMOCODOB 3aJjaHnst CEMAHTUKN MAEHTUpUKATOPaM.

Ovnamunyeckoe ces3biBaHme (dynamic scoping) — 3HadeHre cBOOOAHbIX NEPEMEHHBLIX (DYHK-
LUUKN 3aBUCUT OT 00NacTU BUAUMOCTY B MECTe BbI30Ba. [0 eCTb pa3pelleHne UMeHN NPoNCXoanT B
MOMEHT obpallleHnst K nepeMeHHoi. Hanpumep, cneaytolnii Ko HanevaTaeT 42:

1 val x = 4
> val £ =0 =>x+ 1
3 val x = 41

4 println(£(0))

91

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

ITOT MNoAxod Mpolle B peanm3auuy U UCNONb30BaICs B paHHUX Bepcusix Lisp'oB, Hanpumep.
OpnHako B TakoM crlydae (OYHKLUW He SBNSAIOTCSA HaAeXHbIM BapbepoM abCcTpakumm, No-xopoLuemy
BCe CBODOAHbLIE NepeMeHHble A0/KHbI SBASTLCS YacTbio CUTHATYpbl (BEPHEMCS B 3TOMY B rfaBe
npo cuctemsl achdekTor ?7).

Jlekcnyeckoe /cTaTuyeckoe cBsisbiBaHue (lexical/static scoping) — nepemeHHble CBs3bIBa-
FOTCA CO 3HAYEHUSIMU B MOMEHT 0ObsABMEeHUS (PYHKLMW, B MOMEHT Bbi30Ba pe3y/nbTaT 3aBUCUT
TO/IbKO OT MapameTpoB (MO MOAYNO W3MEHSAEMOro COCTOFIHVIF@. CnoBo “nekcuyeckuin” 4acto
ynoTpebAsieTcst B A3blKax, KOrJa Mbl YTO-TO MOXEM MOHSATb N3 UCXOAHOIO Koaa 0e3 3anmycka npo-
rpaMmbl. Tak, KOA M3 NpuMepa Bbllle HanevaTaeT b.

[anee B 3TOoM pa3jgene Mbl OygemM roBopuTb O Pa3/iMyHbIX crnocobax peanusaunmn yHKUWUIA
NepBOro KJjlacca Co CTaTUYECKUM CBSI3bIBAHMEM MEPEMEHHbIX, KOTOPbIX, Ha CaMOM [efie, BENKOe
MHOMeCTBALLI

5.3.2 ToacraHOBKN

Kak MOXHO 3aMeTUTb, B KJIACCUYECKOM NAMOAA-UCHUCAEHN NOACTAHOBKM OT BeTa-peayKuum
(BcnomuHanu B pasgene[1.1]) obecneunsatoT cTaTudeckoe cBsisbiBaHme. JelicTBUTENEHO, apryMeHT
HEMeANIeHHO MOACTAaBMSAETCS BO BCE BXOXKIEHWUS NMepemMeHHOW, COOTBETCTBEHHO OHA He OCTaéTcs
CcBODOOJHOW, a NPOCTO MCYe3aeT.

. XAV x +y) 4) 41 ~ (Ox. (\y. 4+ y)) 41

‘Takoli noaxoa He ABNSETCA CaMbIM 3P EKTUBHBIM, MOTOMY YTO Ha KaXKAyro annankauuto Tpeby-
eTCsl NepenuncbiBaTh kog dpyHkuun Lenukom (1). B To xe Bpemsi ero J0BOIbHO NPOCTO peann3oBaTb
AN HEKOTOPbIX NpeAcTaBneHnii nambaa-Tepmos. PaccMoTpuM nprMep Takoro npeacTtaBieHns —
locally nameless (Charguéraud [2012].

1 data Term var

2 = Var var
3 | App (Term var) (Term var)
4 | Lam (Term (Maybe var))

B aTom npencTaBneHnn Mo)xHo BbIOupaThk Nt0OON TUN AN UMeHOBaHMSA CBOOOAHbBIX NepemMeH-
HbIX:

1 example :: Term String
2 example = Var "x" “App® Var "y" -- x y

JobaBneHne Kak[ol CBsI3aHHOW NepeMeHHOW A00aBAsieT TUMy MNepeMeHHbIX HOBOro obutaTens
Nothing ana obpaweHus k 6avxalillel CBA3aHHON NepeMeHHOIA:

H8Hanpumep, B Kotlin B nambabl MOXXHO 3axBaTblBaTb W3MEHSEMble MepeMeHHble. V3meHeHns cHapy»xu HabAato-
faeMbl BHYTpU nsiM6abl, U HaobopoT. VIHoraa 3To MOXET ObiTb OYeHb YA0OHO, OfHAKO Hepenko MPUBOAUT K OYeHb
HEOYEBUAHOMY MOBEAEHUIO.

Whttps://jesper.cx/posts/1001-syntax-representations.html

92

https://jesper.cx/posts/1001-syntax-representations.html

1873

1874

1875

1876

1877

1878

1879

1880

1881

1 —— AX.X Y

> examplel = Lam $ Nothing “App~ Just "y"

3 —— AXY.XYyZ

4 example2 = Lam $ Lam $ Just Nothing “App”~ Nothing “App~ Just (Just "z")

MoHagunyeckuii bind siBnsieTcs peanu3auuein NOACTAHOBKNA ANsl TAKUX TEPMOB:

1 1nstance Monad Term where

2 (>>=) :: Term var -> (var -> Term var') -> Term var'
3 Var var >>= subst = subst var

1 App 1 r >>= subst = App (1 >>= subst) (r >>= subst)
5 Lam t >>= subst = Lam $ t >>= \case

6 Nothing -> Var Nothing

7 Just var -> Just <$> subst var

YnpaxHeHnue 36 [Togymaiite, 3a4em HyxeH fmap Just B nocnegHeii CTPOYKe.

CooTBeTcTBeHHO, call-by-name nHTepnpeTaTop Takoro nambaa-ncHncneHns OyaeT BbIrNsSAeTb
cnepytomm obpazom Y

1 eval :: Term var -> Term var

2 eval = \case

3 Var var -> Var var

4 App f arg -> case eval f of

5 Lam body -> eval $ body >>= maybe arg Var
6 t -> App t (eval arg)

7 Lam t -> Lam (eval t)

5.3.3 OkpyxeHne

MoXxHO AenaTb NOACTAHOBKY 3HAYEHWUI NMepeMeHHbIX JIEHWBO, PACMPOCTPAHAS OKPYXKEHUE, KO-
TOpOe CTAaBUT B COOTBETCTBME CBODOAHbLIM NepeMeHHbIM TepMbl. Jlydlle, B LeJIoM, NOKa He CTano,
HO Mbl MOJIYYUAN KOMMO3ULMOHHYIO CEMAHTUKY N3 HEKOMMO3ULUMWOHHOW NYyTEM SKCMAMNLUPOBAHNS
KOHTEKCTHbIX 3aBucumMocTeii (nogpobree aanee |5.4.3)).

1 data Terml = Varl String | Appl Terml Terml | Laml String Terml
2 type Env = Map String Terml

3 evall :: Terml -> Env -> Terml
4+ evall term env = case term of
5 Varl name -> Map.findWithDefault (Varl name) name env

120MockonbKy Mbl pacCMaTpPMBAEM KAACCHUECKOe A-UCHUC/EHNe, B KadeCcTBe pPe3yabTHPYIOLLEro 3Ha4eHnst Mbl nosy-
4yaem ToXe TepM, HO B HOpMasbHOI hopMe.

93

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

6 Appl f arg -> case evall f env of

7 Laml name body -> evall body (Map.insert name arg env)
8 t -> Appl t (evall arg env)

9 Laml name body ->

10 let env' = Map.delete name env in

1 Laml name (evall body env')

YnpaxHeHune 37 OObscHUTE, 3a4EM OKPYXKEHNE MOANULNPYETCS HAa CTpoyke 107

Ecan BeTka Laml He OyaeT peKypcUBHO OOXOAUTb MOATEPM U MNOACTABASATbL 3HAYEHUs Nepe-
MEHHbIX, UH(OPMALMS O 3HAYEHNSAX CBOOOAHBLIX MEPEMEHHBIX B HEM MOTEPSIETCS 1 Mbl MOAYHUM
AVHaMUYecKoe CBSI3blBaHVWE BMECTO CTATWYeCKOro. YTobbl BOCCTAHOBUTL CTAaTUYECKOE CBsI3blBa-
Hue, BeTka Laml WMHTepnpeTaTopa [OJIKHA KOHCTPYMPOBaTb 3aMblKaHue, BKAtOYAlOLLLEE TeKyllee
okpy»xeHue (cMm. aanee|(5.3.4]).

5.3.4 3ambikaHuns

YT06bI He AenaTb SHEPrUYHO MOACTAHOBKY B Tena dyHKUNI 1 COXPaHUTL NpY 3TOM CTaTUHecKoe
cBA3bIBaHMe, 106aBNM ellg oaHy KOHCTpyKUMto, 3ambikakue (closure) > [Nystrom)| rnasa 11].
OHo ByaeT XpaHUTb KOHTEKCT, B KOTOPOM AOJKEH NCMOAHATLCA COOTBETCTBYIOLWNIA TEpM.

1 data Terml = Varl String | Appl Terml Terml | Laml String Terml
2 | Closure Env String Terml -- TONBKO I/Id BEYUCIIEHHUH
3 type Env = Map String Terml

4+ evall :: Terml -> Env -> Terml

5 evall term env = case term of

6 Varl name -> Map.findWithDefault (Varl name) name env
7 Appl f arg -> case evall f env of

8 Closure env' body ->

9 let arg' = evall arg env in

10 evall body (Map.insert name arg' env')

1 t -> Appl t (evall arg env)

12 Laml name body -> Closure env name body

3aMblKaHUsA OOLIYHO W UCMNOJIb3YIOT B MPOMbILLIEHHbBIX S3bIKax KaK MNpeacTaBfieHne BPEMEHU
ncnonHeHnss OYHKUUIA BbICLLIMX NopsiakoB. Bo Bpemsi komnunsuun cHadana npowssoaaT closure
conversion — yHKLUUN BbICLUUX MNOPSIAKOB NPEACTaBASAIOT KAk Napy W3 OKPYXKEHUs1 1 ykKa3aTens
Ha PYHKLUIO, MPUHUMAIOLLYIO OKPY>XKEHUE AOMNONHUTENBHbIM apryMeHTOM. Tenepb, Koraa dyHKLus
He codepXuT cBobOAHbLIX nepemenHblx, AenatoT lambda Iiftinﬂ — MOJHMMAIOT €€ Ha BEepPXHWUIA
ypoBeHb. [MogpobHble NpuMepbl MOXXHO MOCMOTPETL B rapBapackux cnaigax |(Chong.

2lhttps://en.wikipedia.org/wiki/Closure_(computer_programming)
122Tepmut closure 6bin npeanoxer Piter Landin, BMecTe ¢ Kyyeli Apyrux BeLieli.
12%https://en.wikipedia.org/wiki/Lambda_lifting

94

https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Lambda_lifting

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

5.3.5 Twunu3npoBaHHbLI KOHTEKCT

PaccmoTpum koavpoBaHue, onucaHHoe, Hanpumep, B |Kiselyov| [2012a].

[nst Hayana Hay4mmcs ¢ NoMolLLblo cucteMbl Tunos Haskell nposepsiTh BannaHoCTbL obpalleHns
K OKpy>xeHunto. [1pencTaBuM oKpy»KeHne Kak CMUCOK TUMOB, 3aKOANUPOBAHHbLI C MOMOLLbIO BIIOXKEH-
HbIX nap:

1 (4, (4.0, "hello")) :: (Int, (Double, String))

ObpallleHre K OKpy>KeHnto byaeM KogupoBaTb YUCAOM B yHapHoli 3anucu. Twun yncna (Tunusu-
POBAHHOW CCbINIKM BHYTPb KOHTEKCTA) MYyCTb 3a[aET MHOXECTBO OKPY)XEHWIA env, U3 KOTOPbLIX Ha
LAHHOW NO3uumMn MOXHO M3BaeYb Tun ty.

1 data Ref env ty where
2 Here :: Ref (ty, env) ty
3 There :: Ref env ty -> Ref (ty', env) ty

Hanpumep, Tvn 4Yncna 1 yTBep>XAaeT, Y4TO C ero NOMOLLbIO MOXXHO U3B/leYb 3HaYeHve Tuna ty 13
KOHTEKCTa, B KOTOPOM 3HayeHne COOTBETCTBYIOLLErO TUMA HAaXOANTCS Ha nepBoli nosuuun (Hyme-
pauust C Hyns):

1 There Here :: Ref (ty', (ty, env)) ty

Tenepb Mbl MOXEM 3aKOAMPOBATH TUNN3MPOBaHHOe HBe30nacHoe obpalleHNne K KOHTEKCTY:

1 envLookup :: env -> Ref env ty -> ty

> envLookup env ref = case (ref, env) of

3 (Here, (x,) -> x

4 (There ref', (_, env')) -> envLookup env' ref'

YnpaxHenue 38 MoxxHo v pazobpatb napy cpa3y Ha cTpodke 27 [loscHuTe.

5.3.6 Meta-circular narepnperauns

KpaiiHe He xoTenock Obl ans eDSL caMoCTOATENbHO peasin30BbiBaTh CBA3bIBAHUS U PYHKLIN
nepsoro knacca. Moctpoum meta-circular uitepnperaTop (cwm. [5.1.4)), koTopeili ByseT nepencnonb-
30BaTb (OYHKLWW NEPBOrO Kacca MeTa-sA3blKa AN peannsaunm nx B onpeaensieMom sA3blke.

Tepmbl Tenepb OyayT He TONBKO aHHOTUPOBAHbI PE3YNLTUPYIOLWMMN TUNAMKU, HO U TUNaMK Heob-
XOAUMBIX [J151 IHTEPMPETALMN OKPYXKEHNIA, pacCMOTpeHHbIX paHee[5.3.5. AbcTparupoBaHHoMy Tep-
MYy AOCTYMNHO DONbLUEE OKPY>XKEHME.

1 data Term2 env ty where

2 Var2 :: Ref env ty -> Term2 env ty

3 App2 :: Term2 env (arg -> res) -> Term2 env arg -> Term2 env res
4 Lam2 :: Term2 (arg, env) res -> Term2 env (arg -> res)

95

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

Tenepb abCTpaKLUO MOXEM MPOUHTEpPNpeTUpoBaTh B dyHKuuto Haskell, a annankauuto — B
annanKaLuto:

1 eval2 :: Term2 env ty -> env -> ty

2 eval2 term env = case term of

3 Var2 ref -> env “envLookup™ ref

1 App2 f arg -> (eval2 f env) (eval2 arg env)
5 Lam2 t -> \arg -> eval2 t (arg, env)

YnpaxHenune 39 Kak Tak nosy4unaockb, 4TO B MOCAEAHEN CTPOYKE HY)KHO MPUHSTH €LUE OAMNH ap-
ryMeHT?

YnpaxHeHnue 40 7o call-by-value nHtepnpetaTop wan call-by-name? OT 4yero 310 3aBUCUT?

YnpaxHeHue 41 [logymaiite, kakoe pelieHne [OIKHO bbiTb 60/ee NPOU3BOANTENILHO, 3TO WU
npeabiaylyee?

Ob6paTnTe BHMMAHME, 4YTO Tenepb (DYHKLMN ONpefensieMoro si3blka BO BPeMsi UCMONHEHUS —
3TO NPOCTO (PYHKUUN MeTa-a3blka. A 3HAYUT, B MpOrpaMmax Ha ONpefensieMoM S3blKe Mbl MOXEM
MOJIHOCTbIO MEPENCOIb30BaTh MeTa-A3bIk! [JobaBMM AN 3TOM0 KOHCTPYKLMIO, MO3BONSAIOLLYHO CO-
XPaHUTb MPON3BOJIbHOE 3HAYEHNE METa-S3blKa B AEPEBE:

1 data Term2 env ty where
2 Val2 :: ty -> Term2 env ty

3 R

a4 eval2 :: Term2 env ty -> env -> ty
5 eval2 term env = case term of

6 Val2 x -> x

. -

s example :: Term2 env (Int -> Int)

o example = Lam (Val2 (+) “App2° Val2 1 “App2° Var2 Here)

5.3.7 CuHTakcmc BbICLLUErO Nopsigka

FWwé yem Mbl elg 3aHMMaemcst BpYUHYI0 — OnpeaensieM cessbizaTenu (Aa ewé u B yHapHoii
3anucu). XoTuM nepencnonb3osaTh Ux U3 MeTa-A3blka. s 3To Mbl Byaem npsMo B Aepese CiH-
TaKcnca xpaHUTb PYHKLMN MeTa-A3blka — UCMONb30BaTh CUHTakcuc Bbiclwero nopaaka (higher
order abstract syntax)">J%|[Pfenning and Elliott [1988]:

12%https://en.wikipedia.org/wiki/Higher-order_abstract_syntax
125What is higher-order in higher-order abstract syntax?

96

https://en.wikipedia.org/wiki/Higher-order_abstract_syntax
https://cstheory.stackexchange.com/questions/20071/what-is-higher-order-in-higher-order-abstract-syntax

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1044

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1 data Term3 ty where

2 Val3 :: ty -> Term3 ty

3 Plus :: Term3 Int -> Term3 Int -> Term3 Int

1 App3 :: Term3 (arg -> res) -> Term3 arg -> Term3 res

5 Lam3 :: (Term3 arg -> Term3 res) -> Term3 (arg -> res)
¢ exampled :: Term3 Int

7 example3 = (Lam3 \x -> x “Plus” Val3 41) “App3” Val3 1
VIHTepnpeTauns o4yeHb npocTas u abcontoTHo meta-circular:

1 eval3 :: Term3 ty -> ty

2 eval3 term = case term of

3 Val3 x -> x

4 Plus 1 r -> eval3 1 + eval3 r

5 App3 f arg -> (eval3d f) (eval3 arg)

6 Lam3 f -> \arg -> eval3 (f (Val3 arg))

YnpaxueHue 42 MoxxHo i 661710 06bsBUTH Lam3 caeayromM obpa3om?

: Lam3 :: (arg -> Term3 res) -> Term3 (arg -> res)

5.3.8 Cepunanuzaumnsa cyHkunA

B aTom pasaene mMbl FOBOPWIM O BO3MOXHbBIX peann3auunsax gpyHKLWi nepBoro Kaacca, To ecTb
YHKUNWIA, KOTOPbIE MOXHO UCMONB30BaTh TakK »e MMOKo, KaK 1 AaHHble. Bo3HMKaeT 3aKOHOMEPHbIV
BOMPOC: MOXEM NN Mbl CEPUaNnN30BaTb (DYHKLMIO NEPBOro Kjacca W NocfiiaTb WUCNONHATLCS Ha
APYTyto MaLlunHy?

PYHKLUMST COCTOUT K3 KOAA W 3axBadeHHbIX CBODOMHBLIX MepeMeHHbIX B Cllydae CTaTU4eCcKo-
ro cessbiBaHus. COOTBETCTBEHHO, €CNU KOA MpefcTaBfieH B cepuannsyemom Buge (Hanpumep,
NO3WNLMNOHHO-HE3aBUCKMbIV BaliT-KOA), TO €ro B MPUHLMUMNE MOXHO MepecnaTb MO CETU W UCMOoN-
HUTb Ha APYroM MHCTAHCe BUPTYyanbHOW MalLvHbL. Tak, HanpuMep, aenaeT Erlang. OgHako, Takoi
noaxon HeatheKTUBHbIN, Tak Kak 6aliT-KoL HYXKHO UHTEPNPETUPOBATL WK NPeaBapUTeNbHO KOM-
nuanpoBaTh. TakuM obpa3oMm, Erlang »kepTByeT CKOPOCTbIO WCMOMHEHWS pajn FOPU30OHTaNbLHON
MacLTabupyemocTu.

Ecnm Mmbl rapaHTupyem, 4TO Ha Pa3INyYHbIX y31ax KaacTepa WCMOMHAETCS OANH U TOT XKE KOZ,
KaK 0DObIYHO N ObIBAaeT Ha MpPakKTUKE, MOXXHO JobuTbcsa Bonee achdekTMBHOW peann3auun. Hanpu-
Mep, Mcnob3ys aedyHkumoHanusaumo (cMm. (3.1.7)), Mbl MOXeM Ceprann3oBaTh TONLKO OOBEKTbI
anrebpanyeckoro Tuna, koaupyroLine hyHkUUn. NoCcKonbKy Ha ApPYyromM y3ne KnacTepa UCMOJIHSET-
CS TaKOI »Ke KO, Mbl TaM MOXEM [leCepuann3oBaTb 0O BEKT 1 UCNONAHNUTL €ro C MOMOLLbLIO apply.
OfHaKo 3TOT MOAXOA He OYeHb NOAAEPXKMBAET MOAYNLHOCTL (CNOXKHO oAuH anrebpanyeckuii Tun
pPasbuTb Ha MHOT0), a Tak Xe apply KakAbliA pa3 NPOU3BOANT AEKOAUPOBAHIE NePe NCMOTHEHNEM
Koda (4em, B MpoyeM, MOXKHO NpeHebpeYb, yUnTbiBas paboTy C CETbIO).

97

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

[Moaxon, peann3oBaHHbIA B Haskel NO3BONSET HaAeNNTb Kaxxayto dyHkunto 6e3 ceobos-
HbIX MEePEMEHHbIX HEKOTOPbLIM CTaTUYECKM U3BECTHbLIM aJpecoM, OANHAKOBbLIM [Jist BCEX MHCTAHCOB
npunoxxenus. [Janee MOXXHO CKOHCTPYMPOBaTb CEPUANNIYEMOE 3aMblKaHNe NYTEM NOCNeA0BaTE Nb-
HOCTW YaCTUYHbIX NPUMEHEHWNIA:

1 data Closure a where

2 StaticPtr :: StaticPtr b -> Closure b

3 Encoded :: ByteString -> Closure ByteString

1 Ap :: Closure (b -> c) -> Closure b -> Closure c

5 main = send "some-node" $
6 closure (static factorial) “closureAp” closurePure 10

[TogpobHee MOXKHO Mpo4YMTaTb B OCHOBOMoOJaratowell ctatbe npo obnadnbiii Haskell [Epstein
et al. [2011]. C npakTuyeckoit Toukn 3peHns — B KHuxkke [Marlow, 2011, rnasa 16].

Ynpaxuenune 43 HyxxHo v siBHO J0baBSITL B 3aMbikaHue cBob6oAHYI0 nepemerHyto (*) (onepa-
TOP YMHOXEHUS) B peann3auuv paktopuana?

5.4 Tagless final nntepnpetatopsbi

Kak mbl ybeaunucs patee (5.1.2)), nporpaMmupoBaHne COCTONT M3 HAMMWCaHWsI HOBbLIX 1 HO-
BbIX MHTEPMNpPeTaToOpPOB MOBepx ApYr Apyra. VIHTepnpeTaTopbl 3a4at0T CEMAHTUKY HOBbIX SI3bIKOB
. B knaccuyeckom Buae s13blk 3aJa€TCS KaK MHOXXECTBO AEPEBLEBR, a WHTEpPnpeTaTop OT-
npaBnsieT AepeBbs B 0OBEKT MeTa-sA3blka. ECNn s13bIK BCTPOEHHbIR, TO TakOoW NoAaxoA Ha3biBatOT
deep embedding (cm. , a COOTBETCTBYHOLLNIA MHTEPNPETATOP NHULINANBHBIM.

[e] : L — D

MOXHO 3aMeTUTb, Y4TO B KOHEYHOM MTOre Mbl WCMOJb3YEM TONILKO 3JEMEHT AOMEHA, B KO-
TOpbIi MHTEpnpeTaTop oTobpaXkaeT nporpammy. Cama nporpaMma e npeacTaBasieT coboii MM
yAOGHYIO CUHTAKCUYECKYIO 3aMiCh 3N1EMEHTA JOMEHA 1 SIBASIETCS NPOMEXYTOUHBIM LIAroMm, a He ca-
MoLesNblo. B To e Bpemsi JOMEHOM B CllyHae BCTPOEHHBIX S3bIKOB, 3aJaHHbIX NHTEpMpeTaTopamy,
SABASIOTCS 0ObEKTHI MeTa-s13bika. MOXXeM I Mbl MHOBATbL CTaAMIO NHTEPNPETALMU COBCTBEHHOTO
CUHTaKCNCa 1 cpasy CTPOUTb OBBEKT AOMEHa B CUHTAKCUCe MeTa-sisblika? [la, Takoe BCTpauBaHmue
Ha3biBaeTcs shallow embedding (5.1.4]), o Hém >Ta rnasa.

5.4.1 PasHble nutepnpertauumn gna shallow embedding

Kak mbl y3Hanu paree (4.4), nobyto CTPYKTYpy AaHHLIX MOXHO NPeACTaBUTb CBEPTKOW. U,
bonee TOro, B UTOre MOXXHO 00OWTUCL OE3 eArHOro KOHCTPYKTOpa AaHHbIX (Kak B crnmcke Yép-
4a, Hanpumep): anrebpa NpeAcTaBAsSeTCs HAabOPOM hYHKLMIA, KaXkAasi N3 KOTOPbIX OTBeYaeT 3a
CBOpa4MBaHNE ONPefeEHHOrO KOHCTPYKTOpa.

126https://blog.ocharles.org.uk/blog/guest-posts/2014-12-23-static-pointers.html
27https://hackage.haskell.org/package/distributed-closure

98

https://blog.ocharles.org.uk/blog/guest-posts/2014-12-23-static-pointers.html
https://hackage.haskell.org/package/distributed-closure

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1 Fix £ = forall a
2 List e = forall a

(f a -> a) -> a

(e =>a ->a) ->a -> a

Taknm obpa3om, BMECTO TOro, 4Tobbl KOHCTPYMPOBATL AEPEBO A3blKa, @ 3aTEM €ro UHTepnpe-
TnpoBaTb (CBOPauNBaTh), Mbl MOXXEM Cpa3y CKOHCTPYMpOBaTb TepM Tuna Va (f a -> a) -> a.
MpeaocTaBnB eMy TUN AoMeHa a 1 anrebpy £ a -> a (mbo B BuAe nadky yHKUWIA), Mbl Hemes-
JIEHHO MOJYYUM INEMEHT HY>XKHOro JoMeHa. HTobbl 3aaaTh APYryto UHTEPMNPETALMIO, HY»KHO nepe-
JaTb APYroi Tun gomeHa n anrebpy:

1 example (Int -> a) -> (a ->a ->a) -> a

2 example cnst plus = cnst 1 “plus’ cnst 41

3 ghci> example show (\1 r -> 1 ++ " + " ++ r)
4 n 1 + 4L1.”

Ecnn 3adbukcupoBaTh nHTEpnpeTaumto, To OYHKLMU-aPryMeHTbl MOXHO peanin3oBaTb CTaTu-
YeCKWN 1 NPOCTO CCbINATbCs Ha HUX B TepMe. Takum obpa3om, nNpo obbsasneHne hyHKUUA MOXKHO
JYMaTb KaK Npo paclUMpeHe HEKOTOPOro BCTPOEHHOIo NpeaMeTHOro sidbika. ObLme paccy»XaeHuns
npo shallow embeddings, cBépTkn 1 GubaMoTekn MoxkHo nounTaThb B |Gibbons [2013], (Gibbons and
Wu| [2014]. CpasHuTe:

Deep Shallow

CurHTaKcuC a3blka 3a4aéTca HabopoMm gony-
CTUMBbIX HOJ JepeBa

Heknapauns dyHKUMM 3a4a€T HOBYH HOAy
JIEPEBA: BbI3OB 3TOI PYHKLMN

ViHTepnpeTaTop nNpu BUAe KaxAol HOAbI Bbl-
NOJIHSET COOTBETCTBYIOLIMA KOA4 Ha MeTa-
A3blke (BETKY MAaTTepH-MATHUHIA) NOC/IE Bbl-

NHTepnpeTaTop Npu BUAE BbI30BA BbIMNOJHS-
eT Ko Tena PYHKLUUMN NOoChe BbIYUCAEHUS ap-
r'YMEHTOB

HNCNEHNA NOAAEPEBLEB

5.4.2 [OoiATn no KoHuUa

BepHEMcs K HekappupoBaHHOI BEPCUN CBEPTOK: TENEPb 3TO TUM, NMPUHUMAOLLNA KOPTEX OYHK-
LUUiA. A KopTexx yHKUW/ MOXHO 3aMeHUTb Ha KjiacCc TWMoB. Toraa Aeknapauusi knacca bymer
3371aBaTb CMHTAKCUC BCTPOEHHOrO S13blKa, @ WUHCTAHCbl A1 JOMEHOB — peanu3auuto. DTOT MoA-
xop HasbiBaeTca tagless final encodinﬂ N hakTUYeCKN 3TO KOAMPOBAHMWE JaHHbIX Mo YHéepuy ¢
Knaccamm TUnos n Habopom Tprokos (Carette et al.| [2007], Kiselyov, [2012a].

CHOBa pacCMOTPUM SA3bIK CO C/IOMEHNEM:

1 data Expr = Const Int | Plus Expr Expr

2 eval Expr -> Int

3 eval = \case Const x -> x; Plus 1 r -> eval 1 + eval r

128https://okmij.org/ftp/tagless-final/

99

https://okmij.org/ftp/tagless-final/

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

Vinn yepes kaTamopusm:

1 data ExprF rec = Const Int | Plus rec rec

2 eval :: Fix ExprF -> Int
3 eval = cata \case Const x -> x; Plus 1 r -> 1 + r

CooTteTtcTaytollee tagless final koguposaHue byaeT BbIrNSAeTb CleayonumM obpa3om:

1 class Expr domain where
2 cnst :: Int -> domain
3 plus :: domain -> domain -> domain

4+ 1nstance Expr Int where
5 cnst X = X
6 plus 1 r=1+r

Tenepb Mbl MOXXeM CKOHCTpyupoBaTb 0bbluHbIA TepMm Haskell, 3agaTh gomMeH, n MallnHepus
KJ1aCCOB TUMOB MOACTABUT HY>KHYIO anredbpy caMoCTOSTENbHO:

1 example :: forall domain . Expr domain => domain
2 example = cnst 1 “plus” cnst 41

3 ghci> example :: Int
4 42

YH700bl [OOABUTL ELLE MHTEPNPETALNIO, peann3yeM WHCTAHC ANst ApYyroro AOMeHa:

1 instance Expr String where

2 cnst x = show x

3 plus 1r=1<>"+" <>r
4 ghci> example :: String

5 |l1 + 41"

5.4.3 BoccraHoBneHne KOMMNO3nNLLMOHHOCT CEMAHTUKN

CemMaHTMKA Ha3blBAeTCsl KOMMO3WLLMOHHOW, €C/N CEMAHTUKA KOHCTPYKLMUIA 3aBUCUT TOJIbKO
OT CEMaHTWK MOAKOHCTPYKLUUI (CM. . VHaye roBopsi, oHa MoxeT bObITb 3aZaHa kKaTaMophuns-
MOM 1, COOTBETCTBEHHO, MHCTAHCOM Knacca Tunos B tagless final. To ecTb, 4TOObLI ymMeTb Ans
ntoboli ceMaHTMKK nocTpouTb tagless final peanmsaumnto, HY>KHO YMETb YHUBEPCANbHbIM 0Opa3oMm
npeBpaLLlaTb HEKOMMO3ULMOHHbIE CEMAHTUKM B KOMMO3ULMOHHbIE.

Bcsakne npeobpasoBaHus Kofa, Kak NpaBuio, He KOMMNO3nLMOHHbIe. [na npumMepa paccMOTpUM
NPOTACKNUBAHNE YHAPHbIX OTPULIQHWIA:

100

2012

2013

2014

2015

2016

1 data Exprl = Lit Int | Add Exprl Exprl | Neg Exprl

2 transforml :: Exprl -> Exprl

s transforml = \case

4 Lit x -> Lit x

5 Add 1 r -> Add (transforml 1) (transforml r)

6 Neg (Lit x) -> Lit (-x) -- mpobiemMa
7 Neg (Neg e) -> transforml e -- mpobmemMa
5 Neg (Add 1 r) -> Add (transforml (Neg 1)) (transforml (Neg r)) -- mpobrema

4T06bl BOCCTAHOBNTH KOMMO3ULMOHHOCTb CEMAHTUKM, HY>XXHO SKMANLNPOBATL KOHTEKCTHbIE 3aBU-
CYMOCTU C NoMoLLbto cTpenoyHoro gomena [Kiselyov, [2012a]:

1 data Ctx = CtxPos | CtxNeg
> flipCtx = \case CtxPos -> CtxNeg; CtxNeg -> CtxPos

s transforml' :: Exprl -> (Ctx -> Expril)

4+ transforml' expr = case expr of

5 Lit x -> \case CtxNeg -> List (-x); CtxPos -> Lit x

6 Neg e -> \ctx -> transforml' e (flipCtx ctx)

7 Add 1 r -> \ctx -> Add (transforml' 1 ctx) (transforml' r ctx)

OTctopa MoXKHO nony4dnTb tagless final Bepcuto:

1 class Expr2 d where
2 1lit :: Int -> d

3 add :: ' d -=>d ->d
4 neg :: d ->d

5 instance Expr2 d => Expr2 (Ctx -> d) where

6 lit x = \case CtxNeg -> 1lit (-x); CtxPos -> 1lit x
7 neg e = \ctx -> neg e (flipCtx ctx)

8 add 1 r ctx = add (1 ctx) (r ctx)

5.4.4 Typed tagless final interpreter
PaccmoTpum Haw npumep tagless initial encoding [5.2.3]

1 data Expr ty where

2 Const :: Int -> Expr Int

3 IsZero :: Expr Int -> Expr Bool

4 If :: forall ty . Expr Bool -> Expr ty -> Expr ty -> Expr ty

5 eval :: Expr ty -> ty

101

2017

6

eval = \case

Const x -> X
IsZero t -> eval ==
If c t

e -> if eval c then eval t else eval e

Y1066 nonyunTs final encoding, napameTpusyem AOMEH Pe3yNbTUPYIOLIUM TUMOM BbIPaXKeHUS:

class Expr (domain

cnst Int -> domain Int
isZero domain Int -> domain Bool
if! forall ty

instance Expr Identity where
Identity x

isZero (Identity x) =
if' (Identity c) t e =

cnst X =

Type -> Type) where

domain Bool -> domain ty -> domain ty -> domain ty

Identity (x == 0)
if c¢c then t else e

2018 Ynpa)xXHeHune 44 Kakoli JoMeH nofoiiaET AN NeYaTy BblPAaXKeHUs1?

2019

2020

2021

2022

2023

5.4.5 Bctpeuaem ctapbix gpy3en: Applicative, Monad

1

10

11

12

13

14

PaccmoTpum cnegyrowunii si3bik B initial encoding ¢ higher order abstract syntax (cm. |5.3.6,
5.3.7)). CnpaBa nepenviwem B tagless final, BbIOMpas noaxoasine MMeHa Afisi KYCKOB CUHTAKCUCa.

data Expr s ty where

Val © ty -> Expr s ty
App Expr s (arg -> res)
-> Expr s arg
-> Expr s res
LetIn Expr s ty
-> (ty -> Expr s ty')
-> Expr s ty'
Get Expr s s
Put s -> Expr s O

10

11

12

13

14

class Applicative domain where
pure ty -> domain ty
(<*>) domain (arg -> res)
-> domain arg
-> domain res

class Monad domain where
(>>=) domain ty
-> (ty -> domain ty')
-> domain ty'

class MonadState s domain where
get
put

domain s
s -> domain ()

Peannsyem yHKLMIO, MOANDULNPYIOLLYHO 3HAYEeHNE B HALLEM HOBOM SI3bIKE:

102

2024

2025

2026

2027

2028

2029

2030

2031

2032

1 J—

L s -> (s, s)

> modify (s ->s) -> Expr s s > modify (s -> s) -> State s s
s modify f = s modify f =

1 Get “LetIn™ \x -> . get >>= \x ->

5 Put (f x) “LetIn® \(O) -> s put (f x) >>= \() ->

6 Val x 6 pure x

1 0o 6011 3HAKOMYO MHTEepnpeTaLuto:

1 eval Expr s ty -> s -> (s, ty) 1 newtype State s a = State

2> eval = \case 2 { runState s -> (s, a) }

3 3

4 4+ instance Applicative (State s) where

Val x -> \s -> (s, x)
App fs xs -> \s1 ->

let (s2, f) = eval fs sl in
let (83, x) = eval xs s2 in
(83, f x)

pure x = State \s -> (s, %)
fs <*> xs = State \s1 ->

let (s2, f) = runState fs sl in
let (83, x) = runState xs s2 in
(s3, f x)

10 10
instance Monad (State s) where
comp >>= k = State \s ->

11 11

12 LetIn comp k -> \s -> 12

13 let (s', x) = eval comp s in 13 let (s', x) = runState comp s in
14 eval (k x) s' 14 runState (k x) s'

15 15

16 16 instance MonadState s (State s) where
17 Get -> \s -> (s, s) 17 get = State \s -> (s, s)

18 Put s -=> _ -> (s,) 18 put s' = State \s -> (s',)

Takum obpasom, annankaTuBHble PyHKTOPbI — meta-circular S3bIK C annivkaumer, a MoHaaun-
yeckuii bind — 3T1o ¢bakTudecku let-in B higher-order cuHTakcuce

Ecnn BcnomuuTe, yto let x = M in N = (Ax. N) M = [x — M] N, To Mbl noliMéM, 4TO MOHa-
ANYeCcKoe CBsI3blBaHME — 3TO MOACTAHOBKA a -> m b BblYMCAEHNS m b BMECTO pe3y/bTaToB Tuna
a B Bbl4ucneHun m a. JInbo, ecnm B Ka4eCcTBe m B3ATb AEPEBO BbIPAXKEHNSA, TO CBA3bIBaHWE DyaeT
NOACTAHOBKOW NOAAEPEBLEB BMECTO MEPEMEHHbIX:

1 data Expr var = Var var | Empty | Append (Expr var) (Expr var)
2 1instance Monad Expr where

3 (>>=) Expr var -> (var -> Expr var') -> Expr var'

4 Var name >>= subst = subst name

= Empty

6 Append 1 r >>= subst =

5 Empty >>= _
Append (1 >>= subst) (r >>= subst)

103

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

/3Ha4anbHO 1CMOb30BaTL TEOpP-KaTeropHoe NoHATINE MOHAAL[)| B A-McHncnenrun 6bino npes-
noxero B Moggil [1988], 4Tobbl yaobHee 3anncCbiBaTh AEHOTALVOHHYHO celvlaHTMKy{TiU]. STO OKa3a-
JIOCb HAaCTONbKO YAOOHO B MOMEHTE, YTO UX CTa/IM MCMONb30BAaTb MOBCEMECTHO B (DYHKLMOHANBHOM
NPOrpaMMmpoBaHNmM, HTOBbI PaclINPATbL NPOCTble DYHKUMOHANbHbIE A3bIKM PA3ANYHBIMU MOTYLLE-
CTBEHHBIMU BO3MOXHOCTSIMU 6e3 n3mereHns camux s3bikos Wadler| [1990| |1992]. Bbin cchopmy-
nnpoBaH Moggi's principle:

«Computations of type a correspond to values of type f a»

icnonb3oBaTb annankaTUBHbIE (DYHKTOPbLI NPEANOXKINN CYLLLECTBEHHO NO3XKe, YTObbI N36eXaTb
NMEHOBaHMSI MPOMEXYTOUHbIX LLIAroB BbIYUCAEHWI, KOraa B 3ToM HeT HeobxoammocTun McBride and
Paterson|[2008]. Takum obpazom, annanKaTyBbl Aat0T BCTPOEHHbIV S3bIK BbIpaXkeHWii, a MOHaAbl —
A3bIK CTEATMEHTOB.

5.5 Expression problem

Expression problerrFiT] unn npobnema BbIPA3MUTENbLHOCTM — 3TO HEKOTOPbLI KpUTEPUn Bbl-
Pa3nTENBbHOCTY A3blka NPOrpaMMunpoBaHuns, ccopmynmpoBaHHblii Wadler'om B 199@. CraBuTcs
BOMPOC: HACKOJIbKO JIEFKO PACLUNPATL CUHTAKCUC BCTPOEHHOIO A3blka W AODABNATH HOBbIE UHTEP-
npeTaunn? VlHaye roBopsi, HACKONbKO Nerko Aob6aBNsATb HOBbIE PA3HOBUAHOCTU AAHHbLIX U METOAbI
0bpaboTKu.

[Mon “nerkocTbro” NMOApPaA3yMEBAETCS JIOKAIbHOCTb: HY)KHO /I MPaBUTb Pa3nyHble KYCKU Koda
AN 3TOro. Hanpumep, ecnm CUHTAKCUC A3blKa 3afaH Obbl4HbIM anredbpanyeckM TUMOM AAHHbIX,

TO 006aBUTb HOBYHO MHTEpPNpeTauunto “nerko” — npocTo A06aBUTb HOBYHO PEKYPCUBHYIO (hYHKLNIO,
a [00aBUTb HOBYHD CUHTAKCUYECKYHD KOHCTPYKLMIO — “CNOXKHO" — HY>XHO U3MEHWUTb BCE MHTEp-
npeTaTopbl:

1 data Expr

2 = Const Int
3 | Plus Expr Expr -- gobasigeM
a« eval :: Expr -> Int

5 eval = \case Const x -> x; Plus 1 r -> eval 1 + eval r

¢ show :: Expr -> String
\case Const x -> show x; Plus 1 r -> show 1 ++ " + " ++ show r

7 show

Ecnn A3bIk 3aaaH, Hanpumep, C NOMOLLbIO Hac/ieloBaHWs, TO, HA0BOPOT, PACLLUNPUTb CUHTAKCUC
nerko — A06aBUTb HOBLIV Knacc, a A06aBUTb UHTEPNpPETALNIO CNOXKHO — A00aBUTL peann3auunto
MEeTOMa B KaXK[OM KJjaccCe:

129https://ncatlab.org/nlab/show/monad+(in+computer+science)

1394acT0 conyTcTBytoOWEe MOHaaaM NoHATHE SdeKkTa Mbl PaCCMOTPUM fanee .
Blhttps://en.wikipedia.org/wiki/Expression_problem

132https://homepages. inf.ed.ac.uk/wadler/papers/expression/expression.txt

104

https://ncatlab.org/nlab/show/monad+(in+computer+science)
https://en.wikipedia.org/wiki/Expression_problem
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

1 interface Lang {

2 fun eval(): Int

3 fun show(): String

s}

5 class Const(val x: Int) : Lang {

6 override fun eval() = x

7 override fun show() = x.toString()
s}

o class Plus(val 1: Lang, val r: Lang) : Lang {

10 override fun eval() = l.eval() + r.eval()
11 override fun show() = "$1 + $r"
12

Oka3biBaeTCcsl, CyLIEeCTBYIOT NOAXOAbl, NO3BONSAOLME AOOUTLCS “nérkocTtn” no oboum namepe-
HUAM. Mbl yaennm M MHOrO BHUMAHUS B 3TOM KypcCe.

HeicTBuTensHO, Kak Mbl obcyxaanu panee [5.1.1, nporpammbl npeactaBnsatoT coboit ceputo
NHTepnpeTaTopoB. [ns BCE Toli)xe 6opbObl CO CNOKHOCTBLIO, BaXKHO YMETb OMUCLIBATbL 3TU UHTEP-
NPeTaTopbl MOAY/IbHO — 3a4aBaTb YaCTW S3bIKOB OTAENLHO APYr OT Apyra, n cobumpaTb Hy>KHble
SA3bIKW MO MECTY U3 roTOBbIX 6JIOKOB. DTO NOMOraeT COCTaBAATbL NPOrpaMMbl U3 MPOCTLIX NEpenc-
NONb3YEMbIX KOMMOHEHT, Ka)K[asi U3 KOTOPbIX UMEET YETKYH 30HY OTBETCTBEHHOCTU.

Expression problem Bo3Hmnkana n pewanacb MHOro pas: expression problem, stable denotations,
extensible (modular) interpreters. lNpowno HemMano BpemeHun, Noka He BO3HUKIO MOHWMAHWeE, YTO
BCE 3TO 06 OIHOM U TOM m@

5.5.1 KonpounssepeHne pyHKTOPOB

Bocnonb3yemcsi npeficTaBieHUEM AaHHbIX Kak HemoABUMXHOI Touku dyHkTopa (cm. |4.3.2). B
KayecTBe MOJE/IbHOMO $13blKa BO3bMEM S13bIK BbIPAXKEHWA CO CNOXKEHNEM:

1 data Basic rec = Const Int | Plus rec rec

2 algBasic :: Basic Int -> Int
35 algBasic = \case Const x -> ¢c; Plus 1 r ->1 +r

4+ evalBasic :: Fix Basic -> Int
5 evalBasic = cata algBasic

3ameTuM, 4To cyMma (konpou3seaeHue) pyHKTOPOB opMbl AaeT PyHKTOP popMbl, anrebpa
A1 KOTOPOro MoJly4yaeTcs U3 anrebp KOMI‘IOHGHT@I

1 data (1 :+: r) rec =L (1 rec) | R (r rec)

133https://okmij.org/ftp/Computation/having-effect.html
134Monb3yemcs paclumnpenuem | TypeOperators.

105

https://okmij.org/ftp/Computation/having-effect.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/type_operators.html

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

> (\/) :: Lla->a ->(a->a -> 1 :+:1)a->a)
5 phi \/ psi = \case L 1 -> phi 1; Rr -> psi r

Paclwmnpum Hall A3blK YTEHMEM 4Yucna U3 okpyxxeHusi. Cnefyst pacCCMOTPEHHON paHee [eHOoTa-
LunoHHoW cemaHTuke |5.1.3| BbibepeM yHKUMo Int -> Int B Ka4eCcTBe JOMEHA:

1 data Basic rec = Const Int | Plus rec rec

2 data Input rec = Input
3 algBasic' :: Basic (Int -> Int) -> Int -> Int
4+ algBasic' = \case Const x -> _env -> x; Plus 1 r -> _env -> 1 + r

5 algInput :: Input (Int -> Int) -> Int -> Int
¢ algInput = \case Input -> \env -> env

Takum o6pa30M, Mbl ,£lO6I/IﬂVICb BO3MOXHOCTW OTAENbHO OonpefenAaATb KyCKn CUHTaAKCUCa 1 Ce-
MaHTUKWN A3blKa, W CO6VIpaTb Hy)KHbII7I A3bIK MO MECTY. Hanuwem NporpaMMy Ha HalleEM A3blKE C
HEABHbLIM |/||v||v|yTa6eanb||\/| COCTOAHNEM:

Int -> Int
= cata (algBasic' \/ algInput) $
3 In (L (Plus (In (L (Const 1))) (In (R Input)))) -- 1 + input

1 £
f

2

OpHako 3aMeTUM, YTO MOKa Mbl He pelunnn npobaemy MOSIHOCTbIO, TakK KaK WHTeprnpeTauus
HOBOI KOHCTpyKUMW Input noTpeboBana 6onee CNOXHbLIA JOMEH U HAM NMPULLIOCL NEPENUCHIBATL
MHTEpNpeTaumnto CTapoil ansa Hero: u3 algBasic B algBasic'. Tenepb Mbl NOHWMAeM, nNovemy
stable denotations — 3To ewwé ogHo HasBaHue ans expression problem [5.5 [danee mbl gononHum
3TO pelleHune A0 NOJHOLEHHOrO [7]

5.5.2 Tpoun3BeaeHne anredp

MocTpoum tagless final npeacTaBneHne anst UHTepnpeTaTopa U3 Npeabiayliero naparpadga. Te-
nepb CMHTAKCWUC 3a[aéTCs KaaccaMu TUMOB:

1 class Basic domain where
2 cnst :: Int -> domain
3 plus :: domain -> domain -> domain

4+ class Input domain where
5 input :: domain

B kayecTBe goMeHa, Kak 1 paHee BO3bMEM (pyHKLUMK Int -> Int 1 peann3yem MHTepnpeTaLnto:

106

1 instance Basic (Int -> Int) where
2 cnst value = _ -> value
3 plus 1 r = \env -> 1 env + r env

4+ instance Input (Int -> Int) where
5 input = \env -> env

2087 Tenepb, 4TOOLI COOpPaTh A3bIK MO MECTY, MOXHO NMPOCTO BOCMO/1b30BAaTLCS KOMMO3UPYEMOCTbIO
208 KOHTEKCTOB KJACCOB TUMOB, BCIO OCTaslbHYO paboTy:

1 example :: forall domain . (Basic domain, Input domain) => domain
2 example = cnst 1 “plus” input

3 ghci> (example :: Int -> Int) 41
+ 42

107

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

6 TMMpoponxeHus (continuations)

MpogonmxeHus ¢ Havana 60x He OAMH pa3 BO3HMKANWM B NUTeEpaType B pPa3/inyHbiXx hopmax u
pa3HoobpasHbIX npunoxeHnsx |Reynolds [1993], [Landin| [1997], noka B 70x Wadsworth He npuay-
Man obWwunii TeEpPMUH N eANHYHO KOHLUEMNUNO — continuatiorFig] — “the meaning of the rest of the
program”.

HavanbHbIM TONYKOM K pa3mbiluneHusmM ctan a3bik Algol 60, nMeBLLWI HETPUBUAIbHBIA MeXxa-
HU3M METOK 1 NpbIkKoB. [1pobnemoii Obina Kak UMNAEMEHTALUNS CEMAHTUKKN, TaK U e€ JeHOTaLOH-
HOe OnncaHne BMeCTe C TpaHcasaumneli B nambaa-ncuncnenne. JJeicTBUTENBHO, KaK MaTeMaTUYECKN
onucaTb goto? B KakoM goMeHe UCKaTb CEMaHTUKY Takux nporpaMm? Kak HanmcaTb onpeaensito-
LW MHTepnpeTaTop, OTNPABASIOWNA NporpaMmy B 3TOT AOMeH? PelleHneM CTasla BO3MOXHOCTb
COCNaTbCsl Ha CEMAHTUKY OCTaTKa NporpaMMbl, NPOAOCKEHVE, B ONpeaenéHHoli Touke (Hanpumep,
Ha MeTKe).

O npoponxeHusix Bcerga AOJKEH AyMaTb aBTOP s13blKa, Belb BbIYUCAUTENIO B KaXKAOW Touke
NpOrpaMMbl HY>KHO 3HaTb, YTO UCMONHSATbL Aanbliue. A Kak Mbl Y)Ke MOHSAN, Ntobol nporpaMmMucT
SIBNSIETCS aBTOPOM MHOXECTBA $3bIKOB, MPUOAMXKAIOLMX ero K pelleHuto 3agayn. bonee Toro,
MHOr e NOBCEeAHEBHbIE A3bIKOBbIE KOHCTPYKLUMN SSBHO UAN HESIBHO HEMOCPEACTBEHHO MAaHUMNYINPYHOT
NPOAOJIIKEHUAMNA.

6.1 KoHuenumns npoao/HKeHnn

PaccMoTprM ceMaHTUKY BblIpa)KeHUs C onepaLMoHHON TOYKIN 3pEHIst, Kak NoCcnefoBaTeIbHOCTb
waros nepenucbiBaHus (cm. [5.1.3). Eciv BHUMATENbHO PACCMOTPETL KaXAbli Lar, TO Mbl 06Ha-
PY>KVM, YTO OH COCTOWUT U3 ABYX 3TanoB: MOUCKa NoABbIpaXkeHUsi (pefekca), B KOTOPOM MOXHO
cAenaTb 3NeMeHTapHbIlil War BblYUCAeHNN, BbINONHEHWe 3TOro wWwara, U Tak aaned >0} Bo Bpems
MoUCKa pefeKca, BblpaxeHue pasbusaeTcs Ha Ase Yactn (cum. [18)):

e DoOKyC — NoABbIPaXKEHE B KOTOPOM ULLIEM PedeKC;
e [IpogonykeHne — OCTATOK Bblpa)keHns C “AblpKoi”, 0O03HavatoLWNA MecTo, Kyaa HYXKHO Nof-
CTaBUTb Pe3yNbTaT LWara BblYNCIEHWIA.

Kak npaBuio, NpoAoJIXXeHNs! CYLLIECTBYOT BHE MOJb30BATENLCKOTO KOAA KakK COCTOSIHUE UHTEp-
npeTaTopa, KOTOPOMY B Ka)KAblli CNeytoLuii MOMEHT BPEMEHUN HY>XKHO MOMHUTbL, KAaKOW KoJ U B
KaKOM COCTOSIHUM UCNONHATL Aanblue. OfHAKO, A3bIKK NPeAoCTaBASAOT MNOAb30BATENSAM MHOXe-
CTBO KOHCTPYKLIA, MO3BOMSHOLLMX YNPaBAsTL NpogomkeHnsiMin (cm. [19)):

° CDyHKLI,I/IFI exit Bbl6paCbIBa€T NPOAOJIKEHNE NPOrpaMMbl LETNKOM;,
L KOHCprKLI,VIFI try—catch NO3BONIAET Bbl6pOCVITb HaCTb NPOAOJIKEHNA O MECTa NMONMKIN NC-
KNHOYEHUNA N UCMNONTHUTL OCTaBLLUEECA,

13%https://en.wikipedia.org/wiki/Continuation
136H3 camoMm fene BbIYUCAEHNSIM C NMPOAOKEHNSMI YUaT B HauasbHbIX KNACccaX, KOrA4a paccKasbliBaloT NpoO BblHNC-
JleHVe BbIpaXkeHUi “no aelicteusm”.

108

https://en.wikipedia.org/wiki/Continuation

(1+2) (3 -4)

v N\

(1+2) O~ G -m

{

3

\3*(3—4)

Puc. 18: BbipaxkeHune pasgensieTcst Ha ¢okyc (KpacHblii) n npogosixeHne (CriHee), Korga B hokyce
YOANOChb CAENaTh Lar, OHW OObEANHAOTCA B HOBOE BbIpaXkeHne, ANt KOTOPOro MpoLecc NoBTopsi-
eTca.

1+ try {2 + throw(3) } catch (x) {x + 4}

1 + exit(42) N"/‘_N

/ \ 1 + try @I} catch (x) {x + 4} throw(3)
}@ exit(42) \L \1/
\{\/ 1+ (O+ W) 3
exit(42) \(_J

1+ (3+ 4)

Puc. 19: KoHCcTpyKunsi exit BblOpacbiBaeT MPOAOJIKEHWE U MpOorpaMmMa OCTaHAB/MBAETCH, B TO
BpeMsl Kak throw BblOpacblBaeT NULLIb HYaCTb NPOLO/XKEHUS A0 Oavkaliwero try-catch.

2122 o KOHCTpyKUUS return MNO3BOJISIET BOCCTAHOBUTL WCMOJIHEHME B MecCTe, rae dyHKuus Obina
2123 Bbl3BaHa,
2124 o KOHCTpyKUMK break U continue BOCCTAHABANBAOT NMPOAO/IKEHWE NOCE LUMKAa U J0. . .

215 0.1.1 Reduction semantics

2126 CTunb 3ajaHusi onepauUnoHHOW CEMaHTUKK Yepe3 OnucaHue noucka npumMuTueHbiX (“ronos-
2127 HbIX") PEAEKCOB U UX pefyKUuii Ha3blBatOT CEMAHTUKOW peayKLMOHHbIX KOHTEKCTOB (reduction
2128 semantics)|zl. Kak obbl4HO, cneays Hutton's Razor, paccMoTpum mMHTepnpeTauuto ManeHbKOro
2129 MPOCTOrO $13bI4KA C BblHMTaHWEM (HECUMMETPUYHAs Onepauns Aasi NPOBEPKN peann3auim):

1 data Expr = Const Int | Diff Expr Expr

137https://en.wikipedia.org/wiki/Operational_semantics

109

https://en.wikipedia.org/wiki/Operational_semantics

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

[nst Ha4ana HaM Hy>KHO ONpeaennTb CUHTAKCUC NPOAOJIXKEHWNIA, “Bblpa)keHWii ¢ Ablpkold”. To eCcTb
C TEXHUYECKOW TOYUKM 3PEHUST MPOAOIKEHNE — 3TO CTPYKTYpPa [aHHbIX, CoAep»Kalllasi BCHO HeobXo-
AVMYIO MHOPMaUMIO, YTOObI MPOAOIKUTL NCNONHeHUe (34eCb — TONBbKO OCTATOK BbIPaXKeHNs):

1 data K

2 = Hole -- gOepra [

3 | LDiff K Expr -- ¢oxyc momen B IpaBoe IOLBHpaXeHHE, 3alOMHUIE JIEBOE
4 | RDiff Int K -- mocumTanum jseBoe, (oKycC momes BIPaBO

3a,uaﬂ,|/||v| onepaunto pa36|/|eH|/|$| BbIPaXXEHUA Ha NMPOAOJIKEHNE U CbOKyCZ

1 split :: Expr -> (Expr, K)
2 split e = case e of
3 Const _ -> (e, Hole)

4 Diff (Const _) (Const _) -> (e, Hole) -- IpuMuTHBHHE penexc

5 Diff (Const 1) r -> -- JIeBOe IIOLBHpaXeHHe yXe IIOCYUTAaHO
6 let (focus, k) = split r in -- HmeM peZeKC B IIpaBOM

7 (focus, RDiff 1 k)

8 Diff 1 r -> -- HHYEro emé He IIOCYHTAaHO

9 let (focus, k) = split 1 in -- HayumHaM C IIOMCKa peJeKca ClieBa
10 (focus, LDiff k r)

1 ghci> split (Diff (Diff (Const 1) (Comnst 2)) (Const 3)) -- (1 - 2) - 3

12 (Diff (Const 1) (Comst 2), LDiff Hole (Comst 3)) -- (1 - 2, O - 3)

LLlar I'IpI/IMI/ITI/IBHOI\/’I peaykunn ymMmeeT TOJIbKO Bbl4UTATb YMNCAaA:

1 headReduction :: Expr -> Expr

2 headReduction = \case

3 Diff (Const 1) (Const r) -> Const (1 - r)
4 e -> e

[Mocne wara NPUMUTUBHO peayKLun HaM NOHAA0bUTCSA NOACTAaBUTL pe3ynbLTaT obpaTHO B Npo-
JoJKeHne, 4Tobbl U3 “BbIpa)KeHNs C AbIPKORA” MOAYHUTL NOJHOLIEHHOE BbIpaXkKeHne, KOTOPOE MOXXHO
NPOAO/IKNTL pPeayLmpoBaTh:

1 plugIn :: Expr -> K -> Expr

2 plugln e k = case k of

3 Hole -> e

4 LDiff k' r -> Diff (e “plugIn” k') r

5 RDiff 1 k' -> Diff (Const 1) (e “plugIn” k')

Kak npaBwio, NoACTaHOBKY TepMa t B MpoaosikeHne E obo3HavatoT Kak Et].
Tenepb Mbl MOXEM ONPEAENNTL MOJHOLEHHbIA LWar:

110

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

1 tramsition :: Expr -> Expr

2 transition e =

3 let (focus, k) = split e in -- paszbuBaeM Ha (POKYC M KOHTEKCT

4 headReduction focus “plugln® k -- germaeM BryucCiIeHrne B (QOKycCe H IIOLCTaBJIdeM

Topa onepaunoHHash CEMaHTMKA 3TO Pa3BEPTKA CMUCKA MPOMEXYTOUHbIX BbIPaXKeHWIA:

1 eval :: Expr -> [Expr]

> eval = List.unfoldr \prev ->

3 let next = transition prev in

4 if prev == next then Nothing else Just (next, next)

MoxxHO 3amMeTuTb, 4TO split u plugIn OAHO3HAYHO OMPeAeNsieTCs MO CUHTAKCUCY MPOAOS-
YKEHWUI 1 BUAY MNaBHbIX peayKuuii, a transition n eval O4WHAKOBbLI A1 MPON3BOJILHOIO SA3blKa.
[Mo3TOMY CEMAHTUKY pPedyKLIMOHHbIX KOHTEKCTOB OObIYHO 3aJat0T KaK CUHTAKCUC MPOAOJIXKEHWI,
nepeyveHb rNaBHbIX PeAyKLUUA 1 eANHCTBEHHOE MPaBWIO BbiBOJa — LUar B KOHTeKCTe:@

Values v =17

Terms t ==v|tot

Evaluation context E =0 |ESt|ZoSE

(diff) VIOV — V] — W
t— t

step E[t] — E[t']

CyulecTByeT CTaHAapTHbLIA MHCTpyMeHT PLT Rede@ IS ONUCaHUS N TECTUPOBAHUST CeMaH-
TUKW B CTUE PEAYKLMOHHbLIX KOHTEKCTOB.

6.1.2 Continuation semantics

3anuem AJEHOTAUNOHHYHO CEMAHTUKY HALLEro A3blKa:

1 evalDirect :: Expr -> Int

2 evalDirect = \case

3 Const n ->n

4 Diff 1 r -> evalDirect 1 - evalDirect r

MepenuiuemM AEHOTALMOHHYIO CEMAHTUKY B CTUE C SIBHbIMK NPOAOJXKEHMsIMU. Ho cHavana no-
paboTaem c TUNoM K 1 ynpocTum paboTy C HUM:

1 data K = Hole | LDiff K Expr | RDiff Int K

2 - K=1+(Kx Expr)+ (Int x K) =1+ (Expr+ Int) x K
s data Frame = LDiff Expr | RDiff Int

1+ type K = [Frame]

1385 1yT 0603Ha4aeT cuHTakcudecknii munyc (Hogy B aepese).
139https://redex.racket-lang.org/

111

https://redex.racket-lang.org/

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

Monyunnn npeacTaBieHve NPOAOIXKEHNST KakK CTeka hpeiimMosB.

JleHoTaumnoHHy0 ceMaHTUKy byaemM 3anncbiBaTb ANS JoMeHa K -> Int. Takas pa3HOBUAHOCTb
AEHOTALMOHHOW CEMaHTUKU C sIBHbIM NPeACTaB/IEHNEM CMbICNA OCTaTka nporpamMmbl (B Buge K)
nHorga HasbiBatoT continuation semantics. A cooTBeTCTBYIOWWI CTUAL NPOrPaMMUPOBAHNS C
nepenaqeil npoaokeHnii — continuation passing style (CPS).

B Hawem continuation semantics 6yaeT BbIrNS4eTb Kak napa B3aUMHO-PEKYPCUBHbBIX (DYHKLNIA:

1 evalK :: Expr -> K -> Int

2 evalK e k = case e of

3 Const n -> k “appK™ n —— BHIIIOJIHSEM OCTaTOK IPOIPaMMbI

1 Diff 1 r -> evalK 1 (LDiff r : k) -- 3amoMmHaeM Jasibme BEYHCIHTE IPABOE

5 appK :: K -> Int -> Int
¢ appK k result = case k of

7 [] -> result -- ganblle mejaTh HeYero
8 LDiff r : k' -> evalK r (RDiff result : k') -- mgeM BHYHCIITH BIpPaBO
9 RDiff 1' : k' -> k' “appK™ (1' - result) -- IpoZoixaeM Ha pe3yJabTaTe

TyT Mbl CHOBa CMyCKaeMCsl MO BbIPAXKEHUIO B MOWMCKAX NMPUMUTUBHOMO pedekca (TyT — KOHCTaHTbI),
MOMNYTHO 3aNOMUHAs, YTO HY>XHO DyfeT chenaTb Nocne.

NepBas pekypcuBHas peannsaumnsi evalDirect He 3aboTunack o npogosxkerusx. OaHako, npo-
[OJXKEHNS — 3TO HEOTBEMIEMAS HaCTb MPOLECCA BbIYUCNAEHNS, BbIYUCIUTENO HY>KHO 3HATb, YTO
LenaTh Aajblle B KaXAbli MOMeHT. Ha camom fene evalDirect nvwb genernpyet paboTy C npo-
AOJIKEHVNSIMU ONPEAENAEMOro A3blka METa-SA3bIKY, HO KakM 06pa3om? 3amMeTbTe, YTO NoJlyyYeHHas
B UTOre peanmsaunst evalK XBOCTOBO-pPeKYpPCMBHAs, a 3HAYUT, MOXET OblTb CKOMNUAWPOBaHA B
LMK, He NOTPebnsoWmi CTeK BbI3OBOB, NpW 3TOM K 3TO CTek. [akum obpa3om, B NMepBOM CJy-
4ae Mbl Jenann peKkypcrBHble BbI3OBbI U NMPOAOIKEHNE ANNOUMPOBANOCL Ha (anmnapaTHOM) CTeke
MeTa-A3blKa, a BO BTOPOM CJly4ae Mbl CAMOCTOSTENIbHO alfIoLMPYyeM CTEK B Ky4e.

B cnydyae, ecnn cTek MeTa-sA3blka peann3oBaH MOBEPX amnmnapaTHOro, eCTb PUCK OLIMOKK ero
nepenosiHeHns. YTobbl a3TOro U3bexaTb, MCNONb3yeTCA TexHuka trampolining, KoTopas kak pa3
COCTOMT B Py4YHOI annokaumu npofo/ixeHust B Kyde |Ganz et al.| [1999], |Bjarnarson| [2012].

[NogobHO TOMY Kak TWM KOHTEKCTa 3unmnepa MOXXHO BbIYUCANTbL Kak MPOU3BOAHYIO anrebpaunye-
CKOro npeacTaBfeHnst cooTBeTCcTBytoLero Tuna Huet [1997], McBride [2001], Abbott et al. [2003],
TaK MOXXHO BbIYMUCAUTL TUN NpogosxeHns ceépTkn McBride [2008].

6.1.3 TlpoposkeHMs1 NnepBoro KJjacca

B npnmMepax Bbllue KOHCTPYKLNN si3blka YNPaBAstoOT MNPOAO/IKEHUSIMN HesiBHO (cMm. puc. [19)).
OpHako, MHOrAa BBOASAT OnepaTopbl, MO3BOASIOLME SIBHO onepupoBaTh npoaomkeHusmu. C ux
MOMOLLIbIO MOXKHO Peasim30BaTb KaK BO3MOXHOCTU MaHUMYNSILMM NOTOKOM YrpaBlieHNs BpoLe re-
HepaToOpOB KopyTw—m, Tak 1 BCE OCTaNbHble 3deKTbl Bpoge cocTosHus (cMm. aanee (7).

140https://en.wikibooks . org/wiki/Haskell/Continuation_passing_style#Example:_coroutines
https://kotlinlang.org/api/core/kotlin-stdlib/kotlin.coroutines/suspend-coroutine.html

112

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style#Example:_coroutines
https://kotlinlang.org/api/core/kotlin-stdlib/kotlin.coroutines/suspend-coroutine.html

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

MpoponxeHus nepBoro knacca (first-class continuations) — npogosnxxeHns, koTopble Npes-
CTaBVMbl B MpOrpamMMe B BUe 3Ha4eHuii. YUYnTbIBast, 4TO NPOAOJIKEHNE UMEET BaKaHTHOE MeCTO
el He BbIYNCNEHHOTO MOABLIPAXKEHWS, NPOLO/IKEHNS NEPBOro Kiacca NpeicTaBAsatoT ByHKLMAMN
nepBoro Kjacca.

YT100blI NONYYNTL B KOAE MPOAOIXKEHME MEPBOro Kjlacca, Hy>KHo nnbo HanucaTb kog B CPS,
NMBO BOCMONB30BATLCS BCTPOEHHBLIM B SA3bIK OMEPATOPOM, KOTOPbLIX NPUAYMaHO BEINKOE MHOXKe-
cTBo [Hillerstrom| 2022| npunoxerue A]. Hanpumep, J, escape |Reynolds [1972], call/cc...

Ons npumepa peanusyem B si3bike onepauunto Cont, NMO3BONSIOLLYIO 3aXBaTUTh TeKyllee npo-
pomxeHune. OH OyaeT NpUHUMaTL NOJIb30BATENbLCKYHO (DYHKLMIO U NepefaBaTh B HEE TeKyLlee Npo-
JO/KEHNE OT Ccebst 1 A0 KOHLLA Nporpammbi:

E[cont f] — f (Ax. E[x])
CHavana paclumpum s3blk 19Mbaa-ucHncneHnem:

1 data Expr
2 = Const Int | Diff Expr Expr
3 | Var String | Lam String Expr | App Expr Expr

4 data Frame

5 = LDiff Expr | RDiff Value
6 | LApp Expr | RApp Value
7 | SetEnv Env -- mocie HCHOJIHEHHS 3aMbKaHHUs BO3BpaljaeM TeKylee OKPyXeHHe

Peaﬂ|/|3au,m;| NHTEPNPETATOPAa AOBOJIbHO I'I[)HMOJ'IVIHGMHa. EJJ,I/IHCTBGHHoe, ceiivac ocTaToK npo-
rpaMMbl MPEACTAB/IEH B BUAE JIMHERHOro Cnucka, KOTOprI7I dDaKTI/Il-IeCKI/I O6XO,£I,I/ITCFI B LUMKNe nocne-
AOBaTENIbHO. Hy)KHO He 3abbITb NMOC/Ne UCMOJIHEHUS Tesla 3aMbIKaHUS BOCCTAHOBUTL M3HAYasibHOE
OKpYy>XeHne ansa NCnoHeHnA HDOAOHMGHMHZ@

1 evalK :: (7env :: Env) => Expr -> K -> Value

2 evalK e k = case e of

3 Const n -> k “appK™ Number n

4 Diff 1 r -> evalK 1 (LDiff r : k)

5 Var name -> k “appK® (7env ! name)

6 Lam name body -> k “appK® Closure name 7env body
7 App f arg -> evalK f (LApp arg : k)

s appK :: (7env :: Env) => K -> Value -> Value
o appK k result = case k of
10 [] -> result

1 LDiff r : k' -> evalK r (RDiff result : k')
12 RDiff 1' : k' -> k' “appK™ Number (unwrapNumber 1' - unwrapNumber result)

142 Nns ynobcTea byageM nepeaaBaTh OKPYKEHWE HESIBHLIM MapaMeTpoM.

113

13 LApp arg : k' -> evalK arg (RApp result : k')
14 RApp £ : k' -> case f of

15 Closure name env body ->

16 let currEnv = 7env in

17 let 7env = Map.insert name result env in

18 evalK body (SetEnv currEnv : k')

19 K env k'' ->

20 let currEnv = 7env in

21 let 7env = env in

22 (k''" ++ SetEnv currEnv : k') “appK® result

23 other -> error $§ "Expected callable, got " <> show other

24 SetEnv env : k' -> let 7env = env in k' “appK® result

25 where

26 unwrapNumber = \case

27 Number n -> n

28 other -> error $§ "Expected number, got " <> show other
2103 HakoHeu, peanusyem onepaTtop cont:

1 data Expr = ... | Cont Expr

> data Frame = ... | ContFrame

3 evalK e k = case e of
5 Cont f -> evalK f (ContFrame : k)
¢ appK k result = case k of

8 ContFrame : k' -> [RApp result] “appK™ K 7env k' -- mepemcmombsyeM BeTKy RApp

2104 PaccMoTpum Heckonbko nprMepoB (0603Ha4MM contLam name body = Cont (Lam name body),
205 (-.) = Diff, ¢ = Const, v = Var u (@) = App):

2196 e c 10 -. contLam "k" (c 1) — BbIBPOCKTL MpogosKeHne n BepHyTb 1 (k = 10 — 0O);

2197 e c 10 -. contLam "k" (v "k" @ ¢ 1) —~k1~10—1~0;

2108 e c 10 -. contLam "k" (v "k" @ c 1 -. ¢ 2) —~~>k1l—2~+0—-2x~T7;

2109 e c 10 -. contLam "k" (v "k" @ c 1 -. v "k" @ ¢c 2) —~~kl—k2~~90—-8~1
2200 Takum 0b6pa3omM, Mbl MOAYHUIN A3blK, KOTOPbI NMO3BOASIET MOJL30BATENO B MPOU3BOJIbLHOM
200 MECTe MporpamMmMbl NMONYUYUTb TeKYyLee NPOAOJIXKeHVE B Buae DYHKLNN.

2202 B0O3MOXXHOCTb NOAYyYUTL NPOAO/IKEHME NEPBOrO Kacca NOYTY He NPefoCTaBAAETCA NPOMBbILL-

2203 JIEHHBIMU $S13blKaMW, TaK KaK 3TO [AOBOJIbHO OMACHbIi UHCTPYMeHT. [elAcTBUTENbHO, ecnn nosib-
204 30BaTENlb HE BbI3OBET MPOAO/IKEHNE, MOXET HE MPOU30NTU 3aKpbiTUst pecypcoB. Ecnu BbizoBeT
2205 HECKOJIbKO Pa3, CHOBAa MOXET MPOU30ITU KaK HeKOppeKTHasi paboTa C pecypcamu, Tak 1 nopya

114

2206 U3MeHsIEMOV NaMaTu (NPOLOIXKEH NS, KOTOPbIE MOXXHO 6e30MacHO BbI3bIBaTb MHOMO pa3 Ha3blBatOT
207 multi-shot). MogobHble NOBefeHNST MOXKHO WCKAOYaTb CnelmanbHoil 0bpaboTkol Takux cuTya-
208 UM [Muhcu et al.| [2025], npoBepkamu BpemeHu KoMNuasumm (HanprMep, C NOMOLLbIO MHERHbBIX
200 TWUMOB) WAW BPeMeHU ncnonHeHns. Ceiivac ¢ akTUBHLIMW UCCAELOBaHNSIMI O BHEAPEHUV XEHANEPOB
210 9(PekToB (CM. Aanee 7)) NPOAOMIKEHNS MEPBOIO KIAcCa MOMYT MOJYUNTb HOBbI LIAHC.

»n 0.2 T[MpoposkeHnss cBoMMmn pykamm

2212 PaccmoTpum, kak Bbirnaant CPS B obbl4HOM koae, a He B KoHTekcTe deep embedding. [ns
213 3TOrO Mbl, BO-NEPBbIX, Nepeingem Kk shallow embedding n byaem cpasy CTpouTb 31EMEHTbI LENEBOro
214 JJOMeHa. A BO-BTOPbIX, pePYHKLUNOHANN3MPYEM NPOAoIXKeHUsA K 1 0b6obmum: BMecTo K -> Int by-
215 1EM UCnofb3oBaTb forall r . (a -> r) -> r,raea -> r — PYHKUNOHANbHOE NpeaACTaBfieHne
216 MPOAOSIXKEHUS.

217 Takoii CPS akcnnyaTupyeT cneaytolmnii n3oMopdunam:

1 to :: a -> (forallr . (a ->r) -> 1)
2 tox k =k x

s from :: (forallr . (a ->r) ->r) -> a
4+ from comp = comp id

218 VIHA4Ye roBopsi, BMECTO TOro, 4TOObl NPEAOCTaBUTL 3HAYEHNE TUMNA a, MOXKHO CMPOCUTL Y Bbi3biBa-
219 HOLLIEA CTOPOHbI, KAK OHa CODMPAETCst C 3TUM 3HayveHnem paboTaTb a -> r, clleflaTb 3TO CaMOCTO-
2220 SITENIBHO, U BEPHYTb BbI3bIBAOLLE CTOPOHE T.

2221 [MpuKnagHbIM MPOrpaMMmMCcTamM 3TOT N3OMOPDOU3M 3HAKOM MO TEXHUKE UCNonb3oBaHus callback’os.
22 TEOPETUKAM >Ke N3BECTHO, YTO OH SIBASIETCS YaCTHbIM Cyyaem nemmbl VloHeas! Hinze and James
223 [2010]. CpaBHute CPS C MHTaHCOM 3TOi NeMMbl B Teopun npeanopsiika (Bbille Mbl CHUTANN a =
224 Unit; b = a):

a—»>b=Vr.(b—r)—>(a—r)
as<b <<= Vr(b<r)=(a<r)
2225 Hanpumep, mbl Moxkem nepenucaTb dakTopuan B CPS. 3ameTbTe, 4TO koA MMeeT JocTyn K

2226 [MPOAOJIXXEHNIO NEPBOIro Kjacca (O}J,HaKO, MOKa HNUKaK HETPUBUNAJIBHO HE NCMNOJIb3YET ero), npn 3TOM
2227 CHOBa ABNAETCA XBOCTOBO-PEKYPCUBHbLIM.

1 facCps :: Int -> (forall r . (Int -> r) -> 1)

2 facCps n k

3 | n<=1=%k 1

4 | otherwise = facCps (n - 1) \res -> k (n * res)

5 facCps 3 id ~» facCps 2 \res -> id (3 * res)
6 ~» facCps 1 \res -> id (3 * (2 * res)) ~» id (3 * (2 * 1)) ~» 6

208 YNpaXkHeHue 45 Ckosbko pyHkumsi facCps noTpebnseT CTeKOBOW namsaTy?

115

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

denotational

semantics
closure conversion
structural natural
operational)
. semantics
semantics
CPS transformation CPS transformation
defunctionalization defunctionalization
. small-ste big-ste
reduction P g P
semantics P : abstract é‘f ; abstr@ct
refocusing machine usion machine

transition compression

Puc. 20: CBA3b Mexay CEMaHTUKaMK B pasfinyHbix cTunsx [Danvy [2008].

6.2.1 [OecdyHKUMOHANN3ALNSA N aKKYMYJISITOPbI

HedyHkumnoHannsnpyem npogosixxenuns 8 facCps. Mbl ucnonblyem aee hyHKLMU BbICLLIUX MNO-
psakoB, id n \res -> k (n * res), OHM JAOT HaM [IBa KOHCTPyKTOpa:

1 data K = Id | Times Int K
2 ——

5 type K = [Int]

4 rTunKkK :: K -> Int

5 runK = product

¢ facCps :: Int -> K -> Int

7 facCps n k

8 | n <=1 = runK k

9 | otherwise = facCps (n - 1) (snoc k n)

10 facCps 3 [] ~» facCps 2 [3] ~» facCps 1 [3, 2] ~» runK [3, 2] ~ 3 *x (2 % 1)

Mbl cHOBa noay4Yunu NpeacTaBfieHne NPOAOIXKEHUST B BUAE CTeka hpeiMOB. A 3HAYUT, UHTEp-
npetaTtop evalK NosyYeHHbIR HaMKU paHee apnsetcs CPS Bepcueii 0bbI4HOro MHTEpnpeTa-
Topa, TOMbKO C AedyHKLUMOHANN3MPOBAHHLIMU MPOACKEHUSMI (OHU YAOBHBbI ANS OTAAAKU — UX
MOXHO pacrnedaTaTb, B 0Tau4me oT dpyHkumii Haskell). Ecam paclumpnTb TOT HalW A3bIK 1 HanucaTb
Ha HEM hbakTopuas, a NOTOM caenaTb fusion nnm pedyHKLNOHANN3ALNIO JepeBa nporpam-
Mbl 1 AepeBa NPOAOJIKEHWNS, Mbl NMONYHYUM TeKyLIy peann3auuto dbakTopurana. Ml B uenom mexay
PA3AUYHBLIMN CTUNSIMU peann3aunii CEMaHTUK MOXHO MOCTPOUTL cooTBeTCcTBME (CM. puc. [20)).

DTON TEXHUKOW MOXHO MOJIb30BATLCS U B O0Jiee CNOXKHbLIX Clydasix, YTODObl Ierko noayyaTb

116

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

depth-first breadth-first

direct-style direct-style
using using
shift & reset control & prompt
A
CPS direct-style
transformation | |transformation
hunk dynamic
thun
depth-first iminati depth-first CPs
P elimination AePEA transformation | eureka
direct-style continuation-based + :
eager _ thunk lazy simplifications
introduction
defunct- refunct-
ionalization | |ionalization
depth-first N breadth-first
stack-based switch queue-based

Puc. 21: TpaHcdopmauun koga, ocHoBaHHble Ha CPS n ge(pe)dyHkumnoHanmsaumu Danvy [2006].

XBOCTOBO-PEKYPCUBHbIE (MTEpaTUBHbBIE) peanm3aumv@ Gibbons [2021]@. B uenom CPS un pe-
byHKUMOHAIM3aLUMs — 3TO GoraTblii UICTOYHMK pas3nuyHbix pecdakTopuHros (cm. puc. [21)).

Tenepb 3aMeTVM, YTO Onepaunst YMHOMEHNSA aCCOLMATMBHA, @ 3HAYUT, MOXKHO SNOC 3aMEHUTb
Ha YMHOXEHME, a NPOAOJIKEHNE NPEACTABUTL OAHUM YUCAOM. [TONYYUM MPUBLIYHYIO peann3aumto
dakTOpuana ¢ akKyMyssiTOPOM:

1 facAcc :: Int -> Int -> Int

2 facAcc n acc

3 | n <=1 = acc

4 | otherwise = facAcc (n - 1) (acc * n)

5 facAcc 3 1 ~» facAcc 2 (1 * 3) ~» facAcc 1 ((1 * 3) * 2) ~» (1 * 3) * 2 ~» 6
Takxe, MOXXHO bpeliMbl NPeACTaBUThL B BUAE IHAOMOPMU3IMOB U B KAYeCTBE aCCOLMATUBHOWM

onepauny NCnoNb3oBaTb koMnosnumto dyHkumni Ploeg and Kiselyov [2014]@.

6.2.2 Monad Cont

N3-3a CPS Koa noTepsin NpuBbIYHYO CTPYKTYPY, NPU KOTOPOIA (hyHKLIMM HAaNPsIMYLO BO3BpaLLAoOT
ceou pe3ynbTaThl (i.e. direct style). [pu Hannum 6oNbLIOro KOANYECTBA BbI3OBOB TPaHC(HOPMY-
POBaHHbIX (PYHKLWIA, KOA CTAHOBUTCS MOXO YuTaembiM (Npobnema n3secTHa kak callback hell):

1 fibCps :: Int -> (forall r . (Int -> r) -> 1)

“Shttps://www.pathsensitive.com/2019/07/the-best-refactoring-youve-never-heard.html
144 (youtube) Jeremy Gibbons - Continuation-passing style, defunctionalization, and associativity.
“Shttps://wiki.haskell.org/Difference_list

117

https://www.pathsensitive.com/2019/07/the-best-refactoring-youve-never-heard.html
https://youtu.be/8gnhaE2nmQ0?si=pEJX4jQteYmy7ZZn
https://wiki.haskell.org/Difference_list

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2 fibCps n k = if n <= 2 then k 1 else
3 fibCps (n - 1) \resl ->

4 fibCps (n - 2) \res2 ->

5 k (resl + res2)

HomeH (a -> r) -> r MOXHO clleNaTb MOHaAOW N BOCCTaHOBUTL direct style kon BHyTpu do-
HOTauuun. 3aBefeéM newtype 0DEPTKY AN OOBABNEHUS NHCTAHCOB:

1 newtype Cont r a = Cont { runCont :: (a -> r) -> r }
dyHkTOp fO0DaBAAET NOCT-NPOLECCUHI pe3ynbTaTy nepes nepejadein B NpoLO/IKEHNE:

1 instance Functor (Cont r) where
2 -- fmap :: (a ->b) -> ((a ->r) ->1r) -> ((b ->r) ->7r)
3 fmap f (Cont comp) = Cont \k -> comp (k . f)

AnnaunkaTtne NpPoCTO nepe)J,aéT 3HaA4Y€EHNE NPOAOCTNEHNIO:

1 instance Applicative (Cont r) where
2 pure x = Cont \k -> k x
3 (<x>) = ap

MOo)XKHO 3aMeTUTb, YTO MOHAANYECKOE CBSA3bIBAHNE BTOPbLIM apryMeHTOM TOXE NPUHUMAET NpPo-
JoJKeHne, HO “ManeHbkoe”, Ao KoHua do-610ka. Takum obpa3om, CMbICA peanmn3auun MOHaau-
4ecKoro CBsA3bIBaHUA Aast Cont — 3TO KOMNO3ULUMSA “ManeHbkoro' npodoskeHus ¢ “bonblimnm’
NPOLOJIKEHNEM, NEpeaaBaAEMbIM CHaAPYXW:

1 instance Monad (Cont r) where
2 (>>=) :: Cont r a -> (a ->Cont rb) ->Cont rb
3 Cont comp >>= k = Cont \k' -> comp \x -> runCont (k x) k'

Terlepb Mbl MOXKEM MUCATb JINHEWNHbIA KOA, @ MOHaAM4YecKas MallnHEPUA CaMa KOHCTPYUPYET
NMPOAO/IXKEHNA 1 NOAKMAAbIBAET B npeiblayLine BblHNCNEeHNA:

1 fibCont :: Int -> Cont r Int

2 fibCont n = if n <= 2 then pure 1 else do
3 resl <- fibCont (n - 1)

4 res2 <- fibCont (n - 2)

5 pure (resl + res2)

YnpaxHeHue 46 Obopsute BbibncaeHne, ecan resl 6osbiue 50.
YnpaxHeHue 47 ObopsuTe BbIYNCAEHNE KAK TOJILKO 0bLMI pe3yabTaT cTan bosasiue 50.

MoHaga Cont Ja€T peann3aumnto BCTPOEHHOINO A3blka, B KOTOPOM MOXXHO MOJYHUTb NPOAOJIKe-
HVE BblYNCNEHNS:

118

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

1 Cont :: ((a ->r) ->1r) -> Cont r a

MprKagHbIM MPOrpaMMICTaM Takasi TexHrka Hanucanus CPS Koga yepe3 MOHagbl 3Hakoma B
BuAe KoHuenuuii Future/PromisdM™]

6.2.3 call/cc

CaMbIM 13BECTHbIM KJ1aCCUYECKUM ONepaToOpoM, KOTOPbLIA MCnofib30Baan B Scheme ans nony-
4eHNst NPOJOJXeHIIA Nepeoro knacca, sensetcs call/cc (call with current continuation)™§%
MNpepocTaBnsieMoe NpoAos/KeHNe siBAsieTCsi HeorpaHu4veHHbiM (undelimited/abortive), Tak kak
OHO COMEPXUNT “KoHel, NporpamMmMbl’ — HUKaKOl KoA He OyaeT WCNONHATLCS MOC/Ae ero Bbi30Ba.
HeorpaHunyeHHble NpogomkeHns ae-pakTo — He CoBCeM (DYHKLMM, TaK KaK OHW He BO3BpaLLAtoT
pe3ynbTaTa (OH yxe “beyond the grave"), cnefoBaTenbHO, OHM TakxXe He KOMNO3MPYHOTCs (Takxke
KakK CTPaHHO KOMMO3MpoBaTb abort C exit)m. OHN ckopee sIBAAKOTCSA KO-3HAYEeHUsAMU: NOKa
4aCTb MPOrpaMMmbl BbINOHSETCS, OHM oxuaatoT eé pesynbTaTa [Curien and Herbelin| [2000].

Jagalite camynupyem call/cc B MoHage Cont. 3axBaTuUTb BCE MPOAO/KEHME MPOrpaMMbl y
HaC He BbIMAET, Tak Kak OHO COBMPaEeTCst TONBbKO B paMkax Cont, HO Mbl MOXEM MPOUrHOPUPOBATbL
NPOAOJIXKEHNE BbI3OBA 3aXBAaYEHHOIO MPOAOIXKEHUS:

1 callCC :: ((a -> Cont r b) -> Cont r a) -> Cont r a
> callCC £ = Cont \k -> runCont (f \x -> Cont _ -> k x) k

s foo :: Int -> Cont r String

4+ foo x = callCC \k -> do

5 lety=x"2+ 3

6 when (y > 20) $ k "over twenty" -- throws next line away
7 pure (show $ y - 4)

6.3 Delimited continuations

B coBpeMeHHOI npakTuke, Kak NpaBuUao, UCMONb3YIOT MPOAOSIXKEHUSI HE O KOHLA Mporpam-
Mbl, @ TONIbKO IO ONpPeAeNEéHHOl ToUKN. VIX Ha3bIBatOT OrpaHNYEHHLIMW UM pa3rpaHNYEHHbIMN
npoposmkeHusimu, delimited nnv composable continuations, subcontinuation@.

KoHCTpyKUUK Ans paboTbl C TaKMMU MPOAO/KEHUSAMY NMapHble: BBOAUTCS ONepaTop, OrpaHu-
YynBatoOLWUIA Tekylllee NpoAoskeHre (MO MMeEOLLIMIA METKY); @ Tak)Ke omepaTop 3axBaTa parmeHTa

40https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
Y https://github.com/promises-aplus/promises-spec/issues/94
“https://en.wikipedia.org/wiki/Call-with-current-continuation
149nttps://en.wikibooks.org/wiki/Haskell/Continuation_passing_style#callCC
10https://okmij.org/ftp/continuations/undelimited.html
lhttps://okmij.org/ftp/continuations/against-callcc.html
152https://www.cl.cam.ac.uk/teaching/2324/R277/handout-delimited-continuations.pdf
153(youtube) Keynote: Delimited Continuations, Demystified by Alexis King | Lambda Days 2023|

119

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://github.com/promises-aplus/promises-spec/issues/94
https://en.wikipedia.org/wiki/Call-with-current-continuation
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style#callCC
https://okmij.org/ftp/continuations/undelimited.html
https://okmij.org/ftp/continuations/against-callcc.html
https://www.cl.cam.ac.uk/teaching/2324/R277/handout-delimited-continuations.pdf
https://youtu.be/TE48LsgVlIU?si=cBdUCzYwYWpwPkkh

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

(Variables) TR
(Expressions) e == x|lrel|ee

| newPrompt | pushPrompt e e
| withSubCont e e | pushSubCont e e

Puc. 22: CUHTAKCUC A-UCHUCNEHNSI C NPUMUTUBAMU A5 paboThl C NPOAOSIKEHUSIMUA.

Q
Q/g pushPrompt o O/Cg/ \Q §
o \

O withSubCont e

hSE
Puc. 23: llpumep paboTbl withSubCont.

TeKyLLero npoaomkeHnst (M6 40 KOHKPETHOIO OrPaHNYUTENST C ONpeaenéHHol MeTKoit). Takux one-
paTopoB npuaymaHo MHoro [Hillerstrom) [2022, npunoxexue A], Ho oHn Bonee-mMeHee BCe CBOASTCA
APYT K pyry.

Hanpumep, paboTa C UCKIOYEHUAMI NOAPA3yMEBAET UCMOb30BaHNE ABYX KOHCTPYKLUA: Npo-
AOJIXKEHNE OMPAHNYMBAETCA C MNOMOLLbIO try-catch, a throw BblKMAbIBAET COOTBETCTBYIOLLEE Ya-
CTUYHOE NPOAOJIKEHNE, He 3axBaTbIBasi ero (cm. puc. [19)):

Ev[try{Es[throw(v)]}catch(x){t}] — Ei[[x s v] t]

Mbl >xe paccMOTpUM yHUBEpPCaibHble onepaTopbl U3 [Dyvbig et al.| [2007]. PaboTa BBOAMT Cre-
AYIOLINA Habop CUHTaKCUYeCKX KOHCTpyKUwnid (puc. 22) ana paboTbl C orpaHuyeHHbIMI NPOAO-
YKEHUSMU B flonoSiHeHne K Yuctomy call-by-value nambaa-ncumcnenuto:

° newPrompt@— CO3AaET CBeXWiA naeHTuduKaTop (MeTKy) orpaHuYeHns;

e pushPrompt p e — yCTaHaBAMBAET OrpaHNYeHne C METKO p U UCTMONHSIET Bblipa)KeHue e€;
withSubCont p f — 3axBaTbIBaeT YaCTUYHOE NPOAOIXKEHNE A0 OFPaHNYEHNS C METKOW p 1
nepenaét B doyHkUMto f, Bo3BpaLaeT pesynstat f (puc. ;

e pushSubCont k v — WCNOAHSAET KOMMNO3ULMIO TEKYLLErO NPOJOJIIKEHNS N K Ha 3HAYEHUN V.

154 lcTopunyeckn B MMcnax HeorpaHuYeHHble Npoao/keHns Bbiin orpaHuyersl auwb REPL, oTcioga Ha3seaHue orpa-
HUYeHUn — “prompt”.

120

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

(Ap. 2 + pushPrompt p
if (withSubCont p
(Ak. (pushSubCont k False) + (pushSubCont k True)))
then 3
else 4)
newPrompt

Puc. 24: Mpumep BbipaxeHus (pesynstaT — 9).

OnepaTopbl OrpaHNYeHHbIX NPOAOJIKEHUIA Nerko NoHAThb Kak resumable exceptions, nckntoude-
HUS, KOTOPbIE MOXKHO MOliMaTb, a NPOrpaMMy BO30OHOBUTL C TOrO MeCTa, e UCKAto4YeHne Obino
BbIGpOLLEHO (C HEKOTOPbLIM 3HayeHneM). Heobbl4HO TO, HTO K/1aCCMYecKme onepaTopbl OrpaHnyeH-
HbIX NPOAO/IKEHNI NPUHUMALOT KOA, paboTatowmnii C YaCTUYHbIM NPOAOIXKEHNEM B MeCTe “KuaaHuns
NCKOYeHUs”", a He B MecTe “nonmkin”. To ecTb 610K 06paboTKM NULLETCA He € catch, a ¢ throw:

Ei[pushPrompt p {Ex[withSubCont p f]}] — Ei[f E,]
Ei[try{Es[throw v]}catch(x, k){t}] — Ei[[x — V] [k — Ay. Es[y]] t]

Ynpaxvenue 48 [lopegyuynpyiite npumep puc. [24,

6.3.1 Peanunsauuns onepatopos

Pacwmpnm sA3bik PACCMOTPEHHBIMI onepaTopaMin Aast paboTbl C orpaHudeHHbIMK. Ons
MPOCTOTbl BMECTO CBEXMX METOK NPOMNTOB DyAaemM 1Cnonb30BaTh MMeHa, a BMeCTo pushSubCont
OObIYHYIO annANKaLUto:

1 data Expr = ...| PushPrompt String Expr | WithSubCont String Expr
2> data Frame = ... | PushPromptFrame String | WithSubContFrame String

Mownck PEAEKCOB PACLUNPAETCA OHEBUAHBIM o6pa30M:

1 evalK :: (7env :: Env) => Expr -> K -> Value

2 evalK e k = case e of

3 - ...

4 PushPrompt promptName body -> evalK body (PushPromptFrame promptName : k)
5 WithSubCont promptName f -> evalK f (WithSubContFrame promptName : k)

Bcs 3apada PushPrompt — 370 3aCTpsATb B NPOAO/IKEHUMN B Buae PushPromptFrame, HO Koraa
0O HEro AoxXoAuT WUCMOJIHEHWE, OH MPOCTO UITHOPUPYETCA:

121

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

1 appK :: (7env :: Env) => K -> Value -> Value
2 appK k result = case k of
5 -

4 PushPromptFrame _ : k' -> k' “appK™ result

Y706bl 3aXBaTUTL (PparMeHT MPOAOIIKEHUS, HAM HY)KHA Onepauusi, KoTopasi HallAET nepBbil
MPOMMT C COOTBETCTBYIOLWUM UMEHEM B MpPOAOSiXKeHun n BepHET subcontinuation — po aToro
npomnTa 1 metacontinuation — nocne:

1 splitByPrompt :: K -> String -> (X, K)
> splitByPrompt k targetPromptName = go [] k

3 where

4 go _ [] = error $§ "Prompt " ++ targetPromptName ++ " not found"
5 go subcont (PushPromptFrame promptName : metacont)

6 | promptName == targetPromptName = (subcont, metacont)

7 go subcont (frame : metacont) = go (subcont ++ [frame]) metacont

Tenepb WithSubCont f0ON>KEH NPOCTO NPUMEHUTL NONBb30BaTENLCKYH (OYHKLMIO K subcontinuation,
HO MPW 3TOM He 3abbITb Aafiblle UCNONHUTL metacontinuation:

1 appK :: (7env :: Env) => K -> Value -> Value

2 appK k result = case k of

3 T e ..

4 WithSubContFrame promptName : k' ->

5 let (subcont, metacont) = k' “splitByPrompt™ promptName in
6 (RApp result : metacont) “appK™ K 7env subcont

YnpaxHenue 49 [lopeayunpyiite caeayrownii npumep:

1 exampleDelimited = let 7env = Map.empty in flip evalK [] ¢
2 ¢ 10 -. PushPrompt "p"

3 (c 5 -. WithSubCont "p"

4 (lam "k" $ v "k" @ c 1 -. v "k" @ ¢ 3))

MHorune knaccuyeckne onepatopbl, Hanpumep, shift/reset, prompt/control n T.4., MOXHO
nony4YnTb, ocTaBus pelim npomMmnTa B subcontinuation mwnm B metacontinuation B peanusauumn
splitByPrompt |Dyvbig et al.|[2007].

6.3.2 B Monad Cont

[ns npumepa peannsyem ABa KJlacCUYeCcKrx onepaTopa A1st paboTbl C OrpaHNYEHHbIMW NPOAO-
»eHusmun — shift-reset. Bocnonb3syemcs npogosxkeHusmun, cobmpaeMbiMy MoHafoli Cont. shift
NPOCTO 3axXBaTbIBAET TeKyllee MPOAOJKEHNE N MepefaeT ero B MNoJb30BaTeNbCKOE BblUYUC/EHNE
noaobHo cont:

122

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

1 shift :: ((a ->r) -> Cont rr) -> Cont r a
> shift f = Cont \k -> runCont (f k) id

reset e B Ka4eCTBe MPOLOJIKEHNS BbIYUCIEHNIO-AaPryMeHTy nepefaéT id, TeM CambiM 3TO Bbl-
4UCNEHNE He MEET JOCTYyNa K NPOAOJ/IKEHNIO NOC/e reset (B TO BpeMsi Kak MPOLOJIXKEHUE CaMoro
Haskell 3anomMuHaeT, 4TO nocne comp HyXXHO UCMOMHUTL K):

1 reset :: Cont a a -> Cont r a
» reset comp = Cont \k -> k (runCont comp id)

YnpaxHeHue 50 Kakum 6ynet pe3ynbTaT UCMOTHEHUS CAEAYHOLLEN (DYHKLNN:

1 exampleShiftReset = flip runCont id $
2 (1 +) <$> reset ((2 +) <$> shift \k -> pure (k 3 + k 5))

6.4 TllpunoXxeHns NPoaAOCJIKEHWNIA

[posomKeHNst None3Hbl A5t MOHUMAHNS CMbICA MPOrPaMM, KOTOPbIE Mbl MULLEM KaXKAblii A€Hb
(cm. [107)). Kpome TOro, Kak Mbl YBUAUM B 3TOl raBe, MPOLOJIKEHNS MEPBOro Kaacca MOXXHO
MCNONb30BaTh KaK CPEACTBO MOCTPOEHUS MOTYLLECTBEHHbBIX BCTPOEHHbIX SA3bIKOB.

6.4.1 Bcé uepe3 npoagosKeHus

Peanunsyem psii nonesHbix BCTPOEHHbLIX S3bIKOB C MOMOLLLIO MPOAO/IXKEHWI NEepPBOro Kjaacca.
YT10bbl NONYy4YNTH JOCTYN K NPomosKeHusiM, Bocnonb3dyemcs shallow embedded sizbikom ContE].
Takum obpazom, byaem paboTaTb C baliHen s3bikoB Haskell, Cont, X, rae X — paccmaTpuBaembilii
BCTPOEHHbIV S3bIK.

HauyHEM C TpMBMANBLHOrO BCTPOEHHOrO MMMEPATUBHOIO A3blKa:

1 runldentityC :: (forall r . Cont r a) -> a
2 runldentityC comp = runCont comp id

3 exampleldentity :: Int
4+ exampleldentity = runldentityC do

5 X <- pure 4
6 y <- pure 5
7 pure (x + y)

Peannsyem s3blk C uckatodeHusmu. [ns aToro moauduumpyem nepebii TUNOBbLIVE NapaMeTp
Cont, answer (response) type{TiG]. DYHKLUMS abort WrHOPUPYET MPOAOIKEHME MPOrpamMMbl [0
runExn, KOTOpas 3aBepLUaeT NpoAo/»KeHne obopadnBaHneM YCNELLHOro pe3yabTaTa B Just:

5https://blog.poisson.chat/posts/2019-10-26-reasonable-continuations.html
10https://wiki.haskell.org/Cont_computations_as_question-answering_boxes

123

https://blog.poisson.chat/posts/2019-10-26-reasonable-continuations.html
https://wiki.haskell.org/Cont_computations_as_question-answering_boxes

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

1 abort :: Cont (Maybe r) a
> abort = Cont $ const Nothing

s runExn :: (forall r . Cont (Maybe r) a) -> Maybe a
4+ runkExn comp = runCont comp Just

5 exampleExn :: Int -> Maybe Int
6 exampleExn n = runExn do

7 when (n < 0) abort

8 pure (n + 1)

Ob6paTnTe BHUMaHWE, YTO CEMaHTMKA onepauuy obpbiBa BbIYUCAEHUSI MOMHOCTLIO COCpeaoToYe-
Ha B PyHKUUM abort, B TO BpeMs Kak B Monad Maybe cooTBeTCTBytOLasA pyHKLMA Obl OTBEYana
JIMb 33 KOHCTPYWPOBaAHME 3MeMeHTa JOMeHa, a Y)Ke MOHaAU4YecKoe CBsA3blBaHWe — 3a paboTy
C npoaosixxeHnamMn. Vimest goctyn K first-class continuations, Ham y>Ke He HY>KHO peann30BblBaTb
MOHaAMNYeCKoe CBA3bIBaHNE BPYYHYO. [OBOPAT, 4TO Anst Npou3BofibHOro m, Cont (m r) a — “Oec-
nnaTHas" peannsauus MOHaﬂ,bIIE.

Peannzauus paboTbl ¢ owwnbkamy Yepe3 BO3BpallleHre cneumansHoro pesyastaTta (Either B
Haskell, Result B Rust, nil B Go...) nMeeT MOHAANYECKYIO CEMAHTUKY (YCNOBHble BETBIEHUS
Ha Ka>xAOM BblOpPACbIBAOT TOMbKO HaCTb NMPOAOJSIXKEHMS), B TO BPEMS KaK MOJHOLEHHbIVE MEXaHU3M
NCKJTFOYEHUI UMeeT AOCTYN KO BCEMY OFPaHUYEHHOMY MPOAOIXKEHUIO 10 COOTBETCTRYOLLEro 6/10Ka
try-catch, 4TO HaNnOMMHAET Hally TekyLlyto peanu3aumnto. C TOUKM 3pEHNS KONNYECTBA CUHTaK-
CMY€ECKOro LyMa Ha YPOBHE UCXOAHOrO Kofla, BApWAHT C UCKIHOYEHUSIMU SIBHO NpeAnoYTUTENbHEE,
a BOMPOC TUMW3ALUNU NCKItOYEHU Mbl paccMoTpuM aanee (cm. ?7). C TOYKM 3peHust Npon3BOAN-
TeNbHOCTW BCE He Tak O‘-IeBI/I,D,H, oaHako stack unwinding cpeacTBamu paHTaliMa Kak byaTo
nmeeT Bonblee NPOCTPAHCTBO A1 ONTUMU3ALNNA.

Tenepb nonpobyem BbI3BaTb NPOAOJIXKEHNE HECKONBLKO pa3. [1ofy4nm si3bIK C HeAeTEPMUHUIMOM
(nnm backtracking). Tak, choice ABa)k[bl NPOAOXKAET OCTATOK MPOrpamMMbl U aKKyMYAUPYeT BCe
NoJNlyYeHHble pe3y/bTaTbl B CMUCKE:

1 choice :: Cont [r] Bool
> choice = Cont \k -> k True ++ k False

s runNondet :: (forall r . Cont [r] a) -> [al
4+ runNondet comp = runCont comp (:[])

5 exampleNondet :: Int -> [Int]

¢ exampleNondet n = runNondet do

7 b <- choice

8 if b then pure n else pure (n - 1)

57https://hackage.haskell.org/package/kan-extensions-5.2/docs/Control-Monad-Codensity.html
158https://www.serpentine.com/2011/02/25/cps-is-great-cps-is-terrible/
19https://stackoverflow.com/questions/13835817/are-exceptions-in-c-really-slow

124

https://hackage.haskell.org/package/kan-extensions-5.2/docs/Control-Monad-Codensity.html
https://www.serpentine.com/2011/02/25/cps-is-great-cps-is-terrible/
https://stackoverflow.com/questions/13835817/are-exceptions-in-c-really-slow

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

VINBUTENBHO, HO UMESI TOSIbKO MPOJLOJIKEHNS MEPBOrO KJIACCa MOXKHO Peasn3oBaTh JaXke A3blK
C U3MEHSIEMOW SA4eliKoW NaMsATy;

1 -- 8 -> (s, a) 7 ((s, a) ->r) -> (s -> r)
2 -- " (a->s ->r) -> (s ->r) ~ Cont (s ->r) a
s get :: Cont (s ->r) s -- (s ->s8 ->r) -> (s ->7r)

1+ get = Cont \k s -> k s s

5 put :: s -> Cont (s -> 1) ()
6 put s' = Cont \k _s -> k () s'

7 runStateC :: (forall r . Cont (s -> r) a) -> s -> (a, s)
s runStateC comp = runCont comp (,)

o exampleState :: Int -> ((), Int)
10 exampleState = runStateC do

11 s <- get

12 put (s + 1)

igess OBONLHO MpoCTas: 3axBaT MPOMO/KEHUSI OCTaBNseT nocie cebst pyHKUMIO, B KOTOPYHO
npeablayLnii BbI30B NPOAOJIXKEHNS NOAKNAbIBAET TeKyllee cocTosiHue. [aelicTBUTeNnbHO, n3me-
HSleMOe COCTOsIHIE 3TO MPOCTO bparMeHT NpofosXKeHUst (HanpumMep, annapaTHOro cTeka), K KoTo-
POMY Mbl UMEEM HEMOCPEACTBEHHbI AOCTYMN Ha YTEHME U U3MEHeHMe. 31eCb XKe Mbl Pa3MecTuaun
B Hadase NPOAOJ/DKEHUS aNMAMKaLUWI, K KOTOPOU, 3axBaTbiBasi NMPOAOJSIKEHWE, NpPbIraem, 4ToObl
NONYYUTb apryMeHT 1 OOHOBUTL €€ Ha HOBYHO.

YnpaxHeHnue 51 [lopegyuynpyiite npumep Bbile, 4TOObI MOHSTb, KaK 3TO paboTaerT.

MHTyMTMBHO MOTyLleCTBO ﬂpOﬂOﬂN@HMM MONGK)HOHDO6OBaTb 00 BSACHUTL cneayrowmnmm o6pa-
30M: NMOoAAeEPXKNMBATL NMPOAOSIKEHNE — 3TO OCHOBHAaA 00513aHHOCTb CUCTEMbI UCMONHEHUS SA3bIKA;
KOrga npoAosKeHNA nepenardoTcAa nosib30BaTENHO, €ro KoJ Kak Obl BOB/IEKAETCA B OeATENIbHOCTb
runtime’a U CTaHOBUTCSI €ro YacTblO.

6.4.2 The mother of all monads

B npeabigywem naparpacde (6.4.1) Mbl peann3oBany BO3SMOXHOCTU KNaCCUYECKUX MOHa[B
Aa3blke ¢ npogosmkeHuammn. CpaboTaeT aM 3TO ANs NPOom3BOJbLHONW MoHagbl? OkasbiBaeTcs, 4To

5T [Filinski [1994].

180http: //www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/
the-mother-of-all-monads
lhttps://blog.poisson.chat/posts/2019-10-26-reasonable-continuations.html

125

http://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/the-mother-of-all-monads
http://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/the-mother-of-all-monads
https://blog.poisson.chat/posts/2019-10-26-reasonable-continuations.html

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

BcnomMHMM, 4TO MOHala — 3TO KOHCTPYKTOP TUMNA m, KOTOPbIM Mbl NPeACTaBfsieM AeHOTaLuno
BbluyncneHns. Onepaumm pure U »= NO3BOJSAIOT CO3/4aBaTb U KOMMNO3MPOBATh AeHOTAUUNU. TaKUM
obpa3oM, Mbl MUMeeM BbIYUCIIEHWS, NPeacTaBlieHHble B Buge first-class aaHHbIX.

Ecan Haw s13biK NpeaocTaBasieT NPOAOKEH NS MEPBOro knacca (Ans npumMepa Bo3bMéM Cont (m
KakK TaKoOi $3blK), Mbl MOXeM onpefennTb ABe onepauun: reflect — WCNONHWTL MOHAAUYECKOE
BbI4NCNEHNE B A3bIKE C NPOACKEHNAMMN U NONYHUTb PE3YNbTaT a; reify — no BbIYNCNEHUIO B A3bl-
KE C MPOJO/IKEHNAMMN MOJYHUUTb ueHOTaumro@. B Haskell Mo)XHO 3TO BbIpa3nTb Kak Meperpysky
3TOW napbl DYHKLUUA ANS Pa3NNYHbIX MOHAA:

1 class MonadicReflection m where

2 --ma->(a->mr) ->mr

3 reflect :: m a -> forall r . Cont (m r) a
4 -—- (forallr . (a->mr) ->mr) ->m a
5 reify :: (forall r . Cont (m r) a) -> m a

Hanpumep, ans gomeHa State peann3auuns OyaeT BbIrNSAEeTh CAelytolmnumMm obpas3om:

1 newtype State s a = State { runState :: s -> (a, s) }

2 1instance MonadicReflection (State s) where
3 reflect :: State s a -> (forall r . Cont (State s r) a)
4 reflect comp = Cont \k -> State \s ->

5 let (a, s') = runState comp s in
6 runState (k a) s'
7 reify :: (forall r . Cont (State s r) a) -> State s a

8 reify comp = State $ runState (runCont comp (\x -> State (x,)))

o exampleStateReflection :: Int -> (Int, Int)
10 exampleStateReflection = runState $ reify do

1 x <- reflect get
12 reflect § put (x + 1)
13 pure X

VIHTYMTUBHO 3TO MOXHO MOHMMaTb clieaytolmm obpasom: peanuzauum bind Ha camom aene
He BaXKHO, el NojaeTcs “ManeHbkoe" npogosxerue (cobpaHHOe C MOMOLLBIO paccaxapuBaHus do-
HOTauwm), uimn “bonblioe” NpofosIXKeHUe, COBpaHHOE MeTa-s13bIKOM UK MoHagol Cont. U B npuH-
Lune MOHaZbl MOXHO 3a[1aBaTb YEpe3 UX BAOXKEHME B MOHay ContPEl.

Takum obpa3om, ecnu s3blK NOAAEPKMBAET MPOLOJIIKEHUST NMEPBOro Kjlacca, MOXHO B direct-
CTvmeFErl pPeann3oBaTb PYHKLIMOHANBHOCTbL NPOW3BOJILHOM MOHabl, 6e3 do-HoTauun, annanKaTus-

162 [Insa aHeprudHoro s3bika reify gomkHa npuHuMaTh thunk (O -> a) -> m a.
163https://blog.poisson.chat/posts/2019-10-27-continuation-submonads . html
164https://www.unison-lang.org/docs/fundamentals/abilities/for-monadically-inclined/

126

r)

https://blog.poisson.chat/posts/2019-10-27-continuation-submonads.html
https://www.unison-lang.org/docs/fundamentals/abilities/for-monadically-inclined/

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

HbIX LernoYek 1 Npo4ero CMHTaKCUYECKOro Luymam. [Mo3xe Mbl YBUAUM, HYTO 3TOT NOAXO4, B OT-
Nin4ne OT MOHaA, HaTUBHO NOAAEPKMNBAET KOMMO3ULIMIO , a TaKXXe He HakJlaAblBaeT OrpaHndeHni
Ha Tunusaunto (?7?). OTcloaa BO3HMKAET BOMPOC: @ HY>XHbI I HAM Tenepb B NPOrpaMMUpPOBAHIN
MOHaAbl?

6.4.3 TleHepaTOpbl N KOPYTUHDI

[eHepaTopbl U KOPYTUHbI OObIYHO OMPEAENnsatoT Kak BbIHYMUCAEHNE, KOTOPOE MOXET ObiTb OCTa-
HOBJIEHO 1 BO30OHOBNEHO CHOBA B TOM »ke cocTosiHuy Moura and lerusalimschy| [2009]. KopyTuHbi
»Ke 0600LLatoT reHepaTopbl U, KakK MPaBUIO, NCMOAb3YHOTCA KaK NPUMUTUB aCUHXPOHHOIO MPOrpaMm-
MWPOBaHUsi B BUAE async/await uam Apyrux si3blKoBbIX KOHCTpyKUmii [Elizarov et al.| [2021]. Pa3-
JINYNE CUHXPOHHOIO N ACUHXPOHHOIO NPOrPAaMMUPOBAHNSA MOXKHO MOHMMATb TakK: B NEPBOM Ciy4yae
NPOAOIKEHNAMIN YNPABASET UCKMOYNTENBHO ONepaumnoHHas CUCTeMa, a BO BTOPOM — CPeAcTBa
A3blIKa.

[ns npumepa peannsyem reHepatopsbl. B kayecTBe pe3ynbTaTa reHepaTopa byaem ncnofib3osaTb
JIEHNBbIVE CMNCOK, NTEePaTop, 3aKOAMPOBAHHLIA B BUAe pa3BEPTKU (CM. :

1 data Box f = forall s . Box s (s -> f s)
> data ListF a rec = Nil | Cons a rec
3 type Iterator a = Box (ListF a)

4+ box2list :: Iterator a -> [a]

5 box2list (Box s next) = case next s of

6 Nil -> []

7 Cons x 8' -> X : box2list (Box s' next)

CKpbITbIM COCTOsIHMEM MTepaTopa OyaeT eLle HeBbIMOJIHEHHOE NpoosixeHne. JJocTyn K npogon-
eHunto byaem nosyydaTb B MOHaze Cont, rae B Ka4ecTBe response type Bo3bMEM GenState. Tak,
onepaumnsa yield OCTaHaBAMBAET BbIYUCEHNE N COXPAHAET MPOLOJIKEHNE B KOHCTPYKTOpE Yield,
a makeGen 3aKaH4YMBAET AAHHbIV FEHEPATOP MOPOXKAEHNEM KOHCTPYKTOpPa Stop:

1 data GenState a = Stop | Yield a (() -> GenState a)

> makeGen :: Cont (GenState a) () -> Iterator a
s makeGen comp = Box

1 (N -> runCont comp (\() -> Stop))

5 (\k -> case k () of

6 Stop -> Nil
7 Yield x k' -> Cons x k'
5)

185http: //www.valuedlessons.com/2008/01/monads-in-python-with-nice-syntax.html
166https://github.com/lampepfl/monadic-reflection/blob/main/TUTORIAL .md

127

http://www.valuedlessons.com/2008/01/monads-in-python-with-nice-syntax.html
https://github.com/lampepfl/monadic-reflection/blob/main/TUTORIAL.md

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

9 yield :: a -> Cont (GenState a) ()
10 yield x = cont \k -> Yield x k

Terlepb Mbl MOXXEM MNCAaTb KO, MNOCneJoBaTE/IbHO nopo>+<,u,arou_|.|/|7| MHOXECTBO PE3Y/IbTAaTOB:

1 exampleGen :: [Int]

> exampleGen = it2list $ makeGen do
3 yield 1

4 yield 2

5 yield 3

YnpaxHenue 52 [Ipuseante BbiducneHne runCont exampleGen (\() -> Stop)) K Hopma/ib-
How ¢hopme.

6.5 3SddpekTnBHAg paboTa Cc Nnpoaoc/HKEHNAMN

Ha npakTuke Ans peanusauun reHepaTOpOB W KOPYTUH TpebyeTcst oCTaHaBAMBATL U MPOAOS-
aTb MporpamMmy, MHaye roBopsi, 3axBaTblBaTb MPOAO/IKEHNS. DTO HY)KHO AenaTb MaKCUMasbHO
3 PeKTUBHO.

6.5.1 Contiguous stack

HpO,EI,OJ'I)KeHI/Ie npeacTaBaAaA€TCA B BUAE anmnapaTHOro CTeKka. Kak Tonbko Tpe6yeTC$| 3aXBaTUTb
NPOAO/IXKEHNE, CTEK KOMUPYETCA B Ky4dy (BOBMO)KHO, J'IeHI/IBO)E]. To ecTb 3TOT noaxod NoONHOCTbIO
nonaraeTcAa Ha noaaep>KKy Co CTOPOHbI paHTaMMa A3bIKa.

6.5.2 CermeHTHbIA CTEK

CTeK BbI30OBOB MPeACTABASETCS KAk CBA3HbIA CMUCOK aNiIoOLMPOBAHHbLIX B Ky4Ye CErMEHTOB, Ka)Xk-
Ablii COOTBETCTBYET OrpaHunymBatoLleli onepauun. Tak, He TpebyeTcsa AenaTb KONMPOBaHUS, AOCTa-
TOYHO NoAMeHbl yKa3aTeneii. OQHaKo, B TaKOM C/lydae CTeK HesloKaleH, YTO He OYeHb XOPOLLO ANs
paboTbl Kelleid.

6.5.3 Finite state machine (FSM)

JaHHasa peanusauus nogpasymeBaeT aBTomaTuyeckyto CPS TpaHcdopmaumtio nonb3osaTesb-
CKOro KoJla CpeACTBaAMM KOMNUNATOPA. HToObl He announpoBaTh DObLIOE KOIMYECTBO 3aMblKaHUA,
NPOAOJKEHUS AeDYHKLIMOHANN3NPYIOTCS U B paMKax Kaxkaol hyHKLUMM NPeACTaBASAOTCS OAHUM W3-
MeHSeMbIM 0OBEKTOM. Tak, COCTOsSIHUE PYHKLUN LEMKOM OAUH pa3 ajjouupyeTcsl B Kyye, a BO3-
oOHOBNeHMe Kofa Tena PyHKUWUW B ONpefeEHHOM MeCTe peann30BaHO KakK MalllHA COCTOSAHUA —
C NOMOLLIbIO METOK 1 npumm@.

167 (youtube) Vigan Yrnanckuii - Java Project Loom.
168https://github.com/Kotlin/KEEP/blob/master/proposals/coroutines.md#state-machines

128

https://youtu.be/kwS3OeoVCno?si=c4MkSkmLHNeywPrZ
https://github.com/Kotlin/KEEP/blob/master/proposals/coroutines.md#state-machines

2434

2435

2436

2437

2438

Takum 06pa3om, Hanpumep, peann3doBarbl kopyTuHbl B Kotlin®8 renepaTtopbl B C#@. ..

Haxxe B TakoM Buge CPS ocTaércs TshkenoBecHoW TpaHcdopMalmeid, cnocobHo 3amMennnTb
ncrnosHeHne koda Ha nopsiaku. [leno, B 4aCTHOCTU, B TOM, YTO MEpPEMEHHble B TAaKOM MOAXOAe
CNOXHO pa3mellaTb B peructpax (y yHKUMI MHOTO TOueK BbIXOAOB 1 BxOA0BXH), npuxoanTcs
NOCTOSIHHO 3anucbkiBaTb X B RAM — nponseoanTb spiIIindzU].

169https://csharpindepth.com/Articles/IteratorBlockImplementation
"https://en.wikipedia.org/wiki/Register_allocation

129

https://csharpindepth.com/Articles/IteratorBlockImplementation
https://en.wikipedia.org/wiki/Register_allocation

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

7 JDdhekTbl M MOAy/bHbIE NHTEPNPETATOPbI

PaHee Mbl npu3Hanu paboTy CO CNOXHOCTLIO 1aBHOW 3ajadveli NporpamMmucTa, a NoCTPoeHme
BCTPOEHHBIX SI3bIKOB — OCHOBHLIM MHCTpyMeHToM eé pewwenust (5.1]). B paHHoii rnase mbl pac-
CMOTPUM MoHATKE 3chppekTa. OHO TECHO CBSI3aHO CO BCTPOEHHbLIMUK S13blKaMi 1 JAaCT HaM nydllee
NOHUMaHMeE, KOraa UX KOHCTPYUPOBaTh, YTO 3TO AAET, U C YEM HY)KHO ObITb OCTOPOXKHBLIM.

[na peannsauumn BCTPOEHHbIX A3bIKOB Mbl npeanoynun shallow embedding B dhopme tagless final
(5.4), xoTopblii MakcManbHO MeEPencnonb3yeT BO3MOXHOCTM METa-si3blka 1 MO3BOJSIET AaBaTb
pa3Nn4YHble MHTepnpeTauun oaHol nporpamme. [anee Mbl UCCNeAOBaNM MPOLIECC BbIYUCAEHUS 1
N3BNEKAN NMOHATNE NMPOAOIIIKEHUS (@ Okazanocb, 4To tagless final s3bIkK, KOTOpPbIE Mbl CTPOWIN
BOKPYI MOHaJ, MOXHO BbIpasnTb Hepe3 npogoskerus yaobree u npowe (6.4.1 [6.4.2)). B aToii
rnaBe Mbl NOMMEM, KaK 3TO NOMOXET PeLUNTb expression problem [0 KOHLA.

C unctopuyecko-thnnocodckoit nepcnekTmBbl, Teopusi 3hHEKTOB SBASETCS NPOYHBIM MOCTOM
Mexay (OYHKLUMOHANBLHOW U MMNepaTUBHOW napagnrMamm nporpammMmupoBaHuns. OHM BO3HUKAN MNMO-
po3Hb Kak MawwnHa TblopuHra n A-ncuymcneHne HYeépya, n ocTaBanChb AOBOJILHO N30JIMPOBAHHLIMU
LIKOJSIAaMW MbIC/I AOBOJILHO AOIFOE BPEMS. DTO CTaNo MeHsATbCs B nocneaHue 30 neT, n Mbl CTanu
NOHUMATb, KaK 3TU [Ba MUpa AOMONHAT Apyr Apyra. Teopus addekToB A0 CUX Nop SIBASIETCS
kpaiiHe ropsdeli Temoill 3

7.1 TMoHnsTtue achchekTa

Ha4yHéM pa3roBop oT 0OpaTHOro, co ceolicTBa 4YNCToThl. YucTtasa dyHkuma obnagaeT cneny-
FOLLIMMIW CBOVICTBaAMMU:

e E& pesynbTaT BCerga oAMHAKOB MpU OAUMHAKOBOM Habope aprymeHToB (HUKaK Gonee HeTpu-
BUASIbHO He 3aBUCWT HW OT Yero bonee);
e E€ equHCTBeHHbIN HabnOAaeMbIil pe3ynbTaT — €€ BO3BPaLLAEMOE 3HaYeHNe.

B uenom ctunb nporpaMmMmpoBaHns C UCNONb30BAHNEM YUCTbIX (DYHKLWA NPUBETCTBYETCS, TaK
Kak oH 06n1ajaeT MHOXXECTBOM XOPOLUMX CBOWCTB. TakK, MPO HUX MOXXHO YA0BHO paccy»>kaaTb C no-
MoLLIbto equational reasoning; BCE, YTO HY>KHO AN MOHMMAHWUSA KOfa, SSBHO HAanNMCcaHO B 3TOM KO,
KJTaCCUYeCKne CUCTEMbI TUMOB XOPOLLO paboTatoT, NPEAOCTaBASAS NONHOTY aDCTPaKLUUN, Ka4eCTBEH-
HYHO AOKYMEHTALMIO U YaCTU4HYtO cneundukauuto. .. Takke U3BECTHO, YTO BCE MOXHO 3anuncaTb
C NMOMOLLIO YUCTHIX BblHUCAEHNA, aaxxe paboTy ¢ 1O Jones [2001].

OpaHako, UCNonb3yst TONbKO YUCTble DYHKUUKN, BCE MPUXOANTCS AenaTb Bpy4dHyto. B cnyvae ¢
IO (c cocTosiHMeM aHaNorM4YHO) — nepefaBaTh PE3YALTUPYIOLWWIA MUP B apryMeHTbI pa3 3a pa3oMm:

1 getlist :: Int -> World -> (World, [Int])
» getlist nw | n==0= (w, [])

3 | otherwise =

1 let (w', x) = getInt w in

171 (youtube) The Evolution of Effects — Nickolas Wu.
2https://github.com/yallop/effects-bibliography

130

https://youtu.be/m821Vz8N_bo?si=HQTDfs52vYKaBcqJ
https://github.com/yallop/effects-bibliography

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

Janpoc apryMeHTbl

£ N

KoHTekeT
wenoAHeHwW A

—'7

pel YAQTO\T

Puc. 25: DddekTbl Kak KNMeHT-CepBEPHOE B3auMOelicTBUE.

5 let (w'', xs) = getlList (n - 1) w' in
6 (w'', x : xs)

Takum o0bpa3om, Ko U3 HYUCTbIX PYHKLUIA 3aMONHEH HECYLLEeCTBEHHLIMU LEPEMOHUSIMU, 33 KO-
TOPbLIMU HE BUAHO BU3HEC-OTUKN 1 CyTU. YTobbl COCPEAOTOUNTLCS HA BaXKHbLIX AETansX, HY>KHO
JlenernpoBaTh BeCb 3TOT bookkeeping CTOpOHHEMY KOAY, 3aMeCTU HEMHTEPECHbIE AeTaNN NOJ KOBEP.
Torpa koA Bblle MOXXHO OyAeT nepenncaTh, HanpuMep, CheyolnuM obpa3om:

1 getlist :: Int -> IO [Int]

> getlist n | n == 0 = pure []
3 | otherwise = do

4 x <- getlnt

5 xs <- getlist (n - 1)

6 return (x : xs)

ABCTpPaKTHYIO CYLLIHOCTb, KOTOPOW Mbl Byaem AenernpoBaTb HECYLIeCTBEHHble ANS [aHHOro
dparmeHTa 6r3HeC-N0rMKn Aetanun, Mbl OyfemM Ha3biBaTb KOHTEKCTOM ucnosiHeHus (execution
context)m. A achdhbekTOoM — B3aumoaencTBre DYHKLUUN C KOHTEKCTOM UCMONMHEHUST, KOTOPOE MpPo-
NCXOANT C NMoMolLbto Bbi3oBa effect-onepauwnii (Hanprumep, getInt U3 nprmMepa Bbu_ue)m. Tak, Ha
KOHTEKCT VMCMOJIHEHNSI MOXXHO CMOTPETb Kak Ha CcepBep, KOTOPOMY (PYHKLMA-KIVEHT LWAET 3anpochl
M nony4aet oTeeTbl (cM. puc. 25]). B aTolt Mogenu Takas (hyHKLMSI MOXET HapyLuaTb 06a CBOWCTBA
YUCTbIX PYHKLNIA.

Ha npakTuke 3TUM KOHTEKCTOM sIBASieTCS MHTepnpeTaTop (BCTpoeHHOro) sisbika, a effect-
onepaunsiMn — ero KOHCTpPyKUMn. Ecnm a3bik ABNsSieTCA BCTPOEHHBLIM, TO FTOBOPSIT O NOJIb30BaTE b-
ckunx (user-defined) acpchpektax. Tak Mbl CHOBa BO3BpaLLAaeMCsl K 3aZaqe NOCTPOEHUST MOAYNbHbIX
NHTEPNPETATOPOB . K Tomy ke, peannsaumns BblYNCANTENBHOIO KOHTEKCTA TaKXKe MOXET Je-
NIernMpoBaThb peann3aunto HEKOTOPOU PYHKLMOHANBHOCTY APYroMy KOHTEKCTY WCMOJIHEHUS, U TakK
nanee. Monyyaem yxe 3Hakomyto Ham BawHio uHTepnperaTopos (5.1.1)).

173nhttps://okmij.org/ftp/Computation/having-effect.html
14 Takxe achekToM MHOrAa HasblBatoT dyHKUMO nepexoaa B dataflow-ananuse [Mgller and Schwartzbach| [2012].

131

https://okmij.org/ftp/Computation/having-effect.html

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

PaCCMOTpI/IM HEKOTOPbIE NMPpUMEPDLI BbIHNCIINTEJIbHBIX KOHTEKCTOB U onepau,vnﬁ:

e KOHTEeKCT — noacucTema ynpasieHus namsaTeto, modify — effect-onepauns: koHTeKCT Ans
HaC NOAAEP>KUBAET COCTOSIHME siYeeK NamMsTu;

o KOHTEKCT — XeHAnep uckntoyeHns, throw MyException — effect-onepaums: KoHTeKCT 3a
Hac onpeaensieT, Kak owunbka byaeT obpabaTbiBaTbes (0OpaTUTe BHUMAHMUE, YTO TYT ynpas-
JleHne He BO3BPALLIAETCs TEPMY);

e KOHTEKCT — HaCTPOWKN UHBEKLMM 3aBUCMMOCTEN, 3anpoc dyHKLUMoHanbHocTn — effect-
onepauunsi: KOHTEKCT 3a Hac onpefenseT peannsaunto YHKLMOHANBLHOCTW, KOTOPOW Ham
I'IOJ'Ib3OBaTbC$IE]. Kak Mbl yBUAMM Aanee, 3TOT 1 NoAobHble NpocTble 3hdeKTbl MOXKHO pe-
ann30BaThb NPOCTO 1 3hPeKTNBHO (CM. .

YnpaxHeHnue 53 [Ipusegute ewyé npyumepbl BbIYNCANTEbHBIX KOHTEKCTOB U OnepaLui.

Korga Mbl roopum npo standalone si3bik, Ha KOTOPOM Mbl NporpamMmMupyem (Hanpumep, Haskell),
noboe Halle AelcTBMe B NporpaMMe UCNONHAETCA M. 10 eCTb, Hanpumep, cnoxeHune — effect-
onepaumsi’? B Takom cnydae pasyMHO BbIAENNTb NOAMHOMECTBO KOHCTPYKLWI s13blKa, 4OCTAaTOYHO
“NHTepecHbIX ', 4TOObI CYMUTATb, YTO OHW NOpPOXXAAtOT 3 dEKT.

Kakune KOHCTPYKLMK S3blKa CHUTATh “UHTEepecHbIMU'? 3aMeTVM, YTO C OJHOI CTOPOHbI 3TO XO-
poOLLO, 4TO ahbhekTbl CKPbIBAOT OT HAC HEKOTOPYIO CJIOXKHOCTb, MO3BOJISAA COCPEAOTOHNTLCSA Ha
apyrux setax. C agpyrol CTOPOHbI, 3TO »Ke 1 NJ0X0, BeAb Mbl 3Ty CNOXHOCTb NepecTtaém Habnto-
[aTb, @ OHa NPOHU3bIBAET Hall KO, MOAAEPKNBAET HESIBHbIE 3aBUCMMOCTUN MEXY €ro Yactamu. [a-
KM obpa3oM, achbdekTbl TpebyoT AONONHUTENBHON aKKYPaTHOCTW CO CTOPOHbI I'IpOI'paMMI/ICTEFEI.
CoOTBETCTBEHHO, UMEHHO TaKWe HEMPOCTbIE KOHCTPYKLMW M CTOUT CHMUTATb “nHTepecHbiMKU”. Kak
MUHUMYM TOYHO CTOUT CUHUTATb “MHTEPECHBbIMU' KOHCTPYKLMW, MCMNONb30BaHNE KOTOPLIX BbIBO-
ANT PYHKLUMIO U3 KaTEropum YUCTbIX. Takxxe, 3TO MOryT ObITb onepauun, Aenarolime CroXHble
HesloKabHble MoAMdVKaLmMm NoToka ynpaeneHust (NOAAEP)KMBAEMOrO WHTEPNPETATOPOM B BUAE
NPOAOJSIKEHUS).

B koHeyHOM nTOre BoIOOp “UHTEPECHbIX KOHCTPYKUWIA 3aBUCUT OT 3afadn 1 NepPCneKTUBbI pas-
pa60Tq|/|Kam. Tak, KOHCTPYKLMW, BAUSIOLLME Ha MPOW3BOJbHblE HabntogaemMble CBOCTBA KOAaA,
Kak, Hanpumep, TEPMUHNPYEMOCTb WN BbIYUCAUTENbHASA CNOXKHOCTb, MOTYT MOTMBUPOBATb CYUU-
TaTb PeKYPCUBHblE BbI3OBbI AW Aonrne onepauun achdekTamu.

[anee Mbl Hay4MMCsl OTCNEXNBATb M KOHTPOJAMPOBATL UCNONb30BaHME 3(PHEKTOB Ha YPOBHE
TWUMOB C MOMOLLbLIO cucTeM ahdekToB (cMm. aanee 77).

7.2 Xenpnepsobl 3chchekToB

XeHanepbl 3hpekToB — 3TO COBPEMEHHbIV YHUBEPCANbHbIVE METOM NOCTPOEHNS MOAY/NbHbIX WH-
TEpPNpPeTaTOPOB BCTPOEHHbLIX A3bIKOB, HANPSIMYIO PEaNU3YIOLWNA KNMEHT-CcepBeEPHYtO MeTadopy. Kak

175 CyujecteyeT TepmnH contextual polymorphism — kog B pa3HbIx KOHTEKCTaX MOXXET UMETb Pa3iyHOe NMOBEAEHNE.
176(youtube) Kris Jenkins — Side-Effects Are The Complexity Iceberg.

132

https://youtu.be/_nG09Z_tdUU?si=lo9It6299rsB1vAr

2521 ODObIYHO ObIBAET, xeHAnepbl Obin N306peTeHbl MHOXXECTBO pa3. B 3Toll rnaBe Mbl MOCMOTPUM Ha
2522 OCHOBHbIE peann3auunmn, KoTopble Niydlle BCEro NOMOryT HaM MOHSATb KOHLEMLMIO.

2523 OcHoBHas naes xeHanepos 3pheKTOB AOBOJILHO MPOCTa. BBOANTCS s13bIKOBAsi KOHCTPYKLUUS
22 handle, NMO3BOJISIOLLAS 3a[aTb BbIYNCAUTENbHbLIA KOHTEKCT ANsS1 ONPeAenéHHOro Ckoyna, npefo-
o505 CTaBAsOWMIA peanmsaunn effect-onepaumii. Takxe BBOANTCA KOHCTPYKUWUS perform, NO3BONSIO-
2526 LLIAst BbI3BATh effect-onepaunto (0TnpaBUTbL 3anpoc KOHTEKCTY). Kaxxaast onepauust nmeeT Habop
2527 TAPAMETPOB, a Takxxe “obpaTHbI agpec’, NpoJoOJKEHNE MEeCTa BbI30Ba, B KOTOPbLIA OHAa BEPHET
228 PE3yNbTaT. Hanpumep, Ha skcnepuMenTanbHoM asbike Kokd' | koHTekcT, npegocTaBasitoLLmii Heko-
2520 TOPYHKO KOHCTAHTY, MOXET ObITb peann3oBaH ciefytoliMm obpa3oM (resume — VMSs NPOAOIKEHUS
2530 MECTa BbI30Ba, perform BCTABNSETCS HESBHO):

1 with handler
2 ctl ask() resume(21)
3 ask() + ask(Q)

2531 Ecnn 6avxalwnii KOHTEKCT HY»XHbI 3anpoc obpaboTaTb He MOXKET, 3anpoc [enernpyeTcs
2532 BHELLIHEMY KOHTEKCTY, WU TaK MoKa MNOAXOASLNG KOHTEKCT He OyaeT HailgeH. Ha aToli mnaee oc-
2533 HOBbIBAETCS MOAYJIbHOCTb WHTEPNPETATOPOB, 3aaHHbIX XeHAlepaMu.

3 1.2.1 XeHanepbl Yepe3 orpaHMY€eHHbIE NPOAOJIXKEHNS

2535 Kak Mbl y>ke BUAenn paHee, pasanytble 3hdMeKTbl MOXKHO Pean30BbiBaTb C MOMOLLLIO AOCTYNa

23 K Tekyliemy npogosmkernto (6.4.1] [6.4.2)). Xenanepbi achpeKToB AOMOMHSIOT 3TY UAEID TEM, HTO

2537 CMOJIb3YIOT OrPaHNYEHHbIE NMPOLOSIKEHNSA, YTOObI NepefaBaTh yNpaBAeHNe pasanyHbIM NHTeprpe-

2538 TATOpaM (XeHAnepam).

2530 3BeCTHO, 4TO KNIACCUYECKIE ONEPATOPLI MAHUMYASALUN OrPAHUYEHHBIMU MPOLOIKEHUSMI, monadic
2540 reflection n xenanepbl a¢hekToB BbipasuMbl Apyr Hepes apyra |[Forster et al.| [2017].

s 1.2.2 DdpchekTMBHAS peanmsauunsa xeHns1epos

2542 B obwem Bnae ckopocTb paboThl perform onpeaenseTcs CKOPOCTbIO 3axBaTa U BOCCTAHOBAE-
2543 HUS OFPaHUYeHHbIX npogomxernii. OaHako, CyLeCcTBYeT Knacc onepauunii, KOTOpble MOXHO peanu-
2544 30BaTb ropa3fo 3phekTmBHeE.

2545 Ecam Mbl nocMoTpum Ha peanmsaunto onepauumn ask, TO Mbl YBUAWM, YTO OHA MOCAEAHUM
2546 [IEACTBUEM BbI3bIBAET MPOAO/IXKEHNE, BO3BPALLIAs yNpaBfieHne Bbi3BaBLUEMY KOAy. Takue onepauun
2547 Ha3blBatoT tail-resumptive, oHM O4YeHb CUIBHO HaANOMWHAOT OObIYHbIE (DYHKLMW, 3a UCKAOYe-
2545 HUEM TOFO, YTO UX Peanu3auun onpefensitoTCst KOHTEKCTOM (xeHAnepom). Takum obpasom, tail-
2sa0 resumptive onepauum MOXXHO peasin3oBaThb KaK HESABHYIO nepefady cnoBapsi pyHKUNUA OT xeHanepa
50 K perform, n Tem caMbiM M3bexxaTb JOPOrux MaHUNyAAUMA npogomxkeHnsamu Xie et al. [2020]@.

Y"https://koka-lang.github.1io/koka/doc/index.html
178X enpnepbl tail-resumptive onepauuii HanoMuHatoT co-pattern-matching u, cooTBeTCTBEHHO, 06bekThl (cM. [4.6.2)).

133

https://koka-lang.github.io/koka/doc/index.html

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

7.2.3 BCTpOEHHbIe XEeHANEPDbI KaK siBHAasA KJIMEHT-CEpBEPHAA KOMMYHUMKaLNA

Y106bI NyywnM 06pa3oM MOHSATbL CEMAHTUKY XEHINEPOB, peann3yemM si3blKk C XeHAJepaMn Kak
BCTpoeHHbIi B Haskell. HauHém c BapuaHTa, npeanoxxenHoro Onerom KucenésbiM, MakCUMaabHO
NPSIMONNHENHO KOAMPYIOLLIErO NAEHD KINEHT-CEPBEPHON KOMMYHMKALUN TepMa 1 KoHTekcTa |Kiselyov
et al.|[2013].

HauHém c acbdekTa ask, 3anpallvBaOLIEro YMCcaa y KOHTEKCTa. 3a4aAvM TUMN AaHHbIX CO00-
LLEHUM K KOHTEKCTY, 3TO MO0 KOHEYHbIV pe3ynbTaT BblYMCAeHUs, 1MbOo 3anpoc Ask, coaep<allunii
“obpaTHbI agpec’ — Tekyllee NpoAOJIKEHME:

1 data Message res = Val res | Ask (Int -> Message res)

MpogonxeHns dyaem cobmpaTb B Cneynann3npoBaHHblii Monad Cont C NOAXoAsLLMM response

type (ow. .22, B4.1):

1 newtype Eff res = Eff
2 { runEff :: forall res' . (res -> Message res') -> Message res' }

Torpa achdekT ask pean3yeTcss NPoCcTo Kak “oTnpaBka” 3anpoca Ask C TeKyLWMWM MPOSOIKe-

HMGMZ@

1 ask :: Eff Int
> ask = Eff \k -> Ask k

XeHanep Mbl peannsyeM Kak “cepsep”, KOTOpbIl B LKne obpabaTbiBaeT 3anpochl, NOKa BblYNC-
JIEHVE HE MPULLNET KOHEYHbIN pe3ynbTaT:

1 run :: Eff res -> Message res
2 run comp = runEff comp Val

s runReader :: Eff res -> Int -> res

1+ runReader comp env = loop (run comp)
5 where

6 loop = \case

7 Val res -> res

5 Ask k -> loop (k env)

HakoHreL, mbl Mmoxxem nucaTb effectful kopa:

1 exampleReader :: Int -> Int
2 exampleReader = runReader do
3 x <- ask

4 y <- ask

5 pure (x + y)

179PaHee Mbl aHaNOMNYHO Pean30BLIBaAM reHepaTopel, cMm. [6.4.3]

134

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

MoHaga Eff npeBpaTUT €ro B NEHUBLIV CMNCOK COODLLEHNNA:

1 exampleReader :: Int -> Int
> exampleReader = loop $

3 Ask \x ->

4 Ask \y ->

s Val (x +y)

7.2.4 Pacwupsiemble cOO0LLEHNS N NEPECLISIKa
AbcTparnpyem Tun coobleHunii no “dopme” 3anpocoB, KOTOPbIE B HAX MOTYT y4acTBOBaTb (CM.
4.3.2)):
1 data Message effs res = Val res | Request (effs (Message effs res))
[Mpenblaywnii TUN coobLLEeHWI nony4aeTcsa nepegadeli cneaytoero yHKTopa hopMbi:
1 newtype Reader env msg = Ask (env -> msg)

YnpaxHeHnue 54 Vbeautech, 4To Message (Reader Int) res 3KBMBA/NEHTHO MPeAbIAYLLEMY Ti-
ny coobLyeHni.

Konpowvseeaerue pyHKTOpoB hopmbl siBAsieTCs pyHkTOpoM chopmsbl (cMm. [5.5.1)):
1 data (eff |> effs) a =L (eff a) | R (effs a)
Tenepb onepauns ask AONycKaeT CyL|ECTBOBaHWE APYrMx TUMOB 3anpocoB effs:

1 ask :: Eff (Reader env |> effs) env
> ask = Eff \k -> Msg L Ask k

HoBbiih xeHanep obpabaTbiBaeT TONLKO 4aCTb 3aMpPOCOB, OCTaflbHbIE NEPEChINAET XeHANEPY Bbl-
we (CKOMMO3VpoBaB MpaBU/IbHLIM 0O6PAa30M MPOAOSIIKEHNS):

1 runReader

2 :: forall effs env res . Functor es

3 => Eff (Reader env [> effs) res

4 -> env -> Eff effs res

5 runReader comp env = loop (run comp)

6 where

7 loop :: Request (Reader env |> effs) res -> Eff effs res
8 loop = \case

9 Val res -> pure res

10 Msg (L (Ask k)) -> loop (k env)

1 Msg (R unknownReq) -> do

12 response <- Eff \k -> Msg (fmap k unknownReq)
13 loop response

3aMeTbTe, YTO B Pe3y/bTUPYIOLLIEM [OMEHE OCTaNNCh HEMPOUHTEPNPETUPOBAHHbIE IPAEKTHI.
KoHeuHbIli JOMEH MONYUNTCS MPUMEHEHVEM BCEX HEOBXOANMbBIX MHTEPNPETAaTOPOB. TakK pellaeTcs
stable denotations problem (/5.5)).

135

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

7.2.5 CsobogHble MoHaabl

YHT106bl NONYYNTL NMOJIHOLUEHHOE pelleHne 6onee NPOCTbIM U MUHUMANNCTUYHLIM 0Opa3oM, ne-
pergémM K camoli KnacCu4eckoil peanmsaumm XeHanepoB vepe3 cBoboaHble MoHagbl. [dns Havana
obcyaum cammn cBobofiHble MOHaAbI.

PaccMoTpumM HekoTopyto anrebpanyeckyto CTpyKTypy, Hanpumep, MoHous (HeldTpanbHbIA de-
MEHT 1 accoumaTuBHas brHapHasi onepauust). 1o Npou3BOAbHOMY MHOXXECTBY X MOXHO NOCTPOUTL
HekoTopblli MmoHouna M(X) Hanbonee “sKOHOMUYHBLIM" 0O6pa3oM — CBOOOAHbLIA MOHOMA,. DTO Je-
naeTca cneaytolumMm obpasomM: K MHoxecTBy X A00aBNSOT AEpPeBbsi BbIPaXKeHWUA C onepauusMu
MOHOWJa:

1 data M x = Element x | Mempty | Mappend (M x) (M x)
> instance Monoid (M x) where

3 mempty = Mempty

4 mappend 1 r = Mappend 1 r

EWeE TonbKo HY)XHO OpraHM3oBaTb HOBOE MHOXXECTBO TakKMM 0Opa3oM, 4YTOObl B HEM He OblJiO
OAMHAKOBbIX C TOYKM 3peHust anrebpol aepeBbes (Hanpumep, Mappend Mempty Mempty v Mempty).
B cnydyae moHomaa B 3TOM cllydae MOXKHO BbIOpaTb TUM CNMUCKa:

1 type M x = [x]

2 instance Monoid (M x) where
mempty = []

4 mappend = (++)

w

CBobOoAHbIE MOHAbl CTPOSATCS aHaNOrM4yHo cBobOogHLIM MoHouzaaM. [lcnonb3yem onpeaenexHune
MOHaAbl Kak (DyHKTOpa C onepaunsaMu pure 1 join. Torga no nponsBoabHOMY PYHKTOPY f MOXHO
nonyunTe MoHagy Free(F) (nokakem 3TO C MOMOLLbIO SKBUBANEHTHOIO OMpefeneHnst MOHa U3
Haskell):

1 data Free f a = Pure a | Join (f (Free f a))
2 instance Functor f => Monad (Free f) where

3 return = Pure
4 Pure x >>= k = k x
5 Join f >>= k = Join (fmap (>>= k) f)

[MepenmeHyemM KOHCTPYKTOPbI:

1 data Term sig var = Var var | Op (sig (Term sig var))
2 (>>=) :: Term sig var -> (var -> Term sig var') -> Term sig var'
3 data MonoidSig subtree = Mempty | MAppend subtree subtree -- (Bool -> subtree)

DTO He YTO MHOE, Kak KOAMpPOBaHMe anrebpanyecknx TEPMOB HaZ CUrHATYpoOl sig 1 NnepeMeHHbIMY
N3 MHOXeCTBa var. A MOHaAN4Yeckoe CBA3blBaHME — 3TO MOACTAHOBKA.

136

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

7.2.6 XeHnpnepbl Yyepe3 cBO6OAHbLIE MOHAbI

3aMeTum, 4TO cneaytolime Tunbl M3oMopdHbl: Message = Free = Term. XeHAnepbl B Klaccu-

4EeCKOM BUAE KaK pa3 WU BO3HUK/W B NPOLECCE N3Y4YEHUs TOro, KakK OMUCbIBaTb 3PdEKTbI B BUAE
anrebpandeckux CTpykTyp [Bauer [2018]@.

BmecTo nepemMeHHbIX Mbl ByeM XpaHUTb YUCTbIA pe3ynbTaT BbIYUCAEHWUS, @ CUTHATYpbl byaem

3anucbiBaTh B Buge P x (A — K), rae P — napameTp onepauun, a A — pe3ynbTaT onepauuu, no
KOTOPOMY XeHANEP BbIOMPAET HY>XKHbIi NOATEPM-MPOAOSIIKEHNE ANt BO3OOHOBNEHUSA BbIYNCIEHWS:

data Comp effs res = Res res | Op (effs (Comp effs res))
data Reader env comp = Ask () (env -> comp)
data State s comp = Get () (s -> comp) | Put s (() -> comp)

Peannzaumsa Monad Comp OyaeT kak pa3 KOMMNO3MPOBATb NPOAOCSIKEHNS AN HAC B do-HOTALUK:

ask = Op (Ask O (\e -> Val e)
example = do
x <- ask
y <- ask
pure (x + y)
-- of3-sKBHUBAJIEHTHO
example =
Op (Ask O (\x ->
Op (Ask O (\y ->
Res (x + y)))))

XeHanep Takxke NpoCTO CBOpayMBaeT Cnucok onepauuii. Onepaumm, KOTOpblie OH He yMeeT 00-

pa6aTbIBaTb, OH OCTaBJIAET B AEpEBE. Y100bI NPONYCTUTb HEN3BECTHYHO ONMEPaUnto N MHTEPNPETN-
poBaTb nNoaaepeBo (npoaonmeHme), NCMONb3YETCA fmap:

runReader
Functor effs => Comp (Reader env |> effs) res -> env -> Comp effs res
runReader comp env = case comp of
Res res -> Res res
Op (L (Ask () k)) -> runReader (k env) env
Op (R other) -> Op (fmap ("runReader” env) other)

YnpaxHeHue 55 [loctpoiite npumep BbidncaeHns n3 Reader m State. Kakoe gepeBo noayynTcs
rnocsie MHTeprnpeTauyum 0fHOro u3 3¢hGheKkToB?

Kak obbl4HO, CBEPTKY MOXHO 00006WMNTL B BUAe KaTamopdusma:

180 (youtube) What is algebraic about algebraic effects and handlers — Andrej Bauer.

137

https://www.youtube.com/watch?v=vPVMXLJVylU&list=PLt7hcIEdZLAkebYy70DdBDm2qLrw7ptfp

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

1 handle

2 :: Functor effs => (res -> d) -> (effs d -> d) -> Comp effs res -> d
3 handle val alg = \case
4 Pure res -> val res

wt

Op eff -> alg $ fmap (handle val alg) eff
Tenepb B peanu3aumny npofokeHne (NOAAEPEBO) YXKe NMPOUHTEPNPETUPOBAHO B HY>KHbI JJOMEH:

1 runReader

2 :: Functor effs => Eff (Reader env |> effs) res -> env -> Eff effs res
s runReader = handle (\res _env -> pure res) \case
4 L (Ask k) -> \env -> k env env

5 R other -> \env -> Op (fmap ($ env) other)

Korga xeHanepbl peanu3yroT Kak built-in BO3MOXXHOCTb B $13blKe, HYXKHO MPUHATb AU3aliH-
pelleHne, B NPefoCTaBNSiEMOM MPOAOJIKEHUN TEKYLIUA dPEKT y)Ke NPOUHTEPNPEeTUPOBaAH, UK
HeT. [lepBbili BapnaHT Ha3biBatoT deep handlers, sBTopoii — shallow handlers, oHn Bbipasumbl
apyr depes apyra Hillerstrom and Lindley| [2018].

K coxaneHunro, NOCKOJIbKY pa3inyHble BapuaHTbl 3(hdeKToB yNnopsAoYeHbl Kak Ha YPOBHe Tep-
MOB, TaK 1 Ha YPOBHe TUMOB, HAM Hy>KHa ornepawuusi, NpeBpaLlatoLlas BblYNCAEHNe OT MeHbLLEro
KonmyecTBa 3(hPEKTOB B BblHMCAeHNE C BONbLLNM:

1 liftF :: Functor effs => Comp effs res -> Comp (eff [> effs) res
> 1liftF = \case

3 Pure x -> Pure x

4 Op effs -> Op $ R § 1iftF <$> effs

5 example :: Comp (Reader Int [> State Int) ()
¢ example = do

7 env <- ask

8 1iftF (put env)

OT nopsika MOXHO n36aBNTLCS C NoMoLsto knaccos Tunos Swierstral [2008] ([3.4.8)).

MOo>XHO 3aMeTUTb, YTO NOMUMO DOBLLIOIO KOJMYECTBA aJiloKauuii, Mcnosib3oBaHne Monad Free
MOXXET MPUBOANTL K KBaAPaTUYHOW CNOXHOCTW KOAA N3-3a JIMHENHbBIX NMPOXOA0B B KaxkAoMm bind'e.
CyLecTBYOT pa3finyHble anbTepHaTUBHbIE cxeMbl KogmposaHus Ploeg and Kiselyov| [2014], Kiselyov:
and Ishii| [2015].

CB0obOOHblE MOHAbI HAXOASAT W APYrve, NpaBaa, aHalorMyHble NnpuMeHeHus: trampolining|Bjarnarson
[2012] v navinnaiinel [Kiselyov| [2012b] [Bragilevsky, chapter 14].

7.2.7 TpunnoXxeHnsi XeHA1EepPoB

PaccmoTpum xeHanepsl tail-resumptive onepaunii, obpallatonecss ¢ NPOAOCSIKEHUAMMN TPUBK-
aNbHbIM 06pa3oM. OHU Hy>XHbl AN PAacnpOCTPaHeHUst 3HaveHul 1 OYHKUMOHANBHOCTM BHU3 MO

138

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

cTeky. Kak Mbl obcyxaanu paHee [7.2.2, Takne xeHANEPbl aHANOTUYHbI HAAUYUIO ANHAMUYECKUNX
CBODOAHbBIX MNEPEMEHHbBIX WU HESABHbIX aprymMeHToB byHKUWIA [3.1.2, 1, BMecTe C HUMK, PEKOPAOB
WAV aHOHUMHBIX Knaccos [£.6.2]

Cpean HeTprBUaNbHbIX CLieHapyeB UCMOb30BAHNSA MPOLOIKEHUI BbIAENNM CAeaytoLLMe:

e [lposonykeHre MOXXHO He BbI3BaTb, TakK, MOXHO Peasim30BaTb MexaHU3M uckaroderunii. OaHa-
KO, Ha MpaKTUKe MPOAO/IKEHNS MOTYT COAEPXKaTb NOrMKY brHann3aumym pecypcos. B aTom
C/ly4ae BCE paBHO HY>KHa Kakas-To chneumanbHasi obpaboTka @

e MO)XHO BbI3BaTb HECKOILKO pa3 AJsi SMYNSALUN HeAeTEPMUHN3MA. DTO OrpaHUYNBAET UCMONb-
30BaHNe 3PPEKTUBHLIX MyTabeNbHbIX NPOAOSIIKEHWIA Leijen [2018]@, a Takxe TpebyeT
HeTpuBManbHO 0bpaboTku Npu paboTe C pecypcamu.

e MOXXHO BbI3BaTb He Cpa3y. DTO HY)XKHO AN peann3aunm N3MeHseMoro COCTOSIHUS, reHepaTo-
POB U KOPYTVH. [Nsi N3MEHSAEMOro COCTOSIHUSA 3TO CIMLLIKOM Aoporo. ['eHepaTopbl — xopollee
npuMeHeHune, Ho built-in peann3aunsi reHepaTopoB MOXKET ObITb 3 EKTUBHEE 33 CHET IKOHO-
MWW annokKauuii npoaosixeHnii (cosgaércs cpasy Iterator)@. Peanusaums KopyTUH NoBepx
XEHANEPOB [AaET BO3MOXXHOCTb NOJIb30BaTENAM NUCAaTb COOCTBEHHbIE MNNAHNPOBLLUUKN, YTO Ca-
MO€e KOTVpYEMOE MpUMEHEHVE XeHANEPOB Ha AaHHbIA MOMeHT |Sivaramakrishnan et al.| [2021],
Phipps-Costin et al.| [2023].

7.2.8 TpaHcchopmepbl MOHag,

B knaccuyeckoli peannsaymnm xeH4nepoB Yepe3 cBoboaHble MoHadbl [7.2.6] Kaxkablid xeHanep no-
POXKJAeT NPOMEXYTOYHOE AEPEBO U3 HEMPOMHTEPNPETUPOBAHHbLIX onepauwnii. EcTtecTBeHHbIM 0bpa-
30M BO3HVKaeT »enaHne fedopectuposaTs [4.4.1] 3T npomexxyTouHble AepeBbsi. MOXHO NOATY A0
KOHLLA W MOJHOCTbIO M30aBUTbCA OT CBOBOAHBIX MOHaA 1 dyHkTopoB curHaTyp Wu and Schrijvers
[2015]. Tak, Mbl dakTudeckn nonyuum tagless final shallow embedding , Apyroe nonynsipHoe
pelueHne expression (stable denotations) problem — TpaHnccopmepbl MoHag, Liang et al.| [1995],
Jones [1995]@. B uenom 3Tn noaxonbl, paBHOCUNbHbLI MO BbIPAa3UTENbHOCTU, OIHAKO MOIYT UMETb
Ha MPaKTUKe pa3/iMyHble 0CODEHHOCTU BCTpanmBaHust B A3bik Schrijvers et al.| [2019]. OaHako, B
OTANYMe OT TPAHCKOPMEPOB, XeHANEPLI MOXHO cAenaTb yAobHO built-in BO3MOXHOCTbLIO S3blKa.

7.2.9 AnrebpanyHoctb 1 3chhekTbl BbICLLMX MOPSIAKOB

B Havane HynesbIx NosiBUNACL mMaest onucbiBaTb effect-onepauun He mMoHagamu cpasy, a an-
rebpaunyecku, ¢ NoMoLbo curHaTyp u ypaeHeruii |Plotkin and Power [2002], Bauer [2018]. -
dekTbl B 3TOM hopMann3me SABAAIOTCA KOMMO3UPYEMbLIMU MO MOCTPOEHNIO, KaK KOMMO3MPyeEMbI
CUrHaTypbl anrebpanyeckux Teopuii (KoHKaTeHaums curHatyp — curHatypa [7.2.4), Tak Mbl numeem
pacwupsieMblii cuHTakcuc. OAHAKO, Ha onepauuy HakNaAblBaeTCs OrpaHuyeHne B BUAE CBOMCTBA

Blhttps://koka-lang.github.io/koka/doc/book.html#sec-resource
18https://koka-lang.github.io/koka/doc/book.html#sec-multi-resume
183https://csharpindepth.com/Articles/IteratorBlockImplementation
184https://hackage.haskell.org/package/mt1l

139

https://koka-lang.github.io/koka/doc/book.html#sec-resource
https://koka-lang.github.io/koka/doc/book.html#sec-multi-resume
https://csharpindepth.com/Articles/IteratorBlockImplementation
https://hackage.haskell.org/package/mtl

2664 AJIFEOPANYHOCTN — Onepaurst KOMMYTUPYET C NPOAOIKEHNEM 1 “BCMbIBAET HaBEPX:
Elop(v, k)] = op(v, Ax. E[k(x)])

2665 COOTBETCTBYHOLME 3hDEKTLI HA3bIBAOT anredbpanvyeckumm.

2666 B Hawell peanunsauyunm orpaHu4YeHne Ha anredpanyHOCTb MOXHO YBUAETb CReayoLnuM
2667 0OPA30M. Y Hac cUrHaTypbl onepaunii SsBAAOTCA (DyHKTOpPaMM No CBOUM MPOAOSIKEHUSIM. DTUM
2668 MOJIb3YHOTCS KaK MOHAAMYECKOE CBS3bIBAHWE ANt HAaKaNAUBAHUS NMPOAO/KEHUIA, TaK N XeHANEPbI
2660 [N MHTEpNpeTaunm NpoaoIKeHNA HEM3BECTHbIX onepauunii.

2670 MHorue nonesHble 3pdekTbl SABAAIOTCSA anrebpanyecknmm, Ho He Bce. Hanpumep, nommka mc-
2671 KJIKOYEHUA catch He siBAsieTca anrebpamyeckoi onepauuell, Tak Kak e€ curHaTypa 3anuiiercs
2672 CNIAyHOLLNM 0bpa3om:

1 data Catch e comp = Catch { try :: comp, onExn :: (e -> comp), next :: comp }

673 B TakoMm cny4vae eAMHCTBEHHAs pa3yMHast peannsaums dyHkTopa byaeT paboTaTb, B TOM YuUCAE, U
2674 C BJIOXKEHHbLIMUN NPOAOSIIKEHUSAMU, U BCA NPOrpamMMma, B pesynbtaTe paboTbl bind, okarkeTcsa BHyTpu
2675 OJIOKA try.

2676 iHaue roBops, asnrebpanydeckue aghhekThbl He MOryT npuHuMaTh apyrue effectful BoidncneHus B
2677 KadecTBe aprymeHToB. Kak pa3, 4Tobbl MOAennmpoBaTh catch, 1 ObIINM OPUTMHANBHO NPEeANOXKEHbI
267e - XeHanepsbl [Plotkin and Pretnar [2013]@. Takum obpa3om, y xeH[JIepoB [Be 3aja4l: OrpaHM4nBaTh
2679 CKOYM HEKOTOPOW (PYHKLIMOHANBHOCTY U MHTepnpeTnpoBaTh 3ddekTbl. OAHAKO, KaK Mbl 3HaeM,
2680 MOPSIIOK XEHANIEPOB onpeAensieT pe3yNbTUPYHOLLNA JOMEH 1, COOTBETCTBEHHO, CEMaHTUKY. B To xe
2681 BPEMSI 3a/la4a OrpaHUYeHust ckoyna UKCMpyeT MO3nLUIO XeHAaNlepa, YTO OrpaHUYUBaAET Bbipasu-
2682 TENIbHOCTb U A€NAET HEKOTOPbIE AOMEHbI HEAOCTYMHbLIMU.

2683 Onepauuu, He yIOBNETBOPSIOLLINE CBOVCTBY anredbpanyHoCTu, COOTBETCTBYOT 3chhekTam BblIC-
24 LUMX NopsaakoB (higher-order effects), koTopbl MoryT npuiumaTs apyrue effectful Boluncnenns B
2685 KayecTBe aprymeHToB. CyLeCcTBYOT BCTPaMBaHWs XeHANEpOB Takmx 3hheKToB 1 0OLLIMpPHbIT Habop
e MccnefoBaHnii Ha Temy Wu et al.| [2014]9%7| Yang et al | [2022)].

2687 Kntoy K acbdhbekTam BbICLIUX NOPSIAIKOB COCTOUT B BO3MOXXHOCTUW UCNONHATL 3P eKTbl BblHUCAEHWT-
2683 APFYMEHTOB B KOHTEKCTE TeX XeHAepOB, KOTOpble JOCTYMHbI Ha KoJicaiiTe achdekTa BbICLLIMX MO-
80 PsiAKoB|van der Rest et al.|[2022]. 9To cBazaHo ¢ apyroii naeeid, bidirectional effects, nossonsitoueit
2600 PEANN3ALMMN OMNepauun NopoXkaaTb 3pdekTbl Ha CBOEM KosicaliTe (Hanpumep, 6pocaTb TaM NCKIILO-
201 YEHWS), YTO KpaiiHe HeobxoAnMas Ha NpakTuke BO3MOXHOCTL [Zhang et al. [2020]@.

To be continued...

185HecMoTps Ha To, 4TO anrebpandeckue 3ddeKTbl — 3TO NPOCTO KAacc “xopowux’ onepauuii, 4acTo npu 1x yno-
MUHaHUWU nofpa3yMeBatoT xeHanepbl 3 deKToB.

18https://github.com/fused-effects/fused-effects

187 (youtube) Building Haskell Programs with Fused Effects — Patrick Thomson

18https://effekt-lang.org/docs/concepts/bidirectional

140

https://github.com/fused-effects/fused-effects
https://youtu.be/vfDazZfxlNs?si=3o1zkoL8GsmezMtU
https://effekt-lang.org/docs/concepts/bidirectional

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

Cnucok nntepaTtypbl

Christopher Strachey. Fundamental concepts in programming languages.
Higher-order — and symbolic ~ computation, 13:11-49, 2000. URL https:
//facweb.cdm.depaul .edu/smitsch/courses/csc447fa23/assets/articles/
strachey-fundamental-concepts-in-programming-languages.pdf|

Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys (CSUR), 17(4):471-523, 1985. URL https://doi.org/10.1145/
6041.6042.

Benjamin C Pierce. Types and programming languages. MIT press, 2002.

John Launchbury and Simon L Peyton Jones. State in haskell. Lisp and symbolic computation, 8(4):
293-341, 1995. URL https://www.microsoft.com/en-us/research/wp-content/uploads/
2016/07/state-lasc.pdf|

Sandy Maguire. Thinking with Types, Type-Level Programming in Haskell. a. URL https:
//leanpub.com/thinking-with-types/?

Simon Peyton Jones. Type inference as constraint solving: how ghc's type inference engine actually
works. Keynote talk at Zurihac 2019, 2019.

Benjamin C Pierce and David N Turner. Local type inference. Acm transactions on programming
languages and systems (toplas), 22(1):1-44, 2000. URL https://doi.org/10.1145/345099.
345100.

David Raymond Christiansen. Bidirectional typing rules: A tutorial. 2013. URL https:
//davidchristiansen.dk/tutorials/bidirectional.pdf.

Jana Dunfield and Neelakantan R Krishnaswami. Sound and complete bidirectional typechecking
for higher-rank polymorphism with existentials and indexed types. Proceedings of the ACM on
Programming Languages, 3(POPL):1-28, 2019. URL https://doi.org/10.1145/3290322.

Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. A
quick look at impredicativity. Proceedings of the ACM on Programming Languages, 4
(ICFP):1-29, 2020. URL https://www.microsoft.com/en-us/research/publication/
a-quick-look-at-impredicativity/.

Frank Emrich, Sam Lindley, Jan Stolarek, James Cheney, and Jonathan Coates. Freezeml: Complete
and easy type inference for first-class polymorphism. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 423—437, 2020. URL
https://link.springer.com/article/10.1208/s12249-010-9382-3|

141

https://facweb.cdm.depaul.edu/smitsch/courses/csc447fa23/assets/articles/strachey-fundamental-concepts-in-programming-languages.pdf
https://facweb.cdm.depaul.edu/smitsch/courses/csc447fa23/assets/articles/strachey-fundamental-concepts-in-programming-languages.pdf
https://facweb.cdm.depaul.edu/smitsch/courses/csc447fa23/assets/articles/strachey-fundamental-concepts-in-programming-languages.pdf
https://facweb.cdm.depaul.edu/smitsch/courses/csc447fa23/assets/articles/strachey-fundamental-concepts-in-programming-languages.pdf
https://facweb.cdm.depaul.edu/smitsch/courses/csc447fa23/assets/articles/strachey-fundamental-concepts-in-programming-languages.pdf
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf
https://leanpub.com/thinking-with-types/?
https://leanpub.com/thinking-with-types/?
https://leanpub.com/thinking-with-types/?
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://davidchristiansen.dk/tutorials/bidirectional.pdf
https://davidchristiansen.dk/tutorials/bidirectional.pdf
https://davidchristiansen.dk/tutorials/bidirectional.pdf
https://doi.org/10.1145/3290322
https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/
https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/
https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/
https://link.springer.com/article/10.1208/s12249-010-9382-3

o Brent A Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytiniotis, and
2726 José Pedro Magalhdes. Giving haskell a promotion. In Proceedings of the 8th ACM SIGPLAN
2727 Workshop on Types in Language Design and Implementation, pages 53—66, 2012. URL https:
2728 //www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p53-yorgey.pdf.

oo Stephanie Weirich, Justin Hsu, and Richard A Eisenberg. System fc with explicit kind equality. ACM
2730 SIGPLAN Notices, 48(9):275-286, 2013. URL https://doi.org/10.1145/2544174.2500599.

o3 Vitaly Bragilevsky. Haskell in Depth. Manning. URL https://www.manning.com/books/
2732 haskell-in-depth.

2733 Bruno Blanchet. Escape analysis for object-oriented languages: application to java. Acm Sigplan
2734 Notices, 34(10):20-34, 1999. URL https://doi.org/10.1145/320385.320387.

213 Richard A Eisenberg and Simon Peyton Jones. Levity polymorphism. ACM SIGPLAN Notices, 52
o3 (6):525-539, 2017. URL https://doi.org/10.1145/3140587.3062357.

o3 Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history
2738 of haskell: being lazy with class. In Proceedings of the third ACM SIGPLAN
2739 conference on History of programming languages, pages 12-1, 2007. URL https:
2740 //www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_

2741 A_history_of_Haskell Being_lazy_with_class/1inks/0c960517e31£50£743000000/
2742 A-history-of-Haskell-Being-lazy-with-class.pdf|

o3 Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In Proceedings
2744 of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
2745 60-76, 1989. URL https://doi.org/10.1145/75277.75283|

a6 Cordelia V Hall, Kevin Hammond, Simon L Peyton Jones, and Philip L Wadler. Type classes in
2747 haskell. ACM Transactions on Programming Languages and Systems (TOPLAS), 18(2):109—
2748 138, 1996. URL https://doi.org/10.1145/227699.227700.

o0 Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration of the design
2750 space. In In Haskell Workshop, 1997. URL https://courses.cs.washington.edu/courses/
2751 cseb90p/06sp/multi.pdf|

a2 Jeffrey R Lewis, John Launchbury, Erik Meijer, and Mark B Shields. Implicit parameters: Dynamic
2753 scoping with static types. In Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on
2754 Principles of programming languages, pages 108-118, 2000. URL https://doi.org/10.1145/
2755 325694 .325708.

s Simon Peyton Jones. Type inference as constraint solving: how ghc's type inference engine
2757 actually works, 2019. URL https://www.microsoft.com/en-us/research/publication/
2758 type-inference-as-constraint-solving-how-ghcs-type-inference-engine-actually-works/|

142

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p53-yorgey.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p53-yorgey.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p53-yorgey.pdf
https://doi.org/10.1145/2544174.2500599
https://www.manning.com/books/haskell-in-depth
https://www.manning.com/books/haskell-in-depth
https://www.manning.com/books/haskell-in-depth
https://doi.org/10.1145/320385.320387
https://doi.org/10.1145/3140587.3062357
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://www.researchgate.net/profile/Simon-Peyton-Jones/publication/221501761_A_history_of_Haskell_Being_lazy_with_class/links/0c960517e31f50f743000000/A-history-of-Haskell-Being-lazy-with-class.pdf
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/227699.227700
https://courses.cs.washington.edu/courses/cse590p/06sp/multi.pdf
https://courses.cs.washington.edu/courses/cse590p/06sp/multi.pdf
https://courses.cs.washington.edu/courses/cse590p/06sp/multi.pdf
https://doi.org/10.1145/325694.325708
https://doi.org/10.1145/325694.325708
https://doi.org/10.1145/325694.325708
https://www.microsoft.com/en-us/research/publication/type-inference-as-constraint-solving-how-ghcs-type-inference-engine-actually-works/
https://www.microsoft.com/en-us/research/publication/type-inference-as-constraint-solving-how-ghcs-type-inference-engine-actually-works/
https://www.microsoft.com/en-us/research/publication/type-inference-as-constraint-solving-how-ghcs-type-inference-engine-actually-works/

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

Martin Sulzmann, Gregory J Duck, Simon Peyton-Jones, and Peter J Stuckey. Understanding
functional dependencies via constraint handling rules. Journal of functional programming, 17(1):
83-129, 2007a. URL https://doi.org/10.1017/S0956796806006137.

Oleg Kiselyov and Chung-chieh Shan. Functional pearl: implicit configurations—or, type classes
reflect the values of types. In Proceedings of the 2004 ACM SIGPLAN workshop on
Haskell, pages 33—44, 2004. URL https://dlwqtxtslxzle7.cloudfront.net/43582096/
Functional pearl_implicit_configurations20160310-32037-1bu6179-1ibre.pdf|

Filip Ktikava, Heather Miller, and Jan Vitek. Scala implicits are everywhere: A large-scale study of
the use of scala implicits in the wild. Proceedings of the ACM on Programming Languages, 3
(OOPSLA):1-28, 2019. URL https://doi.org/10.1145/3360589.

Bruno CdS Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and implicits. ACM
Sigplan Notices, 45(10):341-360, 2010. URL https://citeseerx.ist.psu.edu/document?
repid=repl&type=pdf&doi=d30d65caScer7891352024abc7lebelae8cdlf7ac.

Dominique Devriese and Frank Piessens. On the bright side of type classes: instance arguments in
agda. ACM SIGPLAN Notices, 46(9):143-155, 2011. URL https://archive.alvb.in/msc/

thesis/reading/typeclasses-agda_Devriese.pdf.

Conor McBride. Faking it simulating dependent types in haskell. Journal of functional programming,
12(4-5):375-392, 2002. URL https://doi.org/10.1017/30956796802004355.

Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the rules: rewriting as a practical
optimisation technique in ghc. In Haskell workshop, volume 1, pages 203-233, 2001. URL https:
//www.microsoft.com/en-us/research/wp-content/uploads/2001/09/rules.pdf.

Sandy Maguire. Algebra-Driven Design, Elegant Solutions from Simple Building Blocks. b. URL
https://leanpub.com/algebra-driven-design/.

Li-yao Xia. Defunctionalization. URL https://poisson.chat/aquarium/
defunctionalization.pdfl

John C Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings
of the ACM annual conference-Volume 2, pages 717-740, 1972. URL https://doi.org/10.
1145/800194.805852.

John C Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic Computation, 11:
355-361, 1998. URL https://doi.org/10.1023/A:1010075320153|

Jeremy Yallop and Leo White. Lightweight higher-kinded polymorphism. In International Symposium
on Functional and Logic Programming, pages 119-135. Springer, 2014. URL https://www.cl.
cam.ac.uk/~jdy22/papers/lightweight-higher-kinded-polymorphism.pdf.

143

https://doi.org/10.1017/S0956796806006137
https://d1wqtxts1xzle7.cloudfront.net/43582096/Functional_pearl_implicit_configurations20160310-32037-1bu6179-libre.pdf
https://d1wqtxts1xzle7.cloudfront.net/43582096/Functional_pearl_implicit_configurations20160310-32037-1bu6179-libre.pdf
https://d1wqtxts1xzle7.cloudfront.net/43582096/Functional_pearl_implicit_configurations20160310-32037-1bu6179-libre.pdf
https://doi.org/10.1145/3360589
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d30d65ca9ce7891352024a5c71ebe0ae8c41f7ac
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d30d65ca9ce7891352024a5c71ebe0ae8c41f7ac
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d30d65ca9ce7891352024a5c71ebe0ae8c41f7ac
https://archive.alvb.in/msc/thesis/reading/typeclasses-agda_Devriese.pdf
https://archive.alvb.in/msc/thesis/reading/typeclasses-agda_Devriese.pdf
https://archive.alvb.in/msc/thesis/reading/typeclasses-agda_Devriese.pdf
https://doi.org/10.1017/S0956796802004355
https://www.microsoft.com/en-us/research/wp-content/uploads/2001/09/rules.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2001/09/rules.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2001/09/rules.pdf
https://leanpub.com/algebra-driven-design/
https://poisson.chat/aquarium/defunctionalization.pdf
https://poisson.chat/aquarium/defunctionalization.pdf
https://poisson.chat/aquarium/defunctionalization.pdf
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1023/A:1010075320153
https://www.cl.cam.ac.uk/~jdy22/papers/lightweight-higher-kinded-polymorphism.pdf
https://www.cl.cam.ac.uk/~jdy22/papers/lightweight-higher-kinded-polymorphism.pdf
https://www.cl.cam.ac.uk/~jdy22/papers/lightweight-higher-kinded-polymorphism.pdf

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

Manuel MT Chakravarty, Gabriele Keller, and Simon Peyton Jones. Associated type synonyms.
ACM SIGPLAN Notices, 40(9):241-253, 2005a. URL https://www.microsoft.com/en-us/
research/wp-content/uploads/2005/01/at-syns.pdf.

Manuel MT Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon Marlow. Associated
types with class. In Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 1-13, 2005b. URL https://www.microsoft.com/en-us/
research/wp-content/uploads/2005/01/assoc.pdf.

Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulzmann. Type checking
with open type functions. In Proceedings of the 13th ACM SIGPLAN international conference
on Functional programming, pages 51-62, 2008. URL https://www.microsoft.com/en-us/
research/wp-content/uploads/2008/01/icfp2008.pdf|

Richard A Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and Stephanie Weirich.
Closed type families with overlapping equations. ACM SIGPLAN Notices, 49(1):671-683,
2014. URL https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/
popll37-eisenberg. pdf.

Oleg Kiselyov, Simon Peyton Jones, and Chung-chieh Shan. Fun with type functions. Reflections
on the Work of CAR Hoare, pages 301-331, 2010. URL https://www.microsoft.
com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https:
//research.microsoft.com/ simonpj/papers/assoc-types/fun-with-type-funs/
typefun.pdf&type=exact.

Mark P Jones. Type classes with functional dependencies. In European Symposium
on Programming, pages 230-244. Springer, 2000. URL https://doi.org/10.1007/
3-540-46425-5_15,

Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of path-dependent types. Acm Sigplan
Notices, 49(10):233-249, 2014. URL http://lampwww.epfl.ch/ amin/dot/fpdt_post.pdf.

Jan Stolarek, Simon Peyton Jones, and Richard A Eisenberg. Injective type families for haskell.
ACM SIGPLAN Notices, 50(12):118-128, 2015. URL https://repository.brynmawr.edu/
cgi/viewcontent.cgi?article=1070&context=compsci_pubs.

Richard A Eisenberg and Jan Stolarek. Promoting functions to type families in haskell. ACM
SIGPLAN Notices, 49(12):95-106, 2014. URL https://repository.brynmawr.edu/cgi/
viewcontent.cgi7article=1000&context=compsci_pubs.

Csongor Kiss, Tony Field, Susan Eisenbach, and Simon Peyton Jones. Higher-order type-level
programming in haskell. Proceedings of the ACM on Programming Languages, 3(ICFP):1-26,
2019. URL https://dl.acm.org/doi/pdf/10.1145/3341706.

144

https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/at-syns.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/at-syns.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/at-syns.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/assoc.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/assoc.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/assoc.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2008/01/icfp2008.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2008/01/icfp2008.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2008/01/icfp2008.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/popl137-eisenberg.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/popl137-eisenberg.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/popl137-eisenberg.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https://research.microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/typefun.pdf&type=exact
https://doi.org/10.1007/3-540-46425-5_15
https://doi.org/10.1007/3-540-46425-5_15
https://doi.org/10.1007/3-540-46425-5_15
http://lampwww.epfl.ch/~amin/dot/fpdt_post.pdf
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1070&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1070&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1070&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1000&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1000&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1000&context=compsci_pubs
https://dl.acm.org/doi/pdf/10.1145/3341706

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

Dominic Orchard and Tom Schrijvers. Haskell type constraints unleashed. In International
Symposium on Functional and Logic Programming, pages 56—71. Springer, 2010. URL https:
//kar.kent.ac.uk/57498/1/constraint-families.pdf|

Edsko de Vries and Andres Loh. True sums of products. In Proceedings of the 10th ACM SIGPLAN
workshop on Generic programming, pages 83-94, 2014. URL https://doi.org/10.1145/
2633628 .2633634.

Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C d S Oliveira, and Philip Wadler.
Quantified class constraints. ACM SIGPLAN Notices, 52(10):148-161, 2017. URL https:
//www.pure.ed.ac.uk/ws/portalfiles/portal/42495988/quantcc.pdf.

Martin Sulzmann, Manuel MT Chakravarty, Simon Peyton Jones, and Kevin Donnelly. System f
with type equality coercions. In Proceedings of the 2007 ACM SIGPLAN international workshop
on Types in languages design and implementation, pages 53—66, 2007b. URL https://doi.
org/10.1145/1190315.1190324,

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. Outsidein (x)
modular type inference with local assumptions. Journal of functional programming, 21(4-5):
333-412, 2011. URL https://doi.org/10.1017/S0956796811000098.

Joachim Breitner, Richard A Eisenberg, Simon Peyton Jones, and Stephanie Weirich. Safe zero-
cost coercions for haskell. In Proceedings of the 19th ACM SIGPLAN international conference
on Functional programming, pages 189-202, 2014. URL https://repository.brynmawr.edu/
cgi/viewcontent.cgi?article=1013&context=compsci_pubs|

Simon Peyton Jones, Stephanie Weirich, Richard A Eisenberg, and Dimitrios Vytiniotis. A
reflection on types. In A List of Successes That Can Change the World: Essays Dedicated
to Philip Wadler on the Occasion of His 60th Birthday, pages 292-317. Springer, 2016.
URL https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1002&context=
compsci_pubs|

Simon Marlow, Simon Peyton Jones, Andrew Moran, and John Reppy. Asynchronous exceptions
in haskell. In Proceedings of the ACM SIGPLAN 2001 conference on Programming language
design and implementation, pages 274-285, 2001. URL https://classes.cs.uchicago.edu/
archive/2007/spring/32102-1/papers/p274-marlow.pdf.

Simon Marlow. An extensible dynamically-typed hierarchy of exceptions. In Proceedings
of the 2006 ACM SIGPLAN Workshop on Haskell, pages 96-106, 2006. URL
https://archive.alvb.in/msc/03_infoafp/papers/2012-12-18_HoorCollege_
MarlowkxtensibleExceptions_dk.pdf.

Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency, exceptions,
and foreign-language calls in haskell. NATO SCIENCE SERIES SUB SERIES Il COMPUTER

145

https://kar.kent.ac.uk/57498/1/constraint-families.pdf
https://kar.kent.ac.uk/57498/1/constraint-families.pdf
https://kar.kent.ac.uk/57498/1/constraint-families.pdf
https://doi.org/10.1145/2633628.2633634
https://doi.org/10.1145/2633628.2633634
https://doi.org/10.1145/2633628.2633634
https://www.pure.ed.ac.uk/ws/portalfiles/portal/42495988/quantcc.pdf
https://www.pure.ed.ac.uk/ws/portalfiles/portal/42495988/quantcc.pdf
https://www.pure.ed.ac.uk/ws/portalfiles/portal/42495988/quantcc.pdf
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1017/S0956796811000098
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1013&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1013&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1013&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1002&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1002&context=compsci_pubs
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1002&context=compsci_pubs
https://classes.cs.uchicago.edu/archive/2007/spring/32102-1/papers/p274-marlow.pdf
https://classes.cs.uchicago.edu/archive/2007/spring/32102-1/papers/p274-marlow.pdf
https://classes.cs.uchicago.edu/archive/2007/spring/32102-1/papers/p274-marlow.pdf
https://archive.alvb.in/msc/03_infoafp/papers/2012-12-18_HoorCollege_MarlowExtensibleExceptions_dk.pdf
https://archive.alvb.in/msc/03_infoafp/papers/2012-12-18_HoorCollege_MarlowExtensibleExceptions_dk.pdf
https://archive.alvb.in/msc/03_infoafp/papers/2012-12-18_HoorCollege_MarlowExtensibleExceptions_dk.pdf

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

AND SYSTEMS SCIENCES, 180:47-96, 2001. URL https://citeseerx.ist.psu.edu/
document?repid=repl&type=pdf&doi=2e6c9d76f9cb690dc18019fc894ba9572a8c2812.

Ralf Hinze, Jennifer Hackett, and Daniel WH James. Functional pearl: F for functor. 2012. URL
WWW.CS.0X.ac.uk/people/daniel. james/functor/functor.pdf.

Ralf Hinze and Daniel WH James. Reason isomorphically! In Proceedings of the 6th ACM
SIGPLAN workshop on Generic programming, pages 85-96, 2010. URL http://www.cs.ox.
ac.uk/people/ralf.hinze/publications/WGP10.pdf.

Gérard Huet. The zipper. Journal of functional programming, 7(5):549-554, 1997. URL https:
//doi.org/10.1017/S0956796897002864.

Conor McBride. The derivative of a regular type is its type of one-hole contexts. Unpublished
manuscript, pages 74-88, 2001. URL https://citeseerx.ist.psu.edu/document?repid=
repl&type=pdf&doi=7de4f6£ddb11254d1fd5f8adfd67b6e0c9439¢eaa.

Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Derivatives of containers.
In International Conference on Typed Lambda Calculi and Applications, pages 16—30. Springer,
2003. URL http://www.strictlypositive.org/derivcont.pdf.

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In Conference on functional programming languages and
computer architecture, pages 124-144. Springer, 1991. URL https://ris.utwente.nl/ws/
portalfiles/portal/6142049/meijer91functional.pdf|

Erik Meijer and Graham Hutton. Bananas in space: Extending fold and unfold to exponential types.
In Proceedings of the seventh international conference on Functional programming languages
and computer architecture, pages 324-333, 1995. URL https://dl.acm.org/doi/pdf/10.
1145/224164 .224225.

Olivier Danvy and Kevin Millikin. Refunctionalization at work. Science of Computer Programming,
74(8):534-549, 2009. ISSN 0167-6423. doi: https://doi.org/10.1016/j.scico.2007.10.
007. URL https://www.sciencedirect.com/science/article/pii/S0167642309000227.
Special Issue on Mathematics of Program Construction (MPC 2006).

Philip Wadler. Deforestation: Transforming programs to eliminate trees. In European Symposium on
Programming, pages 344-358. Springer, 1988. URL https://link.springer.com/content/
pdf/10.1007/3-540-19027-9_23. pdf.

CA Powmanerko. BbIFB/EHME N JOKA3ATE/ILCTBO CBOWUCTB ®YHKLUMOHAb-
HbIX NMPOIPAMM METOJAMW CYTTEPKOMMNAAUNWN. URL https://www.keldysh.ru/
council/1/klyuchnikov-diss.pdf.

146

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2e6c9d76f9cb690dc18019fc894ba9572a8c2812
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2e6c9d76f9cb690dc18019fc894ba9572a8c2812
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2e6c9d76f9cb690dc18019fc894ba9572a8c2812
www.cs.ox.ac.uk/people/daniel.james/functor/functor.pdf
http://www.cs.ox.ac.uk/people/ralf.hinze/publications/WGP10.pdf
http://www.cs.ox.ac.uk/people/ralf.hinze/publications/WGP10.pdf
http://www.cs.ox.ac.uk/people/ralf.hinze/publications/WGP10.pdf
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1017/S0956796897002864
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7de4f6fddb11254d1fd5f8adfd67b6e0c9439eaa
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7de4f6fddb11254d1fd5f8adfd67b6e0c9439eaa
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7de4f6fddb11254d1fd5f8adfd67b6e0c9439eaa
http://www.strictlypositive.org/derivcont.pdf
https://ris.utwente.nl/ws/portalfiles/portal/6142049/meijer91functional.pdf
https://ris.utwente.nl/ws/portalfiles/portal/6142049/meijer91functional.pdf
https://ris.utwente.nl/ws/portalfiles/portal/6142049/meijer91functional.pdf
https://dl.acm.org/doi/pdf/10.1145/224164.224225
https://dl.acm.org/doi/pdf/10.1145/224164.224225
https://dl.acm.org/doi/pdf/10.1145/224164.224225
https://www.sciencedirect.com/science/article/pii/S0167642309000227
https://link.springer.com/content/pdf/10.1007/3-540-19027-9_23.pdf
https://link.springer.com/content/pdf/10.1007/3-540-19027-9_23.pdf
https://link.springer.com/content/pdf/10.1007/3-540-19027-9_23.pdf
https://www.keldysh.ru/council/1/klyuchnikov-diss.pdf
https://www.keldysh.ru/council/1/klyuchnikov-diss.pdf
https://www.keldysh.ru/council/1/klyuchnikov-diss.pdf

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

29011

2912

29013

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

Andrew Gill, John Launchbury, and Simon L Peyton Jones. A short cut to deforestation. In
Proceedings of the conference on Functional programming languages and computer architecture,
pages 223-232, 1993. URL https://dl.acm.org/doi/pdf/10.1145/165180.165214,

Jeremy Gibbons. Unfolding abstract datatypes. In International Conference on
Mathematics of Program Construction, pages 110-133. Springer, 2008. URL
https://ora.ox.ac.uk/objects/uuid:b51d2af6-25de-41ae-b3e7-9ac997de87b3/files/
m/cl9077c7bfbab62a6cc9ceb3db62641.

William R Cook. On understanding data abstraction, revisited. In Proceedings of the 24th ACM
SIGPLAN conference on Object oriented programming systems languages and applications, pages
557-572,2009. URL https://www.phaazon.net/media/uploads/on_understanding_data_
abstraction.pdf.

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: From lists
to streams to nothing at all. ACM SIGPLAN Notices, 42(9):315-326, 2007.
URL https://citeseerx.ist.psu.edu/document?repid=repl&type=pdf&doi=

a4fad0d182605fcd155bebe3d620b7££a0456968.

Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. Stream fusion,
to completeness. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, pages 285-299, 2017. URL https://arxiv.org/pdf/1612.06668.

Paul Downen, Zachary Sullivan, Zena M Ariola, and Simon Peyton Jones. Codata in action.
In European Symposium on Programming, pages 119-146. Springer International Publishing
Cham, 2019. URL https://library.oapen.org/bitstream/handle/20.500.12657/23330/
1006825 . pdf 7sequence=1#page=132.

Jon Louis Bentley. Little languages. Commun. ACM, 29(8):711-721, 1986. URL https://doi.
org/10.1145/6424.315691.

Jeremy Gibbons and Nicolas Wu. Folding domain-specific languages: deep and shallow embeddings
(functional pearl). In Proceedings of the 19th ACM SIGPLAN international conference on
Functional programming, pages 339-347, 2014. URL https://ora.ox.ac.uk/objects/uuid:
0547e439-48d5-4749-abeb-811e65cfaaece/files/mf31b32c6dcbd81dd6a8ef43166a8cc9l.

Jeremy Gibbons. Functional programming for domain-specific languages. In Central
European Functional Programming School, pages 1-28. Springer, 2013. URL
https://ora.ox.ac.uk/objects/uuid:489909da-8818-4d6e-a4fd-0107b589%ee76/files/
m00be42b36cabbc6d11c8748fac8c7c71.

Benjamin C Pierce, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Catalin Hritcu, Vilhelm
Sjoberg, and Brent Yorgey. Software foundations. Webpage: http://www. cis. upenn.
edu/bcpierce/sf/current/index. html, 16, 2010. URL https://idris-hackers.github.io/
software-foundations/pdf/sf-idris-2018.pdf|

147

https://dl.acm.org/doi/pdf/10.1145/165180.165214
https://ora.ox.ac.uk/objects/uuid:b51d2af6-25de-41ae-b3e7-9ac997de87b3/files/m7c19077c7bfba562a6cc9ceb3db62641
https://ora.ox.ac.uk/objects/uuid:b51d2af6-25de-41ae-b3e7-9ac997de87b3/files/m7c19077c7bfba562a6cc9ceb3db62641
https://ora.ox.ac.uk/objects/uuid:b51d2af6-25de-41ae-b3e7-9ac997de87b3/files/m7c19077c7bfba562a6cc9ceb3db62641
https://www.phaazon.net/media/uploads/on_understanding_data_abstraction.pdf
https://www.phaazon.net/media/uploads/on_understanding_data_abstraction.pdf
https://www.phaazon.net/media/uploads/on_understanding_data_abstraction.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a4fad0d182605fcd155bebe3d620b7ffa0456968
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a4fad0d182605fcd155bebe3d620b7ffa0456968
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a4fad0d182605fcd155bebe3d620b7ffa0456968
https://arxiv.org/pdf/1612.06668
https://library.oapen.org/bitstream/handle/20.500.12657/23330/1006825.pdf?sequence=1#page=132
https://library.oapen.org/bitstream/handle/20.500.12657/23330/1006825.pdf?sequence=1#page=132
https://library.oapen.org/bitstream/handle/20.500.12657/23330/1006825.pdf?sequence=1#page=132
https://doi.org/10.1145/6424.315691
https://doi.org/10.1145/6424.315691
https://doi.org/10.1145/6424.315691
https://ora.ox.ac.uk/objects/uuid:0547e439-48d5-4749-a5eb-811e65cfaaee/files/mf31b32c6dcbd81dd6a8ef43166a8cc91
https://ora.ox.ac.uk/objects/uuid:0547e439-48d5-4749-a5eb-811e65cfaaee/files/mf31b32c6dcbd81dd6a8ef43166a8cc91
https://ora.ox.ac.uk/objects/uuid:0547e439-48d5-4749-a5eb-811e65cfaaee/files/mf31b32c6dcbd81dd6a8ef43166a8cc91
https://ora.ox.ac.uk/objects/uuid:489909da-8818-4d6e-a4fd-0107b589ee76/files/m00be42b36cabbc6d11c8748fac8c7c71
https://ora.ox.ac.uk/objects/uuid:489909da-8818-4d6e-a4fd-0107b589ee76/files/m00be42b36cabbc6d11c8748fac8c7c71
https://ora.ox.ac.uk/objects/uuid:489909da-8818-4d6e-a4fd-0107b589ee76/files/m00be42b36cabbc6d11c8748fac8c7c71
https://idris-hackers.github.io/software-foundations/pdf/sf-idris-2018.pdf
https://idris-hackers.github.io/software-foundations/pdf/sf-idris-2018.pdf
https://idris-hackers.github.io/software-foundations/pdf/sf-idris-2018.pdf

2030 Graham Hutton. Fold and unfold for program semantics. ACM SIGPLAN Notices, 34(1):280-288,
2031 1998. URL https://dl.acm.org/doi/abs/10.1145/291251.289457.

2032 Robert Nystrom. Crafting Interpreters. URL https://craftinginterpreters.com/contents.
2033 html.

2032 Dom Hutchinson. Language engineering - notes. Course COMS22201 notes. URL https://

2035 github.com/dajhutchinson/Language-Engineering.

203 Simon Marlow. Parallel and concurrent programming in haskell. In Central
2037 European Functional ~ Programming School, pages 339-401. Springer, 2011.
2038 URL https://citeseerx.ist.psu.edu/document?repid=repl&type=pdf&doi=

2939 bd127ea1952996864c1542e1453973a78973adb5bc.

200 Arthur Charguéraud. The locally nameless representation. Journal of automated reasoning, 49:
2041 363-408, 2012. URL https://www.chargueraud.org/research/2009/1n/main.pdf.

2042 Stephen Chong. CS5153: Compilers Lecture 12:Closures and Environments. URL https://groups.
2043 seas.harvard.edu/courses/cs1563/2018fa/lectures/Lecl2-Functions.pdf|

2aa Oleg Kiselyov. Typed tagless final interpreters. In Generic and indexed programming: International
2045 spring school, sSGIP 2010, oxford, uK, march 22-26, 2010, revised lectures, pages 130-174.
2046 Springer, 2012a. URL https://citeseerx.ist.psu.edu/document?repid=repl&type=pdf&
2047 do1=f0b6a04331821a294bad4d08975637b4f363ecbatpage=136|

2045 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. ACM sigplan notices, 23(7):
2049 199-208, 1988. URL https://doi.org/10.1145/960116.54010.

250 Jeff Epstein, Andrew P Black, and Simon Peyton-Jones. Towards haskell in the cloud.
2051 In Proceedings of the 4th ACM symposium on Haskell, pages 118-129, 2011. URL
2052 https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.
2053 pdf7from=https://research.microsoft.com/en-us/um/people/simonpj/papers/

2054 parallel/remote.pdf&type=exact.

2055 Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, partially

2056 evaluated: Tagless staged interpreters for simpler typed languages. In Programming

2057 Languages and Systems: 5th Asian Symposium, APLAS 2007, Singapore, November

2058 29-December 1, 2007. Proceedings 5, pages 222-238. Springer, 2007. URL https:

2050 //www.cambridge.org/core/journals/journal-of-functional-programming/article/

2960 finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-lang
2061 (B2DC44A2127EBBAT1ADE63809D9425F.

2062 Eugenio Moggi. Computational lambda-calculus and monads. University of Edinburgh, Department
2063 of Computer Science, Laboratory for ..., 1988. URL http://www.lfcs.inf.ed.ac.uk/
2064 reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf|

148

https://dl.acm.org/doi/abs/10.1145/291251.289457
https://craftinginterpreters.com/contents.html
https://craftinginterpreters.com/contents.html
https://craftinginterpreters.com/contents.html
https://github.com/dajhutchinson/Language-Engineering
https://github.com/dajhutchinson/Language-Engineering
https://github.com/dajhutchinson/Language-Engineering
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bd127ea1952996864c1542e1453973a78973ad5c
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bd127ea1952996864c1542e1453973a78973ad5c
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bd127ea1952996864c1542e1453973a78973ad5c
https://www.chargueraud.org/research/2009/ln/main.pdf
https://groups.seas.harvard.edu/courses/cs153/2018fa/lectures/Lec12-Functions.pdf
https://groups.seas.harvard.edu/courses/cs153/2018fa/lectures/Lec12-Functions.pdf
https://groups.seas.harvard.edu/courses/cs153/2018fa/lectures/Lec12-Functions.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f0b6a04331821a294bad4d08975637b4f363ec5a#page=136
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f0b6a04331821a294bad4d08975637b4f363ec5a#page=136
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f0b6a04331821a294bad4d08975637b4f363ec5a#page=136
https://doi.org/10.1145/960116.54010
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.pdf?from=https://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/remote.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.pdf?from=https://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/remote.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.pdf?from=https://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/remote.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.pdf?from=https://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/remote.pdf&type=exact
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.pdf?from=https://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/remote.pdf&type=exact
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finally-tagless-partially-evaluated-tagless-staged-interpreters-for-simpler-typed-languages/7B2DC44A2127EBBA71ADE63809D9425F
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM Conference on LISP and
Functional Programming, pages 61-78, 1990. URL https://dl.acm.org/doi/pdf/10.1145/
91556.91592

Philip Wadler. The essence of functional programming. In Proceedings of the 19th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 1-14, 1992. URL https:
//dl.acm.org/doi/pdf/10.1145/143165.143169,

Conor McBride and Ross Paterson. Applicative programming with effects. Journal of functional
programming, 18(1):1-13, 2008. URL https://doi.org/10.1017%2FS0956796807006326.

John C Reynolds. The discoveries of continuations. Lisp and symbolic computation, 6:233-247,
1993. URL https://ics.uci.edu/~ jajones/INF102-S18/readings/08_histcont.pdf.

Peter J Landin. Histories of discoveries of continuations: Belles-lettres with equivocal
tenses. In Proceedings of the Second ACM SIGPLAN Workshop on Continuations
(CW'’97), Technical report BRICS NS-96-13, University of Aarhus, page 1. Citeseer,
1997. URL https://citeseerx.ist.psu.edu/document?repid=repl&type=pdf&doi=
14c609276166517edlafbb6e6b84a41bal57030b.

Steven E Ganz, Daniel P Friedman, and Mitchell Wand. Trampolined style. In Proceedings of the
fourth ACM SIGPLAN international conference on Functional programming, pages 18—27, 1999.
URL https://doi.org/10.1145/317636.317779,

RO Bjarnarson. Stackless scala with free monads. Scala Days, 2012. URL https://days2012.
scala-lang.org/sites/days2012/files/bjarnason_trampolines.pdf|

Conor McBride. Clowns to the left of me, jokers to the right (pearl) dissecting data
structures. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 287-295, 2008. URL https://web.archive.org/web/
201707051043051d_/http://www.cis.upenn.edu/ cis39903/static/clowns.pdf|

Daniel Hillerstrom. Foundations for programming and implementing effect handlers. 2022. URL
http://dx.doi.org/10.7488/era/2122.

Serkan Muhcu, Philipp Schuster, Michel Steuwer, and Jonathan Immanuel Brachthauser. Multiple
resumptions and local mutable state, directly. Proceedings of the ACM on Programming
Languages, 9(ICFP):704-733, 2025. URL https://doi.org/10.1145/3747529.

Olivier Danvy. Defunctionalized interpreters for programming languages. ACM Sigplan Notices, 43
(9):131-142, 2008. URL http://jfla.inria.fr/2014/danvy-ICFP08.pdf|

Jeremy Gibbons. Continuation-passing style, defunctionalization, accumulations, and associativity.
arXiv preprint arXiv:2111.10413, 2021. URL https://doi.org/10.48550/arXiv.2111.10413|

149

https://dl.acm.org/doi/pdf/10.1145/91556.91592
https://dl.acm.org/doi/pdf/10.1145/91556.91592
https://dl.acm.org/doi/pdf/10.1145/91556.91592
https://dl.acm.org/doi/pdf/10.1145/143165.143169
https://dl.acm.org/doi/pdf/10.1145/143165.143169
https://dl.acm.org/doi/pdf/10.1145/143165.143169
https://doi.org/10.1017%2FS0956796807006326
https://ics.uci.edu/~jajones/INF102-S18/readings/08_histcont.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=14c609276166517ed1afb56e6b84a41ba157030b
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=14c609276166517ed1afb56e6b84a41ba157030b
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=14c609276166517ed1afb56e6b84a41ba157030b
https://doi.org/10.1145/317636.317779
https://days2012.scala-lang.org/sites/days2012/files/bjarnason_trampolines.pdf
https://days2012.scala-lang.org/sites/days2012/files/bjarnason_trampolines.pdf
https://days2012.scala-lang.org/sites/days2012/files/bjarnason_trampolines.pdf
https://web.archive.org/web/20170705104305id_/http://www.cis.upenn.edu/~cis39903/static/clowns.pdf
https://web.archive.org/web/20170705104305id_/http://www.cis.upenn.edu/~cis39903/static/clowns.pdf
https://web.archive.org/web/20170705104305id_/http://www.cis.upenn.edu/~cis39903/static/clowns.pdf
http://dx.doi.org/10.7488/era/2122
https://doi.org/10.1145/3747529
http://jfla.inria.fr/2014/danvy-ICFP08.pdf
https://doi.org/10.48550/arXiv.2111.10413

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

Olivier Danvy. An analytical approach to program as data objects, 2006. URL https://www.cs.
tufts.edu/comp/150FP/archive/olivier-danvy/d_scientia.pdf|

Atze van der Ploeg and Oleg Kiselyov. Reflection without remorse: revealing a hidden sequence to
speed up monadic reflection. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell,
pages 133-144, 2014. URL https://doi.org/10.1145/2633357.2633360.

Pierre-Louis Curien and Hugo Herbelin. The duality of computation. ACM sigplan notices, 35(9):
233-243, 2000. URL https://doi.org/10.1145/357766.351262.

R Kent Dyvbig, Simon Peyton Jones, and Amr Sabry. A monadic framework for delimited
continuations. Journal of functional programming, 17(6):687-730, 2007. URL https://doi.
org/10.1017/S0956796807006259.

Andrzej Filinski. Representing monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 446-457, 1994. URL https:
//doi.org/10.1145/174675.178047.

Ana Lucia De Moura and Roberto lerusalimschy. Revisiting coroutines. ACM Transactions on
Programming Languages and Systems (TOPLAS), 31(2):1-31, 2009. URL https://doi.org/
10.1145/1462166.1462167.

Roman Elizarov, Mikhail Belyaev, Marat Akhin, and lImir Usmanov. Kotlin coroutines: design and
implementation. In Proceedings of the 2021 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, pages 68—84, 2021. URL
https://www.researchgate.net/profile/Mikhail-Belyaev-3/publication/3556361443_
Kotlin_coroutines_design_and_implementation/links/624c63c34f88c3119cel2a49/
Kotlin-coroutines-design-and-implementation.pdfl

Anders Mgller and Michael | Schwartzbach. Static program analysis. Notes. Feb, 2012. URL
https://users-cs.au.dk/amoeller/spa/spa.pdf.

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the expressive power of user-
defined effects: Effect handlers, monadic reflection, delimited control. Proceedings of the ACM
on Programming Languages, 1(ICFP):1-29, 2017. URL https://doi.org/10.1145/3110257.

Ningning Xie, Jonathan Immanuel Brachthauser, Daniel Hillerstrom, Philipp Schuster, and Daan
Leijen. Effect handlers, evidently. Proceedings of the ACM on Programming Languages, 4
(ICFP):1-29, 2020. URL https://doi.org/10.1145/3408981,

Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: an alternative to monad
transformers. ACM SIGPLAN Notices, 48(12):59-70, 2013. URL https://doi.org/10.1145/
2578854 .2503791.

Andrej Bauer. What is algebraic about algebraic effects and handlers? arXiv preprint
arXiv:1807.05923, 2018. URL https://doi.org/10.48550/arXiv.1807.05923|

150

https://www.cs.tufts.edu/comp/150FP/archive/olivier-danvy/d_scientia.pdf
https://www.cs.tufts.edu/comp/150FP/archive/olivier-danvy/d_scientia.pdf
https://www.cs.tufts.edu/comp/150FP/archive/olivier-danvy/d_scientia.pdf
https://doi.org/10.1145/2633357.2633360
https://doi.org/10.1145/357766.351262
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/1462166.1462167
https://doi.org/10.1145/1462166.1462167
https://doi.org/10.1145/1462166.1462167
https://www.researchgate.net/profile/Mikhail-Belyaev-3/publication/355361443_Kotlin_coroutines_design_and_implementation/links/624c63c34f88c3119ce12a49/Kotlin-coroutines-design-and-implementation.pdf
https://www.researchgate.net/profile/Mikhail-Belyaev-3/publication/355361443_Kotlin_coroutines_design_and_implementation/links/624c63c34f88c3119ce12a49/Kotlin-coroutines-design-and-implementation.pdf
https://www.researchgate.net/profile/Mikhail-Belyaev-3/publication/355361443_Kotlin_coroutines_design_and_implementation/links/624c63c34f88c3119ce12a49/Kotlin-coroutines-design-and-implementation.pdf
https://www.researchgate.net/profile/Mikhail-Belyaev-3/publication/355361443_Kotlin_coroutines_design_and_implementation/links/624c63c34f88c3119ce12a49/Kotlin-coroutines-design-and-implementation.pdf
https://www.researchgate.net/profile/Mikhail-Belyaev-3/publication/355361443_Kotlin_coroutines_design_and_implementation/links/624c63c34f88c3119ce12a49/Kotlin-coroutines-design-and-implementation.pdf
https://users-cs.au.dk/amoeller/spa/spa.pdf
https://doi.org/10.1145/3110257
https://doi.org/10.1145/3408981
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.48550/arXiv.1807.05923

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

Daniel Hillerstrom and Sam Lindley. Shallow effect handlers. In Asian Symposium on Programming
Languages and Systems, pages 415-435. Springer, 2018. URL https://www.research.ed.ac.
uk/files/76099718/shallow_effect_handlers.pdf.

Wouter Swierstra. Data types a la carte. Journal of functional programming, 18(4):423—
436, 2008. URL https://www.cs.tufts.edu/ nr/cs257/archive/wouter-swierstra/
DataTypesALaCarte.pdf.

Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible effects. ACM SIGPLAN Notices, 50
(12):94-105, 2015. URL https://doi.org/10.1145/2887747.2804319|

Oleg Kiselyov. Iteratees. In FLOPS'12: Proceedings of the 11th international conference
on Functional and Logic Programming, 2012b. URL https://okmij.org/ftp/Haskell/
Iteratee/describe.pdf.

Daan Leijen. Algebraic effect handlers with resources and deep finalization. Technical report,
Tech. Rep. MSR-TR-2018-10, Microsoft Research (April 2018), 2018. URL https://www.
microsoft.com/en-us/research/wp-content/uploads/2018/04/resource-vl.pdf.

KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy.
Retrofitting effect handlers onto ocaml. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, pages 206—221, 2021. URL
https://doi.org/10.1145/3453483.34540309.

Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerstrom,
KC Sivaramakrishnan, Matija Pretnar, and Sam Lindley. Continuing webassembly with effect
handlers. Proceedings of the ACM on Programming Languages, 7(OOPSLA2):460-485, 2023.
URL https://doi.org/10.1145/3622814!

Nicolas Wu and Tom Schrijvers. Fusion for free: Efficient algebraic effect handlers. In International
Conference on Mathematics of Program Construction, pages 302—-322. Springer, 2015. URL
https://lirias.kuleuven.be/retrieve/322544.

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpreters. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 333-343, 1995. URL https://dl.acm.org/doi/pdf/10.1145/199448.
199528.

Mark P Jones. Functional programming with overloading and higher-order polymorphism. In
International School on Advanced Functional Programming, pages 97—136. Springer, 1995. URL
http://web.cecs.pdx.edu/mpj/pubs/springschool95.pdf.

Tom Schrijvers, Maciej Pirég, Nicolas Wu, and Mauro Jaskelioff. Monad transformers and modular
algebraic effects: what binds them together. In Proceedings of the 12th ACM SIGPLAN
International Symposium on Haskell, pages 98-113, 2019. URL https://doi.org/10.1145/
3331545 .3342595.

151

https://www.research.ed.ac.uk/files/76099718/shallow_effect_handlers.pdf
https://www.research.ed.ac.uk/files/76099718/shallow_effect_handlers.pdf
https://www.research.ed.ac.uk/files/76099718/shallow_effect_handlers.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/wouter-swierstra/DataTypesALaCarte.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/wouter-swierstra/DataTypesALaCarte.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/wouter-swierstra/DataTypesALaCarte.pdf
https://doi.org/10.1145/2887747.2804319
https://okmij.org/ftp/Haskell/Iteratee/describe.pdf
https://okmij.org/ftp/Haskell/Iteratee/describe.pdf
https://okmij.org/ftp/Haskell/Iteratee/describe.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2018/04/resource-v1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2018/04/resource-v1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2018/04/resource-v1.pdf
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3622814
https://lirias.kuleuven.be/retrieve/322544
https://dl.acm.org/doi/pdf/10.1145/199448.199528
https://dl.acm.org/doi/pdf/10.1145/199448.199528
https://dl.acm.org/doi/pdf/10.1145/199448.199528
http://web.cecs.pdx.edu/mpj/pubs/springschool95.pdf
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3331545.3342595

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

Gordon Plotkin and John Power. Notions of computation determine monads. In International
Conference on Foundations of Software Science and Computation Structures, pages 342—
356. Springer, 2002. URL https://era.ed.ac.uk/bitstream/handle/1842/196/Comp_Eff _
Monads.pdf?sequence=1.

Gordon D Plotkin and Matija Pretnar. Handling algebraic effects. Logical methods in computer
science, 9, 2013. URL https://doi.org/10.2168/LMCS-9(4:23)2013.

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. Effect handlers in scope. In Proceedings of the 2014
ACM SIGPLAN Symposium on Haskell, pages 1-12, 2014. URL https://doi.org/10.1145/
2633357 .2633358|

Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers. Structured
handling of scoped effects. In European Symposium on Programming, pages 462—491. Springer
International Publishing Cham, 2022. URL https://library.oapen.org/bitstream/handle/
20.500.12657/54028/1/978-3-030-99336-8. pdf#page=476.

Cas van der Rest, Jaro Reinders, and Casper Bach Poulsen. Handling higher-order effects. arXiv
preprint arXiv:2203.03288, 2022. URL https://arxiv.org/pdf/2203.03288

Yizhou Zhang, Guido Salvaneschi, and Andrew C Myers. Handling bidirectional control flow.
Proceedings of the ACM on Programming Languages, 4(OOPSLA):1-30, 2020. URL https:
//doi.org/10.1145/3428207.

152

https://era.ed.ac.uk/bitstream/handle/1842/196/Comp_Eff_Monads.pdf?sequence=1
https://era.ed.ac.uk/bitstream/handle/1842/196/Comp_Eff_Monads.pdf?sequence=1
https://era.ed.ac.uk/bitstream/handle/1842/196/Comp_Eff_Monads.pdf?sequence=1
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/2633357.2633358
https://library.oapen.org/bitstream/handle/20.500.12657/54028/1/978-3-030-99336-8.pdf#page=476
https://library.oapen.org/bitstream/handle/20.500.12657/54028/1/978-3-030-99336-8.pdf#page=476
https://library.oapen.org/bitstream/handle/20.500.12657/54028/1/978-3-030-99336-8.pdf#page=476
https://arxiv.org/pdf/2203.03288
https://doi.org/10.1145/3428207
https://doi.org/10.1145/3428207
https://doi.org/10.1145/3428207

	Воспоминания о ФП
	Термы и редукция
	Типы
	Функции в Haskell
	Данные в Haskell
	Классы типов в Haskell
	Монады в Haskell

	Параметрический полиморфизм
	Параметрический полиморфизм в языке
	Эмуляция типовых абстракций и аппликаций (Proxy)
	First-class polymorphism
	Higher-order/kinded polymorphism
	Обобщённые алгебраические типы данных (GADTs)
	Структуры на уровне типов, data promotion

	Реализация параметрического полиморфизма
	Mономорфизация
	Стирание типа
	Гибридный подход
	Использование виртуальной таблицы свойств типов

	Полиморфизм по конвенции вызова
	Разновидности runtime представлений в Haskell
	Классификация значений по runtime представлению
	Representation polymorphism

	Специальный (ad-hoc) полиморфизм
	Классы типов в языке
	Словари
	Неявные аргументы
	Вывод инстансов
	Построение типа по значению
	Имплиситы и когерентность
	Правила (rules) и специализация
	Отступление: дефункционализация
	Эмуляция полиморфизма высших порядков

	Семейства
	Data families
	Synonym families
	Инъективные семейства
	Семейства первого класса

	Кайнд Constraint
	Использование ad-hoc полиморфизма
	Сериализация
	Экзистенциальные типы
	Разрешение имён
	Несинтаксические типовые эквивалентности, System FC
	Коерции и роли
	Type reflection
	Data reflection
	Открытые структуры
	Исключения и открытая иерархия
	Легковесные частичные стек-трейсы
	Кастомизируемые ошибки типизации

	Типы данных
	Вариантность
	Изоморфизм
	Кардинальность: суммы, произведения, экспоненты
	Алгебраическое представление типа

	Рекурсивные типы
	Просто список
	Неподвижная точка функтора
	Схемы рекурсии

	Всё через свёртки
	Deforestation & list fusion
	Visitor pattern

	Всё через развёртку
	Абстрактные типы данных
	Stream fusion

	Вездесущий дуализм
	Push vs pull streaming
	Data vs codata

	Приложение: категория алгебр

	Интерпретаторы
	Интерпретаторы как основа основ
	Башня интерпретаторов
	Интерпретаторы повсюду
	Интерпретаторы и семантика языков программирования
	Встроенные доменно-специфичные языки (eDSL)
	Пример: библиотека Accelerate

	Типы значений
	Untyped tagless interpreters
	Typed tagged interpreters
	Typed tagless interpreters

	Связывания и функции первого класса
	Семантика имён
	Подстановки
	Окружение
	Замыкания
	Типизированный контекст
	Meta-circular интерпретация
	Синтаксис высшего порядка
	Сериализация функций

	Tagless final интерпретаторы
	Разные интерпретации для shallow embedding
	Дойти до конца
	Восстановление композиционности семантики
	Typed tagless final interpreter
	Встречаем старых друзей: Applicative, Monad

	Expression problem
	Копроизведение функторов
	Произведение алгебр

	Продолжения (continuations)
	Концепция продолжений
	Reduction semantics
	Continuation semantics
	Продолжения первого класса

	Продолжения своими руками
	Дефункционализация и аккумуляторы
	Monad Cont
	call/cc

	Delimited continuations
	Реализация операторов
	В Monad Cont

	Приложения продолжений
	Всё через продолжения
	The mother of all monads
	Генераторы и корутины

	Эффективная работа с продолжениями
	Contiguous stack
	Сегментный стек
	Finite state machine (FSM)

	Эффекты и модульные интерпретаторы
	Понятие эффекта
	Хендлеры эффектов
	Хендлеры через ограниченные продолжения
	Эффективная реализация хендлеров
	Встроенные хендлеры как явная клиент-серверная коммуникация
	Расширяемые сообщения и пересылка
	Свободные монады
	Хендлеры через свободные монады
	Приложения хендлеров
	Трансформеры монад
	Алгебраичность и эффекты высших порядков

