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PREFACE

The study of real analysis is indispensible for a prospective graduate student of pure or
applied mathematics. It also has great value for any undergraduate student who wishes
1o go beyond the routine manipulations of formulas to solve standard problems, because
it develops the ability to think deductively, analyze mathematical situations, and extend
rdcas to a new context. In recent years, mathematics has become valuable 1n many areas,
including economics and management science as well as the physical sciences, engineering,
and computer science. Qur goal 1s to provide an accessible, reasonably paced texthoak 1n
the fundamental concepts and techniques of real analysis for students in these areas. This
book is designed for students who have studied calculus as 1t 1s traditionally presented in
the United States. While students find this book challenging, our experence 1s that serious
students at this level are fully capable of mastering the materal presented here.

The first two editions of this hook were very well received, and we have taken pains
10 majntain the same spirit and user-friendly approach. In preparing this edition, we have
cxamined every section and set of exercises, streamlined some arguments, provided a few
new examples, moved certain topics to new locanons, and made revisions. Except for the
new Chapter 10, which deals with the generalized Riermann integral, we have not added
much new matenal. While there 18 more malcrial than can be covered in ane scwmesler,
instructors may wish to use certain topics as onors projects or extia credit assignments,

It is desirable that the student have had some exposure to proofs, but we do not assume
that to be the case. To provide some help for students in analyzing proofs of theorems,
we include an appendix on “Logic and Proofs” that discusses tapics such as implications,
gquantifiers, negations, contrapositives, and dilferent types of proofs. We have kept the
discussion informal to avoid becoming mired in the technical details of formal logic. We
fcel that it 18 a more useful expenence to leam how to construct proofs by {irst watching
and then doing than by reading about techniques of proof.

We have adopted a medium level of gencrality consistently throughout the book: we
present results that are general enough to cover cases that actually arise, but we do not strive
for maximum generality. In the main, we proceed from the particular to the acneral. Thus
we consider continuous functions on open and closed intervals in detail. bur we are careful
to present proofs that can readily be adapted to a more general situation. (In Chapter 11
we take particular advantage of the approach.) We believe that 1t 1s important to provide
the student with many examples 1o aid them in their understanding, and we have compiled
rather extensive lists of exercises to challenge thern. While we do leave routine proofs as
exercises, we do not try to attain brevity by relegating difficult proofs to the exercises.
However, in some of the later sectians, we do break down a moderately difficult exercise
into a sequence of steps.

In Chapter 1 we present a brief summary of the notions and notations for sets and
functions that we use. A discussion of Mathematical Induction 1s also given, since inductive
proofs arise frequently, We also include a short section on finite, countable and infinite sets.
We recommend that this chapter be covered quickly, or used as background material,
returning later as necessary.
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Chapter 2 presents the propertics of the real number system . The first two sectons
deal with the Algebraic and Order Properties and provide some praciice in writing proofs
of elementary results. The crucial Completeness Property is given in Seetion 2.3 as the
Supremum Property, and its ramifications ave discussed throughout the remainder of this
chapler.

In Chapter 3 we give a thorough treatment of sequences in & and the associated hirat
concepls. The material is of the greatest importance; fortunately, students find it rather
natural although i1t takes some time for them to hecome fully accustomed to the usc of £.
In the new Secuon 3.7, we give a bricf introduction to infinite series, so that this important
topic will not be omutted due to a shortage of time.

Chapter 4 on lumuts of functiens and Chapter 5 ¢n continuous {unctions constitute
the heart of the book. Our discussion of himits and continuity relies heavily on the use of
sequences, and the closely parallel approach of these chapters reinforces the understanding
of thesc essential topics. The fundamental propertics of continuous functions (on intervals)
arc discussed 1n Section 5.3 and 5.4, The notion of a “gauge™ 15 mtroduced i1n Section 5.5
and used to give alternative proofs of these properties. Monotone functions are discussed
in Section 5.6.

The basic theory of the derivative 1s given in the first part of Chapter 6. This impartant
material is stundard, except that we have used a result of Carathcodory to give simpler
proofs of the Chain Rule and the Inversion Theorem. The remainder of this chapter consists
of applications of the Mean Value Theorem and may bc explored as time permuls.

Chapter 7, dealing with the Riemann ntegral, has been completely revised in this
edition. Rather than introducing upper and lower integrals (as we did in the previous
editions), we here define the integral as a limit of Riemann sums. This has the advantage that
1t 18 consistent with the students’ first exposure to the integral in calculus and in apphications;
sinceitis notdependent on orderproperties. it permits immediate generalization to compiex-
and vector-valued functions that students may encounter in later courses. Contrary to
popular opinion, this limit approach 1s no more difficult than the order approach. It also 1s
consistent with the seneralized Riemann integral that is discussed in detail 1n Chapter 10.
Section 7.4 gives a brief discussion of the familiar numerical methods of calculating the
integral of continuous functions.

Sequences of functions and uniform convergence are discussed 1n the first two sec-
tions of Chapter 8, and the basic transcendental functions are put on a finm foundation in
Section 8.3 and 8.4 by using uniform convergence. Chapter 9 completes our discussion of
infinite scries. Chapters 8 and 9 are intrinsically important, and they also show how the
mnatcrial in the eaglier chapters can be applied.

Chapter 10 is completely new; it is a presentation of the generalized Riemann integral
{sometimes called the “Ienstock-Kurzweil” or the “gauge™ integral). It wall be new to many
readers, and we think they will be amarzed that such an apparent!y minor modification of
the definition of the Riemann integral can lead to an integral that 18 more general than the
Lebesgue integral. We belicve that this relatively new approach to integration theory 1s both
accessible and exciting to anyone who has studied the basic Riemann integral.

The final Chapter 11 deals with topological concepts, Earlier proofs given for intervais
arc extended to a more abstract setting. For example, the concept of compactness (s given
proper emphasis and metre spaces are introduced. This chapter will be very useful for
students continuing to graduate courses in mathematics.

Throughout the book we have paid more attention to topics from numerical analysis
and approxiumation theory than is usual We have done so because of the importance of
these arcas. and 1o show that real analysis 18 not merely an exercise in abstract thought.
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We have provided rather lengthy lists of exercises, some easy and some challenging.
We have provided “hints” for many of these exercises, 1o help sludents get started toward a
solutian or to check their “answer”. More complete solutions of almost every exercise are
given in a separate Instructor’s Manual, which is available to teachers upon request to the
publisher.

It 15 a satisfying experience to sec how the mathematical maturity of the students
tncreases and how the students gradually learn to work comfortably with concepts that
imtially seemed so mysterious. But there is no doubt that a lot of hard work 1s required on
the part of both the students and the teachers.

In order to enrich the historical perspective of the book, we include brief biographical
sketches of some famous mathematicians who contributed to this area. We are particularly
indebted to Dr. Patnck Muldowney for providing us with his photograph of Professors
Henstock and Kurzweil. We also thank John Wiley & Sons for obtainina photographs of
the other mathematicians.

We have received many helpful comments from colleagues at a wide variety of 1n-
stitutrons who have tavght from earlicr editions and liked the book enough to express
their opinions about how to improve it. We appreciaie their remarks and suggestions, even
though we did not always follow their advice. We thank them for communicating with us
and wish them well in their endeavors to impart the challenge and cxcitement of learning
real analysis and “real” mathematics. It 1s our hope that they will find this uvew edition even
more helpful than the earlier ones.

February 24, 1999 Robert G. Bartle
Ypsilanti and Urhana Donald R. Sherbert
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CHAPTER |

PRELIMINARILS

In thus initial chapter we will present the background necded for the study of real analysis.
Section 1.1 consists of a hnef survey of sel operations and functions, two vital tools Tor all
of mathematics. In it we establish the notation and statc the basic definitions and properties
that w1ll be used throughout the baok. We will regard the word “set” as synonymous with
the words “class”, “collection™, and ““famuly™, and we will not define these terms or give a
list of axioms for set theory. This approach, often referred 1o as "nave” set theory, 1s quite
adequate for working with sets in the context of real analysss.

Section 1.2 1s concerned with a special method of proof called Mathematical Induction,
It is related to the fundamental properties of the natural number system and, though it 18
resiricted to proving particular types of statements, it 18 fiportant and used frequently. An
informal discussion of the different types of proofs that are used in marthematics, such as
contraposttives and proofs by contradiction. can be found in Appendix A.

Tn Sectian 1.3 we apply some of the tools presented i the first two scctions of this
chapter to a discussion of what it meuns for a sct to be finite or infinite. Careful definitians
are given and some basic conscquences of thase definitions are derived. The important
resul that the sct of rational numbers is countably infinite 1s established.

In addition to introducing basic concepts and cstablishing terminology and notation,
this chapter alsa provides the reader with sore initjal experience in working with preciss
definitions and writing proofs. The carctul study of real analysis unavoidably entails the
reading and writing of proofs, and like any skill.1t1s necessary to practice. This chapter 18
a starting point.

Section 1.1 Sets and Functions

To the reader: In this section we give a brief review of the terminology and notation that
will be vsed in this text. We suggest that you look through quickly and come back later
when you need to recall the meaning of a term or a symbol.

If an element x isinaset A, we wri'e

x € A
and say that x is a member of A, or that x belongs to A If x 15 nor in A, we wiite
& A,
If every clement of asct A also belongs to a set B, we say that A 15 4 subsef of B and write
ATR or ED A

We say that asct A 1s a proper subset of asct #1f A B, bul there is at least one element
of B thatis not in A, In this case we sometimes writc

ACRE.
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1LY Definition Two sets A and B are said to be equal, and we write A = B, 1f they
contain the same elements,

Thus, to prove that the sets A and B are equal, we must show that
ACR and B C A.

A set1s normally defined by either listing its elements explicitly, or by specifying a
propzrty that determines the elements of the set. If P denotes a property that is meaningful
and unambiguous for clements of a set S, then we write

(x € §. P{x)}

for the set of all elements x 1in S for which the property P is true. If the set § 15 understood
from the context, then it is often omitled in this notation.

Several special sets are used throughout this book, and they are denoted by standard
symbols. (We will use the symbol = to mean that the symbol on the left is being defined
by the symbol on the nght.)

The sct of natural numbers N .= {1,2,3, -},

The sct of integers Z == {0, 1, —1,2, =2, -},

The set of rational numbers Q .= {m/n - m,n € Z and n #£ 0},
The set of real numbers K.

The set I of real numbers is of fundamental impartance for us and will be discussed
at length in Chapter 2.

1.1.2 Fxamples (a) The set

xeN:x*=3x42=0)

consists of those natural numbers satisfying the stated equation. Since the only solutions of
this quadratic cquation are x = | and x = 2, we can denotz this sct more simply by {1, 2}.
(b) A natural number n i1s even if it has the form n = 2k for some k¥ € N. The set of even
vatural numbers can be writlen

{2k : k € N},

which is less cumbersome than {r € N . n = 2k, k € N}. Similarly, the set of odd natural
numbers can be written

{2k —1:k e N}, 0

Set Operations

We now define the methods of obtaining new scts from given ones. Note that these sct
aperations are based on the meaning of the wards “or”, “and”, and “not”. For the union,
it 1s important to be aware of the fact that the word “or” is used in the inclusive sense,
allowing the possibility that x may belong to both scts. In legal terminology, this inclusive

sense 1S someumes indicated by “and/or”.

1.1.3 Definition (a} The union of sets A and B is the set

AUB ={x:xecAorx € B}.
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fb) The intersection of the sets A and B is the set
ANRB ={x:xeAandx € B},
(¢) The complement of B relative to A is the set

AVB = {x:xc Aandx ¢ B}.

‘ r___\‘\

VA \é} ‘
=_/

AL B AND B A8 [

Figure .11 (a)ALB (0 ANB (<) AVB

The set that has no clements is called the empty sct and 1s denoted by the symbal @.
Two sets A and B are said to be disjoint if they have no ¢lements in common; this can be
expressed by writing AN K = .

To 1llustrate the method of proving set cqualities, we will next establish onc of the
DeMorgan laws for three scts. The proof of the other one 15 left as an exercisc.

1.1.4 Theorem [fA. B C arcsers, then

(a) AVB UC) — (ALB) M (AVC),
(b) AVB Ny = (A\B) U(A\C)

Proof.  To prove (a), we will show that every element in AN(B J C) is contained in both
(A\B) and (AVL), and conversely.

If x isin Ay(B L ), then x 1510 A, but x 15 not 1n B LU (7 Hence x 151n A, but x
is neither in 8 nor in . Therefore, x is in 4 but not B, and x is in A but not C. Thus,
x € A\B and x € A\C, which shows that x € (A\B) N {4\ ().

Conversely, if x € (A\BY M (A\C), then x € (A4WB) and x € (A\(). Hence ¥ € A
and bothx ¢ B and x ¢ € Therefore, x ¢ Aand x ¢ (B JC).sothatx € AN(BUCY.

Since the scts (AYVR)Y M (ANC)Y and AW B L ) contamn the same clements, they are
equal by Defimtion 1.1.1, QE.D.

There are times when it 1s desirable to form unons and intersections of more than two
sets. T'or a finite collection of sets {4, A, -~ A} their umon is the set A consisung of
all elements that belong to ar least one of the sets A, and theiv intersection consists of all
elements that helong to all of the sets A

This is extended to an infinite collection of seis [A AL AL -} as follows. Their
union is the set of clements that belong to at least one of the sets A . In this case we

Wt

L_/| A= {x x € A _forsomen ¢ NJ.
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Similarly, their intersection is the set of clements that belong to all of these sets A . In this
Case we wrile

r-\| A = [x:x A foralln € N}_

n=1

Cartesian Products _

In order to discuss functions, we define the Cartesian product of two gets.

1.1.5 Definition If A and B are nonempty scts, then the Cartestan product A x B of A
and B 1s the set of all ordered pairs (a, ) witha € A and b € B. That 1s,

Ax B ={(ab):ae A be B}.

Thusif A ={1,2,3}and B = {1, 5}, thenthe set A x B 15 the set whose elements arc
the ordercd pairs

(1L, (135, @5 @5 3.1, (3.5

We may visualize the set A x B as the set of six points in the planc with the coordinates
that we have just listed.

We often draw a diagram (such as Figure 1.1.2) to indicate the Cartesian product of
two sets A and B. However, it should be reahized that this diagram may be a simplification,
For example, if A:={xreR: I <x<2}and B:={veR: 0y <lor2=<y<3}
then instead of a rectangle, we should have a drawing such as Figure 1.1.3.

We will now discuss the fundamental notion of a function or a mapping.

To the mathematician of the carly ninetcenth century, the word “function” meant a
definite formula, such as f(x) := x* 4- 3x — 5, which associates to cach real number x
another number f (x). (Here, f(0) = -5, f(1) = —1[, f(5) = 35) This understanding
excluded the casc of different formulas on different intervals, so that functions could not
he defined "in pleces”.

AxE

Ax B

Figure 1,1.2 Figure 1,1.3
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As mathematics developed, 1t became clear that a more general definition of “function”
would be useful. It also becamc evident that it is important to make a clear distinction
between the function itself and the values of the function. A revised definition might be:

A function f froma ser A into a set B 1s a rule of correspondence that assigns 1o
gach clement x in A a uniquely derermincd element f(x) in 5.

But however suggestive this revised definition might be, there is the difficuity of interpreting
the phrase “rule of correspondence”. In order to claruly this, we will express the definition
entircly in terms of sets; in effect. we will debne a function to be its graph. While this has
the disadvantage of being somewhat artificial, it has the advantage of being unambiguous
and clearer.

1.1.6 Definition Let A and B be sets. Then a function from A to B 1saset f of ordered
paurs 1t A x B such that for cach a € A there exists a unique € B with {a, ») € f (In
other words, if (a. b) € fand (a. &)Y e f,thenb =h")

The sct A of first elements of a function f 1s called the domain of f and i3 often
denoted by D(f). The sct of all sccond clements in f 1s called the range of f and is
often denoted by R(f). Note that, although D(f) — A, wec only have R(f) € B (Sce
Figure 1.1.4))

The essenfial condition that:

(a,b) e f and (a, by € f implies that b=15

15 somctimes called the vertical line test. In geometrical terms 1t says every vertical ling
¥ = a with @ € A intersects the graph of f exactly once.
The notation

S A= B

is often used to indicate that f is a function from A into B. We will also say that f 15 a
mapping of A into B, orthat f maps A into B. If (a, ») 15 anclementin £, it 18 customary
to wnfe

b= f(a) Or soImctimes a— b

Fe A = Df)

Fipure 1.1.4 A furcticn as a graph
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If 5 = f(«a), we often refer to b as the value of £ at 4, or as the image of @ under f.

Transformations and Machines -

Aside from using graphs, we can visualize a function as a transformation of the set D(f) =
A 1nto the set R(f) € B. In this phrascology, when {a, b) € f, we think of f as taking
the element g from A and “transforrung” or “mapping” it into an element 5 = f{a) n
R(f) € B. We often draw a diagram, such as Figurc 1 1.5, even when the sets A and B are
not subsets of the planc.

/

Figure LIS A function as a transformation

Therc is anothcr way of visualizing a function: namely, as a machine that accepts
clements of D(f) — A as inputs and produces corresponding elements of R(f) € 8 as
outputs. If we take anelement x € D(f) and putitinto f, then out comes the corresponding
value f(x). If we put a different element y € D{f) into f, then oul comes f(y) which may
or may not differ from f{x). T{ we try to insert something that does not belong 1o D(f)
into f, we find that itis not accepted, for f can operate only on elements fram D{ /). (Sce
Figure 1.1.6.)

This last visualization makes clear the distinction between f and f{x): the first 3s the
machine wself, and the second is the output of the machine f when x 1s the input. Whercas
no onc is likely to confuse a meat grinder with ground meat, enough people have confuse
functions with thetr values that it 1s worth distinguishing between them notationally.

'
ST

il
f

Figure 1.1.6 A function as a machine



1.1  SETS AND FUNCTIONS 7

Direct and Inverse Images

Let f : A — B be a function with domain D(f) = A and range R(f) C B.

1.1.7 Definition If E is a subset of A, then the direct image of E under f is the subset
f(E) of B given by

fE) ={f(x):x € E}.

If H is a subset of B, then the inverse image of H under f is the subset f~'(H) of A
given by

FUH)=(xeA: f(x) € H).

Remark The notation f~' (H) used in this connection has its disadvantages. However,
we will use it since it is the standard notation.

Thus, if we are given a set E C A, then a point y, € B is in the direct image f(E)
if and only if there exists at least one point x; € E such that y, = f(x,). Similarly, given
a set H C B, then a point x, is in the inverse image f~'(H) if and only if y, = f(x,)
belongs to H. (See Figure 1.1.7.)

1.1.8 Examples (a) Let f : R — R be defined by f(x) := x2. Then the direct image
oftheset E:={x:0<x <2}istheset f(E)={y:0<y <4}

If G := {y:0 <y < 4}, theo the inverse image of G is the set f (G) = {x : =2 <
x < 2}. Thus, in this case, we see that f~'(f(E)) # E.

On the other hand, we have f (f_'(G)) =G.Butif H:={y:—-1<y<1}, then
we have f (f1(H))={y:0<y=<1}#H.

A sketch of the graph of f may help to visualize these sets.
(b) Let f: A— B,andlet G, H be subsets of B. We will show that

fYUGNH)C 1 (GYn f1(H).

For, if x € f'(GN H), then f(x) € GN H, so that f(x) € G and f(x) € H. But this
implies that x € f"(G) andx e f_'(H).whencex € f‘l(G) N f_'(H).Thus the stated
implication is proved. [The opposite inclusion is also true, so that we actually have set
equality between these sets; see Exercise 13.] a

Further facts about direct and inverse images are given in the exercises.

Figure 1.1.7 Direct and inverse images
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Special Types of Functions

The following definitions identify some very important types of functions.

1.1.9 Definition Let f: A — B be afunction from A to B

(a) The function f 1s said to be injective (or to be one-one) if whenever X, # x,, then
f(x,) # f(x,). If £ isaninjective funcuion, we also say that £ 15 an injection.

{(b) T'he function S 15 said to be surjective (or to map A onfe B)if f(A) = B that is, if
the range R(f) = B.If f 15 a surjective function, we also say that f is a surjection.

(c) If f1sbothinjective and surjective, then f is suid to be bijective. If f 15 bijective, we
also say that f is a bijecfion.

[n order to prove that a function f 18 injective. we must establish that:
forall x,, xy in A 0f f{x} = f(x,)}, then x, = x,.

To do this we assume that f(x,) = f(x,) and show Lhat x, = x,.
(In other words, the graph of f sausfics the first horizontal line test: Every horizontal
linc y = & wuh b € B intersects the graph f in at most one polnt. ]

+ To prove that a function f is surjective, we must show that for any » € B there exists at
iezst one x € A such that f(x) = b
[In other words. the graph of f satishes the second harizontal line test: Every horizontal
line ¥y = p with b € B intersects the graph f in af least onc point.]

1.1.10 Example TetdA ={x e R x & }anddefine f(x) .= 2x/(x — V) forallx £ A
To show that f is injective, we take x; and x, 1n A and assume that f{x ) = f(x,). Thus
we have

which implies rhat x, (x, — 1) = x,(x, - 1), and hence x; = x,. Therefore [ 15 Injective.

To deterrmune the range of f, we solve the equation y = 2x/(x -~ 1} for x in erms o
y. We obtain x = v/(y — 2), which 1s meaningful for y # 2. Thus the range of f 1s the se
B :={yeXR;:v#2} Thus. f is a bijection of A onio B. : -

Inverse Functions

If fis a function from A into B, then f 15 a special subset of A % B (namely, one passin;
the vertical line test) The set of ordered pairs in B x A obtained by interchanging th
members of ordered pairs in f is not gencrally a function. (That 1s, the set f may not pas
bnth of the horizontal line tests) However, if £ is a bijection, then this interchange dog
lead to a function, called the “inverse function” of f.

1.1.11 Definition If f: A — B isahijectionof A onto B, then
g:=—{b,a)ye Bx A:i(a bye [}

is a function on B into A. This function is called the inverse function of f, and s denote
by £~ The function £~ is also called the inverse of f
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We can also cxpress the connection between f and its inverse f | by noting that

D{fH) = R(f"') and R(f) = D(f_]) and that
b= fia) if and only 1f a—= f b,
For example, we saw 1n Example 1.1.10 that the function
2x
flx)i=—
x =1

is a bijection of A '={x € R :x £ 1} onta the set B = {y ¢ R:y £ 2} The function
imverse to f 1s given by

7y = __y? for y € B.
y- 2

Remark We introduced the notation f~'(#) in Definition 1.1.7. It makes sense even if
f does not have an inverse function. ITowever, if the inverse function £~ does exist, then
f Y(H) is the direct image of the set € B under f b

Composition of Functions _

It often happens that we want 1o “composc” two functions f, g by first {inding f{x} and
then applying g to get g{f(x)}; however, this is possible only when f(x) belongs to the
domain of g. In order to be able to do thus for all f(x), we must assume that the range of
f is contained in the domain of g. (See Figure 1.1.8.)

1.1.12 Definition T1f f: A — B and ¢: B — C, and if R(f) C D(g) = R, then the
composite function g o f (note the order!) 18 the funciion from A into C defined by

(go filx) . =g([f(x)) forall x € A.
1.1.13 Examples (a) The order of the composition must be carefully noted. For, let f
and g be the functions whose values at x ¢ R are given by

flx):=2x and  g(x) —3x* -

Since D(g) = Rand R(f) € X = D(g), then the domain (g o f) 15 alsocqual to iR, and
the compaosite function g » [ 1s given by

(go fH(x) =3(2x)" — 1 =12x* — |

Figure 1,1.8 The composition of f and g
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On the other hand, the domain of the composite {function f o g 15 also R, but
(Fog)x)=2(3x*—1) =6x* =2,

Thus, in this case, we have g o f # [ = 5.

(b) In considering g o f, some care must be excrcised to be surc that the range of £ is
contained in the domain of g. For example, 1f

Flx)=1-x" and g(x) = Jx,
then, since D(g) = {x : x > 0}, the composite function g o f 15 given by the formula
(o H)=VI1—x*

only for x € D(f) that satisfy f{x) = 0; that is, for x satisfying —1 < x < |.
We note that if we reverse the order, then the composition f o g is given by the formula

(fogxy=1-—1x,

but anly for those x in the domain 12(g) = {x : x = 0}. O

We now give the relationship between composite {unctions and inverse images. The
proof 1s left as an instructive exercise.

1.1.14 Theorem [et f: A — HBandg:B — C be functions and let H be a subset of
C. Then we have

(go N7V HY=f (g '(HY.
Note the reversal in the order of the functions.

Restrictions of Functions

1f f: A — Bisafunction and if A, C A, we can define a function f, : A, — B by
filx) = fx) for x e A,

The function f| 15 called the restriction of f to A, Sometimesitis denoted by f; = f|A,.

It may seem strange to the reader that one would ever choose to throw away a part of a
function, but there are some good reasons for doing so. For example, if f : R > Risthe
squaring function:

fix) = x* for x e X,

then f 1s not injective, so it cannot have an inverse functon. However, if we restrict f to

thesct A, := {x : x = 0}, then the restricion f|A, is a bijection of A, onto A,. Therefore,
this restriction has an inverse function, which 18 the positive square root function. (Sketch
a graph.)

Similarly, the trigonometric functions S(x) := sinx and C{x) := cos x arc not injective
on all of K. However, by making suitable restrictions of these functions, one can obtain
the inverse sine and the inverse cosine functions that the reader has undoubtedly already
encountered.
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Exercises for Section 1.1

16.
17.

1 A and B are scts, show that A € Bafandonlyif A "B = A,
Prove the second De Morgan Law [Theorem 1.1.4(b}].

Prove the Distributive Laws:
8) Ar{BLO)={ANBHIAN,
)y ALRrCy={AUBY"(4JLY,

The symmetric diffevence of two scts A and B is the set D of all ¢lements that belong to cither
A or B but net both. Represent I with a diagram.

(a) Show that D = (A\8) S (B\A).

(b} Show that D 1s also given by D = (A U B)\(A N RB).

Forcachn ¢ N let A, — {(n - 1}k : k € N},

(a) What s Al M A:?

(b) Determine the sets [ J{A, c»n € N}and (Y{A :n e ).

Draw diagrams in the plane of the Cartesian products A x B forthe given sets A and B.

(a) A—{xeR 1 <x<2ui=x=4}, B=kekK: x=]orx =2}

by A={1,23}, B={xreck:]=<x =<3

et A =B :={xelkR:=1<x < i}and consider the subset C ‘= ((x, ) : x> —y? = 1} of

A x B Tsthis set a function? Explain.

Let f(x) =1/x". s £0, x e &

() Determine the direct image f(E)Ywhere F = {x c R 1 < x < 2}

(b) Determune the inverse image f "Gywhere G:={xcE:1<x <4},

Letglx) = x” and f(x) ;= x { 2forx € [, 2nd let A be the composite function & 1= g o f.

{2) Tind the direct image MEYof £ = {x e X : 0 <x = [}

{t) Find the inverse irnage A NGyl G i=(xeR:0<x <4

[et f{x) - vforxc R, andlet F—f{xreR: =l <x <fand F— (x e R: 0 <x < 1}.

Show that ENF = {0} and f(ENF) = [0} while f(E)= f(F) ={yCcR . 0<y=<l}

Hence f(E N F)isaproper subsctof f{E) N f{#). What happens if 0 1s deleted from the sets

E and F?

[.et f and £, F be asin Exercise 10. Find ths sets EAF and £(F)y f{F) and show that it i3 no!

toue that f(ENF) © fLENf(F)

Show that if f . A — 5 and E, F are subsets of A, then f(E JF) = f(EYU f(F) and

FLEDF)C f(E)YD f(F). :

Show that if £: A » B and G, H are subsets of B, then [/ (G UH)Y = [ {(G)U f “(H)

and f (GNP HY= £ UGN (H).

Show that the function f defined by f(x) = x/vx> + 1.x € R, is a bijection of R onto

{(v:—=1 =y «l}

Fora. b € X witha =« b find an explicit bijectionof A = {x g «x <« blonto B :={y:0 «

y < 1}

Give an example of two functions f, g on IR to R such that f # g, butsuch that f cg = g ¢ f.

(a) Show thatif f: A — A isinjective and £ C A, then f" (f(F)y — E. Give an cxamplc
to show that cguality need not hold if £ 18 not injective.

(b Showthatif f: A —» Bissurjective and H C B, then f(f_l(U}) = H. Give an example
to show that equality need not hold if f ja not surjective.

{a) Supposc that f is an injection. Show that Flo f(x) =x for all x € D(f} and that

fofT\(y)=yforaly € R(f)
(b)Y If f1s abijection of 4 onto B, show that flisa bijection of B onto A,
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18 Prove that if £+ A > X is bijective and g B -> (s bijective, (hen the coMposile g o fisu
btjective map of A onto C.

200 let f: A — Bandp: B — ( be tunctions.
(&) Show thatif g o f is injective, then 15 injective,
(b)  Show thatif g ¢ f is surjective, then g is surjective,

o]

Prove Theorem 1.1.14.

I
I

L.et f. ¢ be functions such that (g » fi(x) = x forall x € D(f) and (f o g)(3) = v for all
y € D(g). Provethat g = § '

Section 1.2 Mathematical Induction

Mathemancal Induction 1s a powerful method of proof that is frequently used to establish
the validity of statements that are given in terms of the natural numbers. Although its utility
s restricted to this rather special context, Mathematical Induction is an indispensable ol
in all branches of mathematics. Since many induction proofs follow the same formal lines
of argument, we will often stafe only that & result follows from Mathematical Induction
and leave it to the reader to provide the necessary details. In this section, we will state the
principle and give several examples to illustrate how inductive proofs proceed.
We shall assume fanulianty with the set of natural numbers:

N:-—{1,2.3 - }.

with the usual arithmetic operations of addition and multiplication, and with the meaning
of a natural number being less than another one. We will also assume the following
{undamental property of N.

1.2.1 Well-Ordering Property of N Every nonempry subset of N has a least elemen:,

A more detailed statement of this property is as follows: If § is a subset of ¥ and if
S #£ ¢, then there exists m € Ssuchthatm < kforallk € S.

On the basis of the Well-Ordering Property, we shall derive a version of the Principle
of Mathematcal Induction that is expressed in terms of subsets of N.

1.2.2 Principle of Mathematical Induction [l.er § be a suhset of N that possesscs the
two properties:
(1Y The number 1 € S.
(2) Forcveryk e Nifk € S, thenk + 1€ §.
Then we have § = N,

Proaf. Suppose to the contrary that § # N. Then the set N\ S is not empty. so by the
Well-Ordening Principle it has a least element m. Since 1 € § by hypothesis (1), we know
that s > 1. But this implies that m — 1 15 also a natural number. Since m — 1 < = and
since m 15 the Jeast element in N such that m ¢ S, we conclude thatm - 1 € §.

We now apply hypothesis (2) to the element k :=m — 1 1n S, to infer that k + 1 =
{(m — 1) + 1| = mbelongs to §. Bul this statement contradicts the fact that m ¢ S. Since m
was obtained from the assumption that N\ § 1s not empty, we have obtained a coniradiction.
Therefore we must have § = N, QED.
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The Punciple of Mathematical Induction is often set forth in the framework of propes-
figs or statenients aboul natural numbers. If P(n) 15 a meaningful statement about 1 € Iy,
then £ (n) may be true tor some values of n and faise for others. For example, 1f P (n) is
the statement; “n? = n”. then P (1) s true while Pi(n) s false foralln = 1.n € N. On
the other hand, if P,(n) is the statement: “i® = 1", then P,(1) is false, while P,{n) 1s true
forally > 1, n ¢},

In this context, the Prinziple of Mathematical Induction can be formulated as follows.

Forcachn € N, let P(n) be a statemnent abour n, Suppose rhat:

(1) P{1)y /s true.
(2y Foreveryk € W, «f P(k) is true, then Pk + 1) is true.

Then P(n) Jstrie foralln € ™.

The connection with the preceding version of Mathematical Induction, givenn 1.2.2,
15 made by letting S 1= {» ¢ N P(n)1strue}. Then the conditions (1) and (2) of 1.2.2
correspond exactly to the conditions (17) and (27), respectively. The conclusion that § = Iy
In 1.2.2 corresponds to the conclusion that P (n) 1s tree forall n € Iv.

In (2) the assuinption “if P (k) js true” 15 called the induction hypothesis. In estab-
lishing (2), we are not concerned with the actual truth or falsity of P (&), but only with
the validity of the implication “if P(£). then P{k | 1) For example, if we consider the
staterneats P{(n): “n = n -+ 537, than (27) 1s logically correct, for we can simply add } to
both sides of (k) to obtain Pk + 17 However, since the statement P(1): 1 = 6" is false,
we cannot use Mathematical Tnducuon o couclude that v = 51« Sforalln ¢ N

Jt may happen that statcments £ {n) are false for certain nitural numbers but then are
true for all n > », for some particular n. The Principle of Mathematical Induction can be
modified to deal with this situation. We will formulate the modifind principle, but kcave s
verification as an exercise. (See Lxercise 120)

1.2.3 Principle of Mathematical Induction (second version) Letn, € N and let F(n)
be a statement for each natural number n > n,. Suppose that:

(1) The statemcni Ping) is tue.
(2) Forallk = ny, the trueh of P{k) implies the tnth of P(k + 1),

Then P(n) is truc foralln =z n,.

Sometimes the number n, 1n (1) 18 cailed the base, since it serves as the starting point,
and the implication in (2), which can be written Pik) = P(k ¢ 1), is called the bridge,
since it connects the case & to the case &k + 1.

The following examples illustrate how Mathematical Induction s used to prove asser-

tions about natural nuinbers.

1.2.4 Examples (a} Foreachn € Iy, the sum of the furst 2 natural numbers is given by

l_}_’z_{_...-hn':—_ljn(n—} 1)

To prove this formula, we let S be the set of all n £ N for which the formula is tue,
We must venfy thar condiions (1) and (2) of 1.2.2 are satisficd. If n = 1, then we have
1 = l; L]t 1ysothat i € §, and (1) 15 satisfied. Next, we assunte that k € § and wish

to infer from this assumption that ¥ + 1 € S. Indeed, if & ¢ §, then

L2400 k= tktk+1).
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If we add £ + 1 to both sides of the assumed equality, we obtain

1424 4 h+Ek+ D) =2k(k+ 1)+ (k+ 1)
= %(k + 1)(k +2).
Since this 1s the stated formula for r = % -+ 1, we conclude that ¥ + 1 € §. Therefore,

condition {2) of 1.2.21s satisfied. Conseqguently, by the Principle of Mathematical Induction,
we infer that § = N, so the formula holds for all n € Tv,

(b) Toreach n € N, the sum of the squares of the first n natvral numbers 18 given by
P4+ 224+l =tnn+ D20+ 1),

To establish this formula, we nate that it is frue forn = 1, since 1% = % 123 If
we assume it is true for k, then adding (k + 1)° to both sides of the assumed formula gives

P42+ kP o+ 1) = ki + DRk + 1)+ (k4 1)?
=Lk + DK 4k +6k+6)
S+ D+ 2)(2k + 3).

Consequently, the formula is valid for all n € N.

(¢) Given two real pumbers ¢ and &, we will prove that ¢ — b 1s a facter of a” — b" for
all n € N.

First we see that the statement is clearly true for n = 1. If we now assume thata — &
is a factor of a* — bk, then

@t — P = R Lk gt — pF)
=ald* — by + bk(a — b).
By the induction hypothesis, & — & is a factor of a(a* — &%) and it is plainly a factor of
b*ia — b). Therefore, ¢ — b i1s a factor of a* Tl — Bt ang it follows from Mathematical
Induction that ¢ — &6 is a factor of & -~ b foralln e M.

A varety of divisibility results can be derived from this facl. For example, since
1 —7=4,wesecthat 11" — 7% is divisible by 4 for all n € N.

(d) Thenequality 27 > 2n + 1is false forn = 1, 2, but it is true for n = 3. If we assume
that 2* > 2k + 1, then multiplication by 2 gives, when 2k + 2 > 3, the inequalirty

P S22k + DN =4k + 2 =2k 4+ 2k + ) > 2 +3 =20+ 1)+ 1.

Since 2k + 2 » 3forall k = |, the hridge is valid for all k > | (even though the statement
is false for k¥ = 1, 2). Hence, with the base ny = 3, we can apply Mathematical Inducuon
to conclude that the inequality holds for all n > 3.

(e) The inequality 2" < (n + 13! can be established by Mathematical Induction.
We first abserve that it is true for n = 1, since 2' =2 = | + 1. If we assume that
2% < (k + 1), it follows from the fact that 2 < k + 2 that

29 =2 2N <20k + 1) < (k) 4+ 1)) = (k- 2).

Thus, if the inegquality holds for &, then 1t also holds for # + 1. Therefore, Mathemancal
Induction iinplies that the inequality is true forall n € N,

h IfreR, r1l,andn e N, then

l+r+ri4. 4" =
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This 1s the formula for the sum of the terms 1n a “geometric progression”. It can
be established using Mathematical Induciion as [ollows. First, if n =1, then 1 +r =
(1 — r)/(1 — r) If we assume the truth of the formula for n — & and add the term r**' 1o
both sides, we get (after a little algehra)

ttr+ri+ o+ s — 4 =
Il —r 1 —r

which 18 the formula forn = & -+ 1. Therefore, Mathematical Induction implies the validity
of the formula forall n € N.
"This result can also be proved without using Mathematical Inductior. If we lct
s, =147 + 7 +-~-J,—r”,lhcnr5” = r+r2+ -r-+r"”,501hat
(1 --r)s, —s, --rs, —1--¢0
[f we divide by 1 — r. we obtain the staicd formula.]

(g) Careless use of the Principle of Mathematical Induction can lead to ohviously absurd
conclusions. The reader is invited to find the error in the “proof” of the following assertion.

Claim: If » € M and if the maximum of the natural numbers p and g 1sn. then p = q.

“Proot” Let § be the subset of N for which the claimn 1s true. Evidently, 1 € 8 since 1f
p.g € Nand their maximum is 1, then both equal 1 and so p = ¢. Now assume thatk € §
and that the maximum of p and g isk ; 1. Then the maximumof p Pandg - 1154 But
since k ¢ S, then p — 1 == g — | and thercfore p — g. Thus, k = 1 ¢ S, and we conclude
that the assertion is truc foralln € N,
(h) There are statements that are true for many natural numbers but that are not true for
all of them.

Forexample, the formula p(n) := n- — n + 41 gives a prime number forn = 1,2, - - -,
40. However, p(41) 1s obviously divisible by 41, so 1t 15 not a prune nuinber. U

Another version of the Principle of Mathematical Induction is sometimes quite useful.
[t1s called the * Principle of Strong Induction”, even though it is1in fact equivalent to 1,2.2,

1.2.5 Principle of Strong Induction  [er § be a subset of N such thar

1"y 1e3S.
(2") Foreveryk € ML if{1,2..-- k} C S, thenk + 1€ §.
Then § = N

We will leave 1t to the reader to establish the equivalence of 1.2.2 and 1.2.5.

Exercises for Section 1.2

1. Provethat1/1-2=1/2-3 4.+ l/n(n+1)=n/n+1)forallneN

-

2. Poovethatl'+2°' 4+ +n' = [zn(n ~ 1)] foralln e N.

3. Provethat3+4 1] +- -+ (Bn —38)=4n’ —norallnc N

4. Provethat 17 +3* + ... 4 {2n — 1)2 = (4:33 —n)/3foralln e ™.

5. Provethat 17 =27 3% - 1 { D" 'At = -1 a1 U/2foralln € N.
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Prove that n” - S is divisible by Gforalln e N

Prove that 5™ — 1 is divisible by 8 forall n € N.

Prove that 5" — dn — 1 is divisible by 16 for alln € N.

Prove that n? 4 (n + 1)% 4 (n + 2)7 is divisible hy 9 foralln € K.

Conjecture a formula for the sum 1/ -3+ 1/3-54+ - + 1/(Zn — 1){(Zn + 1}, and prove your
conjecture by using Mathematical Induction.

SRR

I1. Conjccture a formula for the sum of the first ® odd natural numbers 1 +3 4+ - + (2n — 1),
and prove your formula by using Mathematical Induction.

12. Prove the Principle of Mathematical Induction 1,2.3 {second version).
13, Provethain < 2" {foralln € M,

14, Provethat 27 = alforalln =4 ne [y

15. Provethat2n —3 < 2" foralln > S, ne N,

16 Find all natural numbers n such that n* < 2% Prove your assertion.

17. Find the largest natural number m such that n' — n is divisible by m for all n € N. Prove your
assertion.

18. Provethat 1/V 1+ 1/V2 + - 4 1y /n> Jnforalln e N

19. T.at § be a subser of N such that (a) 2% ¢ 8 forall k € N, and (b if ke § and k > 2, thep
k—1¢ S Proverthat § — M.

20. Let the numbers x be defined as follows: x, :=1, x, := 2, and x__, = %(xh“ + x,) for all
n € N, Use the Pninciple of Strong Inducton (1.2.5) toshow that 1 = x, = 2 foralln € N.

Section 1.3 Finite and Infinite Sets

When we count the clements in a set, we say “one, two, three,- - -, stopplng when we
have exhausted the set. From a mathematical perspective, what we are doing 1s defining a
biyjective mapping between the set and a pornion of the set of natural numbers. If the set 1§
such that the counting does not terminate, such as the set of natural nurabers itself, then we
describe the set as being infinite.

The notions of “fintte” and “infinite’” are extremely primutrve, and it 15 very likely
that the reader has never examined these notions very carefully. In this section we will
define these terms precisely and establish a few basic results and state some other important
results that seem obvious but whose proofs arc a nt tricky. These proofs can be found in
Appendix B and can be read later.

1.3.1 Definition (a) The cmpty set § is said to have () elements.

(b) If n e N, asct S issad to have n elements if there exists a bijection from the set
N, :={1.2,---,n}ontoS.

(¢) A sct §1s said to be finite if it 1s cither empty or it has n clements for some n € N.

(d) A set S issaid to be infinite 1f 1t 1s not finute.

Since the inverse of a bijection is a bijection, it is easy to sce that a sct § has n
elements 1f and only if there is a byjection from § onto the set {1, 2, -+ -, n}. Also, since the
composition of two bijections is a bijection, we sce that a set S, has n elements if and only
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if there 15 a bijection from §, onto another set §, that has » elements. Further, a set 7, is
finitc 1f and anly if there is a bijection from 7' onto another set T, that 1s finite.

It 1s now necessary to establish some basic properties of finite sets to be sure that the
definitions do not lead to conclusions that conflict with our expenience of counung. From
the definitions, 1t 18 not entirely clear that a linite set might not have n elements for more
than one value of n. Also 1tis conceivably possible that the set N ;= {1, 2, 3, - - -} might be
a finite set according to this definition. The reader will be relieved that these possibilities
do not occur, as the next two thcorems state. The proofs of these assertions, which use the
fundamental properties of N described in Section 1.2, are given in Appendix B.

1.3.2 Uniqueness Theorem If S is a finitc setf, then the number of elements in § is a
unique number in N.

1.3.3 Theorem The sct N of natural numbers is an infinite set.
The next result gives some elementary properties of finite and infinite sefs.

1.3.4 Theorem (a) If A isasetwithm elements and B 1s a set with n elements and if
ANB =0, then A J B hasm + n clermnents.

(b) IfAisasetwithmec N elements and C C A is a set with | element, then ANC 15 a
sct withm — | elements.

(c) IfC isaninfinite sct and B is a finite sct, then C\B 1s an infinite set.

Proof. (a) Let f be a bijecton of Iy, onto A, and let g be a byection of N onto

B. We deline hoon N by () = f{i) for i — 1, m and A{i) 1= g(i -m) for
t=m+ 1. .m+n Welcave it as an exercise to show that  is a bijection from N,
oitto A LI B

The proofs of parts (b) and (¢) are left to the reader, see Exercise 2. Q.ED.

[t may scem “obvious” that a subset of a Ainite sct 1s also finite, but the assertion must
he deduced fram the defintiions. This and the corresponding statement for infinite sets are
established next.

1.3.5 Theorem Suppose that § and T arc sets and that T < §.
(a) TFSisadfniteser, then T is a finite set.
(by IfT isaninfintte set, then S 1s an 1nfinite set.

Proof. (a) If T = #, we already know that 7 1s a finite set. Thus we may suppose that
T # &. The proof is by induction on the number of elernents i 5.

If § has | clement, then the onty nonempty subset 7° of § must comncide with §, so 7
1§ a fimte set.

Suppose that every nonempty subset of a set with & elements is finite. Now let § be
a set having & 4 | elements (so there exists a byjection f of N, onto §), andlet T C §.
If f¢k +-1) ¢ T, we can consider 7 to be a subset of S, := S\{f(k -+ 1)}, which has &
clements by Theorem 1.3.4(b). Hence, by the induction hypothesis, 7 is a finite set.

On the other hand, if f(k -+ 1) € T.then 7, .= T\{f(k + D} isasubsetof § . Since
S, has k clements, the induction hypothesis implics that 7, is a finite set. But this implies
that T =7, U{f(k+ 1)} is also a finite set.
(b) This assertion 1s the contrapositive of the assertion in (a). (See Appendix A for a
discussiaon of the contrapositive.) QED.
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Countable Sets _ .

We now introduce an important type of infinite set.

1.3.6 Definition (a) A set §is said to be denumerable (or countably infinite) if there
ex1sts a byection of N onto §.

(b) A sct S issaid to be eountable if it is either finite ar denumerable.

{e) A set §issaidto be uncountable if it 1 not countable.

From the properties of bijections, it is clear that § is denumerable if and only if there
exists a bijection of § onto N. AJso a set S 1s denumerable if and only if there exists a
bijection from §, onto a set §, that 1s denumerable. Further, a set 7| is countable 1f and
only 1f there exists a bijection from T, onto a set 7, that is countable. Finally, an infinite
countable set is depumerable.

1.3.7 Examples (a) ThesetE ;= {2n : n € N} of even natural numbers is denumerable,
since the mapping / : N — E defined by f(n) := 2nforn € N,1sabijection of N onto £,
Similarly, the set O := {2n — | : n € N} of odd natural numbers is denumerable.

(b} The sct Z of all integers 1s denumerable.

To construct a bijection of N onto Z, we map 1 onto (, we map the set of even natural
numbers onto the set N of positive integers, and we map the set of odd natural numbers
onta the negative integers. This mapping can be displayed by the enumeration:

Z=1{0,1,—-1,2,-2,3 =3, -]

(c) The union of two disjoint denumerable sets is denumerable.
Indeed, if A = [a, a,, a,, -} and B — {b,, by, bs~ -~ -}, we can enumerate the ele-
ments of AU B as:

a, by a, by ay by, . il
1.3.8 Theorem The set N x N 15 denvumerable.

Informal Proof. Recall that N x N consists of all ordered pairs (m, n), where m, n € .
We can enumerate these pairs as:

(I-!])n (1-2}1 (2,1). (1‘3)1 (2|2)| (31 ]-Jt (114)-"'.
according to increasing sum m + n, and increasing m. (See Figure 1.3.1.) QED.

The cnumeration just described is an instance of a ““diagonal procedure”, since we
move along diagonals that each contain finitely many terms as illustrated in Figure 1.3.1.
Whilc this argument is satisfying in that it shows exactly what the bijectionof N x N — §
should do, it 1s nat a “formal proof”, since it docsn’t define this bijection precisely. (See
Appendix B for a more formal proof.)

As we have remarked, the construction of an explicit bijection between sets is often
complicated. The next two results are useful in establishing the countability of sels, since
they do not involve showing that certain mappings are byections. The first result may seem
inwitively clear, but its proof is rather technical; 1t will be given in Appendix B.
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Figure 1.3.1 ThesetN x N

1.3.9 Theorem Suppose that § and T are sets and that T < §.

(a) If S isacountable set. then T is a countable set.

(b)Y IfT is an uncountable set, then § is an uncountable set.

1.3.10 Theorem The following statetrnents are equivalent:

(a} S isacountable set.
(b} Therc exists a surjection of N onto S.

(c) There exists an injection of S into M.

Proof. (a}) = (b) If s finite, there exists a biyection A of some set N onto § and we
define H on N hy

aky for k=1, . n,

HE =000y for k>

Then A is a surjection of I onto §.

If § is denumerable, there exists a bijection H of N onto §, which is also a sugjection
of Monto §.
(b) = (c) I[f A 1sasurjection of N onto §, we define /| : § — N by letting H,(s) be
the least element in the set H~'(s) := {n € N: H(n) = 5}. To see that H, is an injection
of Sinto N, note thatif s,z € Sandn_ = H (s) = H (0). thens = FI(n ) =1

(¢) = (a) If H, 1s aninjection of S into N, then it 1s a bijection of § onto H{§) € N.
By Theorem 1.3.9(a), A, (S} 1s countable, whence the set § 18 countable. QED.

1.3.11 Theorem The set 3 of all rational numbers 15 denumerable.
Proof. The idea of the proof is to observe that the set Q1 of positive rational numbers is

contained in the enumeration.

2
1!

Rl ey
—l

L

o=

] 1 3

e

11
i 2
which 1s another “diagonal mapping” (see Figure 1.3.2}. However, thus mapping 15 not an
.. . . . . e .
injection, since the different fractions % and  represent the same rational number.

To procced more formally, note that since N x N is countable (by Theorem 1.3.8),
it follows from Theorem 1.3.10(b) that there cxists a surjection f of N onto N x N, If
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el wie Ple N

Coelw o f o

Figure 1,3.2 Theset O°

g:Nx N Q' is the mapping that sends the ordered pair {(m, n) into the rational num-
ber having a representation m,/ s, then g 18 a surjection onto ) ~. Therefore, the composition
g o fis asurjection of N onto 7, and Theorem 1.3 10 implies that QT is a countable set.

Similarly, the sct Q7 of all negative rational numbers is countable. It follows as in
Example 1.3.7(b) that the set @ = Q™ U {0} UQ" is countable. Since ) contains N, it
must be a denumerable set. Q.ED.

The next result 1s concerned with unions of scts, In view of Theorem 1.3.10, we nced
not be warned about possible overlapping of the sets. Also, we do not have ta construct a
bijection.

1.3.12 Theorem [fA isa countable set forcachm € N, then the union A 1= U::_l A
is countable.

Proof. Foreachm e N letg beasugectionof Nonto 4 =~ Wedefine yp 1 N x N — A
by

Yim, n) = (n)

We claim that ¥ is a surjection. Indeed, if a € A, then there exists a least m € N such that
a € A_, whence there exists aleast n ¢ N such thata = ¢, (n). Thercfore, @ = ¥ (m, n).

Since N x N 1s countable, 1t follows from Theorem 1.3.10 that therc exists a surjection
f N - Nx N whance ¥ o f is 4 surjection of N onto A. Now apply Theorem 1.3.10
again to conclude that A is countable. QED.

Remark A less formal (but more intaitive) way to see the truth of Theorem 1.3.12 15 to
enumerate the clements of A mcC N, as;

A =gy apia )
Ay =lay, ap. ap. -k
Ay = dy), g, ay, -0},

We then enumcrate thus array using the “diagonal procedure™:
Qe Bz O B3 tgp Ay Qg 0

as was displayed in Figure 1.3.1.
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The argument that the set @ of ranonal numbers is countable was first given in 1874
by Georg Cantor (1845-1918). He was the first mathematician to examine the concept of
infinite set in nigorous detail. In confrast to the countability of @, he also proved the set B
of real nummbers 135 an uncountable set. (This result will be established in Section 2.5.)

In aseries of important papers, Cantor developed an extensive theory of infinite sets and
transfinite arithmetic. Some of his results were quite surprising and generated considerable
controversy among mathematicians of that era. In a 1877 lctter to fus colleague Richard
Dedekind, he wrote, after proving an unexpected theorem, "I see it, but I do not belicve it”,

We close this section with one of Cantor’'s more remarkablethgtrems.

1.3.13 Cantor’s Theorem If A is any set, then there is no surjection of A onto the set
P(A) of all subsets of A.

Proof. Suppose thatg : A = P(A) is a surjection. Since @{a) is a subset of A4, eithcra
belongs to @(a) or it does not belong to this set. We let

D:={ue A a¢yg@)}

Since D is a subset of A, 1f ¢ is a surjection, then D = ¢{a,) for some a; € A.

We must have either a, € D or a, & D If a, € D, then since D= @(a,), we must
have a, € @{a,), contrary to the definition of D. Similarly, if a; ¢ D, then a; ¢ ¢(a,) 50
that a, € D, which 1s also a contradiction.

Therefore, ¢ cannot be a surjection. Q.ED.

(Cantor’s Theorem implies that there is an unending progression of larger and larger
sets. In particular, it implics that the collection P{N) of all subsets of the natural numbers
N is uncountable.

Exercises for Section 1.3

1. Prove that a nonempty set 7, 1s fimite if and only if there s a byection from 7, onto a fimte
set 7).

2. Prove parts (b) and (¢) of Theorem 1.3.4.

LetS . ={1.2}and T :={a. b, c}.
(2) Deterrmune the number of difterent injections from S inta T
(b} Determine the number of different surjections from 7 onto §.

4. Exhibit a bijection between N and the set of all odd integers greater than 13.

5. Give an explicit definition of the bijection f from N onto Z described in Example 1.3.7(b).

6. Exhibit a bijection between N and a proper subsel of itself,

7. Prove that a set 7| is denumerable if and only if there 1s a bijection from 7| onto a denumerable
set 7,.

8. Give an example of a countable collectian of finite sets whose union is not fAnite.

9. Prove in detail that i § and T are denumerable, then S U 7 is denumerable.

100. Determine the number of elemeants in P(8), the collection of all subsets of §, for each of the
following sets:
(@) S§:={1.2},
(b} S§:={1,2, 3}
(cy S§:=1{1.2 3. 4}
Be sure to include the empty set and the set § itself in P(85).

11.  Use Mathematical Induction to prove that if the set § has n elements, then P(§) has 2" elements,

12. Prove that the collection F (N} of all finite subsets of N is countable.



CHAPTER 2

THE REAL NUMBERS

In this chapter we will discuss the essential properties of the rcal number system R.
Although it is possible to give a formal construction of this system on the basis of a more
primutive set (such as the set N of natural numbers or the set (@ of rational numbers), we
have chosen not to do so. Instzad, we exhibit a list of fundamental propertics associated
with the real numbers and show how further properties can be deduced from them. This
kind of activity 1s much mare uscful in leaming the tools of analysis than examining the
logical difficultics of constructing a model for .

The real number system can be described as a “complete ordered field”, and we
will discuss that description 1n consitderable detail. In Sectuion 2.1, we first introduce the
“algebraic” properties—often called the “field" properties in abstract algebra—that are
hased on the two operations of addition and multiplication. We confinue the section with
the introduction of the “order™ properties of R and we denve some consequences of these
properties and illustrate their use 10 working with inequalities, The notion of absolute value,
which 1s based on the order propertics, 1s discussed in Section 2.2

In Section 2.3, we make the final step by adding the crucial “completeness” property to
the algebraic and order properties of R. It is this property, which was not fully understood
until the late nineteenth century, that underlies the theory of hinuts and continuity and
essentially all that follows in this book. The nigerous development of real analysis would
not be possible without this essential property.

In Section 2.4, we apply the Completencss Property to denve several fundamental
results concemming R, including the Archimedean Property, the existence of square roats,
and the density of rational numbers 1n R, We establish, 1n Section 2.5, the Nested Interval
Property and use it to prove the uncountability of X. We also discuss 1ts relation to binary
and decimal representations of real numbers.

Part of the purpose of Sections 2.1 and 2.2 is to provide examples of preoofs of
clementary theorems from explicitly stated assumnpuens. Students can thus gain experience
in wrnting forral proofs before encountering the more subtle and complicated argumcnts
related to the Completeness Property and its consequences. However, students who have
previously studicd the axiomatic method and the technique of proofs (perhaps in a course
on abstract algebra) can move to Section 2.3 after a cursory look at the earlier sections. A
brief discussion of logic and types of proofs can be found in Appendix A at the back of the
book.

Section 2.1 The Algebraic and Order Properties of IR

We begin with a brief discussion of the “algebraic structure” of the real nuinber system. We
will give a short list of basic properties of addition and multiplication from which all other
algebralc properties can be derived as theorems. In the terminology of abstract algebra, the
system of real numbers is a “ficld” with respect to addition and multiptication. The basic

22
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propertics listed 1in 2.1.1 are known as the freld axioms. A binary operation assoclates with
each pair (a, b) a unique element B(a, b), but we will use the conventional notations of
&+ b and a - b when discussing the properties of addition and multiplication.

2.1.1 Algebraic Properties of l€ On the sct K of real numbers there are two binary
operations, denated by + and - and called addition and multiplication, respectively. These
operations satis{y the following properties:

(A1) a+b=>b+aforalla, bin R (commutative property of addition),

(A2) {(a+b)ic=a+b+c)loralla, b, cinR (associative property of addition);

(A3) there exists an element 0 in R suchthat 0 +a=canda +0=a forallamm R
{existence of a zero element);

(A4) for cach a in R there exists an element —a in R such that ¢ + (—a) = 0 and
(—a) | a =0 (existence of negarive elements),

(M) a-b=b-aforalla,bin® (commuative property of multiplication),

M2) (a-b)-c=a- - -¢)foralla, b, cinlX (associative properry of multiplication),

(W3) there exists an element | in R distinct from O suchthat ] ‘g =g anda -1 = a far
alla in R (existence of a unit element);

(M4) for cach a % 0 in R there exists an clement I /a in K such that e - (1/g) = 1 and
(1/ay a =1 [(existence of reciprocals),

M a-G+o)=@ - &)+ (a-cdand(b+c)-a=(bray+{c a)foralla b cinlk
(distributive properry of multiplication over addition).

These properties should he familiar to the reader. The first four arc concerned with
addition, the next four with multiplication, and the last one connects the two operations.
The point of the list is that all the familiar techniques of algebra can be dedved from these
nine properties, in much the same spurit that the theorems of Euclidean geometry can be
deduced from the five basic axioms stated by Buclid in his Elements. Since this task more
properly belongs to a course 1n abstract algebra, we will not carry it out here. However, to
exhibit the spirit of the endeavor, we will sample a few results and their praofs.

We first establish the basic faci that the elements 0 and 1, whose existence were asserted
iz {A3) and (M3), are 1o fact unique. We also show that multiplication by 0 always results
in0

2.1.2 Theorem (a) Ifzanda areelementsin E withz+a—=a, thenz=10.
(b) Ifuandb #0Qarcelements in K withu -b = b, thenu = 1.
(c) Ifuel, thena -0=0.

Proof. (a) Using (A3), (Ad), (A2), the hypothesis z 4+ a = a, and (A4), wc get
z=z4+0=z+ @+ (—a)={(z4+a)+ (—a)=a+ (—a) =0.
(b) Usinpg (M3), (M4), (M2), the assumecd equality ¥ - b = b, and (M4) again, we get
u=u-1=uwu-(b-(1/by)y="(u-b) (1/by=05 (1/by =1
(¢} We have (why?)
a+z-1~0:a-l+a-D:a-(l—+—O):a-l-—_a.

Therefore, we conclude from (a) thata - 0 = 0. QED
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We next establish two important properties of maltiplication: the uniqueness of recip-
rocals and the fact that a product of two numbers is zero only when onc of the factars is
ZerQ.

2.1.3 Theorem (a) Ifa#0andbin K arcsuchthata - b = 1, thenb = 1/a.
LY Ifa b=0, thenethera =0orb =0.

Proof. (a) Using (M3), (M4), (M2), the hypothesis e - & = |, and (M3), we have
b=1-b=((1/a) a)y-b=(l/a) -(a )y=(1/a) -1 =1/a.

{b) lisuffices to assume @ # 0 and prove that b = 0. (Why?) We multiply @ - & by 1/a and
apply (M2), (M4) and (M3) to get

(/a) (a-BY=((l/a)y-a)-b=1-b=h.
Since ¢ - b = 0, by 2.1.2(c) thus also equals
(1ja) - {a-b)=(1/a) 0=0
Thus we have & = 0, Q.E.D.

These theorems represent a small sample of the algebraic properties of the real number
system. Some additional consequences of the field properties are given in the cxercises.

The operation of subfractionisdefinedbya — & = a + (—b) fora. b in R Similarly,
division is defined for @, b in K with 5 # 0 by a/b =a - (1/b). In the following, we
will use thus customary notation for subtraction and division, and we will use all the
famihar properties of these operations. We will ordinarily drop the use of the dot to indicate
multiplication and weite ab fora - b. Similarly, we will use the usual notation for exponents
and write @ for aa, @ for (a*)a, and, in gencral, we define a"t' = (@Ma forn € N. We
agree to adopt the convention that al - a. Further, if a # 0, we write a’ = 1and e ! for
1/a,and 1if n € N, we will write @ 7 for (1/a)", when it 1s convenient to do so. In general,
we will freely apply all the usual techruques of algebra without further elaboration.

Rational and Irrational Numbers

We regard the set N of natural numbers as a subset of R, by 1dentifying the natural number
n € N with the n-fold sum of the unit clement 1 € R, Similarly, we identify O € Z with the
zero element of ¢ € R, and we 1dentify the n-fold sum of —1 with the 1nteger —n. Thus,
we consider N and Z to be subsets of R.

Elements of K that can be written in the form b/a where a, b € Z and « # 0 arc called
rational numbers. The set of all rational numbers 1n R will be denoted by the standard
notaton Q). The sum and product of two rational numbers is again a rational number (prove
this), and moreover, the field properties listed at the beginning of this section can be shown
to hold for Q.

The fact that there are elements in R that are not 1o @ is not immediately apparent.
In the sixth century B.C. the ancient Greck society of Pythagorcans discovered that the
diagonal of a square with unit sides could not be expressed as a ratio of imtegers. [n view
of the Pythagorean Theorem for right triangles, this implies that the square of no rational
number can equal 2. This discovery had a profound impact on the development of Greek
mathematics. One consequence is that elements of R that are not in { became known
as irrational numbers, mecaning that they are not ratios of integers. Although the word
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“urational” in modern English usage has a quite different meaning, we shall adopr the
standard mathematical usage of this term.

We will now prove that there docs not exist a rational number whose square 13 2. In the
proof we usc the notions of even and odd numbers. Recall that a natural nuinber 1s even if
it has the form 2x for some n € N, and 1t 15 odd if it has the form 2n — 1 for some n € N.
Every natural number is either even or odd, and no natural number is hoth even and odd.

2.1.4 Theorem There does not exist a rational numberr such that r* = 2.

Proaf. Suppose, on the contrary, that p and g are integers such that (p/q)2 =2 We
may assume that p and ¢ are positive and have no common integer factors other than 1.
(Why?) Since p® = 2¢%, we sce that p? is even, This implics that p is also even (because
if p=2n — 1 15 odd, then its square p2 = 2(2.?’12 —2n 4+ 1) — 1 is also odd). Therefore,
since p and g do not have 2 as a common factor, then g must be an odd natural number.

Since piseven,then p = 2m forsome m € N, and hence 4m? = qu, sathat 2m? = qz_
Therefore, g~ is even, and it follows from the argument in the preceding paragraph that ¢
1s an even natural number.

Since the hypothesis that (p/g)* = 2 leads 1o the contradictory conclusion that g is
bath even and odd, 1t must be false. QE.D.

The Order Properties of R

The “order praperties” of R refer to the notions of positvily and inequalities between real
numbers. As with the algebraic structure of the system of real numbers, we proceed by
isolating three basic properties from which all other arder properties and calculations with
incqualitics can be deduced. The simplest way to do this is to identify a special subset of R
by using the notion of “positivity ™.

2.1.5 The Order Properties of R There is a nonempty subset i* of R, called the set of
positive real numbers, that satisfies the following properties:

(i) Ifa, b belong to P, then a + b belongs to P.
(ii) If a, b belong to I?, then ab belongs to P
(iii) If « belongs to R, then exactly one of the following holds:

a e P, a=20, —a e P

The first two conditions ensure the compatibility of order with the operations of addi-
tion and muldplication, respectively. Condition 2.1.5(ti1) 1s usually called the Trichotomy
Property, since it divides R into three distinct types of elements. It states that the set
{—a :a € P} of negative real numbers has no clements in common with the set P of
positive real numbers, and, moreover, the set R is the union of three disjoint sets.

Ifa € P, wewritee > 0 and say that ¢ 1s a positive (or a strictly positive) rcal number.
If & € PU {0}, we write @ > 0 and say that a is a nonnegative réal number. Similarly, if
—a € P, we write @ < 0 and say that a is a negative (or a strictly"'-,negativc) real number.
If —a € PU {0}, we writc ¢ <€ 0 and say that a 15 2 nonpositive real number.

The notion of incquality between two real numbers will now bé defined it terms of the
set PP of positive elements.

2.1.6 Definition Let a, b be clements of. K.

(a) Ifea— b e P thenwewrilca > borb < a.
by Ha—»bePU{D,thenwewritea > borbd < a.
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The Trichotomy Property 2.1.5(1n) unplies that for a, b € R exactly one of the follow-
ing will hold:

a>b, a=ba, a < b.

Therefore, if both e < band b < @, thena = b.
For notational convenience, we will write

a<b<c

to mean thatboth @ < b and b < ¢ are satisfied. The other “doublie’ inecqualitiesa < £ < ¢,
a<b<ganda < b <care defined in a similar manrer,

To illustrate how the basic Order Properties are used to denive the “'rules of inequalities”,
we will now cstablish several results that the reader has used in carlier mathemarics courses.

2.1.7 Theorem Leta, b, c bec any elements of R,

(a) Ifa>bandb > c thena > c.
(b) Ifa = b, thecna+c¢ > b+ c.

(¢) Ifa > bandc > 0, thenca > ch.
Ifa = bandc < (0, thenca < ch.

Proof. (a) fa—belFand b —c e F, then 2.1.5(1) implies that (a — b) + (b - ¢) =
a — ¢ belongs to B, Hence e > ¢
B Ifa—bel, then{a+¢)—(b+e¢)y=a—bi1smP Thusa tc>b+c
(¢ a—bePand e P thenca —cb = cla —b)is in P by 2.1.5(11). Thus ca > cb
when ¢ > 0.

On the other band, if ¢ < 0, then —¢ € 2, s0thatch — ca = (—¢)(a — b) isin P Thus
cb > ca whene < 0. Q.ED.

It 1s natural to expect that the natural numbers are positive real numbers. This property
18 derived from the basic properties of order. The key ohservation is that the sguare of any
nonzero real number 18 positive.

2.1.8 Theorem (a) Ifa € R anda # 0, thena® > 0.
b 10
¢y Ifne N, thenn =0

Proof. (a) By the Tochotomy Property, if @ # 0, then eithera e Por—a e F.Ifa € P,
then by 2.1.5(i1), 2> == @ -a € P. Also, if —a € I, then a” = (—a)(—a) € P. We conclude
that if @ # O, theg a® > 0.

(by Since | = 17, it follows from (a) that 1 > 0.

(¢) Weuse Mathematical Induction. The assertion for n = 1 1s truc by (b). If we suppose the
assertion 1s true for the natural number &, then k 2 P, and since 1 € P, we have k + 1 ¢ T
by 2.1.5(1). Therefore, the assertion is true for all natural numbers. Q.ED.

It is worth noting that no smallest positive real number can exist, This follows by
observing that if a4 > 0, then since % > 0 (why?), we have that

D«

ag < .

LS



2.1 THE ALGEBRAIC AND ORDER PROPERTIES OF & 27

Thus if 1t 1s claimed that & 1s the smallest positive real number, we can exhibit a smaller
posilive number 3a.

This observanion leads to the next result, which will be used frequently as a methad of
proof. For instance, to prove that a number a > 0 1s actually equal to zero, we see that it
suffices to show that @ is smaller than an arbitrary positive number.

2.19 Theorem I[fa € R issuchthat(l <a < ¢ foreverye > 0, thena = 0.

Proof. Supposc ta the contrary thata > 0. Thenif we take g = %a,we have 0 « ¢, < a.

Therefore, it is false that @ < g foreverv £ > 0 and we conclude that a = 0. QFED

Remark Tt is an exercise to show that if ¢ € R is such that 0 < g < ¢ for every ¢ » 0,
thene = 0.

The product of two pasitive numbers is positive. However, the positivity of a product
of two numbers docs not imply that each factor is pasitive. The carrect conclusion 18 given
in the next theorem. It 1s an important tool in working with inequalities.

2.1.10 Theorem Ifab > 0, then either

i)y a=>0andb =0, or
(i) o < Qandb < 0.

Proof. First we note that ab > 0 implies that a % 0 and b 3£ 0. (Why?) From the Tri-
chotomy Property, cithcra > 0 or g < 0. If @ > 0, then 1/a = 0 (why?}, and thercfore
b= (t/a)(ab) > 0. Similarly, if g < 0, then 1/a < O, sothat b = (1/a)(ab) < 0. QED.

2.1.11 Corollary Ifab < 0, then either

(1) a<Q0andb =0, cor
(i) a>0andb <0

Ineqgualities

We now show how the Order Propertics presented in this section can be used to “solve”
certain inequahties. The reader should justify each of the steps.

2.1.12 Examples (a) Dctermine the set A of all real numbers x such that2x 4+ 3 < 6.
We note that wc have’

I A
raf e

x€A +— 2x4+3=<6 +— 2x=3 — x

Therefore A = {x eRX:x < %}

(b) Determine the set 8 = {x eR:x*+x> 2]‘
We rewrite the inequatity so that Theorem 2.1.10 can be applicd. Note that

xeB &= x*+x-2>0 < (x-Dx+2)>0

Therefore, we either have (i) x — 1 > 0 and x + 2 > 0, or we have (i) x — 1 <0 and
x 4+ 2 « 0. [n case (i) we must have both x > 1 and x > —2, which 1s satisfied if and only

"The syrabol <= should be read “if and only if".
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if x > 1. Tn case (11) we must have both x < 1 and x < —2, which is satisfied if and only
if x <« —2.
Weconclndethat B={xeRK:x > 1JU{x e R:x <« -2}

(c) Dectetmine the set

2x
C={xreR +l{l
x + 2
We note that
2x + -1
xeC = il —1=«0 = X < 0.
x4 2 x4+ 2

Therefore we have erther (D x — 1l <« Dand x+2 >0, or i) x — L >0 and x +2 < 0.

(Why?) In casc (1) we must have both x « | and x > —2, which 18 satisfied if and only if

—2 < x < 1. In case (11}, we must have hoth x > 1 and x < =2, which is never satisfied.
Weconcludethat C = {x e R: -2 « x < 1}, 0]

The following exampies illustrate the use of the Order Propertics of R in establishing
certain Inequalitics. The reader should verify the steps in the arcuments by i1dentifying the
properties that are employed. -

It should be noted that the existence of square roots of positive numbers has not yet
been established; however, we assume the existence of these roots {or the purpose of these
examples. (The existence of square roots will be discussed in Section 2.4.}

2.1.13 Examples (a) Leta > 0and # > 0. Then
(1 a<b = at < b* = .\,/5-:«/5

We consider the case wherca > Oand b > 0, leaving the case ¢ == O to the reader. [t follows
from 2.1.5(1) thata — b > 0. Since b* — 4> = (b — a)(b + a), it follows from 2.1.7(c) that
b — a > 0 1mplies that b —a* > 0. Also, it follows from 2.1.10 that b° — a® > 0 implies
that b — a = 0.

Ifa>0andb > 0, then Va > 0 and Vb > Q. Sincca = (\/5)2 and b = f«./az, the
sccond implication 18 a conscquence of the first one when a and b are replaced by /a and

Vb, respectively,
We also leave tt to the reader to show that if ¢ > 0 and b > 0, then

() a<b = a'<b = Ja<Vb

(b} If a and b are positive real numbers, then their arithmetic mean is %(a + k) and their
geometric mean is vab. The Arithmetic-Geometric Mean Inequality for a, b 1s

(2) Vab < L@ + b)

with equality occurring if and only if @ = b.

To prove this, note thatif @ > 0,5 > 0, and @ # b, then Ja > 0, /b > 0 and /a #
Vb, (Why?) Therefore it follows from 2.1.8(a) that (va — «/E)z > 0. Expanding this
square, we obtain

a—2vab+b> C,
whence it follows that

Vab < 1(a+b).
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Therefore (2) holds (with strictinequality) when a # ». Moreover, if a = b(> (), then both
sides of (2) equal a, so (2) becomes an equality. This praves that (2) holdsfora > 0,5 > 0.

On the other hand, suppose thata > 0, 5 > 0 and that Jab = %(a + £). Then, squar-
ing both sides and multiplying by 4, we obtain _

dab = (a + b)? = a® + 2ub + b’
whence it follows that
0=a"—2ab+b"=(a—b).
But this equality implies that ¢ = /. (Why?) Thus, equality in (2) implies that a = b.

Remark The general Anthmetic-Geometnic Mean Inequality for the positive real num-
bersa,.a,.- . a is

7

3) (a0, --a) /"< DG T
172 1 —

H
with cquality occuming if and only if @, = @, = -~ = @ It is possible to prove this more
gencral statement using Mathematical Induction, hut the proof 1s somewhat intricate. A

more elegant proof that uses propertics of the cxponential function is indicated in Exercise
8.3.9 in Chapter 8.

{c) Bernoulli’s Inequality. If x > —1, then
{4) (1 +x)" >1+nx forall neXN

The proof uscs Mathematicat Induction. Thecase n = 1 yiclds equality, so the assertion
1s valid 1n this casc, Next, we assume the validity of the incquality (4) for & € N and will
deduce it for ¥ + 1 Indeed, the assumptions that (| +x)k >l 4+krxandthat [ +x >0
imply {why?) that

A+ ' =g+ 1+

>(l4+kx) - (I +x)=1+(k+ Dx +kx?
> 1+ (k+ Dx.
Thus, inequality (4) holds for n == k& -~ 1. Thercfore, (4) holds for alt n € . U

Exercises for Section 2.1

I. Ifa, b e X, prove the following.

(ay Ifa+b=0thenk = —a, (b} —(-a) = a,
€y (=Da = —a, (dy (-Di-1)=1.
2. Provethatif a, b € &, then
@ —fatb)y=(—a)+(-b), (b) (—ay (=h)y=a: b,
©) 1/(—a)= —(1/a), ) —(a/b) = (—a)/b ifh 0.
3. Solve the following equations, justifyiag cach step by referming to an appropnate praperty or
theorem.
@ 2x+5=38, (by x'=2x,
() x*—1=2, (d) (x—=Dlx+2)=0

4. Ifa € R satisfies o - ¢ = a, prove thateithera = Qora = 1.

5. lfa#0and b # 0, show that 1/{ab) = (1/a){1/h).
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6. Use the argument in the proof of Theorem 2.1.4 to show that therc does not exist a rational
umber s such that s> = 6.

7. Modify thic proaf of Theorem 2.1.4 to show that there does not exust a rational number ¢ such
thatt” = 3.

8. (a) Show thatf x, y are rational numbers, then x 4+ y and xy arc rational numbers.
(b} Prove thatif x is arational numher and y is an urational number, thea x -= y is an irrational
number. If, in addition, x = 0, then show that xy is an rrational number.

9 Iet K ={s+ V2 os 1 e €}, Show that K satisfies the following:
{a) fol,.rz € K, thenx +x, € Kandx x, € K.
by Ifx#0andx e K, thenl/x e K.
(Thus the set K is a subfield of 2. With the order inhenited from R, the set X 15 an ordered field
that lies between 3 and ®).

10, @) Ha<bande <d.provethata +ec <b+4d.
by HO < g <bandQ < ¢ <d, provethat 0 < ac < bd.

11. (a) Showthatifg > 0, then l/ag > Dand 1/(1/a) = a.
{by Showthatifa < b, thena « %(a b by < b.

12, leta, b, ¢, dbenumbers satisfying 0 < a < bande < d.< 0. Give an cxample where ge < bd,
and one where bd < ac.

13. Ifa, b ¢ R showthatg® +b" =0ifandonlyifa = O and b = 0.

14, If0 < a < b, show thata* < ab < b*. Show by example that it does not follow that a? < ab <
b

15, If0 < g < b, show that (a) a < ab < b, and (b) 1/b < 1/a.
16, Tind all real numbers x that satisfy the following inequalities.

(a) x = 3x + 4, by I <x’ <4,
¢y 1l/x < x, (dy 1/x <x’.

l7. Prove the following form of Theorem 2.1.9: If ¢ € R is such that 0 < g < ¢ forevery ¢ > 0,
thena = C.

18. Leta. b e R, and supposc that forevery £ > Owec havea £ b+ ¢. Shaw thata < b

19. Prove that [M(a + )1 < | (a? +57) for all a, b ¢ R Show that equality holds if and only if
2 =h

20, (a) IfO < e < ),showthatQ < ¢” < ¢ < 1.

(hy If]l «c.showthat ] < ¢ < ¢~

Id e

2], (a) Provethereisnon € Nsuchthat O < n < 1. (Use the Well-Ordenng Froperty of N.)
(b} Prove that no natural number can be both even and odd.

22. (@) Uc¢ > l.showthat¢” = ¢ forallm € N, and that¢” > c forn > 1.
(hy Tf0 < ¢ <}, showthat¢” < cforalln ¢ W, and that ¢™ < ¢ forn = 1.

23, fa=>0,b=>0andnr e N, show that g < & if and only if ¢" < b". [Hint: Use Mathcmatical
Induction].

24, (a) Lc > laudm,n €N, showthate™ > " 1fand only if m = n.
by If0 <c < landm, rne N showthat " < ¢ dandonly if m = n.

25.  Assunung the existence of roots, show thatif ¢ > 1, then ¢"” < ¢/ if and onlyifm > n.

26. Use Mathematical Induction to show that if @ € R and m, n, € N, then @™ = a™a" and
(G.’H)ﬂ — amul "
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Section 2.2  Absolute Value and the Real Line

From the Trichotomy Property 2.1.5(1it), we are assured that if 4 € R and a # 0, then
exactly one of the numbers ¢ and —a 18 positive. The absolute value of @ 3£ 018 defined to
be the positive one of these two numbers. The absolute value of 0 is defined to be (.

2.2.1 Detnition The absolute value of a recal number «, denoted by |a!, 1s defined by
a ifa =0,
la| := ¢ 0 ifa =0,

—a 1fag <« 0.

For example, |5} =5 and ' — 8] = 8. We sce from the definition that |a| > O for
all @ € R, and that |a] =0 if and only if @« = 0. Also | —al = a| for all « € R. Some
additional properties arce as follows.

2.2.2 Theorem (a) |ab| — |a |b| foralla b e R
(b) ja|® = a® foralla € R.

(¢ Ifc >0 thenla] =cifandonlyif —c <a < ¢.
(@) —lal <a <|a|foralla e R

Proof (a) Ifeither a or #is 0, then both sides are equal to 0. There are four athier cases
toconsider. [f ¢ > 0,5 > 0, thenab > 0, so that jab} = ab = |a|'b). 1fa > 0, & < 0, then
ab < 0, sothat |ab]l = —ab = a(—b) = |a||b|. The remaining cases are treated similarly.
(D) Since a’ > (0, we have at = |a2| = |aa| = |a|la| = |a|’,

(¢) If la| < c, then we have both g < ¢ and —a < ¢ (why?), which is equivalent to —¢ <
a < ¢. Conversely, if —¢ < @ < ¢, then we have both ¢ < ¢ and --a < ¢ (why?), so that
la| <c.

(d} Take ¢ = |af in part {c). ' QLD

The following important inequality will be used frequently.

2.2.3 Triangle Inequality Ifa, b e R, then la + &| < |a| + |b].

Proof. From 22.72(d), we have —|a| < a = |a| and —|b| < b < |b|. On adding these
inequalities, we abtain

—(lal+[6)) <a+ b =< |a| + [b].
Henee, by 2.2.2(c) we have Ya + bl < |a| - 1B, QED.

it can be shown that equality occurs in the Trnangle Inequality if and only if ab > 0,
which 1s equivalent to saying that « and b have the same sign. (See Exercise 2.)
There are many useful variations of the Tnangle Tnequality. Here are two.

2.2.4 Corollary Ifa,b € R, then
(a) |lal = 1bl| < |a — bl
(b) la—b| <la|+ b.

Proof. (a) We write @ = a — b + b and then apply the Triangle Inequality to get Ja| ==
l{a — b) + bl < |a — bl + |b|. Now subtract |b] to get |a} — |b| < |a - bi. Similarly, from
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bl =1b--a+a| <|b-al+ |a|, weobtain —|a — b] = —|b — a| < la| — |b". If wecom-
bine these two inequalities, using 2.2.2(¢), we get the incquality in (a).

{b} Replace binthe Triangle Inequality by —btoget|a — 4| < 'al + | — bl Since | — bl =
|b| we obtain the inequality in (b). QED.

A straightforward application of Mathematical Induction extends the Triangle Inequal-
ity to any firute number of elements of R.

2.2.5 Corollary Ifa,. a,. -, a, arc any real pumbers, then

la, +a, 4 ta) =<la|+ a4+ +la,l
The follawing examples illustrate how the properties of absolute valuc can be used.

2.2.6 Exumples (a) Determinc the set 4 of x € K such that [2x + 3| < 7.

From a modification of 2.2.2(c¢) for the case of strict inequality, we sce that x € A if
and only if =7 < 2x + 3 < 7, which s satisfied if and only if —10 < 2x < 4. Dividing by
2, wecaoncludethat A = {x e F: —5 < x <« 2}.

(b) Deternunetheset B:={x e R:jx — 1] < |x|}.

One method is to consider cases so that the absolute value symbaols can be removed.

Here we take the cases

x> 1, (0 <x <1, (i) x < 0.

{(Why hd we choose these three cases?) In case (1) the inequality becomes x — 1 < x,
which 1s satisfied without further restniction. Therefore all x such that x > ] belong to the
sct B. In case (i), the incquality becomes --{x — |) < x, which requires thal x > % Thus,
this case contributes all x such that % < x < | to the set B. In case (ii1), the inequality
hecomes —(x — 1) <« —x, which 15 equivalent to 1 < 0. Since this statement is false, no
value of x from case (iit) satisfies the inequality. Forting the union of the three cases, we

conclude that B = [:c cek:x > l}.

5

There is a sccond method of determuning the sc¢t B based on the fact that a < b if
and only if @~ < b* when both @ > 0 and b > 0. (See 2.1.13(a).) Thus, the inequality
|x — 1| < |¢| is equivalent to the inequality x — 112 < |x|2. Since |a.? = a? for any a by
2.2.2(k), we can expand the square to obtain x? = 2x + 1 < x%, which simplifies o x > %
Thus, we again find that B = {x ceRix > %} This method of squaring can sometimes be
used to advantage, but often a case analysis cannot be avoided when dealing with absolute

values.
(¢) Let the function f be defined by f(x) = (2x +3x + 1)/(2x —~ D) for 2 < x < 3.
Find a constant  such that f(x)| =< M forall x satisfying 2 < x < 3.

We consider separately the numerator and denominator of

_2xP+3x+ 1)

From the Tniangle Inequality, we obtain
127 4+30 — 1| < 2x)?~3Ix]+1=2-37+3-3+1=28

since |x| < 3 for the x under consideration. Also, [2x — 1| > 2|x{— 1 >2-2 - | =2
since |x| > 2 for the x under consideration. Thus, 1/[2x — 1| < 1/3 for x > 2. (Why?
Therefore, for 2 < x < 3 we have | f(x)] < 28/3. Hence we can take M = 28/3. (Now
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that we have found one such constant M, evidently any number H > 2¥/3 will also satisfy
| f{x)| < H.ltis also possible that 28/3 is not the smallest possible choice for M) L

The Real Line

A convenient and familiar geometric interprefation of the real number system 18 the real
line. In this interpretation, the absolute value |a| of an clement @ 1n K 1s regarded as the
distance from a to the origin 0. More generally, the distance between elements 2 and b in
R is |a — b]. (See Figure 2.2.1.)

We will later need precise Janguage to discuss the notion of one real number being
“close to” another. If a is a given real number, then saying that a real number x 1s“close to” a
should mean that the distance |x — a| between them is “small”. A context in which this idea
can be discussed is provided by the terminology of ncighborhoods, which we now define.

o

< -- -2~ =5~

Figure 2.2.1 The distance betweena = —2and 5 =3

2.2.7 Definition Leta € Kande > 0. Then the e-neighborhood of 2 15 the set V (a) .=
xe R |x —a| <&}

Fora € R, the statement thatx belongs to V_{a) 1s cquivalent to either of the statements
(sce Figure 2.2.2)

—E X —ad < F = a-—-&£<x <at e

£ o ¥
a E a1 o+ E

Figure 2.2.2  An £-ncighborhood of a

2.2.8 Theorem Lcta € R If x belongs to the neighborhood V_{(a) forevery ¢ > 0, then
X =a.

Proof. 1{ a particular x satisfies [x — a| < € for every £ > 0, then 1t follows from 2.1.9
that |[x — a| = 0, and hence v = 4. Q.F.D.

2.2.9 Examples (a) Let{/ ={x 0 < x <1} If a € U, then let € be the smaller of
the two numbers a and | — a. Then it ts an excercise to show that V_(a) is contained in U.
Thus each element of U has some g£-nejghborhaod of it contained in .

(b) If7:={x:0<x < 1}, then for any £ > 0. the £-ncighborhood V,(0) of O contains
points notin /, and so V, (0} is not contained in /. For example, the number x, 1= --¢/21s
in V_(0) butnotin 7.

(¢) Iflx —al < eand |y — b| < ¢, then the Triangle Inequality implies that

(r +y) = @+ )| = [(x —a) + (v — B
<lx—al +1y — bl <2
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Thus if x, y belong ta the e-neighborhoods of a, b, respectively, then x + y belongs to the
2e-neighborhood of @ + b (but not necessarily to the £-neighborhood of a + b). (]

Exercises for Section 2.2

1. Ifu. b e Randpk s 0, show that:
@ lal = Va?, (b) lasbl = la /1bl.
2. Tfa. b e R showthatla + | = |a, + |b|if and onty if ab = 0.

3. Iftx,y zeRandx <z showthatx <y < zifandonlyif [x — y|+ |y — 2] = .x — Z. [nter-
pret this geometrically.

4, Showthat |x —a|l < ¢itandonlyifa —e < x <a+¢
Ifa < x <banda < y < b, show that |x — y| < b — a Interpret this geometrically.

6. Find ail x € R that sausfy the following inegqualities:
(a) "4x — 5| < 13, by |x*—1] < 3.

7. Find all x € K that satisfy the equation |x — 1| + |x — 2| = 7.

R. Find all x € [k that satis{y the following inequalities.
{a) [x—1=|x+1, b)) x|+ |x+1] <2

9. Sketch the graph of the equation y = |x' — x — 1.
1}, Find all x € R that satisfy the inequalily 4 < [x =20 + |x — 1] < 5,
11, Find all x € ¥ that satisfy both |2x — 3| <« 5and |x + 1] = 2 simultaneously.

12. Determine and skerch the set of pairs (x, y) iIn B x R that satisfy:

(@ x| = yi ®) |x[+1yl=1
© lxy =2, d) |xl=fyl=2
13. Determine and sketch the set of pairs (x, y) in & = R that satisfy:
(a) ‘x| <yl B |x. +ly =t
(© xyf =2 (@ Ix =ly 22

4. Lete>0andd > 0, and a € R Show that V (a) MV {a) and V, () U V,(a) are y-neighbor-
hoods of a for appropriate vatues of .

15. Show thatif ¢, » € [, and a # b, then there exist e-neighborhoods U of @ and V of b such that
Unv =0

16, Showthatif a, b € [3 then
(a) max{a. b} = é(a + b+ |a — b} and minia, b} = %(a +b—lua—5b|.
b) punfa, », ¢} = min{rmunfa, b}, ¢}

17. Showthatifa, b, ¢ € &, then the “middle number” 1s nudia, b, ¢} = muin{max{ea, b}, max{b, ¢},
max{e, al}-

Section 2.3 The Completeness Property of R

Thus far, we have discussed the algebraic properties and the order properties of the real
number system K. In this section we shall present one more property of R that is often called
the “Completeness Property™. The system @ of rational numbers also has the algebraic and
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order properties described in the preceding sections, but we have seen that +/2 cannot be
represented as a rational number; therefore +/2 does not belong to Q. This observation
shows the necessity of an additional property to characterize the real number system. This
additional property, the Completeness (or the Supremum) Property, is an essential property
of R, and we will say that R is a complete ordered field. It is this special property that
pernmits us to define and develop the various limiting procedures that will be discussed in
the chapters that follow.

There are several different ways to describe the Completeness Property. We choose to
give what is probably the most efficient approach by assuming that each nonempty bounded
subset of R has a supremum.

Suprema and Infima

We now introduce the notions of upper bound and lower bound for a set of real numbers.
These ideas will be of utmost importance in later sections.

2.3.1 Defipition Let S be a nonempty subset of R.

(a) The set S is said to be bounded above if there exists a number u € R such that s < u
for all s € S. Each such nuruber u is called an upper bound of S.

(b) The set S is said to be bounded below if there exists a number w € Rsuchthatw < s
for all s € §. Each such number w is called a lower bounad of S.

(¢) A setis said to be bounded if it is both bounded above and bounded below. A set is
said to be unbounded if it is not bounded.

For example, the set S ;= {x € R: x < 2} s bounded above; the number 2 and any
number larger than 2 is an upper bound of S. This set has no lower bounds, so that the set
is not bounded below. Thus it is unbounded (even though it is bounded above).

If a set has one upper bound, then it has infinitely many upper bounds, because if u
ts an upper bound of §, then the numbers u + 1, u + 2, - - - are also upper bounds of §.
(A similar observation is valid for lower bounds.)

In the set of upper bounds of S and the set of lower bounds of S, we single out their
teast and greatest elements, respectively, for special attention in the following definition.
(See Figure 2.3.1.)

A

inf m sup S
\ s 2
s :

v \ ~
lower bounds of § upper bounds of §

Figure 23.1 infS and sup$

2.3.2 Definition Let S be a nonempty subset of R.

(a) If S is bounded above, then 2 number u 1§ said to be a supremum (or a least upper
bound) of S if it satisfies the conditions:

(1) uisan ﬁppcr bound of S, and
(2) if v is any upper bound of S, then 4 < v.
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(b) If § is bounded below, then a number w is said to be an infimum (or a greatest lower
bound) of § if it satisfies the conditions:

(1Y wisalower bound of §, and

(2'y if ¢ 1s any lower bound of S, then t < w.

It is not difficult to sce that there can be anly one supremum of a given subser § of K.
(Then we can refer to rhe supremum of a sct instcad of 2 supremum.) For, suppose that
u, and u, are both suprcma of §. If ¥, < u,, then the hypothesis that u, 1s a supremum
implies that i; cannot be an upper bound of §. Similarly, we see that u, < &, is not
possible. Therefore, we must have u, = w,. A similar argument can be given to show that
the infimum of a sct is uniquely determined.

If the supremum or the infimum of a set § exists, we will denote them by

supS and nf S,

We also observe that if #’ 1s an arbitrary upper bound of a nonempty set S, then sup § < «’.
This is because sup S 15 the least of the upper bounds of §.

First of all, it needs to be emphasized that in order for a nonempty set § 1 R to have
a supremum, it must have an upper bound. Thus, not every subsct of B has a supremurm;
similarty, not cvery subsct of R has an infimum. Indeed, there are four possibilities for a
noncmpty subset § of IK: 1t can

(1} have both a supremum and an infimum,

(1) have a supremum but ne infimum,

(1)  have a infimum but no supremum,

(iv)  have neither a supremum nor an infimurmn.

We also wish to stress that in order to show that u = sup § for some nonempty subset §
of R, we need to show that borh (1) and (2) of Definition 2.3.2(a) hold. It will be instructive
o reformuiate these statements. First the reader should see that the following two statements
about a number u and a set § are equivalent:

(1) wis an upper bound of S,

(1Y s<uforallse S,

Also, the following statements about an upper bound u of a set § arc cquivalent:

(2) if v 1s any upper bound of §, then u < v,

(2y  if z < u, then zis not an upper bound of S,

(") if z < u, then there exists 5, € S suchthat z < 5,

(2") ife > O, then there exists s, € Ssuchthatu —¢ < 5.

Therefore, we can state two alternate formulations for the supremum.

2.3.3 Lemma A number u is the supremum of a nonempty subset § of R if and only it
u satisfes the conditions:

(1) s<uforallse S,
(2) ifv < u, then there exists s' € § such thatv < &'

We leave it {o the reader to write out the details of the proof.

2.3.4 Lemma An upper bound u of a nonempty set S in R is the supremum of § if an
only if for every £ > O there exists ans_ € S such thatu ~ ¢ < s_.
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Proof. If u is an upper bound of § that satisfies the stated condition and if v < u, then we
put £ := u — v. Then £ > 0, so there exists s, € Ssuchthatv =u —€ < s,. Therefore, v
is not an upper bound of §, and we conclude that u = sup S.

Conversely, suppose that u = sup § and let € > 0. Since u — & < u, then u — £ 1s not
an upper bound of §. Therefore, some element s, of § must be greater than u — ¢; that is,
u—¢e <s,.(SeeFigure 2.3.2) QED.

f
Y

Figure23.2 u=supS$

It is important to realize that the supremumn of a set may or may not be an element
of the set. Sometimes it is and sometimes it is not, depending on the particular set. We
consider a few examples.

2.3.5 Examples (a) If a nonempty set S, has a finite number of elements, then it can
be shown that S, has a largest element u and a least element w. Then u = sup §, and
w = inf S|, and they are both members of S, . (This is clear if S, has only one element, and
it can be proved by induction on the number of elements in §,; see Exercises 11 and 12.)
(b) The set S, := {x : 0 < x < 1} clearly has | for an upper bound: We prove that 1 is
its supremum as follows. If v < 1, there exists an element s’ € S, such that v < s’. (Name
one such element s’.) Therefore v is not an upper bound of S, and, since v is an arbitrary
number v < 1, we conclude that sup §, = 1. Itis similarly shown that inf §, = 0. Note that
both the supremum and the infimum of §,, are contained in §,.

() The set S, :={x:0 < x < 1} clearly has 1 for an upper bound. Using the same
argument as given in (b), we see that sup §; = 1. In this case, the set S, does not contain
its supremum. Similarly, inf §; = 0 is not contained in S5 c

The Completeness Property of R

It is not possible to prove on the basis of the field and order properties of IR that were
discussed in Section 2.1 that every nonempty subset of R that is bounded above has a
supremum in R. However, it is a deep and fundamental property of the real number system
that this is indeed the case. We will make frequent and essential use of this property,
especially in our discussion of limiting processes. The following statement conceming the
existence of suprema is our final assumption about R. Thus, we say that R is a complete
ordered field.

2.3.6 The Completeness Property of R Every nonempty set of real numbers that has
an upper bound also has a supremum in R.

This property is also called the Supremum Property of R. The analogous property
for infima can be deduced from the Completeness Property as follows. Suppose that S is
a nonempty subset of R that is bounded below. Then the nonempty set S := (—s : s € S}
is bounded above, and the Supremum Property implies that « := sup S exists in R. The
reader should verify in detail that —u is the infimum of S.



38 CHAPTER 2 THE REAL NUMBERS

Exercises for Section 2,3

1. Let§, :={x € & ! x = 0} Show in detail that the set §, has lower bounds, but no upper bounds.
Show thatinf §, = 0.

2. Let §,={x €3 :x >0} Does §, have lower bounds? Docs §, have upper bounds? Does
inf §, exist? Does sup 5, exist? Prove your statements,

3 let S, ={1/n:ne N} Show that sup S; = 1 and inf §; = 0. (It will follow from the Archi-
medean Property in Section 2.4 that inf §; = 0.)

4. Let§, :={1—=(=1)"/n:n e N} Findinf§, and sup §,.
3. Let § be 2 nonempty subsct of R that is bounded below. Prove that inf § = —sup{—s: 5 € 3}

6. Ifaset S < X contains one of its upper bounds, show that this upper hound is the supremuwn of
5.

7. Let § € R be nonempty. Show that w € X 15 an upper bound of § if and only if the conditions
t € Randt » wimply thatr ¢ §.

8. Let §C R be nonemipty. Show that if ¥ = sup §, then for every number n € N the number
u — 1/r is nol an upper bound of §, but the number « + 1 /7 15 an upper bound of 5. (The
converse 1s also true; see Exercise 2.4.3.)

9. Show that if 4 and B are bounded subsels of R, then A L B 15 a hounded set. Show that
sup{A U B) = sup{sup A, sup B}.

10. Let § be a bounded set In K and let §, te a nonemply subset of §. Show that inf § < inf 5, <
sup S5, < sup §.

il. Tet § < X and suppose that s* :=sup § belongs to §. 1f u ¢ §, show that sup{SU {u}) =
sup{s”, u}.

12, Show that a nonempty finite set § € R contains its supremum. [Hint: Use Mathematical Induc-
tion and the preceding exercise.]

13, Show that the assertions (1) and (17) hefore Lemma 2.3.3 are equivalent.
14. Show that the assertions (2}, {27, (2"), and {2"') before [.emma 2.3.3 are equivalent.

15. Write out the details of the proof of Lemma 2.3.3,

Section 2.4 Applications of the Supremum Property

We will now discuss how ta wark with suprema and 1infima. We will also give some very
important applications of these concepts to denve fundamental properties of R, We begin
with examples that iljustrate useful techniques in applying the ideas of supremum and
infimum,

2.4.1 Example (a) Itisanimporiant factthattaking suprema and infima of sets is com-
patible with the algebratc properties of R. As an example, we present here the compatibility
of taking suprema and addition.

Let § be a nonempty subset of R that is bounded above, and let @ be any number 1n

R. Define the seta + 8§ .= {a + 5 : 5 € §}. We will prove that
supfa + 8) = a + sup S.
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Ifweletu :=sup S, thenx < uforallx € §,sothate + x < g — u. Therefore, a + u
1s an upper bound for the set a + §; consequently, we have sup(a + §) < a + u.

Now 1f v 1s any upper bound of the set a4+ §, thena +x < v forall x € §. Con
sequently x < v —a for all x € §, so that v — @ is an upper bound of §. Therelore,
¥ ==supS < v—a, which gives us a4+ u < v. Since v is any upper bound of a + S,
we can replace v by sup{a - S) to geta -+ u < sup(a + 5).

Combining these incqualities, we conclude that

supla + S) =a+u =a+supS.

For surular relationships between the suprema and infima of scts and the operations of
addition and multiplication, sec the excrcises.

(b) If the suprema or infima of two sets arc involved, 1t 1s often necessary to establish
results in two stages, working with one set at a time. Here is an example.
Suppose that A and B are nonempty suhsets of R that satisfy the propeny:

a<b foralla € Aandallb € B.
We will prove that
sup A < inf 3.

Fot, given b € 8, we havea < bforalla € A, This means that bis an upper bound of A, so
that sup A < b. Next, since the last inequality holds for all 5 € A, we sce that the number
sup A is a lower bound for the sct B. Therefore, we conclude that sup A < inf R. (]

Functions —

The idea of upper bound and lower bound is applicd to functions by considening the
range of a function. Given a function f: D — R, we say that f 1s bounded above if
the set /() = {f{x): x € D} 1s bounded above in R; that i1s, there exists B € R such
that f(x) < B forall x € D. Similarly, the function f is bounded below if the set f(D}
is bounded below. We say that f s bounded if 1t is bounded above and below, this 1s
equivalent to saying that there exists B € K such that | f(x)| < B forall x € D.

The following example illustrates how to work with suprema and infima of functions.

2.4.2 Example Suppose that f and g are real-valued functions with common domain
D C R Wc assume that f and g arc bounded.

(a) If f(x) < g(x)lorallx € D, thensup f(D) < sup g(D), which is sometimes written:

sup f(x) £ supg(x).
el xeD
We first note that f(x) < g{x) < sup g(D), which imphes that the number sup g(D)
is an upper bound for f (D). Therefore, sup f(D) < sup g(D).

(h) We notc that the hypothesis f(x) < g(x) for all x € D in part (a) does not imply any
relation between sup f (D) and inf g (D).
For example, if f(x) = x? and elxy =x with D ={x:0<x <1}, then f(x) <

g(xYforallx € D.However, weseethatsup [ (D} = landinf g{D) = 0. Sincesup g{(D) =
I, the ennclusion of (a) holds.
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{c} If f(x)<g(y)forall x, v € D, then we may conclude that sup f (D) < inf g(D),
which we may write as:

sup f{x} < inf g(¥).

eh yeil

(Note that the functions in (b} do pot satisfy this hypothesis.)
The proof procceds in two stages as in Example 2.4.1(b). The recader shouid write out
the details of the argument. -

Further relationships between suprema and infima of functions are given in the exci-
CISCS.

The Archimedean Property

Because of vour familiarity with the sct R and the customary picture of the real line, 1t may
scem obvious that the set N of natural numbers is not bounded in R. How can we prove this
“obvious” fact? In fact, we cannot do so by using only the Algebraic and Order Propertes
given in Section 2.1, Indeed, we must usc the Completencss Property of R as well as the
Inductive Property of N (that1s,1f n € N, thenn 4+ 1 € N).

The abscnce of upper hounds for N means that given any real number x there exists a
natural number »# (depending on x) such that x < n.

2.4.3 Archimedean Property [f x € IR, then there exists n_ € N suchthat x < n_.

Proof. 1f the assertion is {alse, then n < x for all n € N; therefore, x 15 an upper bound of
N. Therefore, by the Completeness Property, the nonempty set N has a supremum « € R.
Subtracting 1 from # gives a number v — 1 which is smaller than the supremum u of N.

Thereforc . — | is not an upper bound of N, so there exists m € N withw — | < m. Adding
) cives 4 < m + 1, and since m + 1 € N, this inequality contradicts the {act that # s an
upper bound of N. QED.

24.4 Corollary If§:={l/n:n e N} theninf § = 0.

Proof. Since § # ¥ 15 bounded below by G, 1t has an infimum and we let w ;= 1nf S. Il 1s
clcar that w > 0. For any £ > 0, the Archimedean Property implies that there existsn € N
such that 1 /e < n, whichimplies 1/n < ¢. Therefore we have

O<w=l/n<e

But since € > 0 is arbitrary, it follows from Theorem 2.1.9 that w = 0. QED.
2.4.5 Corollary Ift > 0, there existsn, € N such that0 < 1/n, < t.
Proof. Since inf{l/n n €N} =0 and t > (), then ¢ is not a lower bound for the set

{1/n:n e N} Thusthere exists n, € Nsuchthat0 < 1/n, < t. QED.

2.4.6 Corollary Ify > 0, there existsn, € N such that no—1<y<n,
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Proof. The Archimedean Property cnsurcs that the subset £ = {m ¢ N1y < m} of N
1s not empty. By the Well-Ordenng Property 1.2.1, E}, has aleast element, which we denote
by n,. Then n, — 1 does not belong to Ey, and hence we have n, - | <y« n, QEDN.

Collectively, the Corollaries 2.4 4-2 4 6 are sometimes referred to as the Archimedean
Praperty of I£.

The Existence of +/2

The importance of the Supremum Property lies in the fact that it guarantees the existence of
real numbers under certain hypotheses. We shall make use of 1t 1n this way many times. At
the moment, we shall jHustrate thus use by praving the existence of a positive real number
x such that x? = 2; that is, the positive square oot of 2. It was shown carlier (sce Theorem
2.1.4) that such an x cannot be a rational number; thus, we will be deriving the existence
of al Jeast one irrational number.

2.4.7 Theorem There exists a positive real number x such that x* = 2.

Proof. Let §:={se R 0=<s5s, 5 < 2}. Since 1 € §, the sct 1s not empty. Also, S 1s
bounded above by 2, because if 1 > 2, then t* » 4o that ¢ & 8§ Therefore the Supremum
Property implies that the sct § has a supremum in R, and we let x := sup §. Notc that
x > 1.

We will prove that x? = 2 by ruling out the other two possibilities: x° < 2 and x% > 2.

First assume that x? < 2. We will show that this assumption contradicts the fact that
x = sup S by finding ann € W such that x + 1/n € §, thus implying that x is not an upper
bound for §. To scc how to choose #, note that 1/:»1"2 < 1/n sothat

Z
! 5 2x ] 5 1
x4+ -] =x +——+-—25x + - (2x 4 1)

n n K

Hencee if we can choose n so that
1 2
—{2x+ 1) <2 —x",
n

then we get (x + I/n)'2 < xt 4 (2 - xz) = 2. By assumption we have 2 — x? > 0, so that
(2 — x*)/(2x + 1) > 0. Hence the Archimedean Property (Corollary 2 4 5) can be used to
obtain n € N such that
i 2 — x?
- < :
n 2x + 1
These steps can be reversed to show that for this choice of n we have x 4+ 1/n € §, which
contradicts the fact that x is an upper bound of §. Therefore we cannot have x° < 2.
Now assume that x” > 2. We will show that it is then possible to find m € N such that
x — 1/m is also an upper bound of §, contradicting the fact that x = sup 8. To do this, notc
that
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then (x — l,f'm]2 > x? - (x2 — 2) = 2. Now by assumption wc have 22 0, so that
(x?2 —2)/2x > 0 Hence, by the Archimedean Property, there exists m € N such that
| x2 =2

—_ < X
m 2x

These steps can be reversed io show that {or this choice of m we have (x — 1/m)? > 2. Now
if s € S, then s° < 2 < (x — 1/m)?, whence it follows from 2.1.13(a) that s < x — 1/m.
Thisimplhes thatx — 1/m1s anupper hound for §, which contradicts the {act that x = sup .
Thercfore we cannot have x% > 2.
Since the possibilities x? < 2 and x* > 2 have heen excluded, we must have x* = 2.
QED.

By slightly modifying the preceding argument, the reader can show that if @ > 0, then
there is a unique b > Osuch that b* = a. We call b the positive square root of a and denote
it by b = /@ or b = a'/*. A slightly more complicated argument involving the binomual
theorcm can be formulated to cstablish the existence of a unigue positive ath root of a,
denoted by /a or @'/ foreach n € N,

Remark If in the proof of Theorem 2.4.7 we replace the set § by the sct of rational
numbers T = {r € Q.0 <r, v’ < 2}, the argument then gives the conclusion that ¥ =
sup T sausfies y* = 2. Since we have scen in Theorem 2.1.4 that y cannot be a rational
number, 1t follows thatl the set 7 that consists of rational numbers does not have a supremum
belonging to the sct (J. Thus the ordered field €@ of rational numbers does nor posscss the
Complcteness Property.

Density of Rational Numbers in R

We now know that there exists at least one irrational rcal number, namcly V2. Actually
there are “more” trrational numbers than rational numbers tn the sense that the set of
rational numbers is countable (as shown in Section |.3), while the set of irrational numbers
15 uncountable {see Section 2.5). However, we next show that in spite of this apparent
disparity, the set of rational numbers 15 “dense’™ in X in the sense that given any two real
numbers there is a rational number between them (in fact, therc are infinttcly many such
rational numbers).

2.4.8 The Density Theorem If x and y are any real numbers with x < y, then there
exists a rational numberr € Q suchthatx < r < y.

Proof. It 18 no loss of generality (why?) 1o assume that x > 0. Since y —x > 0, it
follows from Corollary 2.4.5 that there exists n € N such that 1/n < y — x. Therefore,
we have nx + 1 < ny. If we apply Corollary 2.4.6 to nx > 0, we obtain m € N with
m—1<nx <« m Therefore,m <nx + | < ny, whencenx < m < ny. Thus, the rational
number r := m/n satistics x < r < y. QED.

To round out the discussion of the interlacing of rational and irrational numbers, we

have the same “betweenness property” for the set of 1rrational numbers.

2.4.9 Corollary If x and y are real numbers with x < y, then there cxists an irrational
number z such thatx < z < y.
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Proaf. 1f we apply the Density Theorem 2.4.8 to the real numbers x /~/2 and y/V2, we
obtain a rational number r % 0 (why?) such that

X Y
—_— e =,

V2 V2

Then z := r+/2 is irrational {why?) and satisfies x < z < y. QE.D.

Exercises for Section 2.4

1
2.

10.

Show that sup{l — 1/n:n € N} — 1.
IfS:={1/n—1/m:n,mc N} find inf S and sup S.

Let § © R be nonempty. Prove that if a number « in R has the properties: (i) foreveryn e N
the number & — [ /n 13 not an upper bound of §, and (i) for every number n &€ N the number
u — t/n is an upper bound of §, then u = sup §. {This i3 the converse of Exarcise 2.3.8))

Let § be a nonempty bounded set i X,
(a) Letg > 0,andletal ;= {as: s = §). Prove that

inflaSYy=ainf §, sup(aS) = asup S.
(b} Leth =< OandlethS = {bs: s € §} Prove that
inf(h§) = bsup §, sup{b§) = binf §.

Let X be 2 nonempty set and let f: X — X have bounded range in R. If @ € R, show that
Example 2.4.1(a} implies that

sup{az + ffx):x € X} = a + sup{ f(x): £ € X}
Show that we also have
infla+ fix) x e X} =a+inf[f(x) x e X}

Let A and B bc bounded nonempty subsets of B, and let A+ B . ={a+b.ae A, be B
Prove that sup(A + B) = sup A + sup 8 and inf(4 — 8) = inf A +inf 8.

Let X be a nonempty set, and let f and g be defined on X and have bounded ranges in €. Show
that

sup{f(x) + g(x):x € X} < sup{f(x):x € X} —sup{g(x) : x € X}
and that
mf{f(x):xe X} +inflg(x} - x e X} 2 inf{ fx)+p(x): x e X}
Give examples to show thateach of these inequalities can be either equalities or strict inequalities.

letX =Y :={xrcB:0<x <1} Detfineh X xY - Bby hix, y) i=2x + .

(8) Foreachx € X, find f(x) = sup{a{x. y): y € Y}, then Gnd inf{ f(x): x € X}.

(b) Foreach y € ¥, find g(y) ;= inf{Aa(x, y): x € X} then find sup{g(y): v € Y}. Compare
with the result found in part (2).

Perform the computations in (a) and (b} of the preceding exercise for the funchon 2: X x ¥ - [
defined by

0 ifx<y

hix, = , '
) 1 ifxzy.

Let X and ¥ benonempty setsand leth 1 X x ¥ — [RhaveboundedrangeinR. Let f - X - R
and g - ¥ — R be defined by

flx)i=sup{h(x, y):ye Y}, gly) = wmf{hi{x y):x € X}
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Prove that
sup{g(y)}ry ¢ Y} <inf{f(2) *x € X}
We sometiumnes express this by wniting
supinfh{x, y} < infsuph(x,y).
yox oy
Note that Excrcises 8 and 9 show that the inequality may be either an equality or a strict
inequality.

11. Let X and ¥ be nonempty sctsand leth @ X x ¥ -» Hhave bounded range in R. Let F: X — R
and (G : ¥ — X be defined by

F(x) =suplr(x. y)  yerh G(yy = suplh(x.¥) - x € X}.
Establish the Principle of the Iterated Suprema:
suplh(x, yyx € X,y e V) =up{F(x) : x € X} =sup{G{y}: y € Y}
We someumes express this in symbols by

sup A(x, ¥) = supsup A(x, y) = supsuph{x, y).
L x ¥ ¥ x

12, Given any x € R, show that there exists a unigue n € Z suchthatn — | < x < n.
13. If ¥ = G, show that there exists n € N such that 12" < y.

14, Modify the argument 1o Theoremn 2.4.7 to show that there exists a positive real number ¥ such
that y* = 3,

15. Modity the argument in Theorem 2.4.7 to show that if @ = 0, then there exists a posituve real
number z such that 2 = a.

16. Maodify the argument in Theorem 2.4.7 to show that there exists a positive real nuimnber u such
that 1> = 2.

17, Complete the proof of the Density Theorem 2.4.8 by temoving the assumption that x = 0.

18, If u = 0 is any real number and x < y, show that therc exists a rational nwnber r such that
x < ru < y.[Hence the set {ru; r € §3} is dense 1y R.)

Section 2.5 Intervals

The Order Relation on R determines a natural collection of subsers called “intervals”. The
notations and terminology for these special sets will be familiar from earlier courses. If
a, b e Rsatisfy @ < b, then the open interval determined by @ and b is the set

{(a.p) ={xeR:a <x < b}

The points @ and b are called the endpoints of the interval; however, the endpoints are not
included in an open interval. If both endpoints are adjoined to this open interval, then we
obtain the closed interval determined by a and b; namely, the set

la, ] ={xecR:a <x < b}

The two half-open (or half-closed) intervals determined by a and b are [a, b), which
includes the endpoint a, and (a, £], which includes the endpoint 5.

Each of these four intervals is bounded and has length defined by b — a. If a = b, the
corresponding open interval is the empty set {a, @) = @, whereas the corresponding closed
interval is the singleton set [a, a] = {a}.
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There are five types of unbounded intervals for which the symbols oo {or +-c0) and —oo
are uscd as notational convenience in place of the endpoints. The infinite open intervals
are the sets of the form

(a,00) ={xeR: x> a} and (—oo,b) :={x € R:x < b}

The first set has no upper bounds and the second onc has no Jawer bounds. Adjoining
endpoints gives us the infinite closed intervals:

(g,00) ={xreR:a<x} and (—ox, Bl :={x cR:x < b}

1t is often convenient to think of the eatire set B as an infinite interval; in this case, we write
(—oc, 00) := . No point 1s an endpoint of (—o0, c0).

Wamning It must be emphasized that oc and —oo are not clements of R, but only conve-
nient symbols,

Characterization of Intervals

Anobvious property of intervals is that if two points x, y with x < ybelongto an interval J,
then any point lying between them also belongs to /. That is, if x < ¢+ < y, then the point ¢
belongs to the same interval as x and y. In other words, if x and y belong to an interval /7,
then the interval [x, ¥] is contained in J. We now show that a subset of R possessing this
property must be an interval.

2.5.1 Characterization Theorem Jf § is a subset of R that contains at least two points
and has the property

(1) if x,ycS§S and x <y, then [x,y|C S,
then 8 18 an interval.

Proof. There arc four cases to consider: (1) S is bounded, (i1) S is bounded above but
not below, (111) § 18 bounded below but not above, and (1v) S is neither bounded above naor
below.

Case (1): Let a:=nf§ and & :=supS. Then § C {a.b] and we will show that
(a,b) C §.

If a < z < b, then zis not alower bound of §, so there exists x € § with x < 7z Also,
z 1s not an upper bound of §, so there exists y € § with z < y Thercfore z € [x, ¥/, s0
property (1) implies that z € S, Since z is an arbitrary element of (a, #), we conclude that
(a,b) C 5.

Nowifa € Sandb € §, then S = [a, b). (WhyN Ifa ¢ Sand b ¢ S, then § = (a, b).
The other possibilities lead to cither S = (a, b] or § = [a. b).

Case (11): Let b -=sup §. Then § € (~00, b] and we will show that {(—oc, &) € §. For,
if 7 < b,thenthereexistx, y € Ssuchthatz € [x, ¥1 € §. (Why?) Therefore (—o0, ) € S.
I[fbec 8 then § = (—oc,pl.andif b ¢ S, then § = (—x¢, b).

Cases (111) and (1v) are left as exercises. Q.E.D.

Nested Intervals

We say that a sequence of intervals 7, n € N, js nested if the following chain of inclusions
holds (see Figure 2.5.1):
L2052 21,21

o= "nll
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Figure 2.5.1 Nested intervals

For example, if 1 = [0, 1/n] for n € N, then L2171, for each n € N so that this
sequence of intervals 1s nested In this case, the element O belongs to ali 7/ and the
Archumedean Property 2.4.5 can be used to show that 0 is the only such common point.
(Prove this.) We denote this by writing (7, I = {0).

It is 1mportant to realize that, 1n general, a nested sequence of intervals need not
have a common point, For example, if J = (0, 1/n) for n € N, then this sequence of
intervals 1s nested, but theze 18 no cammon point, since for every given x > 0, there exists
(why?) m € N such that 1/m < x so that x ¢ J_. Similarly, the sequence of intervals
K = (n,oc), n € N, is nested but has no commnon peint. (Why?) -

However, it is an important property of [® that every nested sequence of closed, bounded
intervals does have a commaon point, as we will now prove. Notice that the completeness
of R plays an essential role in estabhishing this property.

2,5.2 Nested Intervals Property If] = [an. bn] , n € N, 15 a nested seguence of closed
boundcd intervals, then there exists a numberf € R such that & € 1 foralln € N.

Proof  Since the intervals are nested, we have 1. € 7, foralln € N, so thate, < b, for
all n & N. Hence, the nonempty set {¢_: n € N} 1s bounded above, and we let £ be 1ts
supremum. Clearly e < & forall n € N.

Weclaimalsothat £ < b_forall n. This is established by showing that for any particular
n, the number 4 is an upper hound for the set {a,: £ € N}. We consider two cases. (1) If
n <k, thensince /D J,, wehavea, <b, <b . (11)Ifk < n,thensince J, 2 7, we have
a, < a, <b_.(See Figurc 2.5.2.) Thus, we conclude thatg, < &, forall k, so that b, is an
upper bound of the set {a,: k ¢ Iv}. Hence, & < b forcachn € M. Since g, <§ < b, for
alln, we have £ € / forallm e N. O.ED.

E] - ~

Figure 2.5.2 Ifk < n. then/ C/,
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2.5.3 Theorem Ifl :=[a b ], n €N, isanecstedsequence of closed, bounded mtervals
such that the lengths b —a, of I satisfy

inflb. —a_:ne N)=0,

l x

then the number § contained in I for alln € N 15 umque.

Proof. Ifn:=nf{b_: n € N}, then an argument similar to the proof of 2.5 2 can be used
tc show that a_ < 5 for all n, and hence that £ < n. In fact, it is an exercise (see Exercise
10) to show thatx € J foralln € Nifandonlyifé < x < n. Ifwchaveinf{b —a, :n €
N} = 0, then for any £ = 0, there exists an m € Nsuchthat 0 <n—-£( <b —a_<e.
Since this holds for all £ > 0, it follows from Theorem 2.1.9 that n — & = {. Thercfore, we
conclude that £ = 5 is the only point that belongs to I forevery n € N. QE.D.

The Uncountability of R

The concept of a countable set was discussed in Section 1.3 and the countability of the set
@@ of rational numbers was ¢stabiished there. We will now use the Nested Interval Property
to prove that the set R is an wncountable set. The proof was given by Georg Cantor in
1874 in the first of his papers on infinite scts. He later published a proof that used decimal
representations of real numbers. and that proof will be given Jater in this seclion.

2.5.4 Theorem The set R of real numbers is not countable.

Proof. We will prove that the unit interval /7 = [0, 1] is an uncountable set. This implies
that the set [® is an uncountable set, for if R were countable, then the subset 7 would also
be countable. (Sec Theorem 1 3.9(a))

The proof1s by contradiction. [f we assume that 7 is countable, then we can enumerate
the set as T = {x,,x,, -, x, .- ). We first sclect a clostd subinterval 7, of J such that

X, & II, then select a closed subinterval 12 of ]l such that Xy =4 12, and so on, [n this way,
we obtain nonempty closed intervals

IIQ;’EQ-..QJ oo

H -

such that / C J and x &/ for all n. The Nested Intervals Property 2.5.2 inplies that
there exists a point £ € [ such that £ € 7 for all n, Therefore £ # x_foraltn € N, so the
cnumeration of 7 {s not a complcte listing of the elements of 7, as claimed. Hence, [ is an
uncountable set. ' ' Q.ED.

The fact that the set R of real numbers is uncountable can be combined with the fact
that the sct (@ of rational numbers 1s countable to conclude that the ser R\Q of mrational
numbers 1s uncountable. Indeed, since the union of two countable scts 1s countable (see
1.3.7(c)), if R\Q 1s countable, then since B = Q U (R\D), we conclude that R 15 also a
countable sct, which is a contradiction, Therefore, the set of irrational numbers R\ is an
uncountable sel.

"Binary Representations

We will digress briefly to discuss informalily the binary (and decimal) representations of real
numbers. [t will suffice to consider real numbers between 0 and 1, since the representations
for other real pumbers can then be obtained by adding a positive or negative number.

"The remainder of this section can be omitted on a first reading.
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If x € [0, 1], we will usc arepeated bisection procedure to associate a sequence (a, ) of
Os and 1s as follows. If x % 3 belongs to the left subinterval [O, %] we take a; ;= 0, while
if x belongs to the right subinterval [% ]} we take @, = 1. Tf x = 7, then we may take a,

to be either O or 1. In any casce, we have

L
2!

al+l

4
— < ¥ <
2_ s

b

We now bisect the interval [, $(a, + 1] If x is not the bisection point and belongs
to the left subinterval we take a, ‘= 0, and if x belongs to the right subinterval we take

a, =1I{x=1orx= %, we can take @, to be exther C or 1. In any case, we have

a, a ¢l a, 1

_‘_}__2i:xf_._|___+_ ~+ i

2 22 2 2?
We continue this bisection procedure, assigning at the ath stage the value 2, = 0 if x is not
the bisection point and lies in the left subinterval, and assigning the value a, =1 if x les

in the right subinterval. [n this way wc obtain a sequence (a_) of Os or 1s that correspond
10 a nested sequence of intervals containing the point x. Far each n, we have the inequality
1 a?_

(2) _l+ _____ +.,.4_£_I£.<x{___+_4...,.+a"+l
3 .22 B LB 21 ! 91 :

If x is the bisection point at the nth stage, then x = /2" with m odd. In this case, we may
choose either the left or the right subinterval, however, once this subinterval is chosen, then
all subscquent subintervals in the hisection proceduare are deterrmined. [For instance, 1f we
choose the left subinterval so that @, = 0, then x 1s the right endpoint of all subsequent
subintervals, and hence @, = 1 for all k = n + 1. On the other hand, if we choase the nght
subinterval so that g = 1. then x s the left endpoint of all subsequent subintervals, and
hence a, = O farallk > n + 1. For example, if x = %, then the twao possible sequences for
xare1.0,1,1,1,---and 1,1,0,0,0, --.]

To summanze: If x € [0, 1], then there exists a sequence (a,) of Os and 18 such that
inequality (2) holds for all n € N. In this case we wnte

o
™
]

(3) x=(a,a,a, ),

il

and call (3) a binary representation of x. This representation 1s unigue except when
x = m/2" for m odd, tn which case x has the two representations

x =(a,a,--a, 1000 ), =(aa,---a, ,0111..),,

| Bt "

one ending 10 08 and the other ending in 1s.

Conversely, each sequence of Os and 15 is the binary representation of a unigque real
number in [0, 1). The incquality corresponding to (2) determines a closed interval with
length 1 /2" and the sequence of these tntervals 1s nested. Therefore, Theorem 2.5.3 unplies
that there exists a unique real number x satisfying (2) for every n € N. Consequently, x has
the binary representation (a,a,---a, - ).

Remark The concept of binary representation 1s extremely important in this era of digital
computers. A number is entered in a digital computer on “bits”, and cach bit can be put in
one of two states—either it will pass current or it will not. These two states correspond to
the values 1 and 0, respectively. Thus, the binary representation of a number can be stored
in a digital computer on a siring of bits. Of course, in actual practice, since only finitely
many bits can be stared, the binary representations must be truncated. If n binary digits
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are used for a number x € [0, 1], then the accuracy is at most 1/2". For example, to assure
four-decimal accuracy, it is necessary to use at least 15 binary digits {or 15 bits).

Decimal Representations

Decimal representations of real numbers are simular to binary representations, except that
we suhdivide intcrvals into fen cqual subintervals instzad of two.

Thus, given x € [0. 1], 1f we subdivide [0, 1] into ten equal subintervals, then x belongs
to a subinterval (b, /10, (b, t 1)/10] for some integer b, in {0, 1, - - . 9}. Procceding as in
the binary case, we obtain a sequence (b)) of integers with 0 < b < 9 for all n € N such
that x satisfies

(4) co R N R N
10 107 10" — 7 T 10 107 10"
In this case we say that x has a decimal representation given by
x=.bby b -

Ifx>landif BeNissuchthat B <x < B+ 1,thenx =Bb.b,---b_-- where the

decimalrepresentationof x — B € [0, 1]1sas above. Negative numbers are treated sumilarly.,
The fact that each decimal determines a unique real number follows from Theorem

2.5.3, since each decimal specifies a nested sequence of intervals with fengths 171,

The decimal representation of x & [0, 1] 1s unigue except when x 1S a subdivision
point al somne stage, which can be seen to occur whenx = m/10" forsome m,n e N, 1 <
m o< 107, (We may also assume that s 1s not divisibie by 10.) When x is a subdivision
point at the nth stage, one choice for £ corresponds to selecting the left subinterval, which
causcs all subsequent digits to be 9, and the other choice corresponds to sclecting the
right subinterval, which causes all subsequent digits to be 0. [For example, if x = % then
X =.4999... = 5000 -, and if y = 38/100 then y = 37999 ... = 38000 -]

Periodic Decimals

A decimal B.h b, - - b - --1ssaid to be periodic (or to be repeating). if there existk, n € N
such that b, = er_m for all » > k. In this casc, the block of digits bkbk+l ‘--me_l is
repeated once the kth digit is reached. The smallest number m with this property 1s called
the perind of the decimal For example, 19/88 = 2159090 ...90 ... has period m = 2
with repeating block 90 starting at ¥ = 4. A terminating decimal is a periodic decimal
where the repeated block is simply the digit 0.

We will give an informal proof of the asscrtion: A positive real number is rational if
and only if its decimal representation is periodic.

For, suppose that x = p/g where p.g € N have no common integer factors. For
convenience we will also suppose that O < p < g. We note that the process of “long
division™ of g into p gives the decimal representation of p/gq. Each step in the division
process produces a remainder that 1s an integer from 0 to ¢ — 1. Therefore, after at most ¢
steps, some remainder will occur a second time and, at that point, the digits in the quotient
will begin to repeat themselves in cycles. Hence, the decimal representation of such a
rational number is periodic.

Conversely, if a decimal is periodic, then it represents a rational number. The idea of the
proof is best illustrated by an example. Suppose that x = 7.31414 ... 14 .. We muluply
by a power of 10 to move the decimal point to the first repeating block, here obtaining
10x = 731414 - - - . We now multiply by a power of 10 to move one block to the left
of the decimal point; here geting 1000x = 7314.1414 - ... We now subtract to oblain an
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integer; here getting 1000x — 10x = 7314 — 73 = 7241, whence x = 7241/990, arational
number,

Cantor’s Second Proof

We will now give Cantor’s sccond proof of the uncountability of ®. This is the clegant
“diagonal™” argument based on decimal representations of real munbers.

2.5.5 Theorem The unitinterval 10, 1] .= {x € R : 0 < x < 1} is not countable.

Proof. The proofis by contradiction. We will use the fact thatevery real number x € [0, 1]
has a decimal representation x = 0.b,b,b, - -, where b, = 0, 1 .-+, 9. Suppose that there

18 an enuvrrieration X)) Ky, Xqo of all numbers in [0, 1], which we display as:

X = O'bnbubu by,
X = 0Dy byybyy- by, oo
v, = 0.bybyby, - b.

KT I

3

X, =05

3 R T nn .

b b

We now define a real number y :=0.y,y,¥,---y, - - by setting y, :=2if 4, > 5 and
¥y, =7 if by, < 4;in gencral, we let

ifh >S5,
b <4,

1 b

¥, =

Then y € [0, 17 Note that the number y 18 not cqual to any of the pumbers with two
decimal representations, since y, % 0,9 for all n € N, Further, since y and x_ differ in
the nth decimal place, then y # x, fot any n € N. Therefore, vy 15 not included in the
enumeration of [0, 1], contradicting the hypothesis. QED

Exercises for Section 2.5

. I :=[a bland ! :=[a’,b'] are closzd intervals in B, show that / C 7' ifand onlv if &’ < a
and b < b,

2. 1If § € R is nonempty, show that § is bounded if and only 1f there exists a closed bounded
interval [ such that § C 7.

3. If § € R ts a nonempty bounded set, and /¢ = [inf §, sup 8], show that § € IS. Morcover, 1f J
1s any closed bounded interval containing S, show that l.cJ

4. 1Inthe proof of Case (ii) of Theorem 2 3.1, explain why x, y existin §
5. Write out the details of the proof of cage (iv) in Theorem 2.5.1.

6. If ll 212 2 -21 2 15 a nested sequence of intervals and 1f Ir_ =[a,, b, ], show that
a f£a, - <a <. eandb b2 o2b 2o

7. Letl :=1{0,1/n]forn ¢ N. Prove that (72, / = {0}.
8 LetJ :=(0,1/r)forn € N. Prove that(oe, J = @.
9. Let K := (n,00) for n ¢ N, Prove that (72, K =@



10.

li.

12

13,

14,

15.
16.
17
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With the notation in the proofs of Theorems 2.5.2 and 2.5.3, show that we have n € ()2 [ .
Also show that [£, 1] = (Yiz, 7 .

Show that the intervals obtained from the incqualities in {2} form a nested seguence.

Give the two binary representations of % and %

fa) Give the first four digits in the binary representation of ;‘

(hy Give the complete binary representation of %

Show that if a, b, € {0, 1,---, 9} and if

al a2 + ﬂ'” bl bz _+_ bm .rO

— 4 —= N Ep—— & .

TR o w0 T o 7
thcnn:maﬂdak:bk tork=1,...,n.

Find the decimal representation of —%.
Express l and % as periodic decimals,

What radonals are represented by the penodic decimals 1.25137..-137... and
35.14653 .- 6533 -7



CHAPTER 3

SEQUENCES AND SERIES

—

Now that the foundations of the real number system R have been laid, we are prepared
to pursue questions of a more analytic nature, and we will begin with a study of the
convergence of sequences. Some of the early results may be familiar to the reader from
calculus, but the presentation here is intended to be rigorous and will lead to certain more
profound theorems than are usually discussed in earlier courses.

We will ficst introduce the meaning of the convergence of a sequence of real numbers
and establish some basic, but useful, results about convergent sequences. We then present
some deeper results concerning the convergence of sequences. These include the Monotone
Convergence Theorem, the Bolzano-Weierstrass Theorem, and the Cauchy Criterion for
convergence of sequences. It 1s important for the reader to learn both the theorems and how
the theorems apply to special sequences.

Because of the linear limitations inherent in a book it is necessary to decide where
to locate the subject of infinite series. It would be reasonable to follow this chapter with
a full discussion of infinite series, but this would delay the important topics of continuity,
differentiation, and integration. Consequently, we have decided to compromise. A brief
introduction to infimte series is given in Section 3.7 at the end of this chapter, and a more
extensive treatment is given Jater in Chapter 9. Thus readers who want a fuller discussion
of series at this point can move to Chapter 9 after completing this chapter.

Augustin-Louis Cauchy

Augustin-Louis Cauchy (1789-1857) was bom in Paris just after the start
of the French Revolution. His father was a lawyer in the Paris police de-
partment, and the family was forced to flee during the Reign of Terror. As
a result, Cauchy's early years were difficult and he developed strong anti-
revolutionary and pro-royalist feelings. After retuming to Paris, Cauchy’s
father became secretary to the newly-formed Senate, which included the
mathematicians Laplace and Lagrange. They were impressed by young
Cauchy’s mathematical talent and helped him begin his career.

He entered the Ecole Polytechnique in 1805 and soon established a reputation as an excep-
tional mathematician. In 1815, the year royalty was restored, he was appointed to the faculty
of the Ecole Polytechnique, but his strong political views and his uncompromising standards in
mathematics often resulted in bad relations with his colleagues. After the July revolution of 1830,
Cauchy refused to sign the new loyalty oath and left France for eight years in self-imposed exile.
In 1838, he accepted a minor teaching post in Paris, and in 1848 Napoleon III reinstated him to
his former position at the Ecole Polytechnique, where he remained until his death.

Cauchy was amazingly versatile and prolific, making substantial contributions to many areas,
including real and complex analysis, number theory, differential equations, mathematical physics
and probability. He published eight books and 789 papers, and his collected works fill 26 volumes.
He was one of the most iumportant mathematicians in the first half of the nineteenth century.

52
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Section 3.1 Sequences and Their Limits

A scquence in a set S is a function whose domain s the set N of natural numbers, and
whose range is contained in the set S. In this chapter, we will he concermed with sequences
in B and will discuss what we mean by the caonvergence of these sequences.

3.1.1 Definition A sequence of real numbers (or a sequence in K) 15 a function defined
on the set N = {1, 2, - -} of natural numbers whosc range 1s contained in the set R of real
numbers.

In other words, a sequence in B assigns to cach natural numbern = 1, 2, - - auniquely
determuned real number. If X : N — [K 15 a sequence, we will usually denote the value of X
at n by the symbol x rather than using the function notation X {n). The values x are also
called the terms or the elements of the sequence. We will denote this sequence by the
notarons

X, (x,)

ns!t

(x, - neN)

Of course, we will often use other letfers, such as ¥ = (y,), Z == (z,), and so on, to denote
sequences.

We purposely use parentheses to cmphasize that the ordering induced by the natural
order of N 18 a matter of importance. Thus, we distinguish notatiovally between the se-
quence (x, : n € N), whose infinitely many terms have an ordering, and the set of values
{x, 1 n € N} in the range of the scquence which arc not ordered. For example, the se-
quence X = ((—1)" : n € N) has infinitely many tcoms that altermate between —1 and 1,
whereas the set of values {(—1)" . n € N} 15 equal to the set {—1, 1}, which has anly two
elements.

Sequences are often defined by giving a formula for the nth term x . Frequently, it 1s
convenicent to list the terms of a sequence in order, stopping when the rule of formation
seems evident. For exanmple, we may define the sequence of reciprocals of the even numbers

hy writing
oL 11
T \2°4°6' 8’ ’

though a more satisfactory method is (o specify the formula for the general term and write

1
X = ( —nE N)
2n
or more simply X = (1/2n).

Anather way of defining a sequence 1s to specify the value of x, and give a formula
for x_,, (n = 1) in terms of x . More generally, we may specify x, and give a formula
for obtaining x,,, from x,,x,, -+, x . Sequences defined 1in this manner are said to be
inductively (or recursively) defincd.

3.1.2 Examples (a) Ifb e R thesequence B .= (b, b, b, - - ), all of whose terms cqual
b, is called thc constant sequence 5. Thus the constant sequence [ Is the sequence
(1,1,1,--4), and the constant scquence O is the sequence (0, 0,0, - - ).
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() Ifb € R, then B := (b") 1s the sequence B = (b, b4, B*, -+, b", .- ). In particular, if
b = 3. then we oblain the scguence

( 1 A AT 1 )

—HZHEN = |z, TS T

2 ) 2 4 8 2

(e} The scquenee of (217 . n € N) of even natural numbers can be defined inductively by
X, = 2, X, =x,+ 2.

or by the definition
yl .':2’ yn-l-? = }‘l+yn'

(d) The celebrated Fibonacci sequence F = (f ) is given by the inductive defimtion

=1 f=1 fiai=fH+)f z2)
Thus each term past the second is the sum of its two immediate predecessors. The first ten

terms of F are scentobe (1,1,2,3,5, 8,13, 21, 34 55, --). L]

The Limit of a Sequence

There are a number of different [unit conceplts in real analysis. The notion of limit of a
sequence 1s the most basic, and 1t will be the focus of this chapter.

3.1.3 Definition A scquence X = (x ) in R is said to converge to x € R, or x is said to
be a limit of (x )}, if for every £ > O there exists a natral number K (¢) such that for all
n > K({(&), the terms x, satisfy [x, —x| < €.

[f a sequence has a limit, we say that the sequencc 1s convergent; if it has no hmit, we
say that the sequence 1s divergent.

Note The notation K (2} 15 used to emphasize that the chotce of K depends on the value
of €. However, it is often convenient to writc K instcad of X (£). In most cases, a “small”
value of £ will usually require a “large™ value of K 1o guarantee that the distance |x, — x|
between x_ and x 18 less than € foralin > K = K(&).

When a sequence has limit x, we will use the notation
ImX = x or lim(x,) = x.

We will sometimes use the symbolism x, — x, which indicates the intuitive idea that the
values x, “approach’ the number x as n — 0.

3.1.4 Uniquencss of Limits A sequence in R can have at most one limit.

Proof. Suppose that x’ and x” are both limits of (x ). For each £ > O there exist X' such
that [x_—x'| < ¢/2 foralln > K’ and there exists K“ such that [x_ — x"| < £/2 for all
n > K”. We let K be the larger of K" and X”. Then for n > K we apply the Triangle
Inequality to get

X =X =y - x v x, =X
<l —xl+lx —x"<e/2+e/l=¢

Since £ > 0 is an arbitrary positive number, we conclude that x” — x” = 0. QED.



3.1 SEQUENCES AND THEIR LIMITS 55

Forx € ® and ¢ > 0, recall that the e-neighborhood of x is the set
Vix) ={ueR: |lu—x| <}

(Sce Section 2.2.) Since u € V_(x) 18 cquivalent to (4 — x| < &, the definition of conver-
gence of a sequence can be formulated in terms of neighborhoods. We give several different
ways of saying that a sequence x| converges to x in the following theorem.

3.1.5 Theorem LetX = (x ) beascquence of real numbers, and let x € K. The following
statemcents arc cquivalent.

(a) X convergestox.

(b) Forcverye > (0, there cxists a natural number K such that for alln = K, the terms X,
satisfy [x, — x| < €.

(e} Forevery ¢ > (, there exists a natural number K such that for alln > K, the terms X,
satisfyx —eg <x_ < x | &,

(d) For cvery €-neighborhood V {(x) of x, there exists a natural number K such that for
alln > K, the terms x belong to V, (x).

Proof. The equivalence of (a) and (b) 15 just the definition. The equivalence of (b), (¢},
and (d) follows from the following tmplications:

lt—x|l<e & —ft<u—x<E & x—eg<u<xte — wueVx).
CED.

With the language of neighborhoods, one can describe the convergence of the sequence
X = (x,) to the number x by saying: for each ¢-ncighborhood V_(x) of x, all but a finire
number of terms of X belong to V_(x}. The finite number of terms that may not belong to
the g-neighborhood are the terms x, . x,, L x, .

Remark The definition of the limit of a sequence of rcal numbers is used to verify that a
proposed value x 15 indeed the limit. It docs nor provide a means for initially determining
what that value of x mught be. Later results will contribute to this end, but quite often it is
necessary in practice to arrive at a conjectured value of the limit by direct calculation of a
number of terms of the sequence. Computers can be helpful in this respect, but since they
can calculate only a fluite number of terms of a sequence, such computations do not 1n any
way constitute a proof of the value of the imit.

The following examples iflustrate how the definition is applicd to prove that a scquence
has a particular Innit. In each case, a posttive ¢ 1s given and we are required to find a X,
depending on ¢, as required by the definition.

3.1.6 Examples (a} Lm(l/n) =0

If £ > 0 is given, then 1/¢ > 0. By the Archimedean Property 2.4.5, there is a nat-
aral number X = K (g) such that 1/X < &. Then, if n > X, we have 1/n € 1/K < ¢
Consequently. if n > K, then
] 1

- =0 = - < &.
n n

Therefore, we can assert that the sequence {1/n) converges to 0,
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(b) lun(l/(n*+ 1)) =0.
Let £ > O be given. To find K, we firsi note that if n € N, then

1 l{l
- g = < =
R4+ n* " on

Now choose K such that /K < g, as1n (a) above. Then » > K implies that 1 /7 < ¢, and
therefore

|

i
> < - < E.
ne 41

n2+i n

ﬁo‘:

Hence, we have shown that the limit of the sequence is zero.

) In+ 2
{c) hm(n+L)_3'

Given £ > 0. we want to obtain the inequality

3n+2

M nt

3‘ < &

when n 1s sufficiently large. We first simplify the expression on the left:
3n+42 3‘ |3 +2-3n-3 —1 1 1

n—+1

= <
n+ 1 n+1 n+1 1

Now if the inequality 1/n < £ 18 satisfied, then the mnequality (1) holds. Thusif 1/K < ¢,
then forany n > K, we also have 1/n < € and hence (1) holds. Therefore the bimit of the
sequence 1 3.

(dy If0 < b < 1, thenlun(p™) = 0.

We will use elementary properties of the natural logarithm function. If £ > 015 given,
we sec that

b" <& <= nlnb<lne <= n>Ing/inb.

(The last incquality s reversed becanse Inb < 0.) Thus if we choose X to be a number such
that X > Ing/Inb, thenwe willhave 0 = b" < ¢ foralln = K. Thus we have lim(d") — 0.

Forexample,if & = 8, andif ¢ = .01 15 given, then we would need K > In.01/In .8 =
20.6377 Thus K = 21 would be an appropriate choice for & = .01. L

Remark The K () Game In the notion of convergence of a scquence, one way to keep
in mind the conncction between the £ and the X is 1o think of it as a game called the X (&)
Game. In this game, Player A asserts that a certain number x 15 the limit of a sequence (x ).
Player B challenges this assertion by giving Player A a specific value for ¢ = ¢ Player A
must respond to the challenge by coming up with a value of K such that [x, — x| < ¢ forall
n > K.If Player A can always find a value of K that works, then he wing, and the sequence
is convergent. However, if Player B can give a specific value of £ > 0 for which Player A
cannol respond adequately, then Player B wins, and we conclude that the sequence does
not converge to x.

In order to show that a scquence X = (x) does not converge to the number x, 1t
is enough to produce one number &, > 0 such that no matter what natural number K 1s
chosen, one can find a particular # . satisfying »,. > K such that |xnﬁ_ ~x| = &, {Thig
will be discussced in more detail in Scction 3.4))
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1.1.7 Example The sequence (0,2,0, 2,---,0, 2, -) does not converge to the
number .

If Player A asserts that O is the limit of the sequence, he will lose the K{g) Game
when Player B gives him a value of £ < 2. To be dcfinite, let Player B give Playcr A
the value £, = 1. Then no matter what value Player A chooses for X, his response will
not be adequate, for Ptayer B will respond by selecting an even number n > K. Then the
corrcsponding value is x, = 2 so that |x, — 0] = 2 > | = ¢;. Thus the number 0 is not the
lirmut of the sequence. |

Tails of Sequences

It 1s tmportant to realize that the convergence (or divergence) of a sequence X = (x )
depends only on the *ultimate behavior™ of the terms. By this we mean thar if, for any
natural number m, we drop the first m terms of the sequence, then the resulting sequence
X, converges if and only 1f the original sequence converges, and in this case, the limits are
the same. We will state this formally alter we introduce the 1dea of a “tail” of a sequence.

3.1.8 Definition If X = (x,,x,,-- ,x ) isasequence of real numbers and if i is 2
glven natural number, then the m-tail of X 1s the sequence

X =(x

rrl

neN)y= (Im_|‘-fm+2~ o )

M=

For example, the 3-tail of the sequence X = (2,4,.6,8, 10, ---, 2n, - --), is the se-
quence X, = (8, 10,12, - 2n+ 6, ).

3.1.9 Theorem LeciX = (x, @ n & N)beascquence of real numbers and letm € N. Then
the m-tail X — (x ., n€N)of X converges if and only if X converges. In thus case,
IimX,  =lmX.

Proof. We note that for any p ¢ N, the pth term of X 1s the (p + m)th tenn of X,
Similarly, if g > m, then the gth term of X 15 the (g — m)th term of X .

Assume X converges to x. Then given any £ > 0O, if the terms of X for n > K (&)
satisfy [x, — x| < ¢, thenthe terms of X fork > K(e) —m satisfy |x, — x| < ¢. Thus we
can take K (&) = K(£) —m, so that X  also converges to x.

Conversely, if the terms of X, for k > K (£) satisfy ‘xk — x| < ¢, then the terms of
X forn > K (&) + m satisfy |.vr}1 - x‘ < . Thus we can take K (¢} = K, (£) +m.

Therefore, X converges to x if and only 1f X converges to x. QED.

We shall sometimes say that a sequence X witimately has a certain property if some
tail of X has this property. For example, we say that the scquence (3, 4,5,5,5,---,5, -}
is “ultimately constant™. On the other hand, the sequence (3,5,3,5,---,3,5,-- ) Is not
ultimately constant. The notion of convergence can be stated using this terminology: A se-
quence X converges to x if and only if the terms of X arc ultimately in every e-neighborhood
of x. Other instances of thus “ultimate terminology” will be noted below.

Further Examples

In establishing that a number x is the himit of a sequence (x,), we often try to simplify
the difference |x — x| before considering an e > 0 and finding a K'(¢) as required by the
definition of limit. This was done 1n some of the earlier examples. The next result is a more
formal statement of this 1dea, and the examples that follow make use of this approach.
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3.1.10 Theorem Let {x,) be a sequence of real numbers and let x € R, If (a,) 15 a
scquence of positve real numbers with lim{a_ ) = 0 and 1f for some constant C > 0 and
somem & N we have

lx, —x| =< Ca, forall n=>=m,
then it follows that lim{(x ) = x.
Proof. 1fe > 0is given, then since lim(a, ) = 0, we know there exists K = K (¢/C) such
that n > K implies
a =la —0]<e/C
Therefore it follows that if hothr > K and n > m, then
lx, —x| < Ca, < C(e/C)=¢.

Since £ > 0 is arbitrary, we conclude that x = lim{x ). QED.

;o]
3.1.11 Examples (a) Ifa > 0, thenhim | ) =0.
1+ na

Since a = 0, then 0 < na < 1 + na. and therefore 0 < 1/(1 + na) < 1/(na). Thus

we have
Iy L
< ( ) forall »n e N.
[ )

Since im(1/#n) = 0, we may invoke Theorem 3.1.10 with € = 1/a and m = 1 to nfer that
hm{1 /(! + na)) =0.
(by If0 < b < [, then im({s™) = 0.

This limit was obtained carlicr in Example 3.1.6{d). Wc will give a second proof that
illustrates the use of Bernoulli's Inequality (see Example 2.1.13(c)).

Since 0 < b < 1, we can write & = 1/(1 + a), where @ := (1/h) — 1 so thata > (.
By Bernoulli’s Inequality, we have (] +a)" > 1 4+ na. Hence

D<b’ =- : < l < i
(14+a)" =~ 1l4+na na
Thus from Theorem 3.1.10 we conclude that im(p") = 0.
fnparticular, 1f b = 8, sothat a = 25, and if we are given £ = .01, then the preccding
mequality gives us K(g) = 4/(.01} = 400. Comparing with Example 3.1.6{d), where we
obtained K = 25, we see this method of estimation does not give us the “best” value of K.
However, for the purpose of establishing the limit, the size of X is immuaterial.
{¢) Uc >0, thenlim(c/™) = 1.
The case ¢ = 1 is trivial, since then (¢¥") is the constant sequence (1, 1, -+ 4), which
evidently converges to 1.
If c>1, then c'/" =1 +d_ for some d > 0. Hence by Bemoulll’s Inequality
2.1.13(c),

]

14+ na

~0

c=1+4+4d) =1+nd, for ne XN,

Therefore wehave ¢ — 1 > nd | sothatd < (c — 1)/n. Conscquently we have
1
|Cl’f"—l‘=dnf(c—1)— for neN.
n

We now invoke Theorem 3.1.10 ta infer that lim(cl”'") =1whenc > |
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Now suppose that 0 < ¢ < 1; then ¢*/" = 1/(1 ~ r ) for some h_ > O Hence Ber-
noulll’s Inequality implies that
1 1 1
= - =L <
(L+A4 )" = 1+nh nh

il

from whach tt follows that 0 < & < 1/nc forn € N. Therefore we have

; 1
Ocl—cli"= Lt <h < —

sp that

|f:””—1|<(i)l for neN.
c/)on

We now apply Theorem 3.1,10 to infer that lim{c'/") = 1 when 0 < ¢ < 1.
(d) Hmn'"™y =1

Since n''" » | forn > 1, we can write n'/" = 1 + k forsomek > 0 whenn > .
Hence n = (1 + &£ )" for n > 1. By the Binomial Theorem, if n > 1 we have

n=1+nk, +inm—DkI+- > 1+ inn — DKL
whence it follows that
n—1>1tntn DK

Hence kf <2/nforn > 1. 1fg > 01s given, it follows from the Archimedean Property
that there exists a natural number N, such that 2/N_ < £°. It [ollows that if n > sup{2, N}
then 2/n < g%, whence

D<nt” —1 =k <@2/m) <e

Since £ > O is arbitrary, we deduce that lim(r Wy = 1, (]

Exercises for Section 3.1

1. The sequence (x ) is defined by the following formulas for the sith term. Wnite the first five terms
in each case:

(@) x, =1+(-1), ®) x, = (—1)"/n,
1 1
© 4=y @ =

2. The first few terms of a sequence (¥ ) ae given below. Assuming that the “natural pattern”
indicated by these terms persists, give a formula for the nth term x

(ay 5.7.9.11,.--, (hy 1/2, =174, 1/8 —1/16, -,
(cy 172, 2/3.3/4.4/5 -, (dy 1,4.9,16,- ..
3, List the fust five tenns of the following inductively defined sequences.
{a} x, =1, x _,=3x+1,
®) ¥ =20 Y, =30, H2/Y)
(€ z =1 2:=2 'z ,=(_ +z)/{z_,-—2)

{d) 5 = 3 5y = 5, § .,=58 s _
4, Forany & € R, prove that lun{d/n) = 0.
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5. Use the definition of the Jimit of a sequence to estahlish the following limits.
: n : 2
(a) hm( 5 ) =, (h) hm( " ) = 2,
n°+ 1 n+1
/3n + 1 3 LS AN
h = —, d 1 — = -
@ tn(33) =3 @ 1”“(zn~+3) 2
6. Show that
1 Zn
ay i =0, b} h =1,
@ lm(qn+7) ' (b) lm(n +2)
—1 ”
() 1im(ﬁ)=0, (d) nm((,)”)=0
n+1 ne 4+ 1

.‘-ml

Letx, = I/ln(n+ 1) forn € M.

(a) Use the dclinition of limit to show that lim(x,} = 0.

(b) Tind a specific value of K (£) as requircd in the defintion of limit for each of (Y e = 1/2,
and (i) g = 1/10.

8. Prove that lim(x ) = 0 if and only if lim(jx _{} = 0. Give an example to show that the conver-

geace of {ix, ) need not imply the convergence of (x).

9. Show thatif x_ = 0 for all 7 € N and lim(x_} = 0, then im (\/x_ ) = 0.

10, Prove that if lun(x ) = x and if x > 0, then there exists a natural number M such that x, > 0

foralln = M.

i

1
11. Show that lun (—- - ————) =0
n n+1

12. Show that lim(1/3") = 0.

13, Tetb e Zsatsfy 0 < b < 1. Show that lim(nb™) = 0. [FHins: Use the Binomual Theorem as in
Example 3.1.11{d).]

14, Show that lim {(2n) /") = 1.

15. Show that lim(n~/n!) = 0.

16, Show that lim(2" /!y = 0. [Mint: if n = 3, then 0 < 27/n' < 2(2)"7"]

17. If lim(x,) = x > 0, show that there exists a natural number K such that if n > K| then %1 <

X o< 2x.
n

‘Section 3.2 Limit Theorems

In this section we will obtain some results that enable us to evaluate the Limits of certain
sequences of real numbers. These results will expand our collection of convergent sequences
rather extensively, We begin by establishing an tmportant property of convergent sequences
that will be needed in this and later sections.

3.2.1 Definition A scquence X = (x ) of real numbers js said to be bounded if there
exists a real number M > O such that |x | < M foralln e N.

Thus, the sequence (x ) is bounded if and only if the set {x, : n € N} of its valuesis a
bounded subsct of X.

3.2.2 Theorem A convergent sequence of real numbers is bounded.
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Proof.  Suppose that im(x ) = x and let £ :== 1. Then there exists a natural number
K = K{(lI) such that [x_ x| < ] forall n > K If we apply the Triangle Inequality with
n > K we obtain

lx | = |x, —x +x| =[x, — x|+ x| <14 |x|
If we set
M = sup {Ix | Ixg ) -y [ |1~ Lx[]
then it follows that |x | < M forallr € N. QED.

We will now examine how the limit process interacts with the operations of addition,
subtraction, multiphication, and division of sequences. If X = (x ) and ¥ = (y) are se-
quences of real numbers, then we define their sum to be the sequence X + Y i= (x, + v ),
their difference to be the scquence X — ¥ .= (x_ — ¥ ). and their produact to be the se-
quence X - Y = (x y ) If ¢ € R, we define the multiple of X by c to be the sequence

= {cx_). Finally, if Z = (z_) 1s a sequence of real numbers with z_ 3 Oforalln € N,
then we define the quotient of X and Z ta be the sequence X/Z = (x_/z ).

For example, if X and ¥ are the sequences

111 1
X::—'(2.4,6."'2n."'). Y = PR T T T R B
123 n

then we have

3 6 19 2n°
x-y= (221 ‘ﬂ+l‘ |

12 3 n

/17 17 2n? — |
X‘_Y=|_,_,_‘ '

N 2 3 n

:(2 ',2,"':],

= (6, 12 18 Sbn, ),

X/Y:(z,&l&---, 2mt, ).
We note that if Z 15 the sequence

Z:={0.2,0, -, 1+ (=17, -,

then we can define X + Z, X — Z and X - Z, but X/Z is not defined since some of the
terms of Z are zero. '

We now show that sequences obtained by applving these operations to convergent
sequences give risc to new scquences whosc limits can be predicted.

3.2.3 Theorem (a) Let X =(x ) and Y = (y ) be sequences of real numbers that
converge to x and y, respecuvely, and letc € R, Then the sequences X + ¥V, X - V. X - ¥,
and cX convergetox -+ y, x — y, xy, and cx, respectively.

(b) If X = (x,) converges to x and £ = (z,) is a sequence of nonzero real numbers that
converges to z and 1f z # 0, then the quotient sequence X/ Z converges to x/z.

Proof. (a) To show that Iim(x, ~y ) =x | y, we need to estimate the magnitude of
[(x, + y,) — (x + y)|. To do this we use the Triangle Inequality 2.2.3 to obtain

x,+y)—(x+ = —x)+(y, — ¥l

<ix, —x|+ 1y, — ¥yl
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By hypothesis, if ¢ > 0 there exists anatural number K, such thatifn > K, then|x — x| <
¢/2; also there exists a natural number &, such thatif n > K, then |y — y| < £/2. Hence
if K(g) :=sup{K,, K,}, it follows that if n > K (¢) then

(x, +y) —x+ 3 <|x, —xl+1]y —
rd %s-{-%s:s.

Since € > 0 1s arbitrary, we infer that X + ¥ = (x, + y,) convergesto x + y.

Precisely the same argument can be used to show that X — Y = (x_— y ) converges
ox — y.

To show that X - ¥ = (x, y ) converges to xy, we make the csimatce

[x,y, —xy| = 1(x, y, — x,y) + (x, ¥y —xy)|
< lx,(y. — ¥+ I(x, — x)yl|
= |x Iy, =y + Ix, — xllyl.

According to Theorem 3.2.2 there exists a real number M, > O such that |x | < M| for all
n € Nand we set M = sup{M , |y|}. Hence we have the estimate

1%, 5, —xyi = Mjy, =yt + M|x, — x|

From the convergence of X and ¥ we conclude that if £ > 0 15 given, then there exast
natural numbers K| and K, such thatif n > K| then [x, — x| < ¢/2M, and1f n > K, then
ly, - ¥ <&/2M. Nowlet K(£) = sup{K . K, }, then, if n > K(£) we infcr that

lx, ¥, —xy| = Mly, — y| +Mlx — x|
< ME2MY+ M(E/2M) =¢.

Since € > 015 arbitrary, this proves that the scquence X - ¥ = {x_y )} converges to xy.

The fact that ¢X = (cx_ ) converges to cx can be proved in the same way; it can also
be deduced by taking ¥ to be the constant sequence (¢, ¢, ¢, -+ -). We leave the details to
the reader. .

(b) We next show that if Z = (z ) is a sequence of nonzero numbers that converges
to a nonzero limit z, then the sequence (1/z,) of reciprocals converges to 1/z. First let
= %|z] so that e > 0. Since im(z ) = z, there exisis a natural number K| such that if
n> K then |z, —z| < It follows from Corollary 2.2 .4(a) of the Triangle Inequality that
—a < --lz, — 7] < |7 | — 7 forn > K, whence 1t follows that %|z| =lz] —a < |z | for
n > K. Therefore 1/tz | < 2/|z| for n > K, so we have the estimate

| 1 1 z -z,
j— = - - = |Z_Zn|
lz, 7 zz |z, z|
< —lz—z| forall n= K.
| z| !

Now, if ¢ > 0 is given, there exists a natural number K, such that if n > X, then |z, — z
< §£12)*. Therefore, it follows that if K (£) = sup{K,, K, }, then

1 l
b4 z

"

< & forall n > K(£).

Since £ > 01s arbitrary, it follows that

Iim (;1;) = 1‘

Z
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The proof of (b) is now completed by taking ¥ to be the sequence (1/z ) and using the
factthat X - Y = (x, /z ) converges to x(1/72) = x/z Q.ED.

Some of the results of Theorem 3.2.3 can be extended, by Mathematical Induction, to a
finitc number of convergent sequences. Forexample,if A = (a ), B=(h,).---, Z = (z,)
are convergent sequences of real numbers, then theirsum A+ B+ -+ Z =(a, + 6, +
-+« + 7} Is a convergent sequence and

(1) lim(a, +b,+ --+2z)=lmia) -+ hm(d ) + -+ lim(z).
Also their product A - B -~ Z .= (¢, b - -z ) 1s a convergent sequence and
(2) lim(a, b, - -2z,) = (lim{g,)) (lim(p,)}) - - - (lim(z, )}

Hence, if & € N and if A == () 1s a convergent sequence, then
(3) lim(a?) = (lim(a)}" .
We leave the proofs of these assertions to the reader.

3.2.4 Theorem IfX = (x) isa convergent sequence of real numbers and if x, > O for
alln ¢ N, thenx = iim(x ) > 0.

Proof. Suppose the conclusion is not truc and that x < 0, then £ '= —x 15 positive. Since
X converges to x, there 1s a natural number X such that
x—pF<x <x-+e forall »n > K.

In particular, we have x, < x + ¢ = x + (—x) = 0. But this contradicts the hypothesis
that x, = Oforalln € N. Therefore, this contradiction implies that x > 0. QED.

We now give a uscful result that is formally stronger than Theorem 3.2.4.

3.25 Theorem IfX = (x )andY = (y,) are convergent scquences of real numbers and
ifx <y foralln €N, thenlim{x) < hm{y,).

Proof. Letz =y —x sothatZ:=(z)=VY — Xandz > Oforalln € N. It follows
from Theorems 3.2.4 and 3.2.3 that

0 <lmZ =hm(y,) - hWm{x).
so that im(x ) < lin(y,). QED.

The next result asserts that if all the tetmns of a convergent sequence satisfy an tequality
of the form ¢ < x, < b, then the limit of the sequence satisfies the same inequality. Thus
if the sequence is convergent, one may “pass to the limit” in an inequality of this type.

3.2.6 Theorem If X = (x,) is a convergent sequence and ifa < x, < b foralln € N,
thena < lum(x, ) < b.

Proof. LctY bethe constant sequence (b, b, b, - -). Theorem 3.2.5 implies that hm X <
limY = &. Similarly one shows thata < im X. Q.ED.

The next result asserts that if a scquence Y 15 squeezed betwceen two sequences that
converge to the same limit, then 1t must also converge to this imit.
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3.2.7 Squeeze Theorem Suppose that X = (x),Y = (y ). and Z = (z,) are sequences
of real numbers such that '
- < X% ZY, %2, forall neN,

and that im(x ) = m(z,). Then ¥ = (y,) 1s convergent and

hm(x,) = him(y, ) =1lm(z,).

Proof. Letw :=lim(x,} =lim{z,). & > Ois given, thenit follows from the convergence
of X and Z to wr that there cxists a natural number X such that if n > K then

|x, —w| <& and |7, — w| < &
Since the hypothesis implies that
X, —w<y —w<z —w forall n e N,
it follows {why?) that
—~& <y —w<E

forall n > K. Since £ > O is arbitrary. this implies that lim(y ) — w. QFED.

Remark Since any tail of a convergent sequence has the same limit, the hypotheses of
Theorems 3.2.4, 3.2.5, 3.2 6, and 3.2.7 can be weakened to apply to the tail of a sequence.
For example, in Theorem 3.2.4,1f X = (x, ) 1s "ulumately positive" in the sense that there
exists m ¢ Nguch thatx, > 0 forall n > m, then the same conclusion that x > 0 will hold.
Simitar modifications are valid for the other theoremas, as the reader should verify.

3.2.8 Examples (a) The sequence (n) is divergent.

It follows from Theorem 3.2 2 that if the secquence X := (n) is convergent, then there
exists a real number M > 0 such that n = |n| < 3 for all n € N. But this violates ihe
Archimedean Propery 2.4.3.

(b) The sequence {((—1)7) 1s divergent.

This scquence X = ((—1)") 18 bounded (take M = [), so we cannot invoke Theorem
3.2.2. However, assume that ¢ := hm X ¢xasts. Let ¢ ;1= ) so that there exists a natural
number K, such that

[(=1) —al <1 foral n= K,
If n 18 an odd natural number withn > K, thisgives | — 1 —aj < 1. sothat =2 < a < {.
(Why?) On the other hand, if n is an even natural number with n > X, this inequahty
gives |I —a] < 1 so that 0 < @ « 2. Since a cannot satisfy both of these incqualitics,
the hypothesis that X is convergent leads to a contradiction. Therefore the sequence X is
divergent.

/2n L 1Y
() 1i1‘r1|

2.

n

\
If welet X:=(2)and Y := (1/n), then ((2n + 1)/n) = X + Y. Hence u follows
from Theorem 3.2.3(2) that lm(X + YY) =lmX +1mY =2 } 0 = 2.

4 1\
(@) lim<n+ =
n+s




3.2 LIMIT THEORLEMS 65

Since the sequences {2n + 1) and (n -+ 5) are not convergent {(why?), 1t 1s not possible
to use Theoremn 3.2.3(b) directly. However, if we write
2n 1 B 24+ 1/n
n-ts  1+535/n

we can obtain the given sequence as one to which Theorem 3.2.3(b) applies when we
take X := (24 1/n)and Z := (1 + 5/n). (Chcck that all hypotheses arc satisfied.) Since
lmX =2and lim Z = 1 # 0, we deduce that im{(2n + 1)/(n + 5)) — 2/1 = 2.

2n
{e) lIm (n b }‘O.

Theorem 3.2.3(b) does not apply directly. (Why?) We note that
2n 2

o1 nti/n’

but Theorem 3.2.3(b) does not apply here cither, because (2 + 1/#) 18 not a convergent
sequence. (Why not?) However, if we wnite

2n 2/n

at (1 1+1/n%

then we can apply Theorem 3.2.3(b), since lim(2/n) =0 and lim(l | l/nz) =10
Therefore im(2n/(n* + 1)) = 0/1 = 0,

() lim (Sm”) —0.

L

We cannot apply Theorem 3.2.3(b) dircctly, since the sequence (1) 1s not convergent
[neither 1s the sequence (sinn)]. 1t does not appear that a simple algebraic manipulation
will enable us to reduce the sequence into one to which Theorem 3.2.3 will apply. However,
if we note that —1 < sinn < 1, then it follows that

< l forall ne N
I

-1

Hence we can apply the Squeeze Theorem 3.2.7 to infer that lim(n ™" sinn) = 0. (We note

that Theorem 3.1.10 could also be applicd to this sequence.)

(g) Let X = (x,) bc a scquence of rcal numbers that converges to x € R. Let p be a
polynormal, for cxwmplc let

_ ! k=1
ply =at’ L a,_ "7 + - +at +a,,

where k£ € N and a € R for j =0,1, -, k. It follows from Theorem 3.2.3 that the se-
quence (p(x,)) converges to p(x). We leave the details to the reader as an cxercise.

(h) Let X =(x,) bc a sequence of rcal numbers that converges 1o x € R, Let 7 be a
rational function (that 1s, #(¢) := p(r)/q{t), where p and g are polynomals). Suppose
that g(x,) # 0 for all #» € N and that q(x) 5 0. Then the sequence (r(x,)) converges o
r(x) = p(x)/q(x). We leavc the details 1o the reader as an exercise, (]

We conclude this section with several results that will be useful in the work that follows.

3.2.9 Theorem Let the sequence X = (x, ) converge to x. Then the scquence (|x_[) of
absolute values converges to | x|. That is, if x = lim(x,), then |x| = lim(|x, ).
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Proof. It follows from the Triangle Inequality (see Corollary 2.2.4(a}) that

lx | —IxI| < |x, = x| forall ne N

The convergence of (|x |) to |x| is then an immediate consequence of the convergence of
(x )to x. OED.

3.2.10 Theorem Let X = (x ) be a sequcnce of real numbers that converges to x and
supposc that x> 0. Then the sequence (\/xn) of positive squarc roots converges and

lim (\/Z) = ./x.

Proof. Ttfollows from Theorem 3.2.4 that x = lim(x,_ ) > 0 so the assertion makes sense.
We now consider the two cases: (1) x = 0 and (i) x > (.

Case (1) If x =0, let ¢ = 0 be given. Since v, — 0 there exists a natural number X
such thatif n > K then

0<x,=x —0 <l

Therefore [sce Example 2.1.13(2)]. 0 < fo: < & forn > K. Since £ > 0 1s arbitrary, thus
implies that \/x, — 0. _

Casc (i) 1f x > 0, then /x > 0 and we note that

Y I VL L0 L VAT L) B
Vo NN %, + V%

Since V-[x_”_ + Vx > /x = 0, it follows that

|\/x7"— \/A_‘ = (%) lx, — x|

The convergence of /x, — /x follows from the fact that X, —> X. Q.ED.

For certain types of sequences, the following result provides a quick and easy “‘ratio
test” for convergence. Related results can be found in the cxercises.

3.2.11 Theorem Let (x ) be a scquence of posttive real numbers such that L :—
hm(x,,,/x,) exists, If L < 1, then (x,) converges and hm(x ) = 0.

Proaf. By 3.2.4 it follows that L = 0. Let r be a number such that L < r < 1, and let
g =7r — L >0 There exists anumber K ¢ Nsuch thatif n > K then

xl’l-‘-l _ L
X

r

<< £.

It*follows from this (why?) thatif n > K, then

xr.-l—l . _ —
—— <L+e=L4(r-L)Y=r
X

Lo

Therefore, if n > K, we obtain

2

n—K-=xl
2 {"'*CXK!' .

O<x, , <x,7<x _

i 1

If we set C ::.rK/rK, we sec that 0 < x, | < Cr"*! for all n > K. Since 0 < r <
I, it follows from 3.1.11(b) that lim(r") = 0 and therefore from Theorem 3.1.10 that
lim(xn) =0. Q.ED.
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As an illustration of the utihty of the preceding theorem, consider the sequence (x,)

given by x, 1= n/2". We have

so that lim(x,_,/x ) =

x 120 17
_r‘.:i—]_ — n_+___ e — 1+ i '

n

. Since % < 1,itfollows from Theorem 3.2.11 thatlim(n /2"y = 0.

| =

Exercises for Section 3.2

12,
13,

14
15

For x, given by the following formulas, establish either the convergence or the divergence of
the sequence X = (x ).

n (—1)'n
= 3 b = +
(a) x, P (b} «x, 1
2 2
2n + 3
(€} x = " , (dy x 1= n -
n+1 n*+1
Give an example of two divergent sequences X and Y such that:
(a) thewrsum X — Y converges, (b) their product XY converges.

Show that if X and Y are sequences such that X and X + ¥ are convergent, then ¥ is convergent.

Show that if X and ¥ are sequences such that X converges tox # 0 and XY converges, then Y
converges.

Show that the following sequences are not convergent.

() (27, (®) ((=D"r).
Find the limits of the following sequences:

-1 n

(a) lim ((2-1—1/:1)2), (b} lim<( ) )
nitz
- ; 1

(c) lim(\/_j —), {d} Iim(n-l_r )
N n/n

Lf (b,) is a bounded sequence and him(a,) = 0, show that Llm({a, b ) — 0. Explain why Theorem
3.2.3 cannot be-ased,

Explain why the result in equation (3) before Theorem 3.2.4 cannet be used to evaluate the limat
of the sequence ((1 +1/n)").

Lety = +/n+1—/nforn e N Show that (y,) and {\/ny,} converge. Find their limits.

Determine the following limits. _
(a) lim ((3@1}211)‘ (b) lim ((H + ]}IJI'In{n—l;]_

, . an+1 + bﬂ-'r—]
If0 <« a < b, determine lim |
a' +b

Ifa > 0,6 > 0. show that im (/(n — a)(n + b} — n) = (a + b}/2.
Use the Squeeze Theorem 3.2.7 to determine the limits of the following.
@ (), ® ().

Show thatif z_ = (a” + b")'”" where 0 < a < b, then lim(z,) = b.

Apply Theorem 3.2:11 to the following sequences, where g, b satisfy 0 <a < 1,5 > 1.
(@) (a"), by (6"/27),
©) (n/b"), @ (2/3%).
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16. (a) Give anexample of a convergent sequence (x, ) of positive numbers with lim(xH | /xn) = 1.
(b} Give an cxample of a divergent sequence with this propenty. {Thus, this property cannot be
used as a test for convergence )

17. Let X = (x,) be a sequence of positive real numbers such that ]_im(xHHXxH) =L = 1. Show
that X 18 not a bounded sequence and hence is not convergent.

18.  Duscuss the convergence of the following sequences, where a, b satisfy0 < a < 1, b > 1.
(@) (n*a"), ) (7/n%),
{cy (&"/nh, (d) (n!/n").

19. Let {x,) be a sequence of positive real numbers such that lim(x,:’") — L < 1. Show that there
exists a number 7 with O < r < 1 such that 0 < x_ < r" for all sufficiently large n € M. Usc
this to show that lim(x,) = C.

20. (a) Givean example of a convergent sequence (x ) of positive numbers with lim(x,’") = 1.
(b) Give an example of a divergent sequence (x,} of positive numhers with lim(xf,*“‘) =1.
(Thus, this property cannot be used as a test for convergence.)

2|. Suppose that (x, }1s a convergent sequence and (y, } 1s such that for any £ > 0 there exists M
such that lx, — y | < g forall n > M. Does it follow that (y, ) is convergent?

22, Show thatf (x_} and (y ) are convergent sequences, then the sequences («,) and (v ) defined
by u, = max{x .y }and v, = mn{x , y }are also convergent. {See Exercise 2.2.16.)

23. Show that if (x ), (y) (z ) are convergent sequences, thén the seguence (w, ) defined by
w, = md{x , y .z} isalsoconvergent. (Sec Exercise 2.2.17.)

#t

Section 3.3 Monotone Sequences

Until now, we have ohtained several methods of showing that a sequence X = (x,) of real
nurnbers is convergent:

(1)  We can usc Definttion 3.1.3 or Theorem 3.1.5 directly. This is often (but not
always) difficolt to do.

(1) We can dominate |x, — x| by a multiple of the terms In a sequence (a,) known
to converge to 0, and employ Theorem 3.1.10.

(1)  We can identify X as a sequence obtained from other sequences that are known
to be convergent by taking tails, algebraic combinations, absolute values, or square roots,
and employ Theorems 3.1.9, 3.2.3, 3.2.9, or 3.2.10.

(1v) Wecan “squeeze” X between two sequences that converge to the same limut and
use Theorem 3.2.7.

(v) We can use the “ratio test” of Theprem 3.2.11.

Except for (iii), all of these methods require that we already know (or at least suspect) the
value of the limit, and we then venify that our suspicion is correct.

Therc are many instances, however, 1n whach there is no ohvious candidate for the lumit
of asequence, even though a preliminary analysis may suggest that convergence is hikely. In
this and the next two scetions, we shall establish results that can be used to show a sequence
is convergent even though the value of the limit is not known. The method we introduce in
this section 1s more restricted 1n scope than the methods we give in the next two, but it 1s
much easier to employ. It applies to sequences that are monatone in the following sense.
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3.3.1 Definition Let X = (x ) be asequence of real numbers. We say that X is increasing
if 1t satisfies the inequalities

M
-
IA
LA

X =X

<
n n+l —

We say that X 1s decreasing 1f it satisfies the inequalities

X >Xx,> -->x >x

R i 20
We say that X is monotone if it is either increasing or decreasing.
The following sequences are increasing:

(1,2.3,4, - . n, ), (1.2,2,3,3,3,-- 9,

(@, e, a, -, d*, ) if a> 1

The following sequences are decreasing:

(L1273, Um0 (1,172,128 172770 e,
(b'bzibsu"',bn-"') if O<b <l

The following sequences are not monotone:
(+1| _‘1‘ _{:11 T (_l)n+1| o ) 1 (_l- +21 _31 T (_I)nn T )
The following sequences are not monotong, but they are “ultimately” monotone:

(7.6,2.1,2.3,4,--), (=2,0.1,1/2, ¥/3, 1/4,---).

3.3.2 Monotone Convergence Theorem A monotone sequence of real numbers is con-
vergent (f and only if it is bounded. Further:

(a) If X = (x,) 1s a hounded increasing sequence, then
hm(x, ) = sup{x, ' n € N},

(b) IfY = (y,) is a bounded decreasing sequcnce, then
lim(y ) = inf{y, : n € N}.

Proof [twasseenin Theorem 3.2.2 that a convergent sequence must be bounded.

Conversely, let X be a bounded monotone sequence. Then X 13 either increasing or
decreasing.

(a) We first treat the case where X = (x ) is a bounded, increasing sequence. Since
X is bounded, there exists a real number M suchthat x, < M forall n € N. According to
the Completeness Property 2.3.6, the supremum x~ = sup{x, : n € N} exists in ; we will
show that x* = lim(x, ).

If & > O is given, then x* — ¢ is not an upper bound of the sct {x_:n € N}, and hence
there exasts a member of set x, such that x* — & < x . The fact that X 1s an increasing
sequence implies that X, < x, whenever n > K, so that

xT—E < x, Sx <x" <x'+s¢ forall n > K.
Therefore we have
lx, = x| < ¢ forall n> K.

Since ¢ > 0 ig arbitrary, we conclude that (x ) converges to x™.
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(b) If ¥ = (y,) 1s a bounded decreasing sequence, then it is clear that X = —¥ =
(—y,) 1s a bounded increasing sequence. It was shown in part (a) that im X = sup{—y_ :
n € N} Now lim X = —lim Y and also, by Exercise 2.4.4(b), we have

sup{—y, n € N} = —inf{y, : n € N},
Therefore linY = —lim X = inf{y_ :n e N}. Q.ED.

The Monotone Convergence Theorem cstablishes the exustence of the limit of a
bounded monotone sequence. Tt also gives us a way of calculating the limit of the se-
quence provided we can cvaluate the supremum in case (a), or the infimum 1n case (b).
Sometimes it is difficult to evaluate this supremum {or infimum}, but once we know that 1t
exists, 1t 1s often possible o evaluate the himat by other methods.

33.3 Examples {a) hm(1/./n) =0.

It is possible to handle this sequence by using Theorem 3.2.10; however, we shall
use the Monotone Convergence Thearem. Clearly O is a lower bound for the set {I/./n:
n € N}, and it is not difficult to shovs that 0 is the infimum of the set {1//n: n € N}; hence
0 =lim(1/./n).

On the other hand, once we know that X := (1//n) is bounded and decreasing, we
know that it converges to some real number x Since X = (1/./n) convergesto x, it follows
from Theorem 3.2.3 that X - X = (1/n) converges (o x?, Therefore x* = 0, whence x = 0.
(b} lLetx =1+1/2+1/3+ - +1/n forn e M.

Since x, ;= x_+1/(n+ 1) > x,, wesecthat (x,) is an increasing sequence. By the
Monotone Convergence Theorem 3.3.2, the question of whether the sequence is convergent
or not is reduced to the question of whether the sequence is bounded or not. Atternpts to use
direct numerical calcutations to arrive at a conjecture concerning the possible boundedness
of the sequence (x,) lead to inconclusive frustration. A computer run will reveal the
approximate values x_ =~ 11.4 for n = 50,000, and x_= 12.1 for n = 100,000. Such
numecncal facts may lead the casual ohserver to conclude that the sequence is bounded.
However, the scquence is in fact divergent, which is established by noting that

I T | /o1 ]
x2n=1+§+|\;+t—i +"'+(2n_1+1+---+7—n

1 1+Xl ]+ + 1-1- +]\
>lratlats 5 7
L .

— T3 2
n

S
+2

Since (x, ) is unbounded, Theorem 3.2.2 implies that it is divergent.

The terms x_ increase extremely slowly. For example, it can be shown that to achieve
x, > 50 would entat] approximately 5.2 x 10*! additions, and a normal computer perform-
ing 400 million additions a sccond would require more than 400,000 ycars to perform
the calculation (therc arc 31,536,000 scconds in a year). Even a supercompuler that can
perform more than a tnllion additions a second, would take more than 164 years to reach
that modcst goal. i1

Sequences that arc defined inductively must be treated differently. If such a sequence
is known to converge, then the value of the limit can sometimes be determined by using the
inductive relation.
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For example, suppose that convergence has been established for the sequence (x))
defined by

1
—, neklN
X
rr

= -2
Xy =2, X, =2+

If we fet x = lim(x,}, then we also have x = Im(x,_, ;) since the 1-tail (x,_ ;) converges
to the same limit. Further, we sce that X > 2, so that x ¢ 0 and x, #0 forall n e ¥
Therefore, we may apply the limit theorems for sequences to obtain

]

— | 3=2 =2
X a(x, ) + lim(z) +

!

.

Thus, the limit x ts a solution of the quadratic equation xT—2x— 1= 0, and since x must
be positive, we find that the limit of the sequenceisx =1 } /2.

Of course, the 1ssue of convergence must not be ignored or casually assumed. For ex-
ample, 1f we assumed the scquence (y, ) definedby y, := 1,y | 1= 2y, + lisconvergent
with imut y, then we would obtain y = 2y + 1, so that y = — 1. Of course, this is absurd.

In the following examples, we employ this methad of evaluating limits, but only after
carcfully establishing convergence using the Monotone Convergence Theorem. Additional
examples of this type will be given 1n Section 3.5. )

3.34 Examples (a) LetY = (y,) be defived inductively by y, =1,y .| = %(Z}fn -+
3) forn > 1. We shall show that lm Y = 3/2.

Direct calculation shows that y, = 5/4. Hence we have y <y, < 2. We show, by
Induction, that y_ < 2 for all n € M. Indeed, this 1s true forn =1, 2 If ¥, < 2 holds for
somc k € N, then

Vo, = 2y, +D <i(d+3)=1 <2

sothaty, | < 2 Thercfore y, < 2foralln € IV,

We now show, by Induction, that ¥, < vy, foralln € N The truth of this assertion has
been venfied forn = 1, Now suppose that y, < y,,, forsome ki then2y, +3 <2y, +3,
whence 1t follows that

Yegr1 = %(zyk +3) < ?{.(2}}4-1 +3) =y,

Thus y, < y,, impliesthat y, , <y, ., Thereforey <y . foralln e N

We have shown that the sequence ¥ = (¥, ) 1s increasing and bounded above by 2.
It follows from the Monotone Convergence Theorem that ¥ converges ta a limit that is
at most 2, In this case it 1s not so easy to evaluate lim(y ) by calculating sup{y : n € N}.
However, there is another way to cvaluate its mit. Since y | = %(Zyn + 3 foralln € N,
the nth term in the 1-tail ¥, of ¥ has a simple algebraic relation to the nth term of ¥. Since,
by Theorem 3.1.9, we have y ;= lim ¥, = lim Y, it therefore follows from Theorem 3.2.3

(why?) that
y =12y +3),

from which it follows that y = 3/2,
(b) Let Z = (z,) be the scquence of real numbers defined by z, 1= 1,2, , ‘= ,/2z, for
1 € N. We will show that lim(z,,) = 2.

Note that z, = | and z, = V2 hence 1 < Z, < z, < 2. We claim that the sequence
Z 1s increasing and bounded above by 2. To show this we will show, by Induction, that
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l=z <z, < 2 for all n € N. This fact has been verified for n = 1. Suppose that it i3

true forn =k, then 2 < 2z < 2z, | < 4, whence it follows (why?) that

——

1 'CZ\/EEZ“_] =V'f22k“(zk__?_: 22_‘-:41 *{»/Zzz
[In this 1ast step we have used Example 2 1.13(a).] Hence the validity of the inequality 1 <
z, <2, <2implies the validityof 1 <z | <z, <2 Therefore l <z <z, <2

foralln € N,

Since Z = (zn) 1s a bounded increasing sequence, it follows from the Monotone
Convergence Theorem that it converges to a number z := sup{z,_}. It may be shown directly
that sup{z,} == 2, so that z = 2. Alternatively we may use the method employed in part (a).
Therelation z,_, = ,/2z gives arelation between the nth term of the 1-tail Z| of Z and the
nth term of Z. By Theorem 3.1.9, we have lim Z, = z = lim Z. Morcover, by Theorems
3.23 and 3.2.10, 1t follows that the limit z must satisfy the relation

z=+~2z.

Hence z must satisfy the equation z° = 2z which has the roots z = @, 2. Since the terms of
z= (z)allsatisfy ]| <z <2 sfollowsfrom Theorem 3.2.6 thatwe musthave 1 < z < 2.
Therefore z = 2. [l

The Calculation of Square Roots

We now give an application of the Monotone Convergence Theorem to the calculation of
squarc 100ts of positive numbers,

3.3.5 Example Leta > 0; we will construct a sequence (s ) of real numbers that con-
vorges to Ja.

Lets, » Obe arbitrary and define s, | = %(.vn +a/s ) forn € N. We now show that
the sequence (s, ) converges to y/a. (This process for calculating square roots was known
in Mesopotamia before 1500 B.C.)

We first show that 57 > @ for n > 2. Since s sausfics the quadratic cquation s, —
23"_’_15!1 + a = 0, this eguation has a real root. Hence the discriminanf 453+1 — 4¢a must he
nonnegative; that is, .ffH >afarn = 1.

To see that (s, ) 1s ultimately decreasing, we note that for n > 2 we have

]( a) L (Sf—a)
§ -8 . =5 — s, =% =0

2 5

n

Hence, s, | < s, for all n > 2. The Monotone Convergence Theorem imphes that 5 :=
lim(s ) exists. Moreover, from Theorem 3 2.3, the limit 5 must satisfy the relation

S

whence it follows (why?) thats = a/sor s = a Thus s = \/a.

For the purposes of calculation, it is often important 1o have an estimate of how rapidiy
the sequence (s, ) converges to /a. As above, we have /a < s, for all # > 2, whence it
follows thata/s_ < ./a <s_. Thus we have

0<s — Ja < s, —afs = (5,3T —ay/s, for n > 2.

Using this inequality we can calculate ./a to any desired degrec of accuracy. a
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Euler’s Number ___

We conclude this section by introducing a sequence that converges to onc of the most
1mportant “(ranscendental” numbers 1n mathematics, second 1n 1mportance only to 7.

3.3.6 Example Lete :=(1+ 1/r)" for n € N We will now show that the sequence
= (e} 1s bounded and increasing; hence it is convergent. The limit of this sequence is
the famous Euler number e, whosc approximate valuc1s 2.718 281 828459045 - - ., which
1s taken as the base of the *narural” loganthm.
It we apply the Binomual Theorem, we have

/ 1y n 1 nn-1) 1 nin—10n-2y 1
l+-) =14 -+ 22— T
|\ +n) Jr1 n+ 21 :12+ 3 n’
nn—1y---2-1 ]
SRS > =
n! n

If we divide the powers of # 1nfo the terms in the numerators of the binomial coefficients,

we gel
1 1 1/ 1 2
=14+1l+=|1-- -  ——
K T +2'( n)+35 |\ n)( n)
1

\
1 ( l) 2) ( n— 1)
+ -+ —[1-- — =11~ :
n! n ; n
Similarly we have

(1

PR 1)+1(1 1)
Crbl T 00 2!( A1) n+1 T+
L 1 2 n-

+n! 7. 1 n—+1 n+1

1 \ 20 / no\
+ I — - v-vkl— P
(n + 1) ntl) Rty n+l)

Note that the cxpression for e contains n + 1 terms, whitc that for €0 contains »n + 2
terms. Moreover, each term appeanng in e 1s less than or equal to the corresponding term

—

ine, ;.ande, , hasoncmore positive term. Thereforc wehave2 < e <e, < - <¢ <
€, < 7. 90 that the terms of £ arc increastng.
To show that the terms of £ arc bounded above, we note thatif p = 1,2, -+ -, n, then

(1 — p/n) < 1. Moreover 277! < pl [see 1.2.4(e)] so that 1/p' < 17277 Theretore, if
n > 1, then we have
2<e <l+l+-l-+i+ +—l--.
n 2 22 2n
Since it can be venfied that [see 1.2.4(f)]

1 1 1 1

5*'2"5“*" "+2n l*‘]—zTél
we deduce that 2 < ¢ < 3 for all n € N. The Monotone Convergence Theorem implies
that the sequence E converges (o a real number that ts between 2 and 3. We define the
wumber e to be the linut of this sequence.

By refining our estimates we can find ¢loser rational approximations (o ¢, but we cannot
:valuate 1t exactly, since ¢ is an irrational number. However, it is possible to calculate e to
as many decimal places as desired. The reader should use a calculator (or a computer) o
avaluate e for “large” values of n. [l
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Leonhard Euler

Leonhard Euler (1707-1783) was born near Basel, Switzerland. His clergy-
man fathcr hoped that his son would follow him into the ministry, but when
Euler entered the Universily of Basel at age 14, his mathematical talen1 was
noted by Johann Bemoulli, who became his mentor. In 1727, Euler went
to Russia to join Johann’s son, Daniel, at the new St. Petersburg Academy.
There he met and married Katharina Gsell, the daughter of a Swiss artist.
During their long marnage they had 13 children, but only five survived
childhood.

In 174/, Euler accepted an offer from Frederick the Great to join the Berlin Academy, where
he stayed for 25 years. During this period he wrote landmark books on calculus and a steady stream
of papers. In response to a request for instruction in science from the Princess of Anhalt-Dessau.,
he wrote a multi-volume work on science that became famous under the title Letters to a German
Princess.

In 1766, he returned to Russia at the invitation of Catherine the Great. His eyesight had
deteriorated over the years. and soon after his return to Russia he became totally blind. Incredibly,
his blindness made little impact on his mathematical output, for he wrote several books and over
400 papers while blind. He remained busy and active until the day of his death.

Euler’s productivity was remarkable: he wrote textbooks on physics, algebra, calculus, real
and complex analysis, analytic and differential geometry, and the calculus of variations. He also
wrote hundreds of original papers, many of which won prizes. A current edition of his collected
works consists of 74 volumes.

Exercises for Section 3.3

l. Letx :=8andx, , := %xﬂ + 2 for n € N. Show that (x ) 1s bounded and monotone. Find the
limit.

2. Letx; > landx, , :=2— l/x, forn € N.Show that (x ) is bounded and monotone. Find the
limit. ’

3. Let X, = 2 and Xppy o= 1+ /x,—1forne N. Show that (x) is decreasing and bounded
below by 2. Find the limit.

4. Letx,:=)andx :=,/2+x forn € N. Show that (x ) converges and find the limit.

5. Lety, = /p.where p>0,andy = /p+y, forneN Show that (y ) converges and

find the limit. [Hinz: One upper bound is 1 +2./p.]

6. Leta > Oandletz, > 0.Define z,,, = /a + z, for n € N. Show that (z,) converges and find
the limit.

7. Letx,:=a>0andx,  :=x +1/x forne€ N. Determine if (x_ ) converges or diverges.

+1

8. Let (a,) be an increasing sequence, (b,) a decreasing sequence, and assume that a, < b_ for
alln € N. Show thatlim(a ) < lim(b,), and thereby deduce the Nested Intervals Property 2.5.2
from the Monotone Convergence Theorem 3.3.2.

9. Let A be an infinite subset of R that is bounded above and let u := sup A. Show there exists an
increasing sequence (x, ) with x € A for all n € N such that u = lim(xn).

10. Let(x, ) be 2 bounded sequence, and for each n € Nlets, :=sup{x, : k > n}and¢ :=inf{x :
k > n}. Prove that (s,) and (1)) are monotone and convergent. Also prove that if lim(s ) =
lim(z_}), then (x, ) is convergent. [One calls lim(s, ) the limit superior of (x ), and lim(z ) the
limit inferior of (x, )]
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11, Establish the convergence or the divergence of the sequence (y, ), where

| 1 1
= b — .
¥, n--1+nk2+ +2n of ne XN

12, Letx = lfl2 + 1f21 4+ l/n2 foreach n € . Prove that {x ) is increasing and bounded,
and hence converges. [Hinr Note that if k£ > 2, then /&2 < 1/ktk— D =1/tk=1)=1/k]

13. Lstablish the convergence and find the limits of the following sequences.

(@ (A +1/m)""Y, ) {0+ 1/,
1 \n\ H
(c) ((HHHJ ) @ {(1—1/m").

14, Use the method in Example 3.3.5 to calculate +/2, correct to within 4 decimals.
15. Use the method in Example 3.3.5 to calculate +/5, correct to within § decimals.
16. Calculate the number e in Example 3.3.6 forn = 2,4, 8, 16.

17, Use a caleutator to compute e, forn = 50,2 =100, and n = 1,000.

Section 3.4 Subsequences and the Bolzano-Weierstrass Theorem

In this section we will introduce the notion of a subscquence of a scquence of real numbers.
Informally, a subsequence of a sequence is a sclection of terms from the given sequence
such that the selected terms form a new sequence. Usually the selection is made for a definite
purposc. For example, subsequences are often useful in establishing the convergence or the
divergence of the sequence. We will also prove the important existence thcorem known as
the Bolzano-Welerstrass Theorem, which will be used to establish a number of significant
results.

3.4.1 Definition Let X = (x ) be a sequence of real numbers and let n| < n, < -+ <
n, < - -beastrictly increasing scquence of natural numbers. Then the sequence X' = (x, )

&

given by

X .X_ -, x -
(”| ™ ! ;

is called a subsequence of X.

For example, if X = (%. %. %, ---), then the sclection of even indexed terms produces

the subsequence
11 1
X! = LT, s, ,
( 4 6 2k )

where n, =2, n, =4, -.n, = 2k, .- Other subsequences of X = (1/n) are the fol-

lowing:
(1 11 1 ) (1 | 1 )
N R A VAR A A ¢7 S TR

The following sequences are not subsequences of X = (1/n):

111311) 101010
2°1'4°3°6' 5’ ' ) T '

b o—
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A tail of a scquence (sce 3.1.8) 1s a special type of subsequence. In fact, the m-tail
commesponds to the sequence of indices

n]:m+1,n2=fn+2!'-',?’lk:m+k;"'-

But, clearly, not every subsequence of a given sequence need be a tail of the scquence.
Subsequences of convergent sequences also converge to the same limt, as we now
show.

3.4.2 Theorem If a scquence X = (x ) of rcal numbers converges (o a real number x,
then any subsequence X' = (xni) ol X also converges to x.

Proof. Let ¢ > 0 be given and let K (g) be such that if n = K(¢g), then Jx, — x| < ¢.

Sincen| < n, < - <n, < - 15 an increasing sequence of natural numbers, 1t is easily
proved (by Induction) that n, = k. Hence, if k = K (¢), we also have n, > k > K(£) 50
that |[x - x| < &. Therefore the subsequence (x_ ) also converges to x. GED

34.3 Example (@) lm@p") =010 <b < 1.

We have alrcady seen, in Example 3.1 11(b), that if 0 « b < | andif x_, :=b", then
it follows from Bemoulii’s Inequality that lim{x, ) = 0. Aliernatively, we see that since
0<b <, then x, ., = bt <« b = x, s0 that the sequence (x ) 15 decreasimg. It is
also clear that 0 = x, = 1, so it follows from the Monotone Convergence Theorem 3.3.2
that the sequence is convergent. Let x :=lim x . Since (x.zﬂ) 1s a suhsequencé of {x)
it follows from Theorem 3.4.2 that x = 1im(x2n). Moreover, it follows from the relation
x, = b* = (b"y! = x? and Theorem 3.2.3 that

x = lim(x, } = (lirn():”))2 = x*.

Thercfore we must either have x = 0 or x = 1. Since the sequence (x, ) is decreasing and
bounded above by b < 1, we deduce thatx = 0,
(b) hm(c/™y = L forc > L.

This limit has been obtained in Example 3.1.11(c) for ¢ = 0, using a rather ingenious
argument. We give here an altemnative approach for the case ¢ > 1. Note thatif z 1= c'/”,
then z, > 1 and z_ | < z, for all n € N. (Why?) Thus by the Monotone Convergence
Theorem, the mit 2 := lim(z ) exists. By Theorem 3.4.2, it follows that z = lim{z, ). In
addition, it follows {rom the relation :

Z?J::C

126 g Lingl/2 _ 4172
n

and Theorem 3.2.10 that

z = lim(z,,) = (1im(zn))w2 =77

Therefore we have 22 = z whencee it follows that either 7 = 0 or z = 1. Since z > 1 forall
n € N, we deduce that z = 1.
We lcave it as an exercise to the reader to consider the case {0 < ¢ < 1,

'l

The following result is based on a careful negation of the definition of lim(x ) = x_ Tt
leads to a convenient way to cstablish the divergence of a sequence.

3.44 Theorem Let X = (x ) be a sequence of rcal numbers, Then the following arc
equivalent:

(1) The sequence X = (x_) does not converge to x € K.
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(i) There cxists an g, > O such that for any k € N, there exists n, € N such that n, =k
and |x, — x| =g,

(iii) ’If'herc exists an g, > 0 and a subscqucnce X = (xnk) of X such that ixﬂl< — x|z g
forallik € N.

Proof. (1) = (i) TIf (x ) doesnotconverge to x, then for some £, > 01t 1s impossible to
find a natural number & such that {or all n = & the terms x satisfy [x_ — x| < £, That is,
for cach k € N it is not true that for all n > k the inequality |x, — x| < ¢, holds. In other
words, for each k € N there exists a natural number n, = k such that [x, — x| = ¢g,.

(i) = (i) letgybeasin(ii)andlctn, € Nbesuchthatn > 1 and |x”] — x| > &,
Now let n, € M be such that n, > n and |xn1 x| = g, letn3 & ™ be such that T
and |x, — x| > g,. Continue in this way to obtain a subsequence X' = (x, ) of X such
that x, — x| = g, forallk € N. ’

(ii13 = (i) Supposc X = (x,) has a subsequence X' = (x,, ) sausfying the condition
in (i11). Then X cannot converge to x; for if it did, then, by Theorerr 3.4.2, the subsequence
X’ would also converge to x. But this is impossible, since none of the terms of X’ belongs
to the £,-neighborhood of x. Q.ED.

Since all subsequences of a convergent sequence must converge to the same limit,
we have part (i) in the following result. Part (it) follows from the fact that a convergent
scquence 18 hounded.

3.4.5 Divergence Criteria If a scquence X = (x,) of rcal numbers has either of the
following properties, then X 1s divergent,

(i) X has two convergent subsequences X' = (x, ) and X" = (x, ) whose limits are not
equal. ‘ A

(i) X 1§ unbounded.

3.4.6 Examples (a) The sequence X ;= ((—1)) 1s divergent.
The subscquence X' = ([—])2" = (1,1, - ) converges to 1, and the suhsequence

X' = (=" = (=1, -1, - ) converges to — 1 Therefore, we conclude from Theo-
rermn 3.4 5(1) that X is divergent.
(b) The scquence (l‘ % 3, % - :1 1s divergent.

This is the sequence ¥ = (y, ), where y_ = n ifnisodd, and y, = 1/n if nis even.
It can easily be scen that ¥ 15 not bounded. Hence, by Theorem 3.4.5(i1), the scquence is
divergent.
(¢) The sequence S = (sinn) is divergent.

This sequence 18 not so casy to handle. In discussing it we must, of course, make use
of clementary properties of the sine function. We recall that sin(ir/6) = .',: = sin(Sx /6)
and that sinx > % for x in the interval /| = (;/6, 57 /6). Since the length of / is 57 /6 —
m/6 =2m/3 > 2, there are at least two natural numbers lying inside 7, we let n| be the

first such number. Similarly, for cach & € N, sinx > ;— for x in the interval
, = (rr/é 2wk = 1), S /6 + 2 (k — 1)).

Since the length of 7, is greater than 2, there are at least two natural numbers lying inside
{,; welet ny be the first one. The subsequence §’ ;= (sin n,) of § obtained in this way has
the property that all of its values lie in the interval [ 5, 1].
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Similarly, if & € N and J, is the interval
Jo o= (/64 2 = 1), Vi /6 + 20k 1))‘

then it 15 seen that sinx < —% forall x € J, and the length of J, is greater than 2. Let m,
be the first natural numnber lying in J,. Then the subscquence §7 == (sinm,) of S has the
property that all of 1is valucs lie in the interval [—1, - ,'ﬂ

Given any rcal number ¢, it is readily seen that at least one of the subscguences S
and §” lies entirely outside of the %—neighhorhood of ¢. Therefore ¢ cannot be a limut of §.

Since ¢ € R 1s arbitrary, we deduce that 5 is divergent. L

The Existence of Monotone Subsequences

While not every sequence is a monotone sequence, we will now show that every sequence
has a monotonc subsequence.

3.4.7 Mouotone Subsequence Theorem I[X = (x ) isascquence of real numbers, then
there is a subsequence of X that is monotone.

Proof. For the purpose of this proof, we will say that the mth term x_ is a “peak™ if
x, = x forallnsuchthatn > m. (That s, x_ 18 never excecded by any term that foilows
it in the sequence.) Note that, in a decreasing scquence, every term is a peak, while in an
INCreasing sequence, no {erm is a peak.

We will consider two cases, depending on whether X has infinitely many, or finitely
many, peaks.

Case 1. X hag infinitely many peaks. In this case, we list the peaks by increasing
subscripts: Xy Ky 7 Xy Since each term is a peak, we have

y
YTI.) ”.Ij.’

IV
Y

x .
1 £

m i

|
Therefore, the subsequence (x -) of peaks 1s a decreasing subscquence of X,

Case 2. X has a {inite number (possibly zero) of peaks. Let these peaks be listed by
increasing subscopts: x . x_ .- -, x_ .Lets, :=m_ t |l becthe firstindex beyond the last

1 L . .
peak. Since x_ is not a peak, Lﬁ)cre exists s, > 5, suchthatx < x_.Sincex, 15 not a peak,
I “1 "2 2

there exists §; > &, such that x < x_. Continuing in this way, we obtain an increasing
2 1

subsequence (x, ) of X ) Q.E.D.
k

It 1s not difficult to sce that a given sequence may have onc subsequence that is
increasing, and another subsequence that 1s decreasing,

The Bolzano-Weierstrass Theorem

We will now use the Monotone Subsequence Theorem to prove the Bolzano-Welerstrass
Theorem, which states that every bounded secquence has aconvergent subscquence. Because
of the importance of this theorem we will also give a second proof of 1t based on the Nested
Interval Property.

3.4.8 The Bolzano-Weierstrass Theorem A hounded sequence of real numbers has a
convergent subsequence.

First Proof. Tt follows from thc Monotone Subsequence Theorern that if X = {x ) is
a bounded sequence, then it has a subsequence X' = (x, ) that is monotone. Since this
¥
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subsequence 1s also bounded, it follows from the Monotone Convergence Theorem 3.3.2
that the subsequence 15 convergent. QE.D.

Second Proof.  Since the set of values {x, . n € NJ is bounded, this sct is contained in an
interval [ = [a, b]. We taken, = 1.

We now bisect /, into two equal subintervals I{ and /", and divide the set of indices
{n € ¥:n > l}Iinto two parts:

Aji=neN:in>n,x €1} B={ncNia>n,x €lf}L

If A, is infinite, we take [, := I| and let n, be the smallest natural number in 4. (See
12.1)1f A, is a finite sct, then B, must be infinite, and we take /, ;= | and lct n, be the
smallest natural number in B,.

We now biscct 1, into two cqual subintervals [, and /5. and divide the set {n € N :
n > n,}1nto two parts:

2
A,={neN:n>n,x €} B, ={(neN:n>n, x €l}

If A, isinfinite, we take [, ;= I; and let 1, be the smallest natural number in A,. [f A, 15 a

finite sct, then B, must be infinite, and we ke /, := I} and let n5 be the smallest natural
number in B,

We continue in this way to obtain a sequence of nested intervals /| 2/, 2 - 2 4, 2

- and a subsequence (xnij of X such that X, € [, for k € ¥, Since the length of [, 15

equal to (b — a) /2%~ it follows from Theorem 2.5.3 that therc is a (unigue) common point
£ el forallk € N, Morcover, since X, and £ both belong to /,, we have

%, — &l <b-a)2"
whence it follows that the subsequence (x ) of X converges to £. Q.ED.
L

Theorem 3.4.8 is sometimes called the Bolzano-Weierstrass Theorem for seguences,
hecause there is another version of it that deals with bounded sets in 2 {see Exercise 11.2.6).

It is readily secn that a bounded scquence can have various subsequences that converge
to different lumuts or even diverge. For example, the sequence ({(—1)") has subsequences
that converge to — 1, other subscquences that converge to +1, and 1t has subscquences that
diverge.

Let X be a scquence of real numbers and let X' be a subsequence of X. Then X' 15 a
sequence 1n its own right, and so it has subsequences. We note that if X is a subsequence
of X', then 1t is also a subsequence of X.

3.49 Theorem LetX = (x ) bcabounded sequence of real numbers and let x € R have
the property that every convergent subseguence of X converges to x. Then the sequence X
converges (o x.

Proof. Supposc M > 0 is a bound for the sequence X so that [x | < M foralln € N.
If X does not converge to x, then Theorem 3.4.4 implies that there exist g, > 0 and a
subscquence X' = (xnk) of X such that

(1 lxnl — x| =5 forall e ¥

Since X' is a subsequence of X, the number M is also a bound for X' Hence the Bolzano-
Weicrstrass Theorem implies that X has a convergent subsequence X”. Since X” is also a
subsequence of X, 1t converges to x by hypothesis. Thus, its terms ultamaltely belong to the
£5-nerghborhood of x, contradicting (1). Q.ED.
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Exercises for Section 3.4

%]

10.

1l
12.

14.

15.

Give an cxample of an unbounded sequence that has a convergent subsequence.
Usc the methed of Example 3.4.3(bj to show that if 0 < ¢ < 1, then Lm{c""y = 1.

Let {f ) be the Fibonacci scquence of Example 3.1.2(d), and let x, := f_, /f,. Gwen that
lim(xﬂ) = [. exists, determine the value of L.

Show that the following sequences are divergent.

(a) [1 — (=1 & ]/n), (b} (sinnmx/4).

Let X ={x }Yand ¥ = (y_ ) be given sequences, and let the “shuffled” sequence Z = (7} be

definedby 7z, = a2, =y, 02y, =oAL Ty =Y Show that Z 15 convergent if and

only if both X and ¥ are convergent and lim X =limY.

Letx =n'" forne™N

(@) Show thal x,_, < x_ if and only if {1 + [/n)" < », and infer that the inequality is valid
for n > 3. (See Example 3.3.6.) Conclude rhat (x } is ultimalely decreasing and that
x = lim{x_) exists,

(8} Use the fact that the subsequence (x. ) also converges to x to conclude that x — 1.

Establish the convergence and {ind the himits of the following sequences:

@ (-1, () (1~ 172my"),
@ (¢ e, @ (0 +2/m7).

Determine the limits of the following.

(@ ((3n)"™), by (v +172n)*).

Suppose that every subsequence of X = (x ) has a subsequence that corverges to 0. Show that
limX — Q.

Let (x,) be a bounded sequence and for each n € Nlet s = sup{x,: & = n} and § := inf{s }.
Show that there exists a subseqguence of (“"..) that converges to §.

Suppose that x, > O forall n € N and that lim {(—1)”.1(”] exists. Show that (x ) converges.

Show that if (x_} is unbounded, then there exists a subsequence (x ) such that ira(l/x, ) = 0.
K L

[t x :=(-1)"/n, find the subsequence of (x,) that is construcled in the second proof of the
Bolzano-Weierstrass Theorem 3.4 8, when we take 7, = 1, 1].

Let(x ) be a4 bounded sequence and let s .= sup{x :n € Jv}. Show thatif s ¢ [xn: n € M}, then
there 15 a subsequence of (x_} that converges to 5.

Let (7 ) hc anested sequence of closed bounded intervals. For each n € N, let x €/ .Uscthe
Bolzano-Weicrstrass Theorem to give a pronf of the Nested Intervals Property 2.5.7.

Give an example to show that Theorem 3.4.9 failsif the hypothesis that X 1s a bounded sequence
is dropped.

Section 3.5 The Cauchy Criterion

The Monotone Convergence Theorem is extraordinarily useful and important, but it has the
significant drawback that it applies only to scquences that are monotone. [t 1s important for
us 1o have a condition implying the convergence of a sequence that does not require us to
know the value of the limut in advance, and 18 not restricted to momnotone sequences. The
Cauchy Criterion, which wiil be established m this section, is such a condition.
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3.5.1 Definition A scquence X = (x ) of real numbers is said to be a Caunchy sequence
if for every £ > 0 there exists a natural number H (&) such that {or all natural numbers
nym > H{g), theterms x  x sansfy [x, - x| < ¢.

The significance of the concept of Cauchy sequence lies in the main theorem of this
scction, which asserts that a sequence of real numbers is convergent if and only if it is a
Cauchy sequence. This will give us a method of proving a sequence converges without
knowing the ltmit of the sequence.

However, we will first highlight the definition of Cauchy scquence in the following
examples.

3.5.2 Examples (&) The sequence (1/n)1s a Cauchy sequence.

[f ¢ > 0is given, we choose a natural number H = H{g) such that H = 2/¢ Then
ifm n> H, wehave 1/n < 111 < £/2 and similarty 1/m < £/2. Therefore, it follows
thatilim, n = II then

l ] l l £
——— S ——t — = =
# m n m 2
Since ¢ > Ois arbitrary, we conclude that (1/n) is a Cguchy scquence.
(b) The sequence (I + (—1)") is not a Cauchy sequence.
The negation of the definition of Cauchy sequence is: There exists £, > 0 such that for
every #f there exist at least one # > H and at least one m > [ such that v, - x| > g,

For the terms x, =1+ (-— 1", we observe that if # 15 even, then x, =2 and X = 0. If
we lake £, = 2, then for any # we can choose ancven numbern > H and letm = n + 1
to get

|.'(.'” - X.rr i 'Jl =2= E(]
We conclude that (x ) is not a Cauchy sequence. 4

Remark We emphasize that to prove a sequence (x ) is a Cauchy sequence, we may
not assume a relationship between m and 7, since the required inequality {x, x| < ¢
must hold for ali n, m > H(¢). Bul lo prove a sequence is #ot a Cauchy sequence, we may
specify a relation between n and m as long as arbitranly large values of » and m can be
chosen so that [x, —x ' = £,.

Our goal 1s to show that the Cauchy scquences are precisely the convergent sequences.
We first prove that a convergent sequence 1s a Cauchy sequence,

3.5.3 Lemma If X — (x ) is a convergent sequence of real numbers, then X 1s a Cauchy
sequence.

Proof. 1f x :=1lim X, then given ¢ > 0 there is a nawral number K (z£/2) such that if
n > K(eg/2ythen |x, —x < ¢&/2 Thus, if H(e) := K(g/2) and 1f n, m > H(g}, then we
have

lx, —x 1 =|{x, —x)+ (x — x )i

<, —x|+]x —x| <e/2+¢/2=c¢.

Since ¢ » 0 1is arbitrary, it follows that (x ) is a Cauchy sequence. QED.
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In order to establish that a Cauchy sequence is convergent, we will necd the following
result, (See Theorem 3.2.2.}

3.5.4 Lemma A Cauchy scquence of real pumbers 1s bounded.

Proof. Tt X = (x) be a Cauchy scquence and let e := 1. If H := H(l) and n > H,
then |x, — x,| < 1. Hence, by the Tnangle Inequality, we have |x | < |x, |+ 1 for all
n = H.If we set

M = sup {|X1|. |)C2|. T |XH_1|. IIH| - 1] '
then 1t follows that x| < M foralln € N. QED.

We now present the unportant Cauchy Convergence Criterion.

3.5.5 Cauchy Convergence Criterion A scquence of real numbers is convergent if and
only 1f it 1s a Cauchy sequence.

Prgof. We have scen, in Lemma 3.5.3, that a convergent sequence 1s a Cauchy sequence.

Conversely, let X = (x ) be a Cauchy sequence; we will show that X 1s convergent to
some real number. First we observe from Lemma 3.5.4 that the sequence X 1s bounded.
Therefore, by the Bolzano-Weicrstrass Theorem 3.4.8, there is a subsequence X' = (x"-k)

of X that converges to some real number x™. We shall complete the proof by showing that

X convergesto x™.
Since X = (x_) 15 a Cauchy sequence, given & > O there is a natural number H (e/2)

such thatif n, m = £ (g/2) then
(1) X —x | < e/l

Since the subscquence X = (x, -.) converges to x7, there 1s a natural number X' > H (£/2)
belonging to the set {n, n,, -+ -} such that

lxe — x7| < 8/2.
Since K > H{g/2), 1 follows from (1) with m = K that

X, — X, < &/2 for n> H(e/2).
Therefore, if n > H{(e/2), we have
lx, —x7| = [{x, —Xg) + (xg —x7)

= |Xn _xxl - ix;( _xﬂ

<g/2+&e/2=¢

Since g > Otis arbitrary, we infer thatlim{x ) = x*. Therefore the sequence X is convergent.
QED.

We will now give some examples of applications of the Cauchy Crniterzon.

3.5.6 Examples (a) Let X = (x ) be defined by

1
X, 1= 1, X, 1= 2, and X, 1= 2— (xn—'Z -+—xn_1) for n =2
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. nbeshownby Induction thai 1 < x, < 2foralln € N. (Do so.y Some calculation shows
iat the sequence X 1s not monotone. However, since the terms are formed by averaging, it
:~radily seen that

|

l.xn — Xn+1| — i”tl— for neN.

Prove this by Induction.) Thus, 1f m > n, we may employ the Triangle Inequality to obtain

|xn - xm E |.JCn o xr.-Hl + |xr.+1 - xr.+2| + -+ |xm—-'i - xm|
1 1

1 1 1 1
Z'ZT_T (l"f'z'f‘"""zm_ﬁ) < =2
Therefore, given £ > 0, if n 15 chosen so large that 1/2" < ¢/4 and if m > n, then it follows
vat |x, — x| < & Therefore, X is a Cauchy sequence in R. By the Cauchy Cniterion 3.5.5
.- mnfer that the sequence X converges to a number x.
To evaluate the limit x, we mught first “pass to the limit" in the mle of definition
= -.E;(Xn_1 + x, _,) to conclude that x must satisfy the relation x = _l;,_(,r + x), which js
true, but not infarmative. Hence we must try something else, _
Since X converges to x, so docs the subsequence X’ with odd indices By Induction,
uie reader can establish that [see 1.2.4(f)]

] | ]
X, :]-{-E-}.Ei.q_.._.;______

22)1—-1
—1+3(1 1)
N 3 4% /-

Tt follows from this (howD thatx =lmX = lm X' =1 + % = .%
(b) Let ¥ = (y ) be the sequence of real numbers given by
o R B 1 (-1
T T L R TR T T e

Clearly, ¥ 15 not a monotone sequence. However, if m > n, then

o E_l)ﬂ'i-: (_l)h+3 (_])mﬁ-l
ym l"n_(n+])| (”+2)|++ !

Since 277" < r! [sce 1.2.4(e)). it follows that if m > n, then (why?)

1 1 1
— < + + -4 —
D =l = e Y m!
1 1 1 1
St Tt n < I
Therefore, it follows that (v, ) 15 a Cauchy sequence, Hence it converges to a limit y. At the
present moment we cannot evaluate y directly;, however, passing to the limit (with respect

to m} 1n the above incquality, we obtain

ly, — y| = 1/2°7".

Hence we can calculate y to any desued accuracy by calculating the terms y_ for sufficiently
large n. The reader should do this and show that y is approximately equal to 0.632 120 559.
(The exact value of y 18 1 — 1/e.)
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o 1
(¢) The sequence (I +-+ -+ —) diverges.
n

2
Let H := (h, ) be the sequence defined by
h = ! + : + : f N
R 2+-'- - or ne N,
which was considered in 3.3.3(b). If m > n, then
1 1
h,—h = + -4+ —.
m ' n+1 m

Since each of these m — n terms exceeds | /m, thenh  —h_ > (m—n)/m=1—n/m.In
particular, if m = 2n we have b, — h, > % This shows that A is not a Cauchy sequence
(why?); therefore H is not a convergent sequence. (In terms that will be intraduced in
Section 3.7, we have just proved rthat the “harmonic series” Y-, 1/n is divergenty [

3.5.7 Definition We say thata sequence X = (x, ) of real numbers is contractive if there
exists a constant C, 0 <« € < 1, such that

Xpp2 = Xyl £ Clxyy — X

r+l r.l

for all n € N. The number C 1s called the constant of the contractive sequence.

3.5.8 Theorem Every contractive sequence is a Cauchy sequence, and therefore 1s con-
vergent.

Proof. If we successively apply the defining condition for a contractive sequence, we can
work our way back to the beginning of the sequence as follows:

X o, —X 5C|xr_+l—xr_|5C2|xn—x

<Clx,_ —x,_,l<- <C'x, — x|

nl2 r.}-‘.l n—]l

For m > n, we estimate |x, — x | by first applying the Tnangle Inequality and then using
the forrnula for the sum of a geometric progression (see 1.2.4(f)) This gives

| ol

_-_'rnl i: |xn1 _Irn—l| —1_ |xm—l _xm—z +- |xn+1 - X
<(C"PHC" TP+ O xy— x|

L (1—Cm “
=C 1(_1—_C_) | x5 ~= x;1

o1 | I
= C m} I.z —x1|‘

Since 0 <« € < 1, we know lm(C") = 0 [see 3.1.11(h)]. Therefore, we infer that (x ) isa
Cauchy scquence. It now follows from the Cauchy Convergence Criterion 3.5.5. that (x, )
1§ a convergent sequence. RED.

m

In the process of calculating the limit of a contractive sequence, it is often very
important to have an estimate of the error at the sth stage. In the next result we give two
such estimates: the first one involves the first two terms in the sequence and n; the second
one involves the difference x, — x, .
3.5.9 Corollary IfX := (x ) is a contractive sequence with constant C,0 < € < 1, and
ifx" :=1lim X, then
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Proof. From the preceding proof, if m > », then |x_ — x | < (= Cilxy, —x
If we let m — oo in this inequality, we obtain {1).
To prove (31}, recal] that if m > n, then

pl-

X

|xm —In| E |xm _xm—ﬁl + - +|'rn+'l - nl”

Since 1t1s readily established, using Induction, that
k
|xn~k _xn-l-k—l = C |XH _xn-'l !

we infer that

m oA 2
x —x|=<(C + o+ HCO)x, — x|
C
= 1 —-C |xn - 'tn—‘ll
We now let m — co 1n this inequality to obtain assertion (11). Q.E.D.

3.5.10 Example Wc are told that the cubic equation x* — 7x +2 = 0 has a solution
between 0 and | and we wish to approximate this solution. This can be accomphished by
means of an iteration procedure as follows. We first rewrite the equation as x = (x° + 2)/7
and use this to define a sequence. We assign to x| an arbitrary value between 0 and 1, and
then definc

1

X,,, = 3% +2) for nelN.

Because 0 « x, <1, it follows that ) < X, < I for all n € N. (Why?) Morcover, we have

R BV 1.3 3
|'rnr'2_’rn!»]|_ ?(‘rn—l_‘_z)_?(‘r”+2)|_:f|xﬂ+l—’rn|

2

=

= l|_)c

2 3
7 | +Xn—1xn ‘!‘XHHX _xnl = 7‘|X _xnl‘

4l nil

Therefore, (x, ) 1s acontractive scquence and hence there exists » such thatlim(x ) — r. Ifwe
pass to the limit on hoth sides of the equality x, | = (x: +2)/7, weobtainr = (r* +2)/7
and hence r*> — 7r + 2 = 0. Thus 7 is a solution of the equation.

We can approximate r by choosing x, and calculating x,, x,, - - - successively. For
example, if we take X, = (0.5, we obtain (to nine decimal places):

x, = 0303571429, x, =0.289710830,

x, = 0.289 188016, x, = (0.289 169244,
x, = (0.289 168571, et

To estimate the accuracy, we note that |x, — x,| < (0.2, Thus, alter 2 steps it follows from

Corollary 3.5.9(i) that we are sure that {x” — x | < 3"=1(7"7% . 20). Thus, when n = 6,
we are sure that

lx* — x| < 3°/(7* . 20) = 24348 020 < 0.0051.

Acmally the approximation is substantially better than this In fact, since |x; — x| <
0.000 0005, it follows from 3.5.5(i1) that |x* — x| < %U’G — x| < 0.0000004. Hence the
first five decimal places of x are correct. J
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Exercises for Section 3.5

10.

11

12.

13,

14.

Give an example of u bounded sequence that is not a Cauchy sequence.

Show directly from the dgfimion that the following are Cauchy sequences.

(a) (" +1 \' | i 1
" SO R
) n ) (b) + ST + il
Show dircctly from the definition that the following are not Cauchy sequences.
_l n
(a) ((‘ 1)”). (b} (n L&D ), © (Inm).
n

Show directly {rom the definition thatif (x ) and (y, } are Cauchy sequences, then (x, + y }and
(x,¥ ) are Cauchy sequences.

Ifx, = /7, show that (x,} satisfies lim |x | — x_| = 0, but that it is not a Cauchy sequence.

Let p be a given namral number. Give an example of a sequence (x,) that is not a Cauchy

sequence, but that satisfles lun |xﬂ_p —x,'=0

Let (x,) be a Cauchy sequence such that x is an integer for every n € N. Show that (x } is
ultimately constant.

Show directy that a bounded, monotone increasing sequence is a Cauchy sequence.

0 <r<landlx . —x, | <r"foralln €N, show that (x }is a Cauchy sequence.

nkl

If x| < x, are arbitrary rcal numbers and x, 1= %(,rn o tx ) forn > 2 show that (x ) is

convergent. What is its limuit?

If y, < ¥, are arbitrary real nwmbers and v = {1y | + 3y, _, for n > 2, show that (y,) is
convergent, What is its limit?

If x, > 0 and X = {2+ x"}" for n > 1, show that (x_}1s a contractive sequence. Find the

lirnit,

]

Ifx '=2andx _ =2~ 1yx_ forn > I, showthat (x ) isaconlractive sequence. Whatis it
limit?

The polynomial equation x* — Sx + | =0 has a root r with 0 < » < 1. Use an appropriate

contractive scquence to caleulate r within 10 4,

Section 3.6 Properly Divergent Sequences

For certain purposes 1t 1s convenient to define what is meant for a sequence (x ) of real

numbers to “‘tend 1o =oc™.

3.6.1 Definition Let(x ) be asequence of real numbers.

()

(ii)

We say that (x, ) tends to +oc, and write lim(x,) = 400, if for every o € R there
exists a natural number K (@) such that if n > K (&), then x_ > «.
We say that (x ) tends to —oo, and write lim(x ) = —oc, if for every g € R there
exists a natural number K (f3) such thatif n > K(8), then x, < 8.

We say that (x ) is properly divergent in case we have either lim(x ) = +o0 or

im(x, ) = —oc.
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The reader should realize that we are using the symbols +oo and — ¢ purely as a con-
venient notation 1n the above expressions. Results that have been proved in earlier sections
for conventional limits lim(x, ) = 7 (for L. € R) may nor remain true when lim(x ) = Foo.

3.6.2 Examples (a) Lm(n) = +co.

In fact, if ¢ € IR 1s given, let K (&) be any natural number such that X (@) > «.
(h) lim(n?) = 4.

If K({z) 1s a natural number such that K {¢) > «, and 1f » > K (&) then we have
nt>n>a
(¢ Ifc > 1, thenlim{c™) = +o0.

Letc =1+ b.where b > (0 If ¢ & R 15 given, let K (&) be a narural number such that
K(a) = a/b. lfn > K{a) it follows from Bermoulli's Inequality that

=l =0">1+nb>]+a>ua

Therefore hm(s"Y = 4nc. C

Monotone sequences are particularly simple in regard (o their convergence. We have
seemin the Monotane Convergence Thearem 3.3.2 that a manotone scquence 1S convergent
if and only tf it 1s bounded. The next result is a reformulation of that result.

3.6.3 Theorem A monotone sequence of real numbers 1s properly divergent if and only
1f it is unhounded.
(a) If(x ) 1s an unbounded increasing sequence, then im(x, ) = +oc,

(b} If(x)) 1s an unbounded decreasing sequence, then lim(x ) = —oc.

Proof. (a) Supposcthat(x )1sanincreasing scquence. We know that if (x,) 1s bounded,
then it 15 convergent. 1f (x, ) 1s unbounded, then for any « € X there exists #(a) € N such
that ¢ < Xy (s But since (x ) is increasing, we have a@ < x,_ for all n > n{o). Since « is
arbitrary, il follows that im(x ) = 4oc.

Part (b) 1s proved tn a sinular fashion. QED.

The following “comparison thecorem™ 1s frequently used 1n showing that a sequence 18
properly divergent. [In fact, we impheitly used 1t in Example 3.6.2(c).)
3.6.4 Theorem Let (x,) and (y,) be two sequences of real numbers and supposc that
(1 X, <y, forall n e X,

(a) If Jim(x } = -+oo, thenlim(y ) = -+oo.
(b If lim(y,)= —o0, thenlim(x ) = —oc.

Proof. (a) If lim{x, ) = +c0, and if & € R 15 given, then there exists a natural number
K (@) such that 1f n = K(a), then o < x_. In view of (1), it follows that o < y_ for all
n > K{(a). Since « 15 arbitrary, it follows that lim(y, ) = +o0.

The proof of (b) is similar. QED.

Remarks (a) Theorem 3.6.4 remains truc if condition (1) is ultimately true; that is, if
there exists m € Nsuch thatx < y, foralln = m.
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(b) If condition (1} of Theorem 3.6.4 holds and if lim(y ) = 4oc, it docs not follow
that lim(x,) = +o0. Similarly, if (1) holds and if lim(x ) = —oo0, it does not follow that
lim(y, ) = —oo. Inusing Theorem 3.6.4 to show that a sequence tends to 400 [respectively,
—oo] we need to show that the terms of the sequence are ultimately greater [respectively,
less| than or equal to the corresponding terms of a sequence that is known to tend to 4+-c0
[respectively, —20].

Since 1t 1§ sometimes difficult (o establish an inequality such as (13, the following "“lumit
comparisorn theorem’ is often more convenient to use than Theorem 3 6.4

3.6.5 Theorem Let(x )and(y ) bc two sequences of positive real numbers and suppose
that forsome L € X, L >}, we have

(23 lim(x /v )= L.

Then hm(x ) = —oc if and only if lim(y, ) = +oc.

Proaf. 1f (2) holds, there exists K € N such that
il <x Jy, <3l forall n> K.

Hence we have (11.)y, < x, < (3L)y, foralln > K. The conclusion now follows from
a slight modification of Theorem 3.6.4. We leave the details to the reader. QED.

The reader can show that the conclusion need not hold if etther L =0 or . = 40oc.
However, therc are some partial results that can be cstablished in these cases, as will be
scen in the exercises.

Excrcises for Section 3.6

1. Show that {f (x, ) 1s an unbhounded sequence, then there cxists a properly divergent subsequence.

2. Give examples of properly divergent sequences (x, ) and (y, ) with y, # 0 for all n € N such
tha::
(a) (¥ /y, }isconvergent, (b} (x, /y,)1s properly divergent.

3. Show thatif x_ = Oforalln € N, then im(x ) = O1f and caly if im(1/x ) = +oe.

4. Establish the proper divergence of the following sequences.
(0 (Ur), by (Va+1),
© (Vi) @ (n/SnFD).
3. Is the sequence {# sinn) properly divergent?

6. Let (x ) be properly divergent and let (y, ) be such that lim(x_y, ) belongs to =. Show that (y )
converges to 0.

7. Let{x )and {y,) be scquences of positive numbers such that im{x_/y } = 0.
(a) Show that1f im{x ) = +c0, then im(y ) = +oc.
(b) Show that if (y,) is bounded, then Hm(x } = 0.

& Investigate the convergence or the divergence of the following sequences:
@ (Vai+2), ® (a7 (2 + 1)),
© (Vn?+1/7), @ (sin /7).
8. Let(x,)and(y,} be sequences of positive numbers such that lim(x /y, ] = +6o0,

(a) Show that if lim(y ) = 400, then lim(x } = +oc.
(b) Show thatif (x ) 1s bounded, then lim(y ) = 0.

10, Show that if im(a_/n) = L, where I. > Q, thenlim(a,) = +o0o0.
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Section 3.7 Introduction to Infinite Series

We will now give a brief introduction to infinite senes of real numbers, This 1s a topic
that will be discussed in more detail 1n Chapter 9, but because of its impartance, we will
establish a few results here. These resulis will be seen to be immediate conscquences of
theorems we have met in this chapter.

In clementary texts, an infinite series is somctimes “defined™ to be "an expression of
the form”

{H Xy +xy+ o+ x 4o

However, this “definition” lacks clanty, since there 1s a priori no particular value that we
can attach to this array of symbols, which calls for an mfinite number of additions to be
performed.

32,1 Definition If X .= (x ) 1s a sequence in R, then the infinite series (or sunply the
series) generated by X 1s the sequence § = (5,) defined by
Sl = Xl

5, =5 tx, {(=x +2x,)

So=n X (=X T by

The numbers x, are called the terms of the series and the numbers s, are called the partial
sums of this series. If Jim S exists, we say that this senies 1s convergent and call this hmit
the sum or the vahlue of this series. If this limit does not exist, we say that the series S is
divergent.

It 15 canvenient to use symbols such as

(2} Z (x,) or z X, or Z X,

to denote both the infinite series § gencrated by the sequence X = {x ) and also to denote
the value lim S, 1n case this limit exists. Thus the symbols in (2) may be regarded merely as
a way of exhibiting an infinite series whose convergence or divergence is to be investigated.
In practice, this double use of these notations does not lead to any confusion, provided it is
understood that the convergence (or divergence) of the series must be established.

Just as a sequence may be indexed such that its first element 15 not x,, but 1S X, OF X,
OI X4, we will denote the series having these numbers as their first element by the symbols

oc e 20
E xn or E Xﬂ or E In‘

n=0 A=3 n=>5%%

It should be noted that when the first term in the series is x,,, then the first partial sum is
denoted by s .

Warning The reader should guard against confusing the words “sequence” and “‘series”.
- In nonmathematical tanguage, these words are interchangeable; however, in mathematics,
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these words are not synonyms. Indeed, a series is a sequence § = (s,) obtained from a
given sequence X = {x ) according to the special procedure given in Definition 3.7.1.

3.7.2 Examples (a) Considerthesequence X .= (r”)iﬂ where r € R, which generates
the peometric series:

o

) ) D EUT RN
HTO

We will show that if || < 1, then this series convergesto 1 /(1 — r). (See also Example
1.2.4(6).) Indeed, if s, =147 + rP 4 " forn > 0, and if we multiply s, by r and
subtract the result from s, we obtain (after some simplification):

s (1—ry=1—r+"

Therefore, we have

1 rﬂ i—]
g — = — .
"ol —r 1 —r
from which it follows that
l |rln+1
5, — — —| < —.
RIS B § Y
Since |r{**' — 0 when |7l < 1, it follows that the geometric seres (3) converges to

1/{1 —r)whenir| <1,
(b) Consider the serics generated by ((—1}”)::0', that is, the senes:

ot}
) PET = EFDH ED A ED (=D
'.'l=0
[t is casily seen (by Mathematical Induction) that s, = 11f n > Oisevenandy, =0
if n 1s 0dd; therefore, the sequence of partial sums is (1,0, 1,0, -+ ), Since this sequence is
not convergent, the serics (4) is divergent.

(c) Congsider the series

x 1 1 ] 1
5 —
() Zn(n-{—l) 2273734 "

n—1

By a stroke of insight, we note that

1 I l

kk~1) k k+1

Hence, on adding these terms from & = 1 to k == r and noting the telescoping that takes
place, we obtain

1 i
R T,
whence it follows that s — 1. Therefore the series (5) converges to 1. ]

We now present a very useful and simple necessary condition for the convergence of
a serics. It is far from being sufficient, however.
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3.7.3 The nth Term Test If the sertes ) | x  converges, thenlum(x ) = 0.

Proof. By Definition 3.7.1, the convergence of 3_ x, requires that lim(s,) exists. Since
x, =3 —5, _thenlim(x)) =lim(s ) — lim(s,_ ) =0. Q.ED.

n

Since the following Cauchy Criterion is precisely a reformulation of Theorem 3.5.5,
we will omit 1ts proof.

3.7.4 Cauchy Criterion for Series The scries | x, converges if and only if for every
£ > O there exists M(¢) € N such that if m > rn > M({e), then

(6) 5 =S =Ix, ., +x, .+ - +x,|<e

n1

The next result, although limited in scope, is of great importance and utlity.

3.7.5 Theorem Let (x ) be a sequence of nonncgative real numbers. Then the senes
Y x, converges if and only if the sequence § = (s,) of partial sums is bounded. In this
case,

an = lim(s,) = sup{s, : ¥ € N}.
n=1}

Proof. Since x, > 0, the sequence § of partial sums 15 monotone increasing:

L R I - <
| €5, < <5 <

By the Monotone Convergence Theorem 3.3.2, the sequence § = (s5,) converges if and
only if it 1s bounded, in which case its limit equals sup(s, }. QE.D.

3.7.6 Examples (a) The geometric serics (3) divergesif ] > 1.
This follows from the fact that the terms " do not approach O when |r| > 1.

(3.4
1
(b) The harmonic series E — diverges,
L3
=1

Since the terms [/n — 0, we cannot use the nth Term Test 3.7.3 to establish this
divergence. However, 1t was scen 1n Examples 3 3.3(b) and 3.5.6(c) that the sequence (s, )
of partial sums is not hounded. Therefore, it follows from Theorem 3.7.5 that the harmonic
series 18 divergent.

N
(¢} The 2-series Z — 1s convergent.
n=1

Since the partial sumns are monotone, it suffices (why?) to show that some subsequence

of (s,) is bounded. If k, := 2" — 1 = I, thens, =1 Ifk; :=2° —1 =3, then
Lo 11 [ 2]
k2—1+ 22+§§ < +?— +E,

and if k, := 2° — 1 = 7, then we have

3 L1 1 1 4 11
ska—sk1+ 4—2+5—2+§+; <5k2+ﬁql+—+——_

By Mathernatical Induction, we find that if k= 2/ — 1, then

O<.';kj {]+%+(%)2+“.+(%)}._1‘
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Since the term on the right is a partial sum of a geometric series with r = %, it 1s domunated
by 1/(1 — 3) = 2, and Theorem 3.7.5 implies that the 2-serics converges.

(d) The p-series Z — converges when p > 1,
n=1

Since the argument is very similar to the special case considered in part {c), we will
leave some of the details to the reader. As before, if k, 1= 2! — 1 =1, then S, = 1. I

k, =2’ — 1 =3, then since 27 < 3”, wc have

SETPYEIE | R

Further, if k; := 2> — 1, then (how?) it is seen that

1 1
4° -1 " el

.S'J(‘ = Sk

Finally, we letr 1= 1/2*"*1; since p > 1, we have 0 < r < 1. Using Mathematical Induc-
tion, we show that if kj. =72/ — 1, then
1

0<s, <l4+r4+riq.. +r4’1<1——
s — Fr

Therefore, Theorem 3.7.5 implies that the p-scnoes converges when p > 1.

(e) Thc p-series Z —P diverges when 0 < p < 1.
m—1

We will use the elementary inequality n” < n whenn € Nand 0 « p < L. It follows
that

1 1

- < — for neXN.

n— n’

Since the partial sums of the harmonic series are not bounded, this incguality shows that the
partial sums of the p-series arc not bounded when 0 < p < 1, Hence the p-senes diverges
for these values of p.

(f) The alternating harmonic Series, given by

(— 1)”“ 1 1 1 (— 1!
7 =4+ - -+ ——+ -
¢ I AR A
1s convergent,
The reader should compare this scnes with the harmonic series in (b), which 1s
divergent. Thus, the subtraction of some of the terms in (7) 15 essential if this series 1s to

converge. Since we have

L1y 1 ] ]
=TT )T s )T M s o T )

it is clear that the “even” subsequence (5, ) 1s increasing. Similarly, the “odd” subsequence
(5,,,1) 18 decreasing since

(D)D) ()

Since 0 <5, <3, +1/(2n+1)=ys,, | <1, both of these subscquences are bounded
below by 0 and above by 1. Thercforc they are hoth convergent and to the same vafue. Thus
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the sequence (s,) of partial sums converges, proving that the alternating harmonic serics
(7) converges. (It is far from obvicus that the limit of this senes 1s equal to In 2.) 0J

Comparison Tests

Our first test shows that if the terms of a nonnegative senies are dominated by the corre-
sponding terms of a convergent series, then the first series 1s convergent.

3.7.7 Comparison Test LetX = (x ) andY := (y, ) be real sequences and suppose that
for some K € N we have

(8) O0<x <y for n> K.

(a) Then the convergence of 3y implics the convergenec of 3 x .
(b) The divergence of 3 x imples the divergence of 3y, .

Proof. (a} Suppose that 3y converges and, given £ > 0, let M (e) € N be such that if
m > n > M(g), then

+ -4y <&

m

-v.r|+']

m > sup{ K, M (&)}, then it follows that

O<x, 4+ +x, =y ,+ -+, <&

m

from which the convergence of 3 x, follows.
(b) This statement is the contrapositive of (a). QED.
Since it is sometimes difficult to establish the inequalities (8), the next result is fre-

quently very useful.

3.7.8 Limjt Comparison Test Supposcthat X := (x)andY .= (y ) are strictly positive
scqguences and suppose that the followtng hunut cxists in R:

X
)] r = lim (—ﬂ) .
Y

(a) Ifr % Othen Y x_isconvergent if and only if 3"y is convergent.
(b) Ifr =0andif )y isconvergent, then ) x_isconvergent,

Proof. (a) It follows from (9) and Exercise 3.1.17 that there exists K € N such that
%r <x [y <2rforn > K, whence

(%r) y, <x < (2?‘)}}: for n > K.

If we apply the Companson Test 3.7.7 twice, we obtain the assertion in (a).
(b) If » = 0O, then there exists K € N such that

O0<x <y for n> K

so that Theorem 3.7.7(a) applics. Q.F.0.

Remark The Comparison Tests 3.7.7 and 3.7.8 depend on having a stock of series that
one knows to be convergent (or divergent). The reader will find that the p-serics is often
useful for this purpose.
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X
: . 1
3.7.9 Examples (a) The scries Z 5 converges.
n=t 7 +n
It is clear that the inequality
1 |
0 < < — for nelN

nz_;—_n ?'12
is valid. Since the senies Y 1/n” 1s convergent (by Example 3.7.6(c)), we can apply the

Comparison Test 3.7.7 1o obtain the convergence of the given senies,
b
1

(b) The scres Z —————— 15 Convergent.
T n—n+1

[f the ineguality
(10) 1 1
e
nm—n41 " nt
were true. we could argue as in (a). However, (10) 15 false for all n ¢ N. The reader can
probably show that the inequality
1 2
2

n—=—n4+1 n

| A

is valid for all n e N, and this inequality will work just a5 well. However, 1t might take
some experimentation to think of such an mequality and then establish it.
Instead, if we take x_ = l/(n2 —n+ Dandy = !/nz, then we have

1
-

X R 1
5 = 5 — ]
¥, n n—+1 1 --(1/n)+ (1/n%)

Therefore, the convergence of the given senes follows from the Limit Companson Test
3.7 8¢a.

=)
1
{¢) The senies 15 divergent.
; VR o+ £
This scrics closely resembles the series 3 1/./n whichis a p-series with p = %; Dy
Fxample 3.7.6(e), 1t 1s divergent. I{ we let x_ := 1/+/n + land y_:= 1/4/n, then we have
X, Jr

= = — == = 1

Y, 41 Y1+ 1/n

Therefore the Limit Companson Test 3.7.8(a) applies.

X
(d) The series E - 1§ convergent.
n=] ne

It would be possible to establish this convergence by showing (by Induction) that
n’ < n!forn > 4, whence it follows that

1 1
0« — < — for n =>4
n! n2

Alternatuvely, if welel x ;== 1/nfand y_ = I/nz. then (when n > 4) wc have

X nt n 1

rn

DE—: -

- < - 0.
¥, n! 1-2.--(n—=1y n=2

Therefore the Limit Comparison Test 3.7.8(b) applics. (Note that this test was a bit trou-
blesome to apply since we do not presently know the convergence of any series for which
the limit of x_ /vy is really easy to determine.) -
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Exercises for Section 3.7

1. Let 3 a_be agiven seres and let 3 b be the series in which the terms are the same and in
the same order as in p  a_cxcept that the terms for which 2, — 0 have becn omitted. Show that
2. a_converges to A ifand only if 3k converges to A.

2. Show that the convergence of a senes is not affected by changing a finife number of its terms.
(Of cowrse, the value of the sum may be changed.)

3. By using partial fraclions show that

& 1 1
R — = - = if
@ Z{; n+1>(n+2) - ® 2 ity "o O
= 1 1

C = —.
© En(n——l)(n-i-fl) 4
4. Ify . x and )y arc convergent, show that 3 (x + y,) is convergent.

5. Can you give an example of a convergent series 3 x, and a divergent serics ) y_ such that
Z(x}1 + y.) is convergent? Explain,
0
6. (2) Show that the series Y  cosr is divergent.

n=|

fac ]
{b) Show that the senes Z(ccs n)/n2 15 convergent,
- 2, (1Y
7. Use an argument similar to that in bExample 3.7.6() to show that the series Z 15

n=1 ‘/I_l

convergent,

§ If Ya, witha, > 0is convergent, then is 3 a2 always convergent? Either prove it or give 2
counterexample.

9 If) a_ witha, > 0isconvergent, then is 37 Ja, always convergent? Either prove it or give a
counterexample.

10. 1f 3 a witha > 0is convergent, then is ):,/anf::, always convergent? Either prove 1t or
give a counterexample.

1. If } a, witha > 0isconvergent, and if b :={a, + - +a )/n for n ¢ N, then show that
3. b, is always divergent.

L
12, Let Z a(n) be such that {a(n)) is a decreasing sequence of strctly positive numbers. Tf s(n)

n—1

denotes the nth partial sum, show (by grouping the terms in 5(2") in two different ways) that

HaM)+ 222+ - -+ 27a(2) < 5(2) < (@) + 22 + -+ 27 'a(2" ) + a2,

= oo
Usc these inequalities to show that Za(n) converges if and only if ZZ”&[Z”) converges.

n=|I

This result 15 often called the Cauchy Condensatmn Test; 1t 15 very powerful.

13. Use the Cauchy Condensation Test to discuss the p-serics Z(I/n”) for p > Q.

[

14. Usc the Cauchy Condensation Test to establish the divergence of the series:
1

1
(@) annn' : (b Z:.rz(lmz)(lnlnm)'

(c) Z n(lnn)(Inlnn)(inlnlnna)

15. Show that if ¢ > 1, then the following series are convergent:

1
(a) Zn(l—nn)" (®) Z lnn)(lnlnn}




CHAPTER 4

LIMITS

“Mathematical analysis™ is generally understood to refer to that area of mathematics in
which systematic use 1s made of vanous limiting concepts. In the preceding chapter we
studied ane of these basie miting concepts: the limut of a sequence of real numbers. In this
chapter we will encounter the notion of the Jimit of a function.

The redimentary notion of a linuting process emerged in the 1680s as Isaac Newton
(1642--1727) and Gottfried Leibmiz (1646--1716) struggled with the creation of the Cal-
culus. Though each person's work was initally unknown to the other and their creative
msights were quite different, both realized the need to formulate a notion of function and the
idea of quantities being “close to” one another. Newton used the word “fluent” to denote a
rclationship between variables, and in his major work Principia in 1687 he discussed limits
“to which they approach nearer than by any given difference, but never go beyvond, nor in
cffect attain to, till the quantitics arc diminished tn infinitum™. Leibniz introduced the term
“function” to indicate a quantity that depended on a vanable, and he invented “infinites-
imally small” numbers as a way of handling the concept of a limit, The term “function”
soon became standard tenmunology, and Leibniz also introduced the term “calculus” for
this new imethod of calculaton.

In 1748, T.eonhard lzuter (1707-1783) published his two-volume treatise Inrroductio in
Analysin Infinitorum, in which he discussed power sernies, the exponential and loganthmic
functions, the tngonometrc functions, and many related topics. This was followed by Insti-
tutiones Calculi Differentiolis in 1755 and the three-volume Fnstirutiones Calculi Integralis
in 1768 70. These works remained the standard textbooks on calculus for many years, But
the concept of imit was very intuitive and 1t Jooseness led to a nurmber of problems. Verbal
descriptions of the limit concept were proposed by other mathematicians of the cra, hut
none was adequate to provide the basis for rigorous proofs.

In 1821, Augustin-Louis Cauchy (1789-18357) published his lectures on analysis in his
Cours d'Analyse, which sct the standard for mathematical exposition for many years. He
was concermed with nigor and in many ways raised the leve) of precision in mathematical
discourse. He formulated definitions and presented arguments wath greater care than his
predecessors, but the concept of limut st1]l remained elusive. In an early chapter he gave the
following definition:

If the successive values attributed to the same variable approach indefinitely a
fixed value, such that they hinally differ from it by as little as one wishes, this latter
1s called the limit of all the others.

The final steps 1n formulating a precise defimtion of himit were taken by Karl Weier-
strass (1815-1897). He insisted on precise language and rigorous proofs, and his definition
of limit is the one we use today.

96
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Gottfried Leibniz

Gottfried Wilhelm Leibniz (1646—1716) was born in Leipzig, Germany. He
was six years old when his father, a professor of philosophy, died and left his
son the key to his library and a life of books and learning. Leibniz entered the
University of Leipzig at age 15, graduated at age 17, and received a Doctor
of Law degree from the University of Altdorf four years later. He wrote
on legal matters, but was more interested in philosophy. He also developed
original theories about language and the nature of the universe. In 1672, he
went to Paris as a diplomat for four years. While there he began to study -
mathematics with the Dutch mathematician Christizan Huygens. His travels to London to visit the
Royal Academy further stimulated his interest in mathematics. His background in philosophy led
him to very original, though not always rigotous. results.

Unaware of Newtons's unpublished work, Leibniz published papers in the 1680s that pre-
sented a method of finding areas that is known today as the Fundamental Theorem of Calculus. He
coined the term “calculus™ and invented the dy/dx and elongated § notations that are used today.
Unfortunately, some followers of Newton accused Leibniz of plagiarism, resulting in a dispute
that lasted until Leibniz’s death. Their approaches to calculus were quite different and it is now
evident that their discoveries were made independently. Leibniz is now renowned for his work in
philosophy, but his mathematical faroe rests on his creation of the calculus.

Section 4.1 Limits of Functions

In this section we will introduce the important notion of the limit of a function. The intuitive
idea of the function f having a limit L at the point c¢ is that the values f(x) are close to
L when x is close to (but different from) c¢. But it is necessary to have a technical way of
working with the idea of “close t0” and this is accomplished in the ¢-é definition given
below. :

In order for the idea of the limit of a function f at a point ¢ to be meaningful, it is
necessary that f be defined at points near c. It need not be defined at the point ¢, but it
should be defined at enough points close to ¢ to make the study interesting. This is the
reason for the following definition.

4.1.1 Definition Let A € R. A point ¢ € R is a cluster point of A if for every § > 0
there exists at least one point x € A, x # ¢ such that |x — ¢| < é.

This definition is rephrased in the language of neighborhoods as follows: A point ¢ is
a cluster point of the set A if every §-neighborhood V(c) = (¢ — &, ¢ + 8) of ¢ contains at
least one point of A distinct from c.

Note The point c may or may not be a member of A, but even if it is in A, it is ignored
when deciding whether it is a cluster point of A or not, since we explicitly require that there
be points in Vi(c) N A distinct from ¢ in order for ¢ to be a cluster point of A.

For example, if & := {1, 2}, then the point 1 is not a cluster point of A, since choosing
6= % gives a neighborhood of 1 that contains no points of A distinct from 1. The same is
true for the point 2, so we see that A has no cluster points.

4.1.2 Theorem A numberc € R js a cluster point of a subset A of R if and only if there
exists a sequence (a,) in A such that lim(a ) = ¢ and a, #cforalln e N.
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Progf. 1l c¢ 1s a cluster point of A, then for any n & N the (1/r) ncighborhood VUH((.‘)
contains at least one point g, 1n A distinct frome. Then a, € A, a_F ¢ and la, - cl < 1/n
unplies lim{a ) = ¢
Conversely, if there exists a sequence (a,) in A\{c} with lim{e,) = ¢, then for any
8 > 0 there exasts K such that if n = K, then ¢, € Vi(c}. Therefore the d-neighborhood
V. (c) of ¢ contains the points ¢, for n = X, which belong to A and arc distinct from .
QED.

The next examples emphasize that a cluster point of a set may or may not belong to
the set.

4.1.3 Examples (a) Fortheopeninterval A, := (0, 1}, every point of the closed interval
[0,1] is a cluster point of A. Note that the points 0,1 are cluster points of A, but do not
belong 1o A, . All the points of A, are cluster points of A,

(b) A finite sct has no cluster points.
(¢) The infinite s¢t N has no cluster points.

(d) Theset A, := {l/n : n € N} has only the point 0 as a cluster point. None of the points
in A, 1s acluster point of A,.

(e) Ii7:=[0, 1], thenthe sct A, = 7N G consists of all the rational numbers in 7. It
follows from the Density Theorem 2.4 8 that every point in [ is a cluster pointof A,. O

Having made this brief detour, we now return to the concept of the limit of a function
at a cluster point of its domain.

The Definition of the Limit

We now state the precise definitton of the limit of a funcuon f at a point ¢. It 1s impartant
to note that in this definition, it 15 ymmaterial whether f 1s defined at # or not. Tn any case.
we exclude ¢ from consideration 1 the determination of the limit,

4.1.4 Definition Let A C K, and let ¢ be a cluster point of A. For a function f : A — R,
arcal number L 1s said to be a limit of f at c1if, given any ¢ > O there exists a 4 > 0 such
thatifx € Aand 0 < |x —¢| < §, then [ f{x)— L] < &,

Remarks {(a) Since the value of § usually depends on &, we will Sometimes write 8(¢)
instead of § to emphasize this dependence.
{(b) The inequality O < |x — ¢l 1s equivalent to saying x # c.

If Lisalmitof { atc, then we also say that f converges to L at c. We often write
L= Jlri_xzaéf(x) or L= llr)n;f
We also say that "' f (x) approaches L as x approaches ¢”. (But it should be noted that the
points do not actually move anywhere.) The symbolism
f(x)y = L a8 x — ¢

15 also used somelmes to express the fact that f has liout L at c.

If the limit of f at ¢ does not exist, we say that f diverges at c.

Qur first result is that the value L of the Iimit 1s uniquely determined. This uniqueness
15 not part of the definition of limit, but must be deduced.
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4.1.5 Theorem If f: A — R andifc is a cluster point of A, then [ can have only one
Iimit at ¢

Proof. Suppose thatnumbers L and L’ satisfy Definition 4.1.4. Forany £ > 0, there exists
8(&/2) > Osuchthatifx € Aand0 < |x — ] < é(g/2), then | f{x) — L| < £/2. Alsothere
exists 8'(g/2) suchthatif x € Aand 0 < |x — ¢l < 8'(g/2) then | f(x) — L'| < /2. Now
let & := inf{3(e/2),8'(¢/2)}. Then if x € A and 0 < |x — ¢| < &, the Triangle Tneguality
implies that

IL—L L= fOHIf(x) =L <ef2+&/2=¢
Since £ > 0 is arbitrary, we conclude that /. — I = 0, so that . = I.”. Q.E.D.

The definition of limit can be very nicely described in terms of neighborhoods. (See
Figure 4.1.1.) We observe that because

Viley=(c—8.c+8) ={x|x—c| <}

the inequality 0 < [x —¢| < & 1s cquivalent to saying that x # ¢ and x belongs ta the 8-
neighborhood V((c) of ¢. Similarly, the inequality | f(x) — L] < £ 1s equivalent to saying
that f(x}) belongs to the e-neighborhoad V_ (L) of L. In this way, we abtain the following
result. The reader should write out a detasled argument to cstablish the theorem.

| L
&

L
Given V(L) -7

|
|
1
|
|
I
1|
|
1
1

l\!{m,--—— > K

r 'F\
There exists Vsic)

Figure 4.1.1 The imitof fatcis L.

4.1.6 Theorem Lect f: A — R and let ¢ be a cluster point of A. Then the following
statcments arc cquivalent,
(i) lim f(x)=L.

K—rL
(i) Given any e-neighborhood V_(L) of L, there exists a §-neighborhood V, (¢) of ¢ such
that if x # ¢ is any point in Vi(c) N A, then f(x) belongs V,(L).

We now give some cxamples that illustrate how the definition of limit is applied.

4.1.7 Examples (a) lﬂb = b,
To be more explicit, let f(x) := & forall x € R. We want to show that im f(x) = b.
X ot

If ¢ > 0 is given, we let 6 == 1, (In fact, any strictly positive § will scrve the purposc.)
Thenif 0 < |x —¢| < 1, wchave |f(x) —-b]=|b—5b| =0 < . Since e > 0is arbitrary,
we conclude from Definition 4.1.4 that lim [ (x) = b.

X—=c
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(b) limx =c.

fgrcg(_r) = xforallx € R.Ife > 0,wecchooscd(e) ;= ¢. Thenif O < [x — ¢] < &(¢),
we have |g(x) —c] = |x — ¢l < £. Since £ > 0 is arhitrary, we deduce that lim g = ¢.

L=
() limx* = ¢
I—+

TetA(x) := x? for all x € R. We want to make the difference

|h(x) - CZ‘ = !xl —¢?

less than a preassigned ¢ > O by taking x sufficiently close to ¢. To do so, we note that
2 _ 2 -
X" —c¢" = (x+c)x — ). Morcover, if |x — ¢| < 1, then

x| < |c| + 1 so that lx +c <ix| +|e] =2+ 1.
Therefore, 1f .{x - ¢] < 1, we have

=lx+tclle —cl 2 @lel+ 1 lx—cl.

(h |x2—c‘

Moreover this last temm will be less than ¢ provided we take |x — ¢| < £/(2]¢] + 1). Con-
scquently, 1if we choose
o e
&(g) ‘= inf (], ——}

20|+ 1

then if O < {x — ¢} < &8(e), 1t will follow first that |[x — ¢| < 1 so that (1) is valid, and
therefore, since |x — ¢ < g/(2]c| + 1) that

x?'—c?"f(2|c|+])x—c|<£.

Since we have a way of choosing 8(¢) > 0 for an arbitrary choice of ¢ > 0, we infer that
lim A(x) = Limx? = ¢*.
r [

1 ]
(diy lim—=—-1f¢c > 0.
x—=c X '
Letw(x) = 1/xforx = 0 and let ¢ = 0. To show that li_m ¢ = I/c we wish to make
the difference
1 1 11
p)— = =|-— -
c X (.i

less than a preassigned € > 0 by taking x sufficiently close to ¢ > 0. We first note that
1

i 1
—_ =~ |x —
X [ X

1
= ‘—(C —X)
X

for x > @ It 15 useful to get an upper bound for the term 1/(cx) that holds in some
neighborhood of ¢. In particular, if [x — ¢| < %c, then %c <X < %c (why?), so that
t 2

0< — <+ for |x —c| < jc.
cY c

Therefore, for these values of x we have

1 i
(2) px)—=-| =5k —-cl« ¢
cl "¢

In order lo make this last term less than € it suffices to take |x — ¢] < %f:zs. Conscquently,
if we choose

&(g) ;= inf {%c %CEE}.
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then if O < |x —¢j < &(g), it will follow first that x — ¢| < %c so that {2} 1s valid, and
therefore, since (x — ¢} < (%cz) g, that

1

‘@(X) — =
C

= £.

1 1
X C

Since we have a way of choosing 8(g) > O for an arbitrary choice of £ > 0, we infer that

lim ¢ = 1/c,
I—r
3
-4 4
€ lim — g
¥ 2 X _|_ 1 S
Let yr(x) = x3 — 4)/(x + 1) for x € R Then a little algebraic manmipulation gives
s
o 4] |5x° —4x* —24
X] - = =
5 S5(x2+ D
\Sx +6x+12 s
S+ 1) '

To get a bound on the coefficient of 'x — 2|, we restrict x by the condition 1 < x < 3,
For x in this interval, we have Sx® + 6x + 12 < 5. 3? +6-34+12="75and S5(x*4+ 1) >
3(1 4 1) = 10, so that

v - e D=y
[ —|x — 2l = - — .
YT =10 2

Now for given ¢ > 0, we choose

Thenf 0 < |x — 2] < §(g), we have |[w(x) — (4/3)] < (15/2)1x 2| < e.Since e > O1s

arbitrary, the assertion 18 proved. !

Sequential Criterion for Limits

The following important formulation of limit of a function 1s 1n terms of limiis of sequences.
This charactenzation permits the theory of Chapter 3 to be applied to the stody of limits of
functions.

4.1.8 Theorem (Sequential Criterion) Let £ A — R and let ¢ he a cluster point of A.
Then the following are cquivalent.
(i) lmjf=0L.

X—C
(i) For cvery sequence (x ) tn A that converges to ¢ such that x_ # ¢ foralln € N, the
sequence { f (x,}) converges to L.

Proof. (i) = (i1). Assume f has limit L at ¢, and suppose (x,) is a sequence in A4 with
lim(x ) = ¢ and x_ # c for all n. We must prove that the sequence {f(x ) CONVCrgces (o
L. Let £ > 0 be given. Then by Definition 4.1 4, there exists § > 0 such that if x € A
satisfies 0 < |x — ¢} < 4, then f(x) satisAcs 'f(x) L| < e. We now apply the definition
of convergent sequence for the given § to obtain anatural number X (§) such thatifn > K(4)
then [x_ — | < 8. But foreach such x_ we have | f(x ) — L| < ¢. Thusif n > K (4), then
|f(x_ ) — L| < ¢. Therefore, the sequence (f(xn)) converges to 1.
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(i1) = (1). [The proof is a confrapositive argument.] If (1) is not true, then there exists
an £,-ncighborhood V, (L) such that no matter what é-neighborhood of ¢ we pick, there
witl be at least one nur;}bcr x; 1 ANV (c) with x, # ¢ such that flx;) & VL_S(L). Hence
for every n € N, the (1/n)-neighborhood of ¢ contains a number v such that

(= |.rn——c‘ < V/n and x, €A,
but such that
|f(x)—L|=e,  forall ne N

We conclude that the sequence (x, ) in A\ {c} converges to ¢, but the sequence (f (x,)) does
not converge to /.. Therefore we have shown that if (1) is not true, then (i) s net truc. We
conclude that (i1) imphes (i). QED.

We shall see in the next section that many of the basic limit properties of functions can
he established by using corresponding properties for convergent sequences. For example,
we know from our work with sequences that it (x ) 1s any sequcnce that converges to a
number ¢, then (xj) converges Lo c?. Therefore, by the scquential enterion, we can conclude
that the function 2(x) = x? has limit Him nix) = 2.

X—rg

Divergence Criteria

It is often important to be able to show (1) that a certain number 15 not the linul of a function
at a point, ot (1) that the function does not have a limit at a point. The following result
15 a consequence of (the proof of) Theorem 4.1 8. We leave the details of its proof as an
important exercise.

4.1.9 Divergence Criteria JTet A C R, let f: A — R and let ¢ € R be a cluster point
of A.

(a) IfL €K, then f docs not have hnut L at ¢ 1f and only if there cxists a sequence (x )
mn A with x, £ ¢ for all n & N such that the scquence (x, } converges to ¢ but the sequence
(f(x,)) does not converge to L.

(b) The function f docs not have a limit at ¢ 1f and only if there exists a sequence (x )
in A withx_# c foralln € N such that the scquence (x,) converges to ¢ hut the sequence
(f{x,)) doecs not converge in R.

We now give some applications of this result to show how 1t can be used.
4.1.10 Example (a) hI‘I})(l/I) docs not exist in .

Asin Example 4.1.7(d), let ¢(x} := 1/x forx > (. However, here we constder ¢ = 0.
The argument given in Example 4.1.7(d) breaks down if ¢ = 0 since we cannot obtain a
bound such ag that in (2) of that example Indeed, if we take the sequence {x ) with x =
[/n for n e N, then lim(x ) = 0, but ¢(x ) = 1/(1/n) = n. As we know, the sequence
(gc (xn)) —= (n) 15 not convergent 1n R, since 1t 1s not bounded. Hence, by Theorem 4.1.9(b),
JEi_%(l/x) does not exist in R,

(b) lin}) sgn(x) does not exist.
Lct the signum function sgn be defined by

+1 for x >0,
sgni(x) = 0 for x =0,
-1 for x <« 0.
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Note that sgn{x) = x/lx| for x # 0. (Sce Figure 4.1.2.) We shall show that sgn does not
have a limit at x = 0. We shall do this by showing that thers s a sequence (x_) such that
lim(xﬂ) = 0, but such that (sgn(x,)) doecs not converge.

1€

*
3

y -1

Figure 4.1.2 The signum function,

Indeed, let x, := (—1)"/n for n € N so that lim(x, ) = 0. However, since
sgn(x,) = (—1)" for neN,

it follows from Example 3.4.6(a) that (sgn{x,}) does not converge. Therefore lirr;gJ sgn{x)
X

does not exist.

(c)' lirr%’ sin{i/x) does not exist in R,

Let g(x) :=smn(l/x) for x # 0. (See Fagure 4.1.3.) We shall show that g does not
have a limit at ¢ = 0, by exhibiting two scquences (x,) and (y ) withx_s#0Oandy_ 30
for all . € N and such that im(x ) = 0 and lim(y,) = 0, but such that im (g(xn)) =
im (g(y”)). In view of Theorem 4.1.9 this implics that lﬂg cannot cxast. (Fxplain why.)

Figure 4.1.3  The funcuon g(x) = sin(1/x) (x % Q).

Indeed, we recall from calculus that sint =0 if t = nm for n € Z, and that sin¢t =
+11ifr = %J’l’ + 2nn for n € Z. Now let x_:= 1/nx for n € N; then lim(x,) = 0 and
#(x,) = sinnzx =0 for all » € N, so that lim {g{x,)} = 0. On the other hand, let y, :=
(%Jr + 2:1':1)_1 forn € N;thenlim(y,) = Oandg(y,) = sin (%n’ +2mn) = lforalln € N,
so that lim (g(yn)) = 1. We conclude that 311)1}) sin{1/x) does not exist. J

"Iy order to have some interesting applications in this and later cxamples, we shall eiake use of well-known
progerties of tngonometric and exponentisl functions that will be established in Chapter 8,
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Exercises for Section 4.1

9,

ig.

11

12,

13.

14.

15.

16.

CHAPIER 4 LIMITS

Deternune a condition on x 1 that will assure that:
(a) x' =1 <1, (b) fx* = 1] < 1/10 7,
() x*—1 <1/n foragivenn e N, (dy Jx* =1l <i/n foragivenn el

Determine a condition on |x — 4] that will assure that;

(2) Jx—2| <3, (b) | Jx =2 <1072

Let ¢ be a cluster point of A € R and let f1 A -» K. Prove that lim f(x) = L if and only if
lim | f{x) —L| =0

Let f: R — Randletc g R Show that lim f(x) = L if and only if lin}]f(x o= L.

fet/ = (0 a)wherea > 0, and let g{x} = x° for x € {. For any points x, ¢ & 7. show that
lglxy — c*| < 2a|x — ¢|. Use this inequality to prove that lim x* = ¢ for any c € [

T—(

[.et / be anintervalin X. le1 f 1/ — T, and let ¢ € 7. Suppose there exist constants K and L
such that | f(x) — L) = K|x — ¢l for x € {. Show that lim f{x) = ..
Eaads

Show that lim x° = ¢* forany ¢ € K.

r—r

Show that im /x = /¢ forany ¢ » 0.

K-a

Use enher the £-5 definition of lunit or the Sequenital Criterion {or lumits, 1o establish the
tollowing limits,

. x 1
() !I—Tj‘zl—x:_]' (b) ji—r»nll-i-x:i‘
©) lim = 0, (@ lim Hor—i 1.
v o) x| xalox e ] 2 -
Use the delimition of Hirnit to show that -
(a) lim(e? 4+ 4x) = 12, o) um o 4
i s—==12x 13
Show that the following limits do nor exist.
@ lm= =0, ® T/l? (x> 0),
(©) lir(x+sgn(x)), () lim sin(1/x?).

x—] x—0

Suppose the furction f : R — R has limit L at 0, and leta = 0. If g ' K — R is defined hy
glx) == flax) for x € &, show that ]irr:)g(x) =L

3
Letc € R and let f : R — R be such that 1im(f(x)) =L

r—r

fa) Show thatif I. = 0, then lim f{x) = 0.

&=

{b) Show by example thatif L 2 0, then f may not hiave a Limut at ¢.
Ler f 0 & —» | be defined by setting f(x) = x 1f x is rational, and f{x) = 0if x is iirational.

{a) Show that f has alimitatx — (.
(b) Use a sequenual argament to show that if ¢ # 0, then f does not have a lumt at ¢.

Let f: R — R, let / be an open terval in R, and let ¢ € J. If f| is the restction of f to ],
show that f has alimit at ¢ if and only If f has a limit at ¢, and that the limits are equal.

Let f:R — R, let J be aclosed interval in R, and let ¢ € J_If f, is the restriction of f w0 J.
show that if f has alimit at ¢ then f, has a limit at ¢ Show by example that it does not follow
that if £, has a lumut at ¢, then f has a limit ar ¢.
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Section 4.2 Limit Theorems

We shall now obtain resulis that are useful in calculating limits of functions. These results
are parallel to the limit theorems established in Section 3.2 for sequences. In fact, in most
cases these results can be proved by using Theorem 4.1.8 and results from Section 3.2,
Alternatively, the results in this section can be proved by using £-§ arguments that are very
similar to the ones employed in Section 3.2.

4.2.1 Definition Let A € R, let [ A — R, andletec € R be acluster point of 4. We say
that f is bounded on a neighborhood of ¢ if there exists a §-neighborhood Vi (¢) of ¢ and
a constant M > ( such that we have | f(x)i < M forall x € A NV, (¢).

4.2.2 Theorem [IfA C Rand f:A — Rhasalimitatrc € R, then f is bounded on some
neighborhood of ¢.

Proof. 1f L :=1lim f,thenfore = 1, there exists 5 > Osuchthatif 0 < |x — ¢l < 4, then

. e

| f{x) - L} < ]:hence (by Corollary 2.2 .4(a)),

ol -1 2 1f(x) =Ll < 1.

Therefore, if x € A NV (c}, x # ¢, then [ f) <Ll +1.1{c¢g A, wetake M = L]+ 1,
while if ¢ € A we take M — sup {if ()], iL] -+ 1}}. Tt follows that if x € AN V,(c), then
| f(x)] < M. This shows that f is bounded on the neighborhood V, (¢) of ¢. QLE.D.

The next definition is similar ta the definition for sums, differences, products, and
quonents of sequences given in Section 3.2.

4.2.3 Definition Let A C R and let f and g be functions defined on A to [, We deline
the sum f + g, the difference f -- g, and the product fg on A to R to be the functions
given by

(f +g)x) = f(x)+2(x), (f - g)(x) = fx) — g(x).
(fa)lx) = flx)glx

for all x € A, Further. if b € R, we define the multiple 5/ to be the function given by
(b(x) 1= bf(x) forall x e A.

Finally, if h(x) # O for x € A, we define the quotient f/ 1 to be the function given by

( )() f() forall x € A.

4.2.4 Theorem LetA C R, let f andg be functionson A to R, andlete € R be a cluster
point of A. Further, Ietb € R.

(ay If 11m f =L and hmg = M, then;

m(f+8) =1 kM, lim(f —g)=L—-M,
ln (7g) = LM, lim (6f) = bL.

X o
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(b) Ifh:A-» R, 1fh(x) #0forallx € A, and if im h = H 3 0, then

X o0

_ (f) L
Im| =] = -.
x>\ h H

Proof. Oncproof of this theorem is exactly similar to that of Theorem 3.2.3. Altcrnatively,
it can be proved by making use of Thearems 3.2.3 and 4.1.8. For cxample, let (x,) be any
sequence in A suchthat x5 ¢ forn € N, and ¢ = lim{x ). It folows from Theorem 4.1.8
that

im(f(x)) =L, lim(gx)) =M.
On the other hand, Definition 4.2.3 implies that
(fe)(x,) = fix )g(x,) for »e N

Therefore an application of Theorem 3.2.3 yields

lim ((fg)(x,)) =lUm{f(x )glx,))
= [bm (f(x, )] [lim (g(x,)}] = LM

Consequently, 1t follows from Theorem 4.1.8 that
lim(fg) = hm (fe)x)) =~ LM

The ather parts of this theorem are proved 1n a similar inanner. We leave the details to
the reader. Q.ED.

Remarks (1) We note that, in part (b), the additional assumption that /7 = lim h £ 0 15

X—F

made. If this assumption is not satisfied, then the Hmit

. flx)
lim
X—>c h(x)

may or may not cxist. But even if this limit does exist, we cannot use Theorem 4.2.4(b) to
evaluate 1t

(2)Let A € K,andlet f,, f,.- -, f, be functions on A to R, and let ¢ be a cluster point of
A lf

L, =lm f, for k=1.-- n.

X - F

then it foflows from Theorem 4.2_4 by an Induction argument that
L+L,+- + L, =}E(f|+f2 +--+ £
and
Ly-L,---L, =UIm(f f,-f)

In particular, we deducce thatif L = Iim f and n € N, then

x—r

L = lim (£ ()"
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4.2.5 Examples (a) Some of the limits that were established 1in Section 4.1 can be
proved by using Theorem 4.2.4. For cxample, it follows from this result that since lim x = ¢,

X-»r

then lim x? = ¢?, and that if ¢ > O, then
1 ] 1
im — = — g
X—ve x him x ¢
X—

() Iirr%(xz + x? —4) =20

It follows from Theorem 4.2.4 that

x—=2 Y x—?

lm(x? + D —4) = | lim(x? + 1)) (lim (x* — 4))

© 1 [x¥—4 4
c) lIim| . = .
x »2 kxz + 1 5

If we apply Theorem 4.2.4(b), we have

y B4 lim{x’—4)
1T = -
=2xi 4+l dim (x4 0)

r—

4
:

Note that since the limit in the denominator [1L.c., lim(x? 4 1) = 5] is not equal 1o O, then
X+ 2

Theorem 4.2.4(b) is applicable.
@ i _x2—4 _4
5T 3x -6 3

If we let f(x) = x? — 4 and hix):=3x — 6forx € K, then we cannor use Theorem
4.2 4(b) o evaluate Iim ( f(x)/h{x)) because
x—2

H = lirr%h(x) = limz(fix - 6)

=3hmx -6=3-2-6=0.

X=-+7
Iowever, 1f x # 2, then it follows that
P —d (x4 2)(x - 2)
3x -6 3(x=2)

= %(x-tr-Z).

Therefore we have

i x*—4 i ] (x 2 1 ’ 5 4
I = lim — (x =+ = — : = —,
xl—ﬂ 3;{' —6 x-»2 3 * ) 3 xl—s-mﬁx + 3

Note that the function g(x) = (x2 — 4)/(3x -- 6) has a limit at x = 2 even though ii is not
defined there.

ot o
(e) lim — does not exist in K.
x-»0 X

Of coursec lim1 =1 and H = limx = 0. However, since H = 0, we cannot use

z—10 aowi)
Theorem 4.2.4(b) to evaluate lirré(l;’x). In fact, as was seen in Example 4.1.10(a), the
X=»
function ¢{x) = 1/x does not have a it at x = 0. This conclusion also follows from
Theorem 4.2.2 since the function ¢(x) = 1/x 1s not bounded on a neighborhood of x = 0.
(Why?)
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(f) T1f p is a polynomial function, then lim p(x) = p(c).

Let p be a polynonnal function on R so that p(x) = a x" + an_lx”'l ‘o tax +

a, forall x € R. It follows from Theorem 4.2.4 and the fact that lim % =& that
xX—
lim p(x) = lim [anx" 4 an_Jx”_l T 4ax+ aOJ
= lim (a,x") + lim (a, _x" "'} + - - + lim (a,x) + lim q,
= X->C Xx—r X—»r
=ac"+a " B a, ¢+ a,
= ple}.

Hence him p(x) = p(c) for any polynomial function p.

(g} If p and ¢ are polynomial functions on R and if g(¢) # O, then
L PO P (@
m = .
vl g (x) g (c)

Since g(x) is a polynomial function, it follows from a theorem in algebra that there are

_at most a finite number of real numbers &, -+ -, @, [the real zcroes of g(x)] such that
gla,) = 0 and such thatif x ¢ {a,.-- ., ), then g(x) # 0. Hence, if x € {e,, -, &},
we can define

rix) .= p(X).
g (x)

If ¢ 15 not a zero of g(x), then g(c) # 0, and it follows from part {f) that limg(x) =
g(c) 5= 0. Therefore we can apply Theorem 4.2.4(b) to conclude that '

lim p(x)
X—=c plc) =

X q(x)_ - !IT:D(Q(X') - '?(C) ‘

The next result js a direct analogue of Theorem 3.2.6.

4.2.6 Theorem LetACIR, let f: A — Randletc € R be acluster point of A If
a< f(x)y<hbh forall xe A, x #¢,

and if im [ exists, thena < lim f < b,
X -wC

X —=c

Proof. Indeed, if L = lim f, then it follows from Theorem 4.1.8 that if (x_) is any

sequence of real numbcfs_’.such that ¢ # x_ € A for all n € N and if the sequence (x))
converges o ¢, then the sequence (f(xn)) converges to L. Since a < f(xn) < b for all

n € N, 1t follows from Theorem 3.2.6 thata < L < b. QED.
We now state an analogue of the Squeeze Theorem 3.2.7. We leave its proof to the
reader.
4.2.7 Squeeze Theorem LctA CR,let f,g.h: A — X, and letc € R be a cluster point
of A If
Fix) < gl{x) = h{x) forall xe A, x # ¢,

and if lm f = L = im k, then lim g = L.

X—rf X—rC xX—ro



42 LIMIT THEOREMS 109

4.2.8 Examples (a) lim M =0 > 0).

Let f(x):=x¥? for x > 0. Since the inequality x < x'? < 1 holds for 0 < x < 1

(why?), it follows that x? < f) = x*? < xfor0 < x < 1. Since
imx?=0  and lim x = @,
z—0 x—{}

it follows from the Squeeze Theorem 4.2.7 that ii—%xjﬂ =0.
(b) Jl% sinx = 0.
It will be proved later (see Theorem 8.4.8), that
-x < 8inx < x forall x > Q.
Since li_%(:tx) = 0, 1t follows from the Squeeze Theorem that ilr)r}} sinxy = 0.
{c) limcosx = 1.

x—0

It will be proved later (sce Theorem 8.4.8) that

(1) I —1x? <cosx <] forall xe R.
Since lun (l — %xz) = 1, it follows from the Squeeze Theorem that lim cosx = 1.
x—={ a—0
cosx — 1
(d) lim(- * ):0.
x »0 X

We cannot use Theorem 4.2 .4(b) to evaluate this limit. {Why not?) However, 1t follows
from the 1nequality (1) in part (c) that
—%xﬁ{cosx-—l)/xgo for x>0
and that
0 < (cosx 1)jx =< —%x for x < 0.

Now let f{x) = —x/2 forx > 0 and f(x) =0 for x < 0, and let A(x) :=0for x > 0
and A(x) i= —x/2 for x < 0. Then we have

filx) < (cosx — )/x < hix) for x #0.
Since it is readily seen that lim f = 0 = lim 4, 1t follows from the Squeeze Theorem that

_ x—0 x—0
hrr'é(cosx - /x =0
X—r

sinx
(&) hm (——) = 1.
x=—+0 X

Again we cannot use Theorem 4.2.4(h) to evaluate this Iimit. However, 1t will be
proved later (sce Theorem 8.4.8) that

1.3

X~ X Zsinx <x for x =0
and that
X <sihy < x — %.r3 for x <.

Therefore it follows {why?) that

l—%xszsinx)/xf_:l forall x # 0.

— L limx? = 1, we infer from the Squecze Theorem that

x—{}

. . 1,2
But since lim(l — zx°) =
x—0

=

lim(sinx)}/x = 1.
x=]
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() Nm {xsin(l/x)) =
x—0
Let f(x) =xsm(l/x) for x #0. Since —] < stnz < | for all z< R, we have the
mequality
— x| € f(x) =xsin(l/x) < |x]

for all x € &, x # 0. Since 1lr%|).’| = 0, it follows from the Squeeze Theorem that

Iim f = 0. For a graph, see Figure 5.1.3 or the cover of this book. L

x=+0

There are results that are paralle]l to Theorems 3.2.9 and 3.2.10; however, we will leave
them as excrcises. We conclude this section with a result that is, in some sense, a partial
converse (o Theorem 4.2.6.

4.2.9 Theorem LetAC R, let f:A - Randletc € R be acluster pointof A If

lim f > 0 [res‘pccnvcly, 11m f < O].

X =+

then there exists a neighborhood V. (c) of ¢ such that f(x) > O {respectively, f(x) < (]
forallx e ANV, (¢c). x #c.

Proof. Let L ;= him f and suppose that L > 0. We take ¢ = %L > 01in Definitian 4.1 .4,

and obtain a number 8§ > Osuchthat\f 0 < [x —¢|] « dandx € A, then|f (x) — L| < %L.
Therefore (why?) it follows thatif x € ANV, (¢), x # ¢, then f(x) > IL = (.
It /. < 0, a similar argument applics. QED

Exercises for Section 4.2

1. Apply Theorerm 4.2.4 to determine the following limits:

x> +2
@ lmG+DEx+3) @R, (b) lim el (x s 0),
r— A=+l XS —
) 1 1 Cox+1
{e) J!EQ (.r 1T Ex—) {x > 0), (d) Plfém (x € ).

2. Determine the following limits and state which theorems arc used in ¢ach case, (You may wish
to use Exercise 14 below.}

(@ P s 0 tim 2 s
a X = im I =
r—v?v I+3 ’ 1—»1,‘(-2
B CE R _ -1
{(¢) lUm —(r + 1) {(x = ), {d) lLm VX (x = 0)
x -t X r-rbox —
1+2x -1 +3
3 Find tm Y- ‘/z 2% here x > 0.
1= x + 2z
4. Prove that lim cos(i/x) does not exast but that ]ml xcos(l/x) =0.

&0
5. Let f. g bedefinedon A € R to R, and let ¢ be a cluster point of A, Suppase that f is hounded
on a neighborhaod of ¢ and that lim g = 0. Prove that lim fg = 0.

xX—+z x—c

6. Use the definition of the limit to prove the first assertion in Théorem 4 2 4(a).

7. Use the sequential formulation of the limit to prove Theorem 4.2.4(b}.
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. Letrn € ¥ he such that n > 3. Denve the inaquality —x? < x" < x> for—1 « x « 1. Thenuse

the fact that lim 2 = 0 to show that lim x” = 0.
r [ x—0

9. Let [, g bedefined on A to X and let « be a cluster point of A.
(a)  Show that if both lim f and im(f + g) exist, then lim g exists.
X = £ —re A=
(by If Limm f and lim fg exist, does it follow that Lim g exists?
T T X =g
10. Give examples of functions f and g such that f and g do not have luruts at a poini ¢, but such
that hoth f g and fg have limits at c.

11, Determine whether the following linuts exist in .

(a) lir%sin(l/xz) (x #0), () Lim x sin1/x7)  (x # 0),
x— r—si
{9 l'm} sgnsin(1/x) (v # 0), () lin%ﬁsinﬂlfxz) (x = 0).

12. Let f: R — Rbesuchthat f{x 4+ y) = f(x)+ f(y) foralix, y in X. Assume that ji',r}}f =L
exists. Prave that 7. = 0, and then prove thal f has a limit at every point ¢ € R. [Hint: Firat note
that f(2x) = f{x) + f{x) =2 Ff(x) forx € R. Alsonote that f(x) = f(x — ¢} + f{c) forx,
cin R

13, Tet AC R, let 2 A — Rand letc € < be a cluster point of A, If lim f exists, and if ' f]
denotes the function defined for x € A by | f{(x) := {f{x) , prove Lhat‘ii’"r:rl_ = |}m} fl

14, Let AC %, let f: A — R and let ¢ € R be a cluster point of 4. In addition, suppose that
fixy >0 forall x € A, and lei v’!f_ be the function defined for x € A by (\/f_) (x) =

VS (xy I lim f exists, prove that im Jf o= fimf.
r—rr X oxr

LIS S

Section 4.3 Some Extensions of the Limit Concept’

Iu this section, we shall present threc types of extcusions of the notuon of a himit of a
function that often occur. Since all the ideas here are closely paralle]l to oncs we have
already encountered, this section can be read casily.

One-sided Limits

There arc times when a function f may not possess a limit at a point ¢, yet a limit docs
exist when the function is restricted to an interval on one side of the cluster point ¢.

For example, the signum function considered in Example 4.1.10(b), and illustrated
in Figure 4.1.2, has no limit at ¢ = 0. However, if we restrict the signum function to the
interval (0, oc), the resuiting function has a imitof T ate = ¢ Simularly, if we restrict the
signum function to the interval (—oo, 0), the resulting function has a limit of =1 atc = 0.
These are elementary examples of right-hand and left-hand limits at ¢ = 0.

4.3.1 Definition TetA c Randlet f: A — K.

(i) Ifc € Ris acluster point of the set A M (¢, 00) = {x € 4: x > ¢}, then we say that
L € R is a right-hand limit of f at ¢ and we wiite

lm f =1L or 1im+f(x) =L

=y

"This section can he Jargely omitied on a first reading of this éhaplur.
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if given any £ > O there exists a 8 == § (¢) > 0 such that for all x € A with 0 <
Xx—¢c <8 then|f(x)—L| < ¢,
(ii) Ifc c Risacluster pointof the set AN (—o0, ¢) = {x € A: x < c}, then we say that
L € R s aleft-hand limit of f at ¢ and we write
hm f =1L or Iim f{x}y=1L

1If given any ¢ > O thereexisisad > Qsuchthatforallx e A with0 < ¢ —x < 4,
then | f{x) — L| < ¢.

Notes (1) The lumits lim+ S and lim f are called one-sided limits of f at ¢ It is
X =y x e

possible that neither one-sided limit may cxist. Also, ane of them may exist without the

other existing. Similarly, as is the case for f(x) := sgn(x) at ¢ = 0, they may both exist

and be differcnt.

(2) If Ais an interval with left endpoint ¢, then it is readily seen that f: A — R hasa
limit at ¢ if and only if it has a right-band limic at ¢. Morcover, in this case the limit lim f

X —C

and the nght-hand limit lim { are equal. (A simular situation occurs for the left-hand Limit

X—ré

when A 1s an interval with right endpaoint ¢ )

The reader can show that f can have oniy onc tight-hand (respectively, left-hand)
Jimit at a point. There are results analogous o those established in Scctions 4.1 and 4.2 for
two-sided limuts. In particular, the existence of one-sided {imuts can be reduced to sequential
considerations,

4.3.2 Theorem Let AC R let f: A — R, and let c € R be a cluster poiat of AN
(c, oc). Then the following staternents are equivalent:

Q) lm f =L

X—vCT
(i) Forevery sequence (x,) that converges to ¢ such thatx € A andxn > ¢ foralln e W,
the sequence ( f (x,)) converges to L.

We lcave the proof of this result (and the formulation and proof of the analogous result
for lefi-hand Liouts) to the reader. We will not take the space to wrte out the formulations
of the one-sided version of the other results in Sections 4.1 and 4.2,

The following result relates the notion of the Iimit of a function to one-sided limits.
We leave its proof as an exercise.

4.3.3 Theorem LctA CR,let f: A— R, andlcte € R be 2 cluster point of both of the
sets AN(e,o0) and AN (—o0,¢). Thenlim f = L ifandonlyif m f =L = lim f.
ot o

=>4 Xr—

4.3.4 Examples (a) Let f(x) :=sgn(x).
We have seen in Example 4.1.10(b) that sgn does not have a limdt at Q. [t is clear that

lim sgn{x) = +1 and that lim sgni{x) = —1. Since these one-sided limits are different,
r— 0+ X=—[i—

it also follows from Theorem 4.3.3 that sgn(x) does not have a4 it at 0.
(b) letg(x) =el/* for x #0 (See Figure 4.3.1.)
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Figure 4.3.1 Graphof g(x) = #'* (x £ 0)

We first show that g docs not have a fimite nght-hand himit at ¢ = 0 since 1t 15 not
bounded on any right-hand neighborhood (0, §) of 0. We shall make usc of the incquality

(1) O<t<e | for 1>0,

which will be proved later (see Corollary §.3.3). It follows from (1) that if x > 0, then
0 < 1/x < ¢'/*. Hence, if we take x, = 1/n, then g(x ) > n for ali n € N. Therefore

Hm e'* docs not existin R,
x— {4

However, lim "% = 0. Indeed, if x « 0 and we take = —1/x in (1) we obtain
==

0 <—1/x <e ' Since x < 0. this 1mplics that §f < e!/* < —x forall x < 0.t follows
from this inequality that Iim et =0

x—0—
(¢) Leth(x) = 1/(e"* + 1) forx #£ 0. (Sece Fgure 4.3.2))
We have seen in part (b) that 0 < 1/x < e'/* for x > 0, whence

1 1
0 < — < < X,
el,x —|—I 81"{1
which 1mplics that lirg; h =0
X=si}
13
1
1
2 .
—_— T = ___ ____?___________.____:__

Figure 3.2 Graph of {x) = 1/(e"" + 1) (x #£ 0,
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Since we have seen in part (b) that lim '* = 0, it follows from the analogue of
r—(-
Theorem 4.2.4(b) for lefi-hand limits that

e !
m
x—0 "‘+1) tim e”"-{-l R

x— (=

Note that for this function, both one-sided limits exist in IR, but they are unequal. C

Infinite Limits _

The function f{x) = 1/’,»:2 torx # 0 (sce Figure 4.3.3) is notbounded on a neighborhood of
0, 80 il cannot have a limit in the sense of Definition 4.1.4, While the symbols 0o (= -+o¢)
and —oc do not represent real numbers, 1t is sometimes useful to be able to say that
“f(x) = 1/x” tends 10 0o as x — 0" This use of £o¢ will not cause any difficulties,
provided we exercise caution and never inlerpret oo or —oc as being real numbers.

A
:
X
Figure 4.3.3 Graph of Figure 43.4 Graph of
foy =1/ £0) glx) =1/x (x £ 0)

4.3.5 Definition l.et AC R, let f: A » Z, andletc € R be a cluster pointof A,

(i)  We say that f tends to oG as x — ¢, and write

lim f = oo,

X a0

if forevery ov € I€ there exists 8 = 8(ww) > O suchthatforallx € AwithD < |x — ¢
< &, then f(x) > «.

(i) We say that f tends to —oc as x — ¢, and wnte

hm f =—

Fal 34
ifforevery B € Rthereexisisd = 6(f) > Osuchthatforallx € AwithD < |x —¢| <«
8, then f(x) < £.

4.3.6 Examples (a) hn}j(u_xlj =0

For, if > 0 is given, let § := 1/./e. It follows that if 0 < |x| < &, thenx? < 1/a 50
that I/Jc2 > .
(b) Letg(x) = 1/x forx # 0. (See Figurc 4.3.4.)



The function g does not tend to either oo or —ocasx — 0. For, ifa > Othen g(x) < o
for all x < 0, so that g does nottend to oc as x — 0. Similacly, 1f 8 < O then g(x) = B for
all x > 0, so that g doesnot tendto —oo as x — 0. _]

CWhila manu af the reanlte in QCcr g 4.2 have extéensions to this limitin
noucen, not al of them do since =oo 8 %)‘E I‘g&ll nuinda sy The LLIUWY SLLE LU SULL 15 e

analogue of the Squceze Theorem 4.2.7. (Sec also Theorem 3.6.4.)

4,37 Theorem Let ACIR, let f.g: A—> R, apd let ¢ € R be a cluster point of A.
Suppose that f(x) < g(x) forallx € A, x # ¢.
(&) Iflim f = o0, then lim g = >

1AL X o=

(by Iflim g = —oo, then lm f = —o0.

X —w

Proof. (a) 1] 11'['1 f =00 and @ € R 15 given, then there exists §(«) > O such that if

0<|x—c¢| < 5(&) andx € A, then f(x) > a. Butsince f(x) < g(x)forallx € A, x # ¢,
it follows that if 0 < |x — ¢] < § (@) and x € A, then g(x) > . Therefore limg = 00

XL

The proof of (b) is similar. QED.

The function g{x) = 1/x considcred in Example 4.3.6(b) suggests that it might be
useful to consider one-sided infinite limits. We will define only right-hand infinite limits.

4.3.8 Definition Let AC Randlet f: A — K. If c € R 15 a cluster point of the set
AN(c 00) ={x € A: x > ¢}, then we say that [ tends to oo [respectively, —oo] as
x — ¢4, and we wrnite

lim f =20 [respectively, lim f = ——-oo} .
x =t x—vo+

if for every & € R thereis 6 = 8(o) > Osuch that forall x € A with 0 < x - ¢ < 4, then
f(x) > a {respectively, f(x) < o).

4.3.9 Examples (a) Let g(x) = 1/x for x # 0. We have noted in Exampie 4.3.6(b)
that lim g does not exist. Howwu, 1t 1s an casy cxercise to show that

x =0

Lim (1/x) =00 and Iim (1/x) = —o0.

x— 0+ x-+0--
(h) Itwas scenin Example 4.3.4(h) that the function g(x) 1= e% for x # (1snot bounded
on any interval (0, 8), & > 0. Hence the right-hand limit of e!/* as x = 0~ docs not exist
in the sense of Definition 4.3.1(1). However, since

1/x

I/x < ¢ for x > 0,

1/x

it is readily seen that lum e’" = oo 1n the sense of Definition 4.3.8. W

¥ (-

Limits at Infinity _ -

It is alsn desirable to define the notion of the 1imit of a function as x — o¢. The definition
as x — —oo I8 strular.
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4.3.10 Definition Let A C R and let f: A > R. Suppose that {a, o0y € A for some
a € R. We say that L € Ris a limit of f as x — o0, and write

lim f =1 or im f(x) =1L,
I—00

I ¥yoo
if given any € > (0 there exists K = K(¢) > a such that for any x > K, then

tflx) — L] <e.

The reader should note the close resemblance between 4.3.10 and the definition of a
limit of a sequence.

We leave it to the reader to show that the muts of f as x — +00 are umque whenever
they exist. We also have sequential criteria for these limits; we shall only state the criterion
as x — oo. This uses the notion of the limit of a properly divergent sequence (see Definition
3.6.1).

4.3.11 Theorem Lct AC R, Jet f: A — R, and supposc that (a, ) € A for some
a € K. Then the following statements arc equivalent:
(i) L= lIm f.
x— 0

(i) Forevery sequence (x, ) in A N {a, 0o} such thatlim(x )} = oo, the sequence (f("'n))
conveiges 1o L.

We leave it to the reader (o prove this theorem and to formulate and prove the companion
result concerning the limit as x = —oo.

4.3.12 Examples (a) T.etg(x):=1/xforx #0.
It 1s an elementary excrcise to show that lim (1/x) = 0 = lim (1/x). (See Figure
e Ay ) I— =0
4.3.4)
(b) Let f(x):=1/x” forx £Q.
The reader may show that lim (1/x%) = 0= Lim (l/x*} (Sce Figure 4.3.3) One
X 50 = =00
way (0 do this is to show thatif x > 1 then 0 < 1/x* < 1/x_In view of part (), this implies
that 1im (1/x%) = 0. 0
X oG

Just as it is conventent to be able to say that f(x) > tocasx — ¢ forc € R, it is
convenient to have the comesponding notion as x — foo. We will treat the case where
X = 0C.

4.3.13 Definition Let A C R and let f: A — R. Suppose that (a, 00) € A for some
a € A. We say that f tends to oc [respectively, —oc] as x — oo, and write

lim f=occ [rcspectivcly, lim f = —oc]
=00 r—oo -

if given any « € R there exists K = K(«) > a such that for any x > X, then [{x) > «
(respectively, fx) < «.

As before there is a sequential critenon for this imit.

4.3.14 Theorem Let A € R, let f: A — R, and suppose that (a, ®} € A for some
a € R. Then the following statements are equivalent.
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() Dbm f = oc [respectively, lm [ = —o0].
(ii) For every sequence (x,) in (a. oc) such that im(x ) = oo, then lim (f(xn)) =00
[respectively, hm( f(x, }) — —o0].

The next result 1s an analogue of Theorem 3.6.5.

4.3.15 Theorem LetA C R, let f,g. A — R, and suppese that (a, o0) € A for some

a € R. Suppose further that g{x) > 0 for all x > a and that for some L € R, L # 0, we
have

() IfL > 0,then im f = oo ifandonly if lim g = .
X OG

I — 00

(i) IfL <0, then im f = —oo fandonly if lim g = oc.

Eaa gy ) g =r 0

Proof. (1) Since /. > 0, the hypothesis implies that there exists ¢, > a such that

I < F{x)
-~ gl(x)

0« L for x = a,.

1

<

2% L]

1
2

Therefore we have (%L) glx) < f(x) < (%L) gix}forall x > a, from which the conclu-
sion follows readily.
The proof of (11) is similar. QLD

We lcave it to the reader to formulate the analogous result as x —» - co.

4.3.16 Examples (a) lm x" = oo forn e M.
X = X

Letg(x) = x"forx € (0,0¢) Givena € K, let K :=sup{l.e}. Thenforallx » X,
we have g(x) — " > x > . Since ¢ € R 1s arbitrary, it follows that im g — oc.

I O

(b)) Hhm " =ooforn e N, neven, and lim x" = —ocforn € N, 1 odd.

X D0 X » oo

We will treat the case n odd, say n = 2k + 1 with k =0,1,---. Given o € R, lect
K :=inf{e, —1}. For any x < K, then since (x2)* > 1, we have ¥ = (x>)'x < x < a.
Since ¢ € R 1s arbitrary, it follows that lim x" = —o0.

r—

(¢) Let p: ® — R be the polynonual function
plx)y =ax" + aﬂ_l:c"_1 + -+ ax +a.

Then hm p=ocifa, > 0,and lim p = —-cifa < 0.
R ge. ] a0

Indeed, let g(x) := x" and apply Theorem 4.3.15. Since

p(x) 71 /1 71N
:an+an-—1 J - +l“+al | n--1 +HD| ) | .
g (x) X v x"
it follows that him {p(x)/g(x)) = a,_. Since lim g = ox, the assertion follows from The-
A—0C X0

orem 4.3.15.
{d) Let p be the polynomual function in part (c). Then lim p = oo [respectively, —oc]
A= — 00

if n1s even [respectively, odd}anda > Q.
We leavc the details to the reader. O
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Exercises for Secticn 4.3

13.

Prove Theorem 4.3.2,
Give an example of a functicn that has a right-hand limic but not 2 1eft-hand limit ar a point.

Let £ (x) = |x{7'/* for x = 0. Show that lim f(x) = lm f(x)=+oo.

a1 -1

let ¢ € ® and let f be defined for x € (¢, 00) and f(x} > O for all x £ (¢, oc). Show that
lim f = mlfandon]yzfiunl/f—o

AL

Evaluate the following limits, or show that they do not exist.

(3 lim (x # 1), ® Lm T (x# D),
i—1+ x — vl x — 1
(c) lirgl_(x+2}/ﬁ (x > 0}, (d) Um(x+2J/ﬁ (x > 0),
(&) hn}]( x+ 1) /x (x> —1), 11m (,/x-;- J/x (x> 0),
Jx =5 . Jx -
(8 Hn;:ﬁ+3 (x > 0), (h) J[ﬂ;ﬂ = (x > 0)

Prove Theotem 4 3.11.

Suppose that f and g have limits in K as x -+ oo and that f(x} < g(x) for all x € (a, 00).
Prove that im f < lim g,

x—s roeon

Let f be defined on (0, o¢} to K. Prove that lim f{x) =L f and only of h'm f/xy=1.

Show that if f: (a, oc) = Rissuch that lim xf (x) = L where L € R, then hm flxy=0

T —= 0

Prove Thearem 4.3.14.
Suppose that 1u'n f(x) =L where L > 0, and that im g{x) = 2c. Show that llm flxye(x)y —

X rC

oc, If L =0, show by example that this conclusion may fail.

Find functions f and g defined on (0, oo) such that hm f = scand lJ_[']l g =00,and hm (f -
£) = 0. Can you find such functions, with g{x) > (]mr alx € (0, oo) ﬁu(‘h that l_lIIl f/g =07

Let f and g be defined on (¢, 00} and suppose lm f =L and lim g = 0. Prove that
Iim fog=1L,

EE . 4]



CHAPTER 5

CONTINUOUS FUNCTIONS

We now begin the study of the most important class of functions that arises in real analysis:
the class of continuous functions. The term “continuous” has been vsed since the time of
Newton to refer to the motion of bodies or to describe an unbroken curve, but it was not
made precise until the nineteenth century. Work of Bernhard Bolzano in'1817 and Augustin-
Louis Cauchy in 1821 identified continuity as a very significant property of functions and
proposed definitions, but since the concept is tied to that of limit, it was the careful work of
Karl Weierstrass in the 1870s that brought proper understanding to the idea of continuity.

We will first define the notions of continuity at a point and continuity on a set, and then
show that various combinations of continuous functions give rise to continuous functions.
Then in Section 5.3 we establish the fundamental properties that make continuous functions
so important. For instance, we will prove that a continuous function on a closed bounded
interval must attain a maximum and a munimum value. We also prove that a continuous
function must take on every value intermediate to any two values it attains. These properties
and others are not possessed by general functions, as various examples illustrate, and thus
they distinguish continuous functions as a very special class of functions.

In Section 5.4 we introduce the very important notion of uniform continuity. The
distinction between continuity and uniform continuity is somewhat subtle and was not fully
appreciated until the work of Weierstrass and the mathematicians of his era. but it proved to

Karl Weierstrass

Karl Wejerstrass (=WeiersuraB) (1815-1897) was born in Westphalia, Ger- §
many. His father, a custorns officer in a salt works, insisted that he study
law and public finance at the University of Bonn, but he had more interest 2
in drinking and fencing, and left Bonn without receiving a diploma. He then &
enrolled in the Academy of Miinster where he studied mathematics with
Christoph Gudermann. From 1841-1854 he taught at various gymnasia in
Prussia. Despite the fact that he had no contact with the mathematical world
during this time, he worked hard on mathematical research and was able
to publish a few papers, one of which attracted considerable attention. Indeed, the University of
Konigsberg gave him an honorary doctoral degree for this work in 1855. The next year, he secured
positions at the Industrial Institute of Berlin and the University of Berlin. He remained at Berlin
until his death.

A methodical and painstaking scholar, Weierstrass distrusted intuition and worked to put
everything on a firm and logical foundation. He did fundamenta) work on the foundations of
arithmetic and analysis, on complex analysis, the calculus of variations, and algebraic geometry.
Due to his meticulous preparation, he was an extremely popular lecturer: it was not unusual for
him to speak about advanced mathematical topics to audiences of more than 250. Among his
auditors are counted Georg Cantor, Sonya Kovalevsky, Gosta Mittag-Leffier, Max Planck, Otto
Holder, David Hilbert, and Oskar Bolza (who had many American doctoral students). Through
his writings and his lectures, Weierstrass had a profound influence on contemporary mathematics.
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be very significant in applications. We present one application to the idea of approximating
continuous functions by more elementary functions (such as polynomials).

The notion of a “gauge” is introduced in Section 5.5 and is used to provide an alter-
native method of proving the fundamental properties of continuous functions. The main
significance of this concept, however, is in the area of integration theory where gauges are
essential in defining the generalized Riemann integral. This will be discussed in Chapter 10.

Monotone functions are an important class of functions with strong continuity proper-
ties and they are discussed in Section 5.6.

Section 5.1 Continuous Functions

In this section, which is very similar to Section 4.1, we will define what it means to say
that a function is continuous at 2 point, or on a set. This notion of continuity is one of the
central concepts of mathematical analysis, and it will be used in almost all of the following
material in this book. Consequently, it is essential that the reader master it.

5.1.1 Definition Iet A C IR let f: A — IR, andlet c € A. We say that f is continuous
at ¢ if, given any number £ > O there exists § > O such that if x is any point of A satisfying
Ix —c| < 8, then | f(x) — f(c)| <.

[f f fails to be continuous at ¢, then we say that f is discontinuous at c.

As with the definition of limit, the defisition of continuity at a point can be formulated
very nicely in termus of peighborhoods. This is done in the next result. We leave the
verification as an important exercise for the reader. See Figure 5.1.1.

A

Vel o) {,:g_cj e f},‘_{_é""{x Velf () {f[c)

NI e

}
|
1
{
|
i
I

L || P —p—

G

LS—

Vﬁ(C)
Figure 5.1.1 Given V,_(f(¢c)), a neighborhood V,(c) is to be determined.
5.1.2 Theorem A function f : A — R is continuous at a pointc € A if and only if given

any ¢-neighborhood V., ( f (c)) of f(c) there exists a §-neighborhood Vi(c) of ¢ such that if
x is any point of A N V,(c). then f(x) belongs to V_(f(c)), that s,

FANV(c)) € V. (f(0))-
Remark (1) Ifc € Aisacluster point of A, then a comparison of Definitions 4.1.4 and
5.1.1 show that f is continuous at ¢ if and only if

M f @ = lim f(x).
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Thus, if ¢ is a cluster point of A, then three conditions must hold for f to be continuous
at¢:

(1) f must be defined at ¢ (so that f (¢) makes sense),
(i1) the limit of f at ¢ must exist in X (so that lim f (x) makes sense), and
(ii) thesc two values must be equal. T

(2) Ifc € Ais not a cluster point of A, then there exists a neighborhood V(c) of ¢ such
that A N V,(c) = {c]. Thus we conclude that a function f is automatically continuous at a
point ¢ € A that 1s not a cluster point of A. Such points are often called “isolated points”
of A. They are of Lttle prachical interest 1o us, since they have no relation to a limiting
process. Since continuity is automatic for such points, we generally test for continuity only
at cluster points. Thus we regard condition (1) as being characteristic for continuity at ¢.

A slight modification of the proof of Theorem 4.1.8 for limits yields the following
sequenhal version of continuity at a point.

3.1.3 Sequential Criterion for Continuity A function f : A — R Is continuous at the
point ¢ € A if and only if for every scquence (x ) in A that converges to ¢, the sequence

(f(-’f,,)) convcrges to f(c).

The following Disconhinuity Criterion 1s a consequence of the last thcorem, It should
be comparcd with the Divergence Criterion 4.1.9(a) with L — f{¢). Its proof should be
wrilten out 11 detail by the reader.

5.1.4 Discontinuity Criterion Let ACE, et f A > R, and Ict c € A. Then f 13
discontinucus at ¢ if and only if there cxists a sequence (x,) in A such that (x,) converges
to ¢, but the sequence (f(xn)] does not converge te f(c).

So far we have discussed continuity at a point. To talk about the continuity of a function
on a sef, we will sunply require that the function be contunuous at each point of the set. We
state this formally in the next definifion.

5.1.5 Definition Let ACRandlet f - A — [& If B is a subset of A, we say that f is
continnous on the set 8 if f 15 continuous at every point of B.°

5.1.6 Examples (a) The constant function f(x) := b i3 continuous on R.
It was scen 1n Example 4.1.7(a) that if ¢ € R, then lim f(x) = h. Since f(c) = b,

we have lim f(x) = f{c), and thus f 1s continuous at every point ¢ € R. Therefore [ is
X oC
continuous on 1X.

{D) g(x) := x 1s continuous on 1R,
It was seen in Example 4.1 7(b) that:f ¢ € IR, then we have lim g = ¢ Since g(¢) — ¢,

XL

then g is continuous at every point ¢ € R. Thus ¢ is continucus on R,
(¢) hix): = x? is continuous on R.
Tt was seen in Example 4.1.7(c) that if ¢ € R, then we have lim # = 2. Since h(c)

X
‘3 . . - . .
= ¢*, then A 15 continuous at every point ¢ € B, Thus A is conlinuous on B,

(d) @(x) = l/xiscontinuous on A 1= {x € R: x > 0},
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It was seen in Example 4.1.7(d) that if ¢ € A, then we have limg = 1/¢c. Since

x—

¢(r) = 1/c, this shows that ¢ 1s continuous at cvery point ¢ € A, Thus ¢ is continuous
on A.

{e) (x) = 1/x1snolcontinuous atx — Q.
Indeed. if @(x) = 1/x tor x > 0, then ¢ is not defined for x = 0, so it cannot be
continuous there. Alternatively, il was seen in Example 4.1.10(a} that linr% ¢ does not exist
x—+[

in 2, 30 ¢ cannot be continuous at x = 0.

(f) The signum function sgn is not continuous at 0,
The signum function was defined in Exarnple 4.1.10(h), where it was also shown thal
hm sgn(x) does not exastin R, Therefore sgn is not continuous at x = 0 (even though sgn ()

1% df‘ﬁnf‘d)
It is an exercise 1o show that sgn 1s continuous at every point ¢ = 0.

{g} Let A ;= R andlet f he Dirichlet's “discontinuous {unction” defined by

1 if x isrational,
0 1if xisirratipnal.

flx) =

We claim that f 18 not continuous ar any pom! of R. (This function was introduced in 1829
by P. (5. L. Darichlet.) -

Indeed, 1f ¢ 1s a rational number, let (x, ) be a sequence of irrational numbers that
converges to ¢. {Corollary 2.49 to the Density Thecorem 2.4.8 assures us that such a
scquence does exist.) Since f(x ) =0 for all n ¢ N, we have lim{f(x )} = 0, while
f{cy = 1. Therefore f 1s not continuous at the rational number ¢

On the other hand, 1f b is an wuratonal number, let (y, ) be a sequence of rational
numbers that converge 1o b. (The Density Theorem 2.4.8 assures us that such a sequence
does exist.) Smce f(y ) =1 for all n € N, we have lim (f{yn)) =}, while f(b) = 0.
Therefore f 18 not continuous at the irrational number 4.

Since every real mmmber is either rational or irrational, we deduce that f is not
continuous at any paint in R.

(hy Let A:={x € ®&: x > 0} For any irrational number x > 0 we define h{x} = 0. For

a rational number in A of the form m/n, with natural numbers m, n having no comunon
factors except 1, we define k(m/n) .= 1/n. (Sec Figure 5.1.2.)

| — . .
08—
0.6
0.4
0.7 .t ) . . .. Lt L} . a.
'}- . .. L. . \ .'q_ ‘.-- . l. . -. . * . . l.‘
.. ! | -
0 ¢.5 1 1.5 2

Figure 5.1.2 Thormae’s function.
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We claim that b is continuous at every irrafional number in A, and is discontinuous
at every rational number in A. (This function was introduced in 1875 by K. J. Thomae.)

Indeed, if 2 > O is rational, let (x ) be a sequence of irrational numbers 1n A that
converges to a. Then lim {k(x,)) = 0, whilc h(a) > 0. Hence 4 is discontinucus at .

On the other hand, if b is an irrational number and € > 0, then (hby the Archimedcan
Property) there is a natural number n, such that 1/n, < &. There are only a {init¢ num-
ber of rationals with denominator less than ry in the interval (b — 1,5 + 1). (Why?)
Hence § > 0 can be chosen so small that the neighborhood (b — §, b + é) contains no
rational numbers with denominator less than ng. It then follows that for [x — bl < &, x €

A, we have |h(x) — A(b)| = |h(x)| < 1/ny < ¢ Thus h 1s continnous at the irrational
number &.

Consequently, we deduce that Thomae's function A 1s continuous precisely at the
irrational points in A. 1

5.1.7 Remarks (a) Sometimes a function f: A — R 1s not continuous at a point ¢
because it is not defined at this point. However, if the function f has a himit L at the point
¢ and if we define F on AU {¢] — R by

I for x =r¢,
F(x) .=
{f(x) for x e A,

then F is continuous af ¢. To see this, one needs to check that lim F = L, but this follows

xX—7
(why?, sincc lim f = L.
L —
(b) If afunction g : A -> R docs not have a limit at ¢, then there 1s no way that we can
nbtain @ function G : 4 U {c} - » R that1s continuous at ¢ by defining

C for x =r,
G(X) =
£(x) for xc A

Ta see this, observe that if lim G exists and equals €, then hm g must also exist and

Xore T

equal C.

§.1.8 Examples (a) The function g(x) :=sin(1/x) for x # 0 (see Figure 4.1.3) does
not have a limit at x = 0 (see Examnple 4.1.10(c)). Thus there is no value that we can assign
at x = 0 to obtain a continuous extension of g at x = 0.

(by Let f{x) = xsin(l/x) for x £ 0. (Sec Figure 5.1.3.) Since f 1 not defined at x = 0,

the function f cannot be continuous at this point. However, it was seen in Example 4.2 8(f)

that Jim {x sin(l/x)) = 0. Therefore it follows from Remark 51.7(a) that if we define
=)

F. R —> Kby

for x =0,
x sm(1/x) for x # 0,

Fix) =

then F is continuous at x = 0. =
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Figure 5.1.3 Graphof f(x) = xsin(l/x) (x # 0.

Exercises for Section 5.1

10.
I1.

12.

[3.

Prove the Sequential Criterton 5.1.3.
Establish the Discontinuity Criterion 5.1.4.

Leta < b < c. Suppose that £ is continuous on [z, b], that g is continvous on [5, ¢], and that
FBy =g(b).Definehonla, clbyh(x) = f(x)forx € [a, bland A(x) := g(x) forx € (b, c].
Prove that & is eontinuous on [a, ¢].

If x € &, wc define [[x] to be the greatest integer n € £ such that n < x. (Thus, for exam-
ple, [8.3] =8, [#]] = 3. [—=z]) = —4.) The fupction x — [[x] is called the greatest integer
function. Determune the points of continuity of the following functions:

(a) f(x):=fx] () gx):=x[x].

() A(x) = [sinx], : (dy &{x):=[01/x]1 (x # 0.

Let f bedefinedforallx e R, x # 2, by fix) = (x°+x — &) /(x — 2). Can f be defined at
x = 2 1in such a way that f 1§ continuous at this poiol?

Let AC Kandlet f: A — R becontinuous at 2 point ¢ € A. Show that for any £ > 0, there
exists 2 neighborhood V,(c) of c such that if x, y € AN V,(c), then | f(x) — f(¥)] < &

Let £ R — R be continuous at ¢ and let f(c) > 0. Show that there exists a neighborhood
V() of c such that if x € V,(c), then f{x) > 0.

Let f: R > K becontinuouson R and let § :={x € R : f(x) = 0} be the “zero set” of £ If
(x JisinSandx = lim(x }, show that x € §.

let AC BC R let /1 B — [ and let g be the restrniction of f to A (that 15, g{x} = f(x) for
x € A)

(a) If fisconuuuous ai ¢ € A, show that g is continuous al ¢.

(b) Show by example that if g is continuous af «, it need not follow that f is continuous at c.
Show that the absolute value function f(x) := |x| 13 continuous at every pointc € K.

Let K > Oandlet f: ® — Rsatisfy the condition | f(x) — f(y)| < K|x — ylforallx, y e .
Show that f is continuous at every point ¢ € K.

Suppose that f : R — IR is continuous on R and that f(r) = O for every rational nurmber r.
Prove that f{x) =0forall x € R.

Define g : R = R by g(x) ;= 2x for x rational, and g(x) := x + 3 for x irmmational. Find ail
points at which g is continuous.
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15, Let A= (0, oc) and let k : A — B be defined as follows. For x € A, x irrational, we define
k(x) = 0; for x € A rationzl and of the form x = m/a with natural numbers nt, n having no
common factors except 1, we definc k(x) := n. Prove that £ is unbounded on every open interval
in A Conclude that & 1s ol continuous at any point of A. (See Example 5.1.60h).)

15, Let £:(0, 1Y — & be bounded but such that him f docs not exist. Show thar there are two

-0
sequences (x ) and (y ) in (0, 1) with hm{x } = O = hm(y_), but such that lim (_f(xn)) and
lim (f[yﬂ)] exist but are not equal.

Section 5.2 Combinations of Continuous Functions

Let A C R and let f and g be functions that arc defingd on 4 to R and Jet b€ R In
Definition 4.2.3 we defined the sum, difference, product, and multiple functions denoted
by f+g, f —g. fg.bf Inaddition, if h: A — R 1s such that A{x) # 0 for all x € A,
then we defined the quotient function denoted by f/ A.

The next result is similar to Theorem 4.2.4, from which 1t follows.

5.2.1 Theorem Let A C R, et f and g be functionson A 1o R, and let b € X. Suppose
thatc ¢ A and that f and g are continuous at c.

(a) Then [+ g, f —g. fg, and b} arc continuous at c.

(b} Ifh: A — R iscontinuous atc € A and if h(x) # 0 for all x € A, then the guotient
f/h 1s continuous at c.

Proaf. 1f ¢ € A is not a cluster point of A, then the conclusion 15 automatic, Hence we
assume that ¢ 13 a cluster point of A

{a) Since f and g are confinuous at ¢. then

f(c)=1lm [ and g{c) =lmg.
X—c I—=C

Hence it follows from Theorem 4.2.4(a) that
(F 1 &)= fla+ gley = Im(f + ).

Therefore f + g ts continuous at ¢. The remaining assertions in part (a) arc proved in a
similar fashion.

() Since c € A, then k(c) # 0. But since h(c) = lim A, it follows from Theorem 4.2 4(h)

that -
/ () = /() = lﬂf = lim |/£\)
h h(c) limh x—ci h )
Thercfore f/ A 1s continuous at c. Q.ED.

The next result 1s an unmediaie consequence of Theorem 5.2.1, applied to every pout
ol A. Howcver, since 11 18 an extremely important result, we shall state 1t formally.
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5.2.2 Theorem LectA C R, let f andg be continuouson A toR, andletb € K.

{a) The functions [ + g, f — g, fg, and bf are conrinuous on A.

(by Ifh:A — R 1sconunuous on A and h{x) £0 for x € A, then the guoticnt ffh Is
continuous on A.

Remark To define quotients, it 1S sometimes more convenient to proceed as follows. If
¢ A Rlet A = {x € Al ¢(x)3# 0} Wecan define the quotient f/¢ on the set A
by

(1) (i) =29 o xea,
2 ¢ (x)

If @ 15 continuous at a point ¢ € A, 1t 1s clear that the restriction ¢, of ¢ 10 A, 15 also
continuous at ¢. Theretore it follows from Theorem 5.2.1(b) applied to ¢, that f/¢
is conlinuous at ¢ € A. Since (f/@)(x) = (f/e ) (x) for x € A, 1t {ollows that f/¢ is
continuous at © € A,. Simularly, 1f f and ¢ are continuous on A, then the function [/,
defined on A, by (1) is continuous on A

5.2.3 Examples (a) Polynomual functions.

If p1s a polynomuial function, so that p(x) = a x* + a”_Lx”'] + -+ a,x 4 a, for
all x € R, then it follows from Example 4.2.5(f) that p(¢) = lim p for any ¢ € ®. Thus

xX—

a polynomial function is continuous on R.
{(b) Ratjonal functions.

If p and ¢ are polynomial functions on IR, then there are at most a finite number
a,, - .o ofrealrootsof g If x ¢ {«, -, ,} then g{(x) 5 0 so that we can define the

1
rational funciion r by

p{x)
g (x)

rix) = for x ¢ e, -, «

m}'
It was seen in Example 4.2.5(g) that if g(¢) # 0, then

pley . plx)
= = lim
q (C) x— g (;;) Lo

r(e)

In other wards, r 15 continuous at ¢. Since ¢ is any real number that is not a root of g, we
infer that @ rational function 1s continuous at every real number for which it is defined.

(¢} We shall show that the sine function sin is continuous on R,
To do so we make use of the following propertics of the sinc and cosine functions.
(See Section 8.4.) [For all x, y, z € [£ we have;

sinz] < |zl,  lcosz| <1,
sinx —siny = 2sin[3(x — y)]cos[1(x + y)].
Hence if ¢ € R, then we have
| sinx — sinc| 52-%|x—c|-l=|x .

Therefore sin 1s continuous at ¢. Since ¢ € R Is arbitrary, it follows that st 1S continuous
on R,

(d) The cosine function is continuous on R.
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We make use of the following properties of the sine and cosine functions. For all
x. ¥y, Zze K we have:
|sinz| < |z], |sinz]| < 1,
cosx —cosy = —2sin[§(x + y)sin[L(x — y)).
Hence if ¢ € &, then we have
|cosx —cose] =2-1- %|C -x|=Ix c|
Therefore cos 15 continuous at ¢. Stnce ¢ € X 18 arbitrary, it follows that cos s continuous

on R. (Altematively, we could use the 1elation cos x = sin(x + 7 /2).)

(e) The functions tan, cot, sec, csc are continuous where they arc defined.

For example, the cotangent function is defined by
cos X
cofx 1=
sinx

provided smx # 0 (that is, provided x # nw.n € 7). Since sin and cos are coninuous
on X, 1t follows (see the Remark beforc Exarple 5.2.3) that the function cot is continuous
on its domain. The ather trngonometric functions are treated simularly. ]

5.2.4 Theorem LetACR, Iet f . A — R, andlet]f| bedefined by | f(x) .= 1f(x)]
forx e A

{a) If f iscontinuous at a pointc € A, then | f| is continuous at c.

(b) If f is continuous on A, then | f| i1s continuous on A.
Proof. This is an immediate conscquence of Exercise 4.2.13. QE.D.

5.2.5 Theorem LetACR, et f:A— B andlet f(x) >0 forallx € A. Welet /f
be defined for x € A by (Jf) (x) = J/f (x).

(a) If f is continuous at a point ¢ € A, then J/ 1s continuous at ¢.
(b} If f is continuous on A, then /f is continuous on A.

Proof.  This 1s an immediate consequence of Exercise 4.2.14, QF.D.

Composition of Continuous Functions

We now show that if the function f © A — Riscontinuous atapointcandif g: B - R
18 continuous at & = f(¢), then the composttion g ¢ f 1s continuous at ¢. In order to assure
that g o f is defined on all of A, we also need to assume that f(AY € B.

5.2.6 Theorem LetA, B CRandletf: A — Randg: B — R be functions such that
J(AY C B If [ iscontinuous af a point ¢ € A and g is continuous at b = f(¢) € B, then
the compositon g o [+ A — R is continuous at c.

Progf Let W be an e-ncighborhood of g(b). Since g is continuous at b, there is a é-
neighborhood V of b = f(c¢) suchthatif y € B N V then g(y) € W. Since f is continuous
at ¢, there is a y-neighborhood U of ¢ such that if x € ANU, then f{x) e V. (See
Figure 5.2.1.) Since f(A) © B, 1t follows that if x € AN U, then f(x) € BNV so that
go f(x) = g(f(x)) € W. Butsince W 1s an arbitrary £-neighborhood of g(#), this implies
that g o f 1s continuous at ¢. QED.
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A B

~

Figure 5.2.1 The composition of [ and g.

5.2.7 Theorem LetA, B C R, fetf: A— Rbccontinuouson A, andletg: B — K be
continuous on B. If f(A) € B, then the composite function g o f © A — IR Is continuous
on A.

Proof. The thcorem follows 1mmediately from the preceding result, if f and g are con-
tinuous at cvery point af A and B, respectively. Q.ED

Theotems 5.2.6 and 5.2.7 are very usctul 1n cstabhishing that certain functions are
conhinuous. They can be used (n many stluations where 1t would be difficult 1o apply the
definition of continuity directly.

5.2.8 Examples (a) Letg,(x) = || forx ¢ K It follows from the Triangle Inequality
that
|g,(x) — g,(©)] < Ix — ¢

for all x,c € R Hence g, is continuous at c € R, If f: A ~ R is any function that 1s
continuous on A, then Theorem 5.2.7 implies that g o f = | f] is continuous on A. This
gives another proof of Theoremn 5.2.4.

(b) Let g,(x) := /x for x > 0. It follows from Theorems 3.2.10 and 5.1.3 that g, 13
continuous at any number ¢ > 0. If f: A — R is continuous on A and if f(x) > 0 for
all x € A, then it follows from Theorem S.2.7 that g, o f = /f is continucus on A This
gives another proof of Theorem 5.2.5.

{¢) Let gy(x) :=sinx forx € R, We bave scen in Example 5.2.3(¢) that g, is continuous
onlR If f - A — Riscontinuous on A, then i1t follows from Theorem 52.7 that g, o f 1%
continuous on A.

In particular, if f({x) ;= 1/x for x 3 0, then the {unction g{x) := sin{1l/x) is contin

uous at every point ¢ #£ 0. |We have seen, in LExample 5.1.8(a), that g cannot he defined
at 0 in order to become continuous at that point. ] Lt

Exercises for Section 5.2

1. Determine the points of continuity of the following functions and state which theorems are used

in ecach case. \
) 3 i -
@) flx) = % (x € R), b)) 2(x) = Jx+ vz (x=0)
P
{c) hix):— ——E——if |—5TE| (x # 0), {d) k(x):=cos 1/]_+ x* (x e 3)
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Show thatif £ A — Riscontinuouson A € R and if n € I, then the function {7 defined hy
fUxy = (f(x))" forx € A, is coniinuous on A. )

Giive an example of functions f and g that are both discontinucus at a point ¢ in R such that
(a) the sum f + g is continueus at ¢, (b) the product fg is continuous at .

lLet ¥ — [[x] denote the greatest integer function (sec Excreise 5.1.4%, Determine the points of
conunuity of the function fix) =~ x —[[x],. x ¢ R

Letg bedefinedon Rby g(1) = 0,and g(x) = 2ifx # 1, andler f{x):=x + lforallx € R.
Show that ]irr(l)_g o f # (g £10). Why doesn’t this contradict Theorem 5.2.6?

Let £, g be delined on ¥ and jet ¢ & 2. Suppose that lim f =) and that g is continuous
at . Show that lim g o f = g(b). (Compare this resull with Theorem 5.2.7 and the preceding
excreisc.) -

Give an example of a function £ ¢ [0, 1] - » R that is discontinuous at every point of [0, 1] but

such that | f|1s continuous on (O, 1].

Let f, g be continvous from = to IR, and suppose that f(r) = g{r) for all rational numbers r.
Is it true that f{x} = g(x) forall x & R?

Let h: & — X be continuous on X satisfying A(m/2") = 0 for all m € £, n € N. Show that
hixy =0ferallx ¢ R

Let /5 — X becontinuouson R, andlet P :— {x € R f(x) = 0}.I{ ¢ € P, show that there
cxists & neigohorhood Vo (e) © P

1f f and g arc continnous on [, lel §:={x € X f{x) > g(x}}. If (s ) € S and lim(s ) =5,
show thats € S.

Afunction f: = - Rissaid to be additiveif fx | y) = f(x)+ f(yyforallx, yin X Prove

that if £ 1s coninuous at some point x,, then it is continuous al every point of K. (See Exercise
42129

'

Suppose thar f 15 a continuous additive function on R, If ¢ := f (1), show that we have
fxy — cx forall x € 1%, [Hinr First show that 1f » 1s a rational number, then f(r) = ¢r.]

Let g 1 2 — [ satisfy the relation g(x + y) = glx)g(y) for all v,y jn X Show that if g is
continuous at x = 0, then g 1s continuous at cvery point of K. Also if we have g{a) = 0 for
some a € R, then g(x) =0forallx € A

Lct f, £ R — K be continuous at 2 point ¢, and let A(x) = sup{f{x). g(x)} for x € 3
Show that A(x) = %(f(.x) + g(x)) . ;|f(_r} gix)| for all x € R Use this to show that /t is
continuous at ¢. '

Section 5.3 Continuous Functions on Intervals

Functions that arc contunuous con intervals have a number of very impotiant properies that
are not possessed by general continuous functions. In this section, we will establish some
deep resuls that are of considerable importance and that will be applied later. Alternative
proofs of these results will be given 1n Section 5.5.

5.3.1 Definition A functuon f @ A — R is said to be bounded on A if there exists a
constant M > Osuchthat | f{x)| < M forallx € A.

In other words, a function 1s bounded on a set if its range is a bounded sct in ®. To

say that a function 1s nor bounded on a given set is to say that no particular number can
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serve as a bound for its range. In cxact language, a function f is not bounded on the set
Af given any M > 0. there exists a point x,, € A such that | f(x,,)| > M. We often say
that f is unbounded oo A in this case.

For example, the function f defined on the interval A = (0, o©) by f(x) ;= 1/x 1s
not bounded on A becausce for any M > 0 we can take the point x,, == 1/(M + 1) n A
toget f(x,,) = 1/x,, =M + 1 > M. This examplc shows that continuous functions need
not be bounded. In the next theorem, however, we show that continuous functions on a
certain type of interval are necessarily bounded.
5.3.2 Boundedness Theorem' Ler J .= [a, b] be a closed bounded interval and et
ST — R becontinuous on i. Then f 1s bounded on [.

Proof. Supposcthat fisnotbounded on /. Then, forany n € N therc s a number x, € f
such that | ¥ (xﬂ) © > n. Since [ 1s bounded, the scquence X = (x, ) is bounded. Therefore,
the Bolzano-Weierstrass Theorem 3.4.8 implies that there is a subsequence X' = (x, Jof X
that converges to a number x. Since 7 is closed and the clements of X' belong to 7, it follows
from Theorem 3.2.6 that x € . Then £ is continuous at x, so that (f(xn )) CONverges to

F(x). We then conclude from Theorem 3.2.2 that the convergent scquence (f(xn )) must
bc bounded. But this is a contradiction since

|f(x”)|‘>nr3r for r el

Therefore the supposition that the continuous function f 18 not bounded on the closed
bounded interval [ leads to a contradiction. Q.ED.

To show that each hypothesis of the Boundedness Theorem is needed, we can construct
examples that show the conclusion fails if any one of the hypotheses 15 relaxed.

(1) The interval must be bounded. The function f(x) := x for x in the unbounded,
closed interval A := [0, o) 1s continuous but not bounded on A.

(i)  The interval must be closed. The function g(x) := 1/x for x in the half-open
interval B -= (0}, 1] 15 continuous but not hounded on B.

(iit)  The function must be continuous. The function £ defined on the closed interval
€ =1{0,1] by kh{x) := 1/x for x € (0, 1] and k(0) = 1 is discontinuous and unbounded
on (.

The Maximum-Minimum Theorem

5.3.3 Definition Let A € R andlet f: A — R We say that f has an absolute maxi-
mum on A 1if there is a point x™ € A such that

Fx") = fx) forall x e A.
We say that f has an absolute minimum on A if there is a point x_ € A such that
flx) < f(x) forall x € A.

We say that x* is an absolute maximum point for f on A, and that x_ is an absolute
minimum point for f on A, if they exist.

TThis theorem, as well as 5.3.4, is bue for an arbitrary closed bounded set. For these developments, sae Sections
11.2and 113 '



We note that a continuous function on a set A does not necessarily have an absolute
maximum or an absolute mintmum on the set. For example, f(x) ;= 1/x has ncither an
absolute maximum nor an absolute minimum on the set A = (0, co). (Sce Figure 5.3.1).
There can be no absolute maximum for f on A since f is not bounded above on A, and
there is no point at which f attains the value O = inf{ f {x) : x € A}. The same function has
neither an absalute maximum nor an absolute minimum when it is restricted to the set (0, 1),
while it has both an absotute maximum and an absolute minimum when it is restricted to
the set [1, 2]. In addition, f{x) = 1/x has an absolute maxumum but no absolute minimum
when restricted to the set {1, o0), but no absolute maximum and no absolute minimum
when resimicted to the set (1, 00).

It is readily seen that if a function has an absolute maximum point, then this point
is not necessarily uniquely determined. For example, the function g(x) := x* defined for
x € A:=[—1, +1] has the two potnts x = X1 giving the absolute maximum on A, and
the single point x = 0 yielding its absolute minimum on A. {See Figure 5.3.2.) To pick an
extrermne example, the constant function #(x) := 1 for ¥ € KR 1s such that every point of R
1s both an absolute maximum and an absolute minimum paoint {or 4.

—_———— =

1 2 -1
Figure 5.3.1 The furnction : Figure 3.3.2 The funcuion
flx)=1/x (x> 0). ROy =x (Ix] = 1)

3.3.4 Maximum-Minimum Theorem et/ = [a. k] bec a closed bounded Interval and
fet f. I — R be continuous on I. Then f has an absolute maximum and an absolute
munimtm on

Proof. Considerthe nonemptyset f (1) ;= {f(x): x € f}ofvaluesof f on [.InTheorem
3.3.2 it was established that f (/) 1s a bounded subset of B Leb 5™ '= sup f(/) and 5 =
inf f (). We claim that there exist points x* and x, in { such that 7 = f(x") and 5, =
f(x_). We will establish the existence of the point x*, leaving the proof of the existence of
x, to the reader.

Since ¥ = sup f(J),1f n € I, then the number s* — 1/# is not an upper bound of the
szt f(1). Consequently there exists a number x, € [ such that

1
B} st — — < fix ) <s* forall nel

ince [ is bounded, the scquence X := (x)) {s bounded. Therefore, by the Bolzano—
Weierstrass Theorem 3.4.8, there 15 a subsequence X' = (x, ) of X that converges to some

umber x*. Since the elements of X" belong to J = [a, b), it follows from Theorem 32.6
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that x~ € /. Therefore f is continuous at x* so that {(lim f(x,, )) = f(x"). Since it follows
from (1) that ‘

1
st < flx, ) <57 forall r e N,
n r
r

we conctude from the Squeeze Theorem 3.2.7 that im(f (x, )) = s*. Thercfore we have

fx")y = ll'm(f()cn ]) =T =sup f({I}.
We conclude that x* is an absolute maximum pointof f on [. QED.

The next result 1s the thearetical basis for locating roots of a continuous functian by
means of sign changes of the function. The proof also provides an algonthm, known as
the Bisection Method, for the calculation of roots to a specified degree of accuracy and
can be readily programmed for a computer. It is a standard tool for finding solutions of
cquations of the form f(x) = 0. where f is a continuous functuon, An altemative proof of
the theorem 1s indicated in Exercise 11.

5.3.5 Location of Roots Theorem Letl = [a, b) andlct f : I — R be continuous on
I.If fla) <« 0 < f(b),orif f{a)y > O > f(b), then there exists a number ¢ € (a, b) such
that f(c) =0,

Propf. We assume that f(a) < 0 « f(»). We will generate a sequence of intervals by
successive bisections. Let /, := {a,. b,], wherea, :=a, b, ;= b, andlet p, be the midpoint
p, = %(al =b) 1t f(p,) =0, wetakec = p and wearedone. If f(p,) # O, then either
Sip) = 0orf(p) < QIf f(p)) > 0. thenweseta, :=a,, b, = p,whileif f{p) <0,
then we set a, '= p,, b, '= b,. [n enther case, we let I, .= [a,, b,|: then we have [, C /
and f(a,) <0, f(b,) > 0.

We continue the bisection process. Suppose that the intervals ), 1, -+, 1, have
been obtained by successive biscction in the same manner. Then we have f(a) < 0
and f(b,) > 0, and we sct p, 1= lj(ak +b). If f(p,) =0, we take ¢ := p, and we are
done. If f(p,) > 0, wesel a,, ‘=a,, b, = p, whilef fp) <0, weseta =
Py b, = h, Ineithercase, we lcl IH] = [am g bk‘l]; then [, , C I, and f(a, ) <0,
flh,)>0

If the process tlerminates by locating a poini p, such that f(p,) = 0, then we are done.
[f the process does not ternunate, then we obtain a nested scquence of closed hounded
intervals /.= [a,_, b, ] such that forevery n € N we have

k41

Jla ) <0 and fib,)y = Q.

Furthermore, since the intervals are obtained by repeated bisection, the length of T is
equalto b, —a = (b — a) 72771 Tt follows from the Nested Intervals Property 2.5.2 that
there exists a point ¢ that belongs o I foralln e N. Sincea, <c <b foralln e N, we
have 0 <c—a <b —a =(b—a)/2" ', and 0<b —c<b —a,=(b—a)/2"""
Hence, it follows that lim(a,) = ¢ = lun(bk ). Since § is continuous at ¢, we have

lim(f(a)) = f©) =lim{f())).

The fact that f(a,) < O for all » € N implies that f(¢) = lim {f(an)) < 0. Also, the fact
that /(b ) = Oforalin € N implies that f(¢) = him (f(bn)) > (). Thus, we conclude that
f(c)y = 0. Conscquently, ¢ 18 a root of f. QED.
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The following cxample illugtrates how the Bisection Method for finding roots 18 applied
in a systematic fashion.

5.3.6 Example The cquation f{x) =xe&® —2 =20 has a root ¢ in the interval |0, 1],
because [ 1s cantinuous on this interval and f(0) = -2 < Qand f())=¢ — 2> 0. We
construct the following table, where the sign of f( p ) determines the interval at the next
step- The far right column is an upper bound on the error when p, 18 used to approximate
the root ¢, because we have

p, —c| < i(b, —a,) =1/2"

We will find an approximation p with error less than 10 2,

nooa b, P, Sip) %(b}1 —a,)
1 0 i 5 —1.176 .3

25 1 75 —412 .25
375 I .875 +.099 125

4 75 875 8125 —.169 0625

5 8125 875 84375 —_ 0382  .03125

6 R4375 875 .R59375 -—.0296  .015625

7 .B4375  .B59375  B515625 — .0078125

We have stopped at n = 7, obtaining ¢ & p, = 8515625 with error less than .0078125.
This is the first step in which the error 18 less than 10" The decimal place values of p, past
the second place cannot be taken serously, but we can conclude that 843 < ¢ < 860. [

Bolzano’s Thearem

The next result is a generalization of the Location of Roots Theorem. It assures us that a
continuous function on an tuterval takes on (at least once) any number that lics between
two of 1s values.

5.3.7 Bolzano’'s Intermediate Value Theorem [Let ] be an interval apdijet f 1 — R
be continuouson 7. Ifa, b € I and if k € R satisfies f(a) < k < f(b), then there cxists a
pointc € I berween a and b such that f(c) = k.

Proof. Suppose that a < b and let g(x) ;== f(x) — &; then g(a) < 0 < g(b). By the
Location of Roots Theorem 335 there exists a point ¢ with @ < ¢ < 6 such that 0 =
g{c) = f(¢) — k. Therefore f(e) = £.

Ifb < a,leth(x) :=k — f(x)sothat h(b) « 0 « h(a). Therefore there exists a point
cwithd < ¢ < asvchthat0 = kic) =k — f(c), whence f(c) = k. QED.

5.3.8 Corollary Lect I =[a, b] be a closed, bounded interval and let f: 1 — R be
continuous on 1. If k € R is any number satisfying

inf £(I) <k <sup f{I),

then there exists a number ¢ € I such that f(c) = k.

Progf. Tt follows from the Maximum-Minimum Theorem 5.3.4 that there are points ¢,
and ¢ in J such that

inf (/) = flc,) <k < f(*) = sup f(I).

The conclasion now follows from Bolzano's Theorem 5.3.7. QED
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The next theorem suramarizes the main results of this section. It states that the image
of aclosed bounded interval under a continuous function is also a closed bounded interval.
The endpoints of the image interval are the ahgelute minimum and absolute maximum
values of the function, and the statermeni that all values between the absolite minimum
and the absolute maximum valucs belong to the image is a2 way of describing Bolzano's
Intermediate Value Theorem.

5.3.9 Theorem Let ! be a closed bounded interval and let £ © 1 — R be continuous
onl Thentheser f(I):={f(x): x € I}isaclosed bounded interval.

Proof. If weletm = inf f(I) and M :=sup f(I), then we know from the Maximum-
Minimum Theorem 5.3.4 that m and M belongto f{/). Morecover,wehave f(I) C [m, M].
If & 1s any element of [in, M], then 1t follows from the preceding corollary that therc exists
a pointc € J such that k = f{c¢). Hence, k € f{J) and we conclude that [m,K M| C f(]).
Therefore, f(I) 15 the interval [, M. QED.

Warning If / := [z, b] s aninterval and f © 7 — R 1s continuous on /, we have proved
that f(I) 1s the interval [m, M]. We have nor proved (and it is not always true) that f (1)
is the interval [ f (a), f(b)]. (See Figure 5.3.3)

M

fib)

fia)

Figure 5.3.3  f(7y = [m, M.

The preceding theorem is a “preservation” theorem in the scnsc that it states that
the continuous image of a closed bounded interval is a set of the same type. The next
theorem extends this result to gencral intervals. However, it should be noted that although
the continuous image of an interval is shown to be an interval, it is not true that the image
interval necessarily has the same form as the domain interval. For example, the continuous
image of an opcn interval necd not be an open interval, and the continuous image of an
unbounded closed interval need not be a closed interval. [ndeed, if f(x) = 1/(x> + 1)
for x € R, then f is continuous on K {see Example 5.2.3(b)]. It is easy to see that if
I, = (=1, 1), then f(1) = (3, 1], which is not an open interval. Also, if 1, := {0, co).
then f(1,) = (0, 13, which is not a closed interval. (See Figure 5.3.4.)
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Figure 5.3.4  Graphof f(x) =1/(x* — 1} (x € R).

To prove the Preservation of Intervals Theorem 5.3.10, we will use Theorem 2.5.1

characterizing intervals.

5.3.10 Prescrvation of Intervals Theorem Let [ be an interval and let f 1 1 — R be
continvous on !. Then the set f (1) is an interval

Proof. Letw, B e f(I) witha < f; then there exist points @, b € [ such that o = f(a)
and 8 = f (k). Further, it follows trom Bolzano's Intermediate Value Thearem 3.3.7 that
f k € (@, B) then there exists a number ¢ € I with k = f(c) € f(I). Therefore [@, 8] C
S (), showing that f(I) possesscs property (1) of Theorem 2.5.1. Therefore f(I) is an
interval. QET.

Exercises for Section 5.3

10.

Let F o= [a, blandict /7 — = be a continuous function such that f(x) > 0 foreach £ in /.
Prove Lhat there exists a number ¢ = O such that f(x) > o« forall x € [

Let 7 := [a.blandlct £ : I -» ¥ and g : I — X be conunuous functions on I, Show that the
sel Foi= {x € [ fix} = g(x}} basthe property thatif {x } € £ and x> x, thenx, € E.

Lee /= [a. blandlet f: 7 — X beacontinuous fanction on 7 such that for eacli x in J there
cxlists vin J such that  f(y)] = %if(:c)l. Prove there exists a point ¢ in / such that f(c) =

Show that every polynornial of odd degree with real coefficients has at least one real root.

Show that the polynomial p(r) ;= x* + 7x* — 9 has at least two real roots. Use a calculator to
locate these roots to within two decimal places.

Let f be ¢continuous on the interval [0, 1] te [ and such thae £(0) = f (1). Prove that there
existsapoint c1n [0, %]Suchlhﬂif(c) =f [r: -+ %) (fiine: Consider g(x) = f{x)— f (x + ;)]
Conclude that there are, al any time, antipodal points on the earth’s equator that have the same
temperature.

Show that the equation x = ¢os x has a sclution tn the interval [0, 7r/2). Use the Bisection
Method and a czleulator to find an approximate solution of this equation, with error Jess than
10 *.

Show that the function f(x) ;= 21lnx -+ ,/f 2 has rootin the interval [1, 2], Use the Bisection
Method and a calculator to find the root with error less than 107 2,

(a) The function f(x) (= {x — ) (x —D{x — 3){x — 4¥{x — 3} has five roots in the interval
(0, 7]. If tke Bisecuon Method iz applied on this interval, which of the roots 15 located?
(0) Same question for glx) = (x — 2)(x - (x - 4)(x — 3)(x — 6) on the interval [0, 7.

If the Bisection Method is used ot an interval of length 1 to find p, with error 'p — ¢f < 10 5,
determine the least vatue of » that will assure this accuracy.
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11. fet7:=|a, b], ler f: 1 — R becontinucus on 7, and assume that f{a) < 0, f(b) > 0. Let
W = {xel: f(x) <0} and let w = sup W, Prove that f{w) = 0. (This provides an alter-
native praof of Theorem 5.3.5.)

12. Let 7/ :=1[0,x/2) and let f : 7 — R be defined by f(x) := sup{x?, cosx} for x € /. Shaw
there exists an absolute minimum point x, € f for f on /. Show that x, 15 2 solution (o the
equation cosx = x°.

13. Supposethat £ B — R is continucus on R and that Iim f = 0and Um f = §. Prove that
¥ =0 T 00

S is bounded on R and attaing either a maximum or minimum on R. Give an example to show
that both a maximum and a minimum nced not be attained.

14. Tet f: R — ¥ be continuous on ® and let # € B, Show that ufx, € R is such that f(x,) < 8,
then there exists a d-neighhorhood U of x, such that f(x) < Sforallx € U.

L5. Examine which open [respeciively, closed) intervals are mapped by f(x) := x* for x € X onto
apen [respectively. closed] intervals.

16. Examunc the mapping of open [respectively, closed] intervals under the functions g{x) :=
1/(x” + 1) and h{x) =x'forx ¢ I

17 If £:{0.1} — R is continuous and has only rational [respectively, irrational] values, must f
be constant? Prave your assertion.

18. let/ :=|a,b]andlet f 1 — Rbe a(not necessarily continuous) function with the property
that for every x € £, the function f is bounced on a neighborhood V, (x) of x (11 the sense of
Definition 4.2.1). Prove that f is bounded on 7. '

16, TetJ:—(a,b)and let g = J — K be a continuous function with the property that for cvery
x € J, the function g 15 bounded on a neighborhood V, (x) of x. Show by example that g 15 not

necessarily bounded on J.

Section 5.4 Uniform Continuity

let A CRandlet f: A > R Defimition 5.1.1 states that the following statements are
equivalent:

(i) f is conrinuous at cvery point u € A;

(1) zivene > Dand w € A, thereisa d(e, ») > O such thal forall x such that x € A
and |x — u| < §(e. n), then f{x)— f(w)| < &,

The point we wish to emphasize here 1s that § depends, in general, on both £ > 0 and
i € A The fact that 8 depends on u is a reflection of the fact that the function f may change
its values rapidly near certain points and slowty near other points. [For example, consider
f(x) =sin{l/x) for x > {0, sec Figure 4.1.3.]

Now 1t often happens that the function f is such that the number § can be chosen to be
independent of the point ¥ € A and to depend only on &. For cxample, if f(x) = 2x for
ail x € 2, then

|f(x) = fa)l =2 [x —u],

and so we can choose 8(g, u) ‘= £/2foralle > 0, u € R. (Why?)
On the otherhand if g(x) .= 1/x forx € A= {x € R:x > 0}, then

W — X

(1 glx) - glu) =
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If u € Ais given and if we take

(2) §(c. u) ::inf{,—iu,%uzi-:] ,

. . 3 .
then if |x — u| < &(g, u), we have |x — u| < %u sothat 1u < x < su, whence it follows

that 1/x < 2/w. Thus, if |x — 1| < 2u, the equality (1) yields the incquality

(3) 18(x) — g(10)] < (2/u?) )x — ul.

Consequently, if [x — 1| < é(e, «), then (2) and (3) unply that
lg(x) — g(w)| < /1) (su'e) =&,

We have seen that the selection of 8 (¢, w) by the formula (2) “works” in the sense that it
enables us to give a value of & that will ensure that |g {(x) — g(&)| < € when |x -- u| < 8
and x, # € A. We note that the value of § (¢, u) given in (2) certainly depends on the point
u € A If we wish to consider a/f u € A, formula (2) does not lead 1o one value § (g) > 0
that will “work” simultaneously for all u > 0, since inf{8(e, ¥) ' u > 0} = 0.

An alert reader witl have observed that there are other selections that can be made
for é. (For example wc could also take §, (¢, 1) :=inf { %u, %MES}. as the reader can show;
however, we still have inf {& (e, ): u > 0} = 0.) In fact, there is no way of choosing one
value of 4 that will “work™ for all 4 > O for the function g(x) = 1/x, as we shail see.

The situation i1s exhibited graphically in Figures 5.4.1 and 5.4.2 where, for a given
c-neighborhood V() about § = f(2) and V/(2) about 2 = £(3), the corresponding max-
imum values of & are seen to be considerably different. As « tends to O, the permissible
values of & tend to (0,

L |
AN
\ p—
V,_{;lz){ + P, ‘ ‘
| T "
hRQ | — \\7
5 —neighbarhood 3 - neighborkhaod

Figure 54.1 g(x)=1/x (x> 0). Figure 5.4.2 g(xy=1/x (x » Q).

5.4.1 Definition LetA € Xandlet £ A —» R We say that f 1s uniformly continuous
on A if for each & > Othereis a d(¢) > O such that if x, u € A are any numbers satisfying
Ix — u| < 8(g), then [ f(x) — f(u)' < ¢.

Itis clear that if £ 1s uniformly continuous on A, then it is continuous at every point of
A, In general, however, the converse does not hold, as is shown by the function g(x) = 1/x
onthesat A = {x € K:x > 0}

It is useful to formulate a condition equivalent to saying that f is not uniformly
comtinuous on A. We give such criteria in the next result, leaving the proof to the reader as
an eXercise.
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5.4.2 Nonuniform Continuity Criteria Let A C R and let f: A —> R Then the fol-
lowing staternents arc equivalent:

(1)  f 1s notuniformly continuous on A.

(1)  There exists an €, > O such that for every § > 0 there are pomnts x;, 4, in A such that
X, — w5l < 8and|f(x;) — f(u)| = g,

(i) There exists an ¢, > 0 and two sequences (x ) and (u,) in A such that
hm(x —u ) =0and|f(x)— f(u,)| =g foralln e N.

We can apply this result to show that g(x) ‘= 1/x is not uniformly continuous on 4 © —
{xeR: x>0} For,ifx = 1/nand 4, =1/(n+ 1), then we have lim(x_ —u ) — C.
but [g(x ) g(u )| = 1forallne N

We now present an irnportant result that assures thar a continupus function on a ¢losed
bounded 1ntervat 7 1s uniformly continuous on 7. Other proofs of this theorem are given in
Sections 5.5 and 11.3.

8.4.3 Uniform Continuity Theorem Lct] be aclosed bounded intervalandlet f 1 —
R be continuous on I. Then f is uniformly continuous on [ .

Proof. It f 1s not uniformly continuous on / then, by the preceding result, there exists
£, > 0 and two sequences (x,) and (u, ) in 7 such that |[x —u, < 1/n and |f(x ) —
flu,} > e, for all » € N, Since I 1s bounded, the sequence {x ) 1s bounded; by thc
Bolzano-Weicrstrass Theorem 3.4 8 there is a subscquence (x”:{) of (x,) that converges to
an element z Since I 15 closed, the limit z belongs to /, by Theorem 3.2.6. It 1s clear that
the corresponding subsequence (”u.) also converges 1o z, since

|74

n.‘t

~z =, X, i, —z)

Now if f is continuous at the point z, then both of the sequences (£ (x, )) and (£ (x, })
X N
must converge to f (z). But this 1s not possible since

|f(x) — F ) > &

forall n € ™. Thus the hypothesis that f 1s not uniformly continuous on the closed bounded
interval I implies that f is not continuous at some point # € /. Conscquently, of f 1s
continuous at every point of 7, then f is uniformly continuous on /. QE.D.

Lipschitz Functions _

It a uniformly contunuous function is given on a sct that 1s not a closed bounded intervai,
then it 1s sometimes difficult to establish its uniform continuity. However, there is a condi-
ticn that {frequently occurs that is suf(icient to guarantee uniformn continuity.

5.4.4 Defipition Let A C R and let f: A — R If there exists a constant K > { such

that

4) [f ()= flw)] < K[x —ul

for all x,u € A, then f is said to be a Lipschitz function (or 10 satisfy a Lipschitz
candition) on A.
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The condition (4) that a function f : 7 — K on an interval [ 1s a Lipschitz function
an be interpreted geometrically as follows. If we write the condition as

TR0 ok, cwelxsu

| x—u
¢ nthe quantity inside the absolute values is the stope of a line segmenl jolning the points
x, f{x)) and («, fiu)). Thus a function f satisfies a Lipschitz condition if and only if the
!~pes of all line segments joining two points on the graph of y = f(x) over [ are bounded
, some number X,

+5 Theorem If f: A — R is a Lipschitz function, then f is uniformly continuous
nA.

-ro0f. 1f condition (4) is satisfied, then given € > 0, wecantake § .= ¢/K . Ifx,u € A
ansfy [x — u| < 6, then

1F(x)— f@)] < K - % — ¢

crefore f is uniformly continuous on A. QE.D.

© 4.6 Examples (a) If f(x):= xZon A= (0, £], where & > 0, then
fx) = fl) = Ix +ul x —u| <2b|x —ul

~callx, uin [0, ] Thus f satisfies (4) with K := 2b on A, and therefore f is uniformly
:ontinuous on A. Of course, since f is continuous and A is a closed bounded interval, this

1 also be deduced from the Uniform Continuity Theorem. (Note that f docs not satisfy
1 Lipschitz condition on the interval [0, e0).)

) Nol every uniformly continuous function is a Lipschitz function.

Let g(x) := ./x for x in the closed bounded interval 7 := [0, 2]. Since g is continuous
an I, it follows from the Uniform Continuity Theorem 5.4.3 that g 1s uniformly continuous

I. However, there is no number K > O such that |g(x)| < K{x! for all x & [. (Why

not?) Thercforc, g 1s not a Lipschitz function on .
I+ The Uniform Continuity Theorem and Theorem 5.4.5 can sometimes be combined o
establish the uniform continuity of a function on a set.

We consider g(x) := /x on the set A '= {0, 00). The uniform continuity of g on
we interval T .= {0, 2] follows from the Uniform Continuity Theorem as noted in (h). If
J =1, 00), then if both x, 4 are in J, we have

18 (x) —g(u)l—lf—f|—

— i
i
—— < I |x — .
«us g is a Lipschitz function on J with constant X = 5, and hence by Theorem 5.4.5,
g is uniformly continuous on [1, co). Since A — T U J, it follows [by taking &(¢€) :=
f{l.é,(e}. 8_,(5)}] that g is uniformly continuous on A. We leave the details to the
reader. L

‘I'he Continuous Extension Theorem

e have seen examples of functions that arc continuous but not uniformly continuous on
open intervals; for example, the function f(x) = 1/x on the interval (0, 1). On the other
“1nd, by the Uniform Continuity Theorem, a function that is continuous on a closed bounded
.terval 1s always uniformly continuous, So the question arises: Under what conditions is a
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function uniformly continuous on a bounded open interval? The answer reveals the strength
of uniform continuity, for 1t will be shown that a functien on (a, k) is uniformly continuous
if and only if if can be defined at the endpoints to produce a function that is continuous on
the closed interval. We first establish a result that is of interest in itself.

5.4.7 Theorem If f: A — R isuniformly continuous on a subset A of R and 1f (x) 1s
a Cauchy sequence in A, then (f(x")) 15 a2 Cauchy sequence in K.

Proof. Let (x ) be a Cauchy scquence in A, and let ¢ > O be given, First choose ¢ > 0
such that if x, u in A sausfy |x — u| < 8, then | f(x) — f(u)] < & Since (x_ ) 1s a Cauchy
sequence, there exists A (3) suchthat |[x, —x | < 8 forall n, m = H{$). By the choice of
é, thisimplies that forn, m > fI(8), wehave | f(x, ) — f(x, )| < £. Thercfore the sequence
{f(x,)) 1s a Cauchy sequence. QL.

The preceding result gives us an alternative way of seeing that f(x) := 1/x 1s not
uniformly conlinuous on (0, 1). We note that the sequence given by x_ := 1/n1n (0, 1) 15
a Cauchy sequence, but the image scquence, where f(x_} = r, is not a Cauchy sequence.

34.8 Continuous Extension Theorem A function f is vmiformly continuous on the
interval (a, b) 1f and ooly if 1t can be defined at the endpoints a and b such that the ex-
tended function is continuons on [a, b].

Proof. (<=) This direction 1s tnwvial.

(=) Suppose S is umformly continuous on (g, k). We shall show how (o extend f
to a; the argument for & 1s similar. This is done by showing that lim f(x) = L exists, and
this 1s accomplished by using the sequential criterion for lilmlsqufh (x,} s a scquence 1n
(a, by with lin(x ) — a. then it 1s a Cauchy sequence, and by the preceding theorem, the
sequence (f(x”)) 1s also a Cauchy sequence, and so 18 convergent by Theorem 3.5.5. Thus
the limit lim{f(x_}) = L exists. If (« ) is any other sequence in (a, b) that converges to a.
then hm(x, — x, ) =a a =0, so by the uniform continuity of f we have

Bm{f ()} = Nm(f(e) — fx ) + Lm(f(x))
=04 L=1I.

Since we get the same value L for every sequence converging to a4, we infer from the
scquential critenion for hrits that f has hmit 7. at g. If we define f{a) := L, then f 13
continuous at . The same argument applies to b, so we conclude that £ has a continuous
cxtension to the interval [a, b]. QED.

Since the Himit of f(x) := sin(1/x) at 0 does not exist, we infer from the Continuous
Lxtension Theorem that the function 15 not uniformly continuous on (C, #] forany # = 0,
On the other hand, since 11111{.)): sin(l/x) =0 exusts, the function g{x) ;= xsin(1/x) is

uniformly continuous on (0, &) for all » > 0.

App roximation’ _—

In many applications it 1s impoertant to be able to approximate continuouns functions by
functions of an elementary nature. Although there are a variety of definitions that can be

used to make the word “approximatc™ more precise, one of the maost natoral (as well as one of

"The rest of this sectian can he omitted on a first reading of this chapter.



the mostimportant) is to require that, at every point of the given domain, the approximating
funcien shall not differ from the given function by more than the preassigned error,

5.4.9 Definition Let / € ® he an interval and let s : / = R Then s is called a step
function if it has only a finite number of distinct values, each value being assumed on one

or more intervals in [

For example, the function s : [—~2, 4] — R defined by

0, —-2<x < —1,
t, -1 <x <0,
1 1
= 0 «cx <« =,
sy = 1{ 2 e
3, % <x <1,
—2, 1] <x <3,
2. 3<x <4,
18 a step function. (See Figurc 5.4.3.)
¥
-
—
— : ' : x
r—

Figure 5.4.3 Graphof y = s{x).

We will now show that a continuous function on a closed bounded intecval T can be
approximated arbitrarily closely by step functions.

5.4.10 Theoremn Let! be aclosed bounded interval andlet f © I — IR be continuous on
I. If ¢ > 0, then therc cxists a step function s, . I —> R such that | f({x) — 5, (x)| < ¢ for
allx e 1.

Proof. Since (by the Uniform Continuity Theorem 5.4.3) the function f is uniformly
continuous, it tollows that given & > 0 there is a nuinber 8{(¢) > 0 such that if x, y €/
and |x — y| < 8{g), then | f(x} — f(¥)] < e. Let ] :=[a, b] and let m € N be sufficiently
large so that ki ;= (b —a)/m < 8(¢). We now divide I = [a, b] Into m disjoint 1ntervals
of length i namely, I, '= [a,a + hl,and I, :={a+ (k — Dh,a +kh|fork =2, - m.
Since the length of each subinterval I, is h < (g). the diffcrence between any two values
of f in [, 1s less than £. We now define

(5) J's(x) = f(a-lkh) for xEIk‘ k:l,---!m,
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so that &, 1s constant on each interval [, (In fact the value of 5, on /, s the value of f at
the nght endpoint of 7, Se¢ Figure 5.4.4.) Consequently if x € i, then

| f{x) = s, () =|f(x)— fla+kh)| < e

Therefore we have | f(x) s, (x)| < eforallx € 1. QED

y=fIx]4€ /

|

i

|

|

|

|

! |

a b

Fignre 5.4.4  Approximation by step functions.

Note that the proof of the preceding theorem establishes somewhat more than was
announced in the statement of the theorem. In fact, we have proved the following, more

precise, asscerion.

5.4.11 Corollary Let ! ;= [u.b] be a closed bounded interval and let f .1 — R be
continuous on /. If £ > (. there exists a natvral number m such that if we divide I into
m disjoint intcrvals I, having length h := (b — a)/m, then the step function s, defincd in
cquation (5) sausfics | f(x) -- s (x)| < € forailx € [.

Step tunctions are exiremely elementary in character, but they are not continuous
(cxcept in trivial cases}). Since it 1s often desirable to approximate continuous functions by
clementary cantinuous functions, we now shall show that we can approximatc continuous
functions by continuous ptecewise linear functions.

5.4.12 Definition Let 7 := [a, k) be an interval. Then a function g © 7 — R is said to be
piccewise linear on 7 if 7 is the union of a finite number of disjoint intervals I, 0,
such that the restriction of g to each interval 1, 1s a linear function.

Remark It is evident that 1n order for a piecewise linear function g to be continuous
on /, the line segments that form the graph of g must meet at the endpoints of adjacent
subintervals [, . ‘!kTI k=1 --- m—=1)

5.4.13 Theorem Iletl be aclosed bounded tnterval and let f : 1 — R be continuous on
I. If £ » 0O, then there exists a continuous piecewise linear function g, : I — R such that
| flx) —g, () <€ forallx el

Progf. Since f1suniformly continuous on / ;= [a, b}, there 1s a number §(¢) > 0 such
that if x. y € I and |x — y| < (&), then |f(x) — f(y)| < ¢. Let m € N be sufficiently
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large so that k := (b — a)/m < §(¢&). Divide J = [a, b] into m disjoint intervals of length
hyvamely let I = [a,a+ k), and let [, = (@ + (k — DA, a+ kh] fork =2,---.m. On
each interval I, we define g, to be the linear funcuion joining the points

(a+ e~ Dh, fla+ (k — 1}h) and (a +kh, fla | kR)).

Then g, is a continuous piecewise lincar function on 7. Since, for x € 7, the value f'(x)1s
within ¢ of f(a + (k — 1)h) and f(a + kA), itis an exercise to show that | f(x} — g _(x)] <
¢ for all x € I ; therefore this inequality holds for all x € 7. (See Figure 5.4.5)) Q.ED.

Figure 5.4.5 Approximation by piecewise linear function.

We shall close this section by stating the important theorem of Weierstrass concerning
the approximation of continuous functions by polynomial functions. As would be expected,
in order to obtain an approximation within an arbitrarily preassigned £ > 0, we must be
prepared to use polynormals of arbitranly high degree.

5.4.14 Weierstrass Approximation Theorem Let ! =[a, b)andlet f: 1 - R be a
continuous function. If £ > O is given, then there cxists a polynomial function p, such
that | f(x) — p,(x)] < e foralix €l

There arc a number of proofs of this result. Unfortunately, all of them are rather
intricate, or employ results that are not yet at our disposal. One of the most elementary
proofs is based on the following theorem, due to Scrge Bemstein, for cantinuous functions
on {0, 1]. Given f . [0, 1] — R, Bemstein defined the sequence of polynomials:

_ . /k n\ k n k
6) B (x)= ;f KH) (U"‘ (i—x" k

The polynomial function B, 1s called the nth Bernstein polynomial for f;itis a polynomial
of degree at most r and its coefficients depend on the values of the function f atthen + 1
equally spaced points 0, 1/n, 2/n, - - k/n, - -, 1, and on the binomial coefficients

(n _ n! _E(n—])---(n—k-i—l)
k) klm—=4k) 1.2k '
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5.4.15 Bernstein’s Approximation Theorem Let £ : [0, 1] — R be continuous and let

£ >
X €

0. Thereexistsann_ € N such thatifn > n_, then we have | f (x) — B, (x})] < ¢ for ail
1O, 1].

The proof of BernsteIn's Approximation Theorem 1 given in [ERA, pp. 166—172].
‘The Weierstrass Approximation Thecorem 5.4.14 can be derived from the Bernstein

Approximation Theoremm 5.4.15 by a change of variable. Specifically, we replace

f

. [, b] = R by a function F : [0, 1] — R, defined by

F(t) — f(a+ (A —rz)r} for ¢ €0, 1].

The function F can be approximated by Bemstein polynomuals for 7 on the interval [0, 1],
which can then yield polynomials on [, ] that approximate f.

Exercises for Section 5.4

[o.
[l

Show that the function [ (x) = 1/x is uniformly continuous on the set A = {a. 20}, wherc a
15 & POSilive Consgrant.

Show that the function f(x) .= L/x7is uniformly continuous on A '= [, ac), but that it 15 not
uniforinly continucous on 8 := (0, o).

Usec the Nonuniform Continuity Criterion 5.4.2 to show that the following functions are not
un:forniiy continuous on the given sets.

(a) fix) =x". A:=[0 s0).

(b} g(x):=sin(l/xy, B = (0, ).

Show that the function f{x) .— 1/(1 4 .r:) for x £ R 18 uruformly continuous on X.

Show that if f and g are uniformly continucus on a subset A of IR, then f + g is uniformly
continuous of 4.

Show that if £ and g arc uniformly continuous on A € K and if they arc borh bounded on A,
then their product fg is uniformly continuous on A.

If f{x) = xand g{x) ;= sinx, show thal both f and g are unifermly continuous on 12, but that
their product g 15 not uniformly continuous on R.

Prove thatif f and g are each uniformly contipuous on R then the composite function f o g is
untformly continucus on R,

If f is uniformmly continious on A C B, and |f(x)| = &k > O forall x € A, show that 1/f 13
uniformly continuous on A.

Prove that if f is uniformly continucus on a hounded subset A of &, then f 1s bounded on 4.

If g(x) ;= ./x forx € [0, 11, show that there does not exist a constant X such that |g(x)] < K|[x|
for all x € [0, 1]. Conclude that the uniformidy conunuous g is not a Lipschitz function on [0, 1].

Show that if f is continuous on [0, co) and uniformly continucus on (4. oo) for some positive
constant @, then f 1s uniformly continuous on [0, 00).

l.et A € R and suppose that f - A — R has the following propeny; for each £ >  there exists
a function g, © A — R such that g is utuformly continuous on 4 and | f (x} — g {x)} = ¢ for
all x € A Prove that f 15 umformly continuous on 4.

A function - B --» K& is said to be perindic on IR if there exists a number 7 > 0 such that
flx + pYy= f(x) forall x € R. Prove that a continuous periodic function on R is bounded and
uniformly continuous on X.
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15 If fy(x) == 1forx e [0, 1], calculate the first few Bernstein polynomials for f. Show that they
coincide with f. [Hint: The Binomial Theorem asserts that

(a+h) = Z{ )a ok

£=0

16. If f(x) = x for x € [0, 1], calculate the first few Bemsteln polynormuals for f,. Show that they
coincide with f -

7. 0f f,(x) = x? for x e [0, 1], calculate the first few Bernstein polynomials for f;- Show that
B (x)=(1—1/mx"+ (1/n)x.

Scction 5.5 Continuity and Ganges

We will now 1ntroduce some concepts that will be used later—especially in Chapters 7
and 10 on integration theory. However, we wish to introduce the notion of a “gauge” now
becausc of its connection with the study of continuous functions. We first define the notion
of a tagged partition of an interval.

5.5.1 Definition A partitionof aninterval 7 := [a, b]1sacollection = [/, ---. I } of
non-overlapping closed intervals whose union is [a, b]. We ordinarily denote the intervals
by I = [x;_,, x,], where

a=x,<- - <X lc.r_,.-:-u«:xn:b.

The points x, (i = 0, -+, n) arc called the partition points of P. If a point ¢, has been
chosen from each interval 7, fori = 1, ---, n, then the points t, are called the tags and the
set of ordered pairs

ﬁ:[(ll, D (‘!n‘!)]
is called a tagped partition of /. {The dot significs that the partition is tagged.)

The “finencss” of a partition 7 refers to the Jengths of the subintervals in P. Instcad of
requiring that all subintcrvals have length less than some specific quantity, it is often useful
to allow varying degrees of fineness for different subintervals I, in . This is accomplished
by the use of a “gange”, which we now define.

5.5.2 Definition A gauge on /15 a strictly positive function defined on 7. If 4 15 a gauge
on 7, then a (tagged) partition 7 15 said to be §-fine if

(1) rel Sl — 80,1 +8(¢)] for i=1,-,n.

We note that the notion of 8-fineness requires that the partition be tagged, so we do not
need to say “tagged partition” 1n this case.

X X

. | o
r-4&1(t) t r+81y)

1

Figure 5,5.1 Inclusion (1).

A gauge & on an interval 1 assigns an interval {z — 8(2), 1 + 8(r)] to each point r € /.
The &-fingness of a partition P requires that cach subinterval / of P 1s contained in the
interval determined by the gauge § and the tag ¢ for that subinterval. This is indicated



by the inclusions in (1); see Iigure 5.5.1. Note that the length of the subintervals 15 also
controlled by the gauge and the tags; the next lemma reflects that control.

5.5.3 Lemma Ifapartition P of I ::= [a, b] is 8 finc and x € I, then there exists a tag f
in P such that |x —t;| < 8(¢,).

Proof. If x € I, therc exists a subinterval [x,_,, x,] from P that contains x. Since P is
&-fine, then

(2) 1 -0y <x,_,  <x=x <t +8(),

whenee it follows that |[x — r= 8(1). Q.LD

In the theory of Riemann intcgration, we will use gauges 8 that are constant functions
to control the fineness of the partition; in the theory of the generalized Riemann integral,
the usc of nonconstant gauges is essential. But nonconstant gauge functions arise guoire
naturally in connection with coatinuous functions. For, let f : I » R be continuous on
I and let ¢ > 0 be given. Then, for each pomt r € 7 there exasts 6,(2) > O such that
if |x —t] <8_(£) and x € I, then |f(x)  f(#)| < & Since 3, is defined and 15 striclly
positive on 7, the function 8, is a gauge on /. Later in this section, we will use the relations
between gauges and continuity to give altemative proofs of the fundamental properties of
continuous functions discussed In Sections 5.3 and 5.4.

5.5.4 Examples (a) If$é and / are gaugeson / 1= [a, bland 1f O < 8(x) < y(x)forall
x € I, then every partition P that is é-fine 15 also y-fine. This follows immediately from
the inequalities

t,—y) <t —8(1) and L6 =1+ v ()
which imply that
refn - Sy 130)] Sy v +y)] for =1, -, n.
(b} If 4 and 4, are gaugeson I := [a, b] and if
8(x) := min{8,(x), 52(x)} forall x &1,

thea & 1s also a gauge on I. Morcover, since 8(x) < &, (x), then every é-fine partition is
4, -fine. Similarly, every 3-fine partition 1s also 8,-fine.
(¢) Supposc that § isdefincdon 7 := [0, 1] by

L if x =0,

x 1f O<x=<l.

5(x) =

[ Ed

Then & is a gauge on [0, 1. If 0 < ¢ < 1, then [r — &(1), t + 8(r)] = 3¢, 3¢]. which docs

not contain the point (0. Thus, if Pisad-fine partition of 7, then the only subinterval in 7
that contains 0 must have the point 0 as its tag.
(d) Tetybedefinedon 7 = [0, 1] by

]'—D if x=0o0rx=1,
y{x) .= %x if J<x < %
i—x)y f fex<l

Then y is a gauge on [, and it is an exercise to show that the subintervals in any y-fine
partition that contain the points 0 or 1 must have these points as tags. J
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Existence of 5-Fipne Partitions

In view of the above examples, it is not obvious thal an arbitrary gauge é admits a 5-fine
partition. We now use the Supremum Property of R to establish the existence of 8-fine
partitions. In the Exerciscs, we will sketch a proof based on the Nested Intervals Theorem
2.5.2.

5.5.5 Theorem I3 is a gauge defined on the interval [a, b], then there exists a §-fine
partition of [a, b].

Proof. Let E denote the set of all points x € [a, ] such that there exists a &-fine partition
of the subinterval [z, x]. The set F is not empty, since the pair ([a, x], @) 15 a -fine partition
of the interval [a, x] whenx € {a, @ ~ 8(a)] and x < b. Since E C [a, b], the sct E is also
bounded. Let u 1= sup E so thata < u < . We will show that u € £ and that u = b.

We claim that u € E. Since w — 6{(u) < u = sup E, there CXIsts v € F such that u —
8(u) < v < u. Let ’P he a é-fine partition of [a, v] and et ’P ’P J ([, u], u). Then
?3 1sa é-fine pd.l'tlt]()l’l of la, ul. so thatu € E.

If w < b, let wela, b] be such that u < w < u + §(u). If Q] 1s a &-fine partition
of [a, ul|, we let 'Qz = Q, U (Ju, w], u). Then Q, 1s a d-fine partition of [, w], whence
w € E.But this contradicts the supposition that u is an upper bound of £. Therefore u = b.

QED.
Some Applications -

Following R. A. Gordon (sce his Monthly article), we will now show that some of the major
theotems 1n the two preceding sections can be proved by using gauges.

Alternate Proof of Theorem 5.3.2: Boundedness Theorem. Since [ is continuous on
[, then for each + € I there exists 8(f) > O such that if x ¢ 7 and x - | < &(¢), then
| f(x)— f(&)] < 1. Thus é s a gauge on /. Let {(J,, 1)}/, bc a 8-fine partition of / and
let K :=max{|f(t) :i=1,---,n}. ByLemma5.5.3, given any x € [ there exists ¢ with
|x —t,| <8(¢,), whenee

| /@ =1/ = FE+ e =1+ K.
Since x € I is arbitrary, then f is bounded by 1 + K on /. QED.

Alternate Proof of Theorem 5.3.4: Maximum-Minimum Theorem. We will prove the
cxistence of x* Let M :=sup{f(x):x € I} and suppose that f(x) < M forall x € 1.
Since f 1s continuous on {, for each ¢t € f there exists 6(¢) > O such that if x € T and
lx — ¢ < 8(2), then f(x) < (M + f()). Thus & is a gauge on I, and if {(/, 7,)}/_, is a
§-fine partition of 1, we let

M= dmax(M 4 £, M~ f(1)).

By Lemma 5.5.3, given any x € I, there exists ¢ with |x — .| < §(z,), whence

fo) <3 (M4 [)) <M.

Since x € 7 is arbilrary, then M (< M) is an upper bound for f on I, contrary to the
definition of M as the supremnum of £, QED

Alternate Proof of Theorem 5.3.5: Location of Roots Theorem. We assumcthat f{r} # 0
forall ¢t € I. Since f is continuous at ¢, Exercise 5.1.7 implies that there exists 8{¢) > 0
suchthatifx € Fand|x —r < 8{t), then f(x) <Oif f(t) <0,and f{x} > O1f f(¢) > 0.
Then 8 1s a gauge on [ and we let {({ 1, )}! , be a §-fine partition. Note that for each £,
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cither f(x) < Oforallx € [x; |, x;]or f{x) > Oforall such x. Since f(x;) = f(a) <0,
this implies that f(x,) < O, which in turn implies that f(x,) < 0. Continuing in this way,
we have f(b) = f(x,) < O, conlrary to the hypothesis that f(b) > 0. QED,

Alternate Proaf of Theorem 5.4.3: Uniform Continuity Theorem. TLet < > 0 be given.
Since f 18 continuous dlr e [, there exists §(t) > Osuch thatif x € 7 and |x — ¢] < 28(¢),
then | f(x) — F(0)] < —e Thus 8 1s a gauge on 7. If {(1, £,)}]_, is a §-fine partition of /,
let &, = pun{8(s)). -- -, 8(r,)}. Now supposc that x, u € / and |x — | < 4,, and choose
with [x — .| < 5(3;.)_ Since

u—t| < lu—x[+c—t] <8 +8(1) <28(1),
then it follows that

|fx) = FQOI< 1) = FQII+1f() — f) <3¢ bie=¢

Therefore, f is uniformly continuous on /. Q.ED.

Excrcises for Section 5.5

1. Let$ be the gauge on [}, 1] defined by §(0) := % and 8(¢) = %r fort € (0, 1].
(a) Show that P = [{[0, 11.0}. ((1. 11, %) . (15, 11, 3)} is é-fine,
(b} Show that P, :— {{[0, 11,0} (11, 1), 3) . (13,10, 2)} is not §-fine.
)

2. Suprpose that 6 is the gauge defined by §,(Q) 1= ﬁ.él(r) = 3’ fort € (0, 1]. Are the partitions
given in Du.[cuc 18, -fina? Note that 8(:} <d,(1) forallr € [0, T].

Bl

m|~ JI-—-

3. Suppose that &, 1s the gauge defined by 8,(0) := L,) and 8,(r) = %! for t € (0, 1]. Ase the
partitions given in Excraise 1 4,-fine?

4. Tety bethe gauge in Example 5.5.4(d).
() Tfr e (0. 5] showihat [t y(n).t + y(1D]) =[31, 31} € (0, 3.

(b) 1fre (4. 1)showthat [r — (). £ + y(D]C (5. 1.

5. Leta < ¢ < b and let § be a gauge on [a, &]. 1f P is a §-fine partition of {a, ¢} and if P is a
é-fine partition of [c, b]. show that P UP" s 5-fine partition of [a, b] having r as a partition

point.
6. Leta < ¢ < bandlet §' and 4" be gauges on [a, ] and |¢, b). respectively. If § is defined on
la, b] by
&'(0) if r1etla o),
() = T mun{8'(e). 8" ()} if tr=c.
5D il 1€ (c, bl

then & is a gauge on [a. b]. Moreover, if P’ is a §'-fine partition of {4, <] and P” is a §”-fine
p.mmon of [r b), then P UP is atagped partitton of [a, £] having ¢ as a partition point. Explain
why PP’ may not be &-fine. Give an example.

7. Let$ and 8" be as in the preceding exercise and let §” be defined by
min{8'(1). 3(c — 1)) if 1€fa o),
87(r) ;= { min{d'{c), 8" (&)} if r—r,
min{d”(t), 3t —¢)}) if t € {c, b).
Show that 8 is a pauge on [, ) and that every §*-finc pantition P of (a. b] having < as a partition

point gives rise to a §'-fine partition P of [a, c] and 2 5”-fine partition P of (¢, b] such that
p=pup"
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8. Letd beagauge on [ :={a, &) and suppose that J does not have a §-fine partition.
(a) Lelc:= %(a + &). Show that at least one of the intervals |a, ¢) and [¢. b] docs not have a
4-fine partition.
(by Construct a nested sequence (/) of subintervals with the length of T equalto (h — a}/2"
such that £, does not have a 4-fine partition.
(¢) Tet £en,7 and let pelN be such that (b a)/27 < §(€). Show that
I, Sl 86).E 4+ 5(5)]. 50 the pair (7,. &) is a §-fine partition of 7,

9 let/:=la, blandlct f:7 — K be a (not necessanly continucus) function. We say that £ is

“locally bounded” at ¢ € T if there exists §(¢) = O such that fisboundedon ! Ve - §{(c). ¢ +
5(cY). Prove that if £ is tocally bounded at every point of 7, then f is bounded on /.

10. Let 7 :={a,b) and f: 7] — K We say that f is “locally increasing” a1 ¢ € ] if there ex-
ists §(c) = @ such that f is increasing on I N [¢ — 8(c), ¢ + 6(c)]. Prove that if £ is locally
increasing at every point of 7, then f is increasing oo /.

Section 5,6 Monotone and Inverse Functions

Recail that if A € R, then afunction f . A — R issaid to be increasing on A if whenever
x,. %, € Aandx, < x, then f(x,) < f(x,}). The function f 1s said to be strictly increasing
on A 1if whenever x,.x, € A and x| < x,, then f{x) < f(x,). Similarly, g : A > R is
said to be decreasing on A if whenever X, x; ¢ Aand x, < .x, then g(x,) = g(x,). The
function g is said to be strictly decreasing on A if whenever x,, x, € A and x; < x, then
glx.) > g(x,).

If a function is either increasing or decreasing on A, we say that it is monotonc on A. [f
S iseither strictly increasing or strictly decreasing on A, we say that f is strictly monotone
on A.

We note that if f: A — R 1s increasing on A then g := — f is decreasing on A,
similarly if ¢ © 4 — R isdecreasing on A then ¢ '= —¢ 1S increasing on A.

In this section, we will be concerned with monotone functions thai are defined on an
interval 7 € R, We will discuss increasing functions explicitly, but it 1s clear that there are
corresponding results for decreasing functions. These results can either be obtained directly
from the results for increasing functions or proved by similar arguments.

Monotone functions are not necessanly continuous. For example, if f(x) := 0 for
x €[0,1] and f(x):=1 for x € (1,2], then f is increasing on [0, 2], but fails (o be
continuous at x = 1. However, the next result shows that a monotone function always has
both one-sided limits (sce Definiticn 4.3.1) in R at every point that is not an endpoint of s
domarn.

5.6.1 Theorem Let! C R becanintervalandlet {1 — R beincreasing on I Supposc
that ¢ € I is not an cndpoint of f. Then

(1) lim_f =sup{f{x):x e/ x <<},

(i) lim f=inf{f(x):x el x> ¢}
x=rct

Proof. (1) First note that if x € J and x < ¢, then f(x) < f(c). Hence the set { f{x):
x € I, x < ¢}, which is nonvoid since ¢ is not an endpeint of 7, is beunded above by f(c).
Thus the indicated supremum exists; we denote it by .. If £ > (018 given, then . — ¢ s not

Rl d el abln pme TT o v, " - r_. ] P vy A .
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Since f isincreasing, we deduce thatif§, := ¢ — y andif0 <« c —y < §.,theny, <y <¢
s0 that
L—e<fly)=<fly)<L

Therefore | f(y) = L| < € when 0 < ¢ — y <« 4 . Sincc & > ( is arbitrary we 1nfer that (i)
holds.
The proof of (ii) is similar. QED

The next result gives cnteda for the continuity of an increasing function f at a pontc
that is not an endpoint of the interval on which f 18 defined.

5.6.2 Corollary Lcti C R beanintervalandict f 1 — X beincreasing on . Suppose
that ¢ € | js not an endpoint of I. Then the following statements are cquivalent.

{a) [ iscontinuous atc.
{b) rE’T— f - f(F) = .r]—i-rg+ f
() sup{f(x) xel x<ct= flo)y=inf{f(x): xe€l, x>c]

1

This follows casily from Theorems 5.6.1 and 4.3.3. We lcave the details fo the reader.
Let 7 be an interval and let f : 7 -> R be an increasing function. If a 1s the left
endpoint of /, it is an cxercise to show that f 1s continuous at z if and only if

fl@y=inf{f(x). xel a<x}

or if and only if f(a)= lum f. Similar conditions apply at a right endpoint, and for
X—a+

decreasing functions.
If f:7 > Risincreasing on [ and if ¢ is not an endpoint of 7, we define the jump of
f atctobe jple) = lim+f — lim f. (Sce Figure 5.6.1.) It follows from Theorem 5.5.1
X X—r—

that
jf(c) =inf{fi{x):xecf,x>cl—sup{fix):xel x <c)

for an incrcasing function. If the left endpoint ¢ of 7 belongs to 7, we define the jump of
f atatobe i(a) 1= lim+ f — f(a). U the nght endpoint & of [ belongs to 7, we define
- xX—a

the jump of f at b to he j},(b) = f{b) — lil}l_ f.

|
jled J:
|

Figure 5.6.1 The jump of f atc.

5.6.3 Theorem Lect! C Rbeanintervalandiet f T — R heincreasingonl. Ifc € I,
then f is continuous at ¢ 1f and only 1'fjf(c-) ={.
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Proof. 1f ¢ is not an endpoint, this follows immediately from Corollary 5.6.2. If c € [ is
the Jeft endpoint of 7, then f 1s continuous at ¢ if and only if f{c) = lim f, which 1s
X—+—

equivalent 1o j,(¢) = 0. Similar remarks apply to the case of a right endpoint. QED.

We now show that there can be at most a countable set of points at which a monotone
function is discontinuous.

5.6.4 Theorem Let] C R beanintervalandlet f 1 — R be monotoncon I. Then the
sct of points D C I at which f is discontinuous is a countable set,

Proaf. We shall suppose that f is increasing on J. It {ollows from Theorem 5.6.3 that
D={xel. jf(xj # 0}, We shall consider the case that 7 .= [a, &] 1s a closed bounded
interval, leaving the case of an arbitrary interval to the reader.

We first note that since f 1s increasing, then jf(c) >0 for all ¢ € /. Moreover, if

a<x <. - <x <bp, then (why?) we have

(1) flay = f@)+ j(x) +- -+ j (k) < fb).
whence 1t follows that
Jp (e = gile) 2 f(B) ~ fla).

(Sce Figure 5,6.2.) Consequently there can be al most & points in I = [g, »] where jf {x) >
(f(B) — f(a))/k. We conclude that there is at most one point x € [ where j (x) =
f(6) — f(a),; there are at most two points in [ where Jp(x) = (f(b) = f(a))/2; at most
three points in / where jf(x) > (f(b) — f(a))/3, and so on. Therefore therc 1s at most a
countable set of points x where j, (x) > 0. But since every point in D must be included in
thig set, we deduce that £ is a countable set. QED.

|
>.f(h} -~ fla)

|
I
[
[
_ | I
o { | |
| |

K _____ I R S IR I
I ; | |
flad] | |
i | |
. ] |

a X Xz X3 e b

Figure 5.6.2 Jex)+- -+ Ji(x) = fb) = fla).
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Theorem 5.6.4 has some useful applications. For example, 1t was seen in Lixercise
5.2.12 thatif 2 : R — R sausfies the identiry

(2) Alx + y) = h(x) + h(y) forall x,ye R,

and 1f & 1s continuous at a single point x,, then £ is continuous at every point of 2. Thus,
if & 15 a monatone function satisfying (2), then » must be continuous on X. [t follows
from this that A(x) = Cx forall x € K, where C := A(1).]

Inverse Functions . .

We shall now consider the existence of inverses for functions that are continuous on an
imterval /1 € K. We recall (see Scction 1.1) that a function f: 7 — R has an inverse
function if and only if f is injective (= one-one); that is, x, y € [ and x ;¢ ¥ imply that
f{x) # f(¥). We note that a strictly monotone function 1§ injective and so has an inverse.
In the next theorem, we show thatif / : I — [R5 a strictiv monotone continuous function,
then f has an inverse funciion g on J = f(J) that is strictly monotone and continuous
on J. In particular, if f is strictly increasing then so is g, and if £ is strictly decreasing
then so is g.

5.6.5 Continuous Inverse Theorem Let ] C IR be an interval and let f: 1 — & be
strictly monotone and continuous on I. Then the function g inversc to f is strictly monotonc
and conttnuous on J = f(I).

Proof. We consider the case that f s stnictly increasing, leaving the casce that f is strictly
decreasing to the reader,

Since J 1s continuous and / 1s an interval, 1t follows from the Preservation of Intervals
Theorem 5.3.10 that J := f(I) is an interval. Moreover, since f ig strictly increasing on
I, it 1s injective on [, therefore the function g @ J — IR tnverse to f exists. We claim
that g is strictly increasing. Indeed, if ¥, y, € J with y, < y,, then y, = f(x;) and y, =
Sx,) for some x|, x, € . We must have x; < x,; otherwise x; > x,, which imphes that
¥ = f(xy) = f(xy) = y,. contrary to the hypothesis that y, < y, Therefore we have
gly,) = x, <x,=g(y,). Since y, and y, are arbitrary elements of J with y, < y,, we
conclude that g is stnctly incrcasing on J.

[t remains to show that g 1s continuous on J. However, this 1s a consequence of the fact
that g(J) = I 15 an 1nterval. [ndced, 1f g s discontinuous at a point ¢ € /, then the jump
of g at ¢ is nonzero so that im g < lim g If we choose any number x # g(c) satisfying

Y—oo— ¥ i
hm g < x < hm g, then x has the property that x #£ g(y) for any y € J. (See Figure
X—f - i—rd
5.6.3.)Hence x ¢ [, which contradicts the fact that [ is an interval. Therefore we conclude
that g 15 continuous on J, QED.

The nth Root Function

We will apply the Continuous Inverse Thearem 5.6.5 to the nth power function. We need
to distinguish two cases: (i) n even, and (11) 7 odd.

(1} n even. In order to obtain a function that is strictly monotone, we restrict our
attention to the interval I := [0, o¢). Thus, let f(x) = x" forx ¢ [. (See Figure 5.6.4.) We
have seen (in Exercise 2.1.23) that if 0 < x < y,then f(x) = x™ < y" = f(y); therefore f
is strictly increasing on 7. Moreover, it follows from Example 5.2.3(a) that f is continuous
on /. Thercfore, by the Preservation of Intervals Theorem 5.3.10. J := f(I) 15 an interval.



5.6 MONOTONE AND INVERSE FUNCTIONS 153

Fipure 5.6.3 pg(y)# xfory e J.

We will show that J = [0. oc). Let y > 0 be arbitrary; by the Archimedean Property, there
exists k € N such that 0 < y < k. Since

fO=0<y <k <k" = f{k),

it follows from Bolzano's Intermediate Value Theorem 5.3.7 that y € J. Since y > 0 is
arbitrary, we deduce that J = [0}, oc).

We conclude from the Continuous Inverse Theorem 5.6.5 that the function g that 1s
inverse to f{x) =x" on [ = [0, oc) 13 strictly increasing and continuous on J = [{}, o).
We usually write

glx)=x""" or gy = Vx

for x = 0 (n even), and call = 7/x the ath root of x > 0 (n cven) The function g is
called the nth root function (n even). (See Figure 5.6.5.)
Since g i1s inverse to f we have

g(f(x)) =X and f(g(x)) =x for all x € [0, o).
We can wnite these equations 1n the following form:
(x“)ifn =X and (x"””)" = x

for ail x € [0, o) and n even.

| x > X

Figure 5.6.4 Graph of Figure 5.6.5  Graph of
fx)y=x" (x = 0, n even). glx) = x'" (x = 0, n even).



154 CHAPTER 5 CONTINUOUS FUNCTIONS

(i1) n odd. In this case we let F(x) '= x" for all x € RR; by 5.2.3(a), ¥ 15 continnous
on [R. We lecave it to the reader to show that F is strictly increasing on R and that F(R) =
R. (Sce Figure 5.6.6.)

[t follows from the Continuous Inverse Thearem 5.6.5 that the function (7 that is inverse
to F(x) = x" for x € R, 15 strictly increasing and continuous on R, We usually write

Gixy=x"" or G{x)= "x forx e R, nodd,

and call x'/" the nth root of x € B. The function G is called the nth reot function (n odd).
(Sec Figure 5.6.7.) Here we have

(_r”)”" = x and (xl“ﬁ”)n =x

forall x € B and n odd.

¥ ¥
A
i / -
Figure 5.6.6 Graphof Figore 5.6.7  Graph of
F(xy =x" (x € B, n odd). G(x) = x"" (x € R, n odd).

Rational Powers

Now that the nth root functions have been defined for n € N, it 15 easy to define rational
powers.

5,6.6 Definition (1) Ifm,n € Nand x = 0, we define x™/" = (x}/™)™.
(i) Ifm.neNandx > 0, wedefine x™™" = (xV/7y™™

Hence we have defined x” whenr isarational number and x > 0. The graphsof x +» x”
depend on whetherr > 1.r = 1,0 <r < 1, r =0, or v < 0. (See Figure 5.6.8.) Sincc a
rational number r € Q can be written in the form » = m/n withm € Z, n € N, in many
ways, it should be shown that Definition 5.6.6 is not ambiguous. Thatisif r = m/fn = p/fg
withm, p € Zandn, g € Nandif x > 0, then (x /™)™ = (x1/9)? We leave it as an exercisc
to the reader to establish this relatjion.

5.6.7 Theorem JfmeZ neN,andx > 0, thenx™" = (x™)!/".

Proof. If x>0 and m ne Z, then (x™)" = x™ = (). Now let y = x"" -
(x1/™™ > 0 so that ¥" = ((xV")7)" = ((x'")"}" = x™. Thereforc it follows that y =
(™)t QED.

The reader should also show, as an exercise, thatif x > Qand r, s € (3, then

xrxs —. xr+J — x:xr and (Xr)s — x” — (.Ij)r.
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Q<rel

|
|
|
|
|
|
1

Figure 5.6.8 Graphsofx — x" (x > 0).

Exercises far Section 5.6

If == [a.b]isaninterval and f : / — Risan increasing function, then the point a [respectively,
] is an absolute muniinum [respectively, maximuml] point for f on /. If f 15 strictly increasing,
then o is the only absolute minimum point for f on /.

If f and g ace hicreasing functions on an interval / € R, show that f + g is an increasing
funclion on /. 1f f 1s also stnetly increasing on /, then f 4 g 1s stctly increasing on J.

Show that both f{x)} :— x and g(x) := x — | are sirictly increasing on / := [0, 1], but rthat their
preduct fg 15 not incréasiag on /.

Show that if f and g arc positive increasing functions on an interval /, then their product fg is
increasing on f.

Show that if / := [a, Bl and [ I — R isincreasing on /, then f 18 continuous at « if and only

if fa) =inf{f(x):x € (a, bl

Let { € % be an interva! and let f @/ — ® be increasing on /. Suppose that ¢ € 1 is not an
endpoint of 7. Show that f 1s conlinuous at ¢ if and only if there exists a sequence (x ) in /
such thatx < cforn=1,3,5--1x >¢ forn = 12,46, -, and such that ¢ = ]jrn(xn) and

fley =tim (f(x)).

Let / < Rbeannterval and let f : f — B beincreasing on /. If ¢ 18 not an endpoint of /, show
that the jump Jj, (¢) of fatcisgivenbynf{fO) — flx)  x <c <y x.yvel}

Let f. g beincreasing onar interval 7 € Randlet f{x) > gix) forallx € f Ify € f(I)Ng(l),
show that f~ Wy < g 1(y). [Hint: First interpred this statement geometrically.]

Let f :=[0.1]andlet f : I — Rbedefined by f(x) := x for x rational, and f(x) ;=1 — x for
x irrational. Show that f is tnjective on { and that f (f(x)) = x for all x € F. (Hence f is iis

own inverse function!} Show thar f is continuous orly at the point x — ;
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10.

11.

12,

13.

14.
15,
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Tet7 :=Ja, b)andlet £:7 — R beconlinuous en 7 If £ has an ahsolute maxamum (respec-
tively, minimum] at ag interior point ¢ of /, show that f is not injective on /.

Let f{x):=xforx € [0. 1], and f(x) := { + x forx & (1, 2). Show that f and £~ are strictly
increasing. Are f and f~' continuous at every point?

Let £ : [0, 1] — R be a continuous functiocn that docs not take on any of its values twice and
with f(0) < F(1). Show that f is strictly increasing on [0, 1].

Let A: (0,11 — R be a function that takes on each of its values exactly twice. Show that A
cannot be continuous atevery point. [Hint: If ¢, < c, are the points where A attains 11§ supremum,
show that ¢, = 0. ¢, = 1. Now examine the points where h aitains s infimum.]

letx € R, x >0 Showthatifm,. pc Z n, g € N, and mg = np, then My = (e

HxeR x>0 andifr.s € Q. showthat x x* = x"™ = x"x" and (x"} =x" = ({x*Y.



CHAPTER 6

DIFFERENTIATION

Prior to the seventeenth century, a curve was generally described as a locus of points
satisfying some geometric condition, and tangent lines were obtained through geometric
construction. This viewpoint changed dramatically with the creation of analytic geometry
in the 1630s by René Descartes (1596-1650) and Pierre de Fermat (1601-1665). In this
new setting geometric problems were recast in terms of algebraic expressions, and new
classes of curves were defined by algebraic rather than geometric conditions. The concept
of derivative evolved in this new context. The problem of finding tangent lines and the
seemingly unrelated problem of finding maximum or minimum values were first seen to
have a connection by Fermat in the 1630s. And the relation between tangent lines to curves
and the velocity of a moving particle was discovered in the late 1660s by Isaac Newton.
Newton’s theory of “fluxions”. which was based on an intuitive idea of limut, would be
familiar to any modemn student of differential calculus once some changes in terminology
and notation were made. But the vital observation, made by Newton and. independently, by
Gottfried Leibniz in the 1680s, was that areas under curves could be calculated by reversing
the differentiation process. This exciting technique, one that solved previously difficult area
problems with ease, sparked enormous interest among the mathematicians of the era and
led to a coherent theory that became known as the differential and integral calculus.

Isaac Newton

Isaac Newton (1642-1727) was born in Woolsthorpe, in Lincolnshire, Eng-
land, on Christmas Day; his father, a farmer, had died three months earlier.
His mother remarried when he was three years old and he was sent to live
with his grandmother. He returned to his mother at age eleven, only to be
sent to boarding school in Grantbam the next year. Fortunately, a percepuve
teacher noticed his mathematical talent and, in 1661, Newton entered Trinity
Coliege at Cambridge University, where he studied with Isaac Barrow.

When the bubonic plague struck in 1665-1666, leaving dead nearly
70,000 persons in London, the university closed and Newton spent two years back in Woolsthorpe.
It was during this period that he formulated his basic ideas concerning optics. gravitation, and his
method of “fluxions”, later called “calculus”. He returned to Cambridge in 1667 and was appointed
Lucasian Professor in 1669. His theories of universal gravitation and planctary motion were
published to world acclaim in 1687 under the title Philosophie Naturalis Principia Mathematrica.
However, he neglected to publish his method of inverse tangents for finding areas and other work
in calculus, and this led to a controversy over priority with Leibniz.

Following an illness, he retired from Cambridge University and in 1696 was appointed War-
den of the British mint. However, he maintained contact with advances in science and mathematics
and served as President of the Royal Society from 1703 until his death in 1727. At his funeral,
Newton was eulogized as “the greatest genius that ever existed™. His place of burial in Westminster
Abbey is a popular tourist site.
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In this chapter we will develop the theory of differentiation. Integration theory, includ-
ing the fundamental theorem that relates differentiation and integration, will be the subject
of the next chapter. We will assume that the reader is already familiar with the geametrical
and physical interpretatiens of the derivatve of a function as described in introductory
calculus courses. Consequently, we will concentrate on the mathematical aspects of the
derwvative and not go into ils applications 1n geometry, physics, cconormics, and so on.

The first section 1s devoted to a presentation of the basic results concerning the dif-
ferentiation of functions. In Section 6.2 we discuss the fundamental Mean Value Theorem
and some of its applications. In Section 6.3 the important 1’Hospital Ruoles are presented
for the calculation of certain types of "indeterminale” limits,

In Section 6.4 we give a bref discussion of Taylor's Theorem and a few of its
applications—for exaraple, to convex functions and to Newton’s Method for the location
of roots.

Section 6.1 The Derivative

In this scction we will present some of the elementary properties of the derivative, We begin
with the definmition of the dervative of a function.

6.1.1 Definition Let / € [® be annterval, let f : / -» &, and let ¢ € /. We say that a
real number L is the derivative of f at ¢ if given any € > 0 there exists §(g) > 0 such that
if x € 7 satisfies 0 < |x — ¢| < &(g), then

flxy— flo)

(1) — - — Ll =e¢
X —— i

In this case we say that [ 1s differentiable at ¢, and we write f'(¢) for L.

In other words, the derivative of f at ¢ 1s given by the Linut

o Fe) = tim L =IO

X X —c
provided this limit exists. (We allow the paossibility that ¢ may be the cudpoint of the
nterval.)

Note 1t 15 possible to define the derivative of a function having a domain more general
than an interval (since the point ¢ need only be an element of the domain and also a cluster
point of the domain) but the significance of the concept is most naturally apparent for
functions defined on intcrvals. Consequently we shall limit our attention to such functions.

Whenever the derivative of f: 7 — R exists at a point ¢ € 7, its value 1s denoted by
f'(cy In this way we obtain a function ' whose demain is a subset of the domain of f.
In working with the function f', it is convenient to regard it also as a function of x. For
example, 1if f{x) .= x> forx € R, then at any ¢ in R we have
fix) = £(0) xt=ct

X

= lim — = lm{x +¢) = 2¢.

- x=sc X - =

f(c) — lim

k—*c

Thus, in this case, the function /' is defined on all of R and f'(x) = 2x for x € R.
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We now show thal continuity of f ar a point ¢ 18 a necessary (but not sufficient)
condition for the existence of the denivative at c.

6.1.2 Theorem If f: 1 — R hasaderivative at ¢ C I, then f 1s continuous at c.

Proaf. Forall x € I, x # ¢, we have

f)y— fley = (Lf(r)) (x —c).

Since f'(c) exists, we may apply Theorem 4.2.4 conceming the limit of a product to
conclude that

lim(f(x) = £(e) = hm (M) ( lim (x — c))

X -y X - A=<
= f{c)y 0=0.
Therefore, im f(x) = f(c) so that £ is continuous at ¢. QFED.

The continuity of f: 7 — R at a point does not assure the existence of the derivative
at that point. For example, if f(x) = x| for x € R, then for x # 0 we have (f(x) —
FON/(x —0) = |x|/x whichisegualto 11fx = 0,and ecqualto —11fx < Q. Thus the frrmt
at 0 does not exist {see Example 4.1.10(b)], and therefore the function 15 not diffecrentiable
at 0. Hence, continnity at a point ¢ 1s noi a sufficient condition for the derivative to exist
at c.

Remark By taking simiple algebraic combinations of functions of the form x +— |x — ¢,
1t is not difficult to construct continuous funcuons that do not have a denvative at a fimte (or
cven a countable) number of points. In 1872, Karl Weierstrass astounded the mathematical
world by giving an example of a function thal is continuous at every point but whose
derivative does not exist anywhere. Such a function deficd geometric intuition about curves
and tangent lines, and consequently spurred much deeper investigations into the concepts
of real analysijs. It can be shown that the function f defined by the series

=0

1
fo) =Y S €08(3"x)

i

n=0

has the stated property. A very interesting historical discussion of this and other examples of
continuous, nondifferentiable functions 1s given in Kline, p. 935-966, and also i1 Hawkans,
p. 44—46. A detailed proof for a shightly different example can be found in Appendix E.

There arc a number of basic propertics of the derivative that are very useful 1n the
calculation of the dertvatives of various combinations of functions. We now provide the
justification of some of these properties, which will be familiar to the reader from earber
COUrses.

6.1.3 Theorem Let/ € R be an interval, letcel. andlet f: I - Randg: I - R
be funciions that are differentiable at ¢. Then:

(a) Ifo € R, then the function of is differentiable at ¢, and

(3) @f) (¢} = af ().
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(bY The function f + g 1s differentiable at ¢, and

(4) (f+8) ()= fle)y+g'(e)
(¢) (Product Rule)y The function fg is differentiahle at ¢, and
(5) (feY(cy= f'l)gley + fle)g'(o).

(d) (Quotient Rule) If g(c) # 0, then the function f/g is differentiable at ¢, and

N :
(6) |/£ 0y = fl©egicy — flog'(c
\&/ ( ((‘))

Proof. We shall prove (c) and (d), leaving (a) and (b) as excreciscs for the reader.
(c) Let p = fg;thenforx € I x # ¢, we have

px) = ple) _ flx)gx) — fle)g(c

X = X -
_ f08(x) — f(0)8() + f()g(x) — F()g(e)
X —c
(x).— —
LSO F@ ey )50
X —C — C

Since g is continuous at ¢, by Theorem 6.1.2, then lim g(x) = g(c). Since f and g are
A oL
differentiable ar ¢, we deduce from Theorem 4 2.4 on properties of limits that

im 22729 e 4 £,

X+ X —c
Hence p := fg is differentiable at ¢ and (5) hoids.

(d) Let g := f/g. Sincec g is differentiable at ¢, it is continuous at that point (by
Theorem 6.1.2). Therefore, since g(c) # 0, we know from Theorem 4.2.9 that there exists
aninterval J C J withc € Jsuchthat g(x) #0forallx € J. Forx € J, x % ¢, we have

) —g(e) _ fx)/elx) — fle)/gle) _ fix)gle) — fle)g(x)
x—¢ x—c g(x)g(c)(x — c)
_ FO8() - O8O + f©)g(e) = [()8()
2(08(C)(x —¢)
_ [fu>—fw) f()e()—ﬂd}
s(gcy | x—c p
Using the continuity of g at ¢ and the differentzability of f and g at ¢, we get
, () —q(0) _ f1e)gle) — f{0)g'e)
g (¢) = lim
e e (g(0))’
Thus, g = f/g is differentiable at ¢ and equation (6) holds. QE.D.

Mathematical Induction may be used to obtain the following extensions of the differ-
entiation rules.

6.1.4 Corollary If f,, f,,- -, f, arc functions onan interval I to R that arc differentiable
atc € [, then.

(a) The function f| + f, + -+ + f, 1s differentiable at ¢ and

(7 (fy+ FH+ -+ L)@ = [+ fe)y+--+ £,



6.1 THE DERIVATIVE 161

(b) The function f f, --- f, is differentiable at ¢, and

(8) o )0 = FLOL0) - £,(0) + £ ()~ £, e)
Tt £ o) fide)

An important special case of the extended product rule (8) occurs if the functions are
cqual, that is, f} = f2 == fn = f. Then (8) becomes

(9) (') = n(f (" o).

In particular, if we take f(x) = x, then we find the denivative of g(x) ;= x" lobe g'(x) =
n—1

nx" 7' n € N.The formula is extended to include negative integers by applying the Quotient
Rule 6.1.3(d).

Notation If 7/ € Ris aninterval and f . [ — R, we bave introduced the notation ' to
denote the function whose domain 15 a subset of / and whose valuc at a point ¢ 18 the
derivative f'(c) of f at ¢. There are other notations that are somctimes used for f7; for
example, one sometimes writes D f for f'. Thus one can write formulas (4} and (5) in the
form:

D(f +g) = Df + Dg, D(fe)=(Df)-g+ f (Dg)

When x is the “independent vaniable”, it is common practice in clementary courses to write
dfjdx for f'. Thus formula (5) is sometimes wrilten in the form

d , . _{df dg
3;(] (x)g(x)) = (E;(I)) gle) + fx) (dx (—t)) :

This last notation, due to Leibniz, has certain advantages. However, 1t also has certain
disadvantages and must be used with some care.

The Chain Rule - e

We now tumn o the theorem on the differentiation of composite functions known as the
"Chain Rule”. It provides a formula for finding the derivative of a composite functiong » f
in terms of the derivatives of g and f.

We first establish the following theorem concerning the derivative of a function at a
point that gives us a very nice method for proving the Cham Rule. It will also be used to
derive the formula for differentiating inverse functions.

6.1.5 Carathéodory’s Theorem Let f be defined on an interval [ containing the point ¢.
Then [ is differentiable at ¢ if and only if there exists a function @ on I that is continuous
at ¢ and satisfies

(10) fx)=fley=px)x—c)  for xe€l.
In this case, we have ¢(¢c) = f' (o).

Proof. (=) 1f f'(c) exists, we can define ¢ by

J(x) = f(e) . .
wi(x) = i for xsc,x €1,
flie) for x =rc.

The continuity of ¢ follows from the fact that Iim ¢(x) = f’(¢). If x = ¢, then both sidcs

of (10) equal 0, while if x # ¢, then multiplication of ¢(x) by x — ¢ gives (10) for all other
x & 1.
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(<) Now assume that a function ¢ that is continuous at ¢ and satisfying (10) cxists. If
we divide (10) by x — ¢ # 0, then the continuity of ¢ implics that

wic) = im @{x) = lim M
kA X=—r( X -
exists. Therefore f is differentiable at ¢ and f7(¢) = ¢(c). QED.
To illustrate Carathéodory's Theorem, we consider the function f defincd by f(x) .=
X3 for x € 2. For ¢ € &, we see from the factorization

= (P o+ cz)(x —7)

that p(x) 1= x* + cx + ¢ satisfies the conditions of the theorem. Therefore, we conclude
that f is differentiable at ¢ € R and that f'(c) = ¢(c) = 3¢

We will now establish the Chain Rule. If f is differentiable at ¢ and g is differentiable
at f(c), then the Chain Rule states that the derivative of the composite function g ¢ f atc¢
is the product (g o /) (c) = g'(f(c)) - f'(c). Note this can be written

(ge =@ oN [

Onc approach to the Chain Rule 1s the observation that the difference quotient can be
written, when f(x) # f (¢}, as the product

gl —g(f@)  g(f))—e(f©) fx)= 5

X« N fix)y— o) | X —rc
This suggests the carrect limiting value. Unfortunately, the first factor in the product on
the right is undefined if the denominator f(x) — f(¢) equals O for values of x near ¢, and
this prescnts a problem. However, the use of Carathéodory’s Theorem neatly avoids this
difficulty.

6.1.6 Chain Rule Let!, S bemntervalsinE, letg: I — XRand { . J — K be functions
such that f(J) € I, and Jet c € J_If f is differentiable at ¢ and 1f g 18 differentiable st
f (¢}, then the composiie function g o f 1s differentiable at ¢ and

(11) (gof)’(C)Zg’(f(C))-J‘”(;‘)-

Proof. Since f'(c) exists, Carathéodory’s Thecorem 6.1.5 implies that there exists a func-
tion  onl J such that ¢ 15 continuous at ¢ and f({x) — f(c) = ¢x)(x —¢) for x € J,
and where ¢{c) = f'(c). Also, since g’(f(c)) exists, there is a functon v defined on 7
such that ¥ is continuous at 4 1= f(¢) and g(y) — gld) = Y (¥)(y — d) for y € I, where
W (d) = g'(d). Substitution of y = f(x) andd = f(c) then produces

g(f00) = g(fO)) =¥ (SN (F ()= S©) = [(¥ o f(0)} w(x)]x — )

for all x € J such that f(x) € [. Since the function (W ¢ f) - ¢ is continuous at ¢ and its
value at c is g'(f(c)) - f'{c), Carathéodory’s Theorem gives (11). Q.E.D.

If g is differentiable on [/, if f 1s differentiable on J and if f(J) € 7, then it foltows
from the Chain Rule that (go f) = (g’ o f) - f" which can also be written in the form

Dgof=(Dgaf) Df
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6.1.7 Examples (a) If f: T » K is diffcrentiable on 1 and g(y) := y" for y € R and
n € N, then since g’(y) = ny" ', it follows from the Chain Rule 6.1.6 that

(Ro /Y(x)= g{f0)) f/x) for xel

Therefore we have { ") (x) = n(f(x)]"—lf'(x) for all x ¢ [ as was scen in (9).

(b) Suppose that f : /] — = 1s differentiable on [ and that f(x) # 0 and f'(x) # O for
el I A(yy:=1/y for y # 0, then it is an exercise to show that h'(y) =— —1/y* for
y € X, v # 0. Therefore we have

1y , (3
(—)(r) —(he Y =H(FO) ==L o ser
! (f(0)
(¢) The absolute value function g(x) ;= |x| 18 diflerentiable at all x % 0 and has dernvative

g'(x) = sgn(x) for x # 0. (The signum function is defined in Example 4.1.10(b).) Though
sgn is defined cverywhere, 1tis not equal to g’ at x = 0 since ¢'(0) does not exist.

Now if f is a differentiable function, then the Chain Rule implies that the function
g o f =|f|1isalso differentiable at all points x where f(x) # 0, and 1ts derivative is given
by

fx) if  f{x) >0,
- if f{x) < 0.

If f is differentiable at a point ¢ with f(¢) = 0, then 1t 1s an exercise to show that | f] 1s
differentiable at ¢ if and only if f'(¢) = 0. (Sce Exercise 7.)

For cxample, 1f f(x) :— x2 — 1 for x € R, then the derivative of its ahsolute value
| Fi(e) = I)c2 — Ifisequalto ] f1'(x) = sgn[,x:2 —1)-(2x)forx # 1, 1. SceFigure6.1.1
for a graph of | f}.

|f|}(’~’€) =sgn(fx) f{x)— {

Figure 6.1.1 The function | f'(x) = |x> = 1.

(d) It will be proved later that 1f S(x) :=sinx and C(x) := cos x for all x € [§, then
S'(x) =cosx = C(x) and C'(x) = —sinx = =S(x)

for all x € R. If we usc thesc facts together with the definitions

sin x 1
sec X =

tanx ‘= , ,
COS X COsS X
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forx #£ (2k -+ )y /2, k ¢ Z, and apply the Quotient Rute 6.1.3(d), we obtain

(cosx)(cosx) — (sinx)(— sinx)

Dtanx = = (secx)?,
(cns;x):Z )
0— 1(—sl 8
Dsecx = - ( 711):) — 5 = (secx)(tanx)
(cos x)* (cosx)
forx # 2k + Dm/2, ke Z.
Simularly, since
COs X 1
cotx ;= —, C8C X 1= —
sinx Sin x
for x # kw k € Z, then we obtain
Dcotx = —{cse x)? and Dcscx = —(cscx){cotx)
faorx # km k ¢ Z.
(e) Supposethat f is defined by
Flxy = x*sin(l/x) for x #£0,
Tl o for x =0.

If we use the fact that Dsinx = cosx for all x € R and apply the Product Rule 6.1.3(c)
and the Chain Rule 6.1.6, we obtain {why?)

f(x) = 2xsin(1/x) — cos(1/x) for x # 0.

If v = 0, none of the calculational rules may be applied. (Why?) Consequently, the deriva-
tive of f at x — 0 must be found by applying the definilion of derivative. We find that

_ x)— f(0 o xTsin()/x _ )
F(0) = lim f()—f() = lim x sint/x) = lim x sin(1/x) = 0.
' v—1) x -0 1—0 X x—=0
Iience, the derivative f of f exists at all x € R. However, the function f' does not have a
fimit at x = 0 (why?), and conscquently f’ is discontinuous at x = 0. Thus, a function [
that is differentiable at every point of R need not have a continuous denivative [ -

Inverse Functions -

We will now relate the denvauve of a function to the derivative of its inverse funcrtion,
when this inverse function exists. We will limit our attention to a continuous strictly
monotone function and use the Continuous Ioverse Theorem 5.6.5 1o ensure the existence
of a continuous inverse function.

If f 1sacontinnous staactly monotone function on an interval 7, then its mverse function
g= f~!is defined on the interval J 1= f(I) and satisfies the relation

g(f(0)) =x for xel

If c 1 and d := f(c), and if we knew that both f'(¢) and g'(d) exist, then we could
differentiate both sidcs of the equation and apply the Chain Rule to the left side to ger
g (f @) f'cy =1.Thus,if f'(c) # 0, we would obtain

l

"dy= —.
g'(d) 710
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However, it is necessary to deduce the differentiability of the inverse function g from the
assumed differentiability of f before such a calculation can be performed. This is niccly
accomplished by using Carathéodory's Theorem.

6.1.8 Theorem [ILct ] be an interval in R and let f I - R be strictly monotone and
continuousoni.LetJ := f(I)andlctg : J — R be the strictly monotone and continuous
function inverse to f. If f is differentiable atc € I and f'(c) # 0, then g is differentiable
atd = f(c) and

1 1
fley  flgldy

(12) gid) =

Proof. Given ¢ ¢ R, we obtain from Carathéodory’s Theorem 6.1.5 a function ¢ on {
with properties that @ 1s continuous ate, [ (x) — f(c) = wlx)(x — ¢} forx € f,and () =
f(¢). Since @(¢) # 0 by hypothesis, there exists a neighborhood V := (¢ — 4, ¢ -+ 8) such
that @(x} £ O forall x € VN 7. (See Theorem 42.9)If U := f(V N I), then the inverse
function g satisfics f(g(y)) = y forall y € U, so that

y—d = f(g) -~ f©)=0(e(»)- () — gld),
Since w(g(y)) # O for y € U, we can divide 1o get

!
g(y) —gld) = ———=

(y —4a).
¢(g(»)
Since the function 1/(g o g) is continuous at 4, we apply Theorem 6.1.5 to conclude that
g'(d) exists and g'(d) = 1/¢(g(d)) = 1/pc) = 1/f (). Q.E.D.

Note The hypothesis, made in Theorem 6.1.R, that f'(c) % 0 is essental. In fact, if
f'(c) = 0, then the inverse function g is never differentiable atd = f(c¢), since the assumed
existence of g'(d) would lead to 1 = f'(e)g'(d) = 0, which is impossible. The function
f(x) := x> with ¢ = 015 such an example.

6.1.9 Theorem [Let ! be an interval and let £ I — R he strictly monotone on I. Let
J = f(lyandlet g : J — R be the function inverse to f. If f is differentiable on I and
f'(x) # 0 forx € I, then g 1s differentiable on J and

(13) g =

Proof. If f isdifferentable on 7, then Theorem 6.1 .2 implies that f 1s continuous on 7,
and by the Continuous Inverse Theorem 5.6.5, the inverse funclion g 1s continuous on J.
Equation (13) now follows from Theorem 6.1.8. QED.

Remark If f and g arc the functions of Theorem 6.1.9,and ifx € [ and y € J are related
by y = f(x)and x = g(y). then equation (13) can be written in the form

1 l
"fW=——"-— yel or "o ix)= ——, xel.
g (¥) T o) (& o fHx) 0
It cag also be written in the form g'(y) = 1/f'(x), provided that it is kept in mind that x
and y arc related by y = f(x}and x = g(y).



6.1.10 Examples (a) Thefunction f: R — Rdefinedby f(x) '= x> +4x + 3iscon-
tinuous and strictly monotone increasing (since it is the sum of two strictly increasing func-
tions). Moreovcer, f'{x) = Sx* + 4 is never zero. Therefare, by Theotem 6.1.8, the 1nverse
function g = f ™ is differentiable at every point. If we take ¢ = |, then since f(1) = 8,
we obtain g'(8Y = ¢'(f (1) = 1/ (1) = 1/9.

(b) Letrn ¢ Nbeeven, let 7 := [0, 00), and let f(x) ;= x" for x c /. It was secn at the
end of Section 5.6 that f 1s strictly increasing and continuous on 7, so that ils inveise
function g(y) = y”” for v € J 1= [0, 00) is alsp strictly increasing and continuous on J.
Morcaver, we have f'(x) = nx""' forall x € 7 Hence it follows that if y > 0, then g'(y)

exists and
Y= —— = 1 ]
fffg(}‘)} n(g(y))" 1 n}_,fn---])/n

Hence we deduce that

1
g'(y) = -—y“/”)_] for y > 0.
n

However, g is not differentiable at 0. (For a graph of f and g, see Figures 5.6.4 and 5.6.5.)
(¢) Letn € N,n # 1,beodd, let IF{x) :=x"forx € R andlet G(y) := y1/” be its inverse
function defined for all y € R. As in part (b) we find that G 1$ differentiable for y £ 0
and that G'(y} = (1/n)y""/"~! for v # 0. However, G is not differentiable at 0, even
though G is differcnuable for all y # 0. (For a graph of F and (. sce Figures 5.6.6 and
5.6.7)

(d) Letr :=m/n be a positive rational number, let 7 := |0, =), and let R(x) = x" for
x € I. (Recall Definition 5.6.6.) Then R is the composition of the functions f(x) ‘— x™

and g(x) ‘= x'/" x € [. Thatis, R(x) = f(g(x)) for x € I. If we apply the Chain Rule
6.1.6 and the results of (b} |or (c), depending on whether n 15 even or odd], then we obtain

Rr(x) — f:(g[x))gf(x) — m(xl;’n)m 1 ]_x(l,fn) 1
i1

L/ s
_xn\m;rl) 1 _ rxr 1
n

forallx > 0.If r > 1, thenitis an exercise to show that the derivative also exists at x = 0
and R'(0) — 0. (For a graph of R scc Figure 5.6.8.)

(e) The sine functon is strictly incrcasing on the interval f = [—m/2, 7 /2]; therefore
its inverse funciion, which we will denote by Arcsin, exists on J :=[—1, 1]. That is, if
xe€[—m/2, m/2)andy € --1,1]theny =— sinx if and only 1f Arcsiny = x. [t was asserted
(without proof) 1n Example 6.1.7(d) that sin 1s differentiable on [ and that Dsinx =
cosx forx € I. Since cosx # Qforx in (—n/2, 7 /2) it follows from Theorem 6.1.8 that

1 1
D Arcsin y = Dsinx - cos X
_ ! _ 1
forall y € {(—1, 1). The denvative of Arcsin does not exist at the points —1 and I. J

Exercises for Section 6.1

1. Use the definition to find the derivative of each of the following functions:
fa) fixy:= x'forx € R, (b) glxy =1l/xforx € R x # 0,
() Alx) .= . Jxforx > 0, (d) k(x) =1/ /xforx = 0.



10.

13.

14.

15.

16.

17
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Show that f{x) := x'/*, x € R, is not differentiable at x = 0.
Prove Theorem 6.1.3(a), (b).

Let f: R — K bedefined by fix) = x? for x rational, Fix}:= 0 for x irrational. Show that
f 1s differentiable at x = 0, and find f'(0).

Differentiate and simplify:

@) flx):= el (b} g(x} = v5--2x + x°,
X
{c) Fk{x):= (sin x*)’" form, k e N, (d) kixy = tan(_xg) for x| < \/'r—,/z

Letn e Nandlet £ : R - Rbedefined by f(x) ;== x" forx > Oand f(x) :=Oforx < 0. For
which values of n is f' continuous at 0? For which values of n is £ differentiable at 07

Suppose that f - K > R s differentiable at ¢ and that f{¢) = 0. Show that g(x) = | f{x}{ 18
differentiable at ¢ 1f and only if f'(c) = 0.

Determine where each of the following functions from R (o R is differentiable and find the
denvative:

(a) flx):=lx| t ix - 1, by gx) ==12x 4 [x],

{c) hx) = x|x|, (d) &{x):=|sinx|,

Prove that if f K — R is an even function {that is, f{—x) = f(x) for all x ¢ ®] and has a
dertvative at every point, then the derivative f’ is an 0dd function [that is, f'(—x) = — f'(x)
forall x ¢ R]. Also prove thatif g : ® — R 1s a differentiable odd function, then g’ 1s an even
functon.

Let g : R — R he defined by g(x) := x? sin[l/xﬁ) for x # 0, and g(0) := 0. Show that g is
differentiable for all x € . Also show that the derivative g’ is8 not bounded on the interval
(—1,1].

Assume that there exists a function L ; (0, oo} — X such that L'(x} = 1/x for x = 0. Calculate
the denvatives of the following functions:
(a) f(x) = L2x+3forx >0, (b) g(x):= (L{x*) forx = 0,

{c) h(xy =L{axiforaga » 0, x > 0, {(dy k{xy:=L(L{xYYwhen L{x) > 0.x > 0.

Ifr = (is arational number, let £ : 2 — X bedefined by f{x) := x"sin(1/x) for x # 0. and
£(0) .= 0. Determine those values of r for which f7(0) exists.

If f: R — Ris differentiable at ¢ € X, show that
Fley=lim{n{fic+1/n) - f(0}).

However, show by cxample that the existence of the limit of this sequence does not imply the
exastence of £'{c).

Given that the function A{x) = x* + 2x + 1 for x € R has an iaverse ™' on R, find the value
of (h~")'{y) at the points corresponding to x =0, 1, —1.

Given that the restriction of the cosine function cos to 7 1= [0, ] is strictly decreasing and
that cosO =1, cosm = —1,let J :=[-1, 1], and let Arccos: J — IR be the functon inverse
to the restriction of cos to /. Show that Arccos is differentiahle on (=1, 1) and DArccos y —
(—1y/ {1 - yE]”2 for y € {(—1, 1}. Show that Arccos is not differentiable at —1 and 1.

Given that the réstriction of the tangent function tan to I := (—m /2, w/2) is strictly increasing
and that tan(/) = X, let Arctan: B > R be the function inverse to the restriction of tan to /.
Show that Arctan is differentiable on R and that DArctan(y) = (1 + y») ™ for y € ®.

Let f : [ — R be differentiable at ¢ € [, Establish the Straddle Lemma: Given ¢ > 0 there
exists 8(e) > O such that if u, v € 7 satisfy ¢ —&(g) < < ¢ < v < ¢+ 4(¢), then we have
| fuy — fu) = (v —w) ()] < e(v - u). [Hint: The §() is given by Definition 6.1.1. Sub-
tract and add the terin f (¢} — cf’(¢) on the left side and use the Trianpgle Inequality.]
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Section 6.2 The Mean Value Theorem

The Mecan Value Theorem, which relates the values of a function to valucs of its derivative,
is one of the most useful regults in real analysis. In this section we will establish this
important theorem and sample somc of its many consequences,

We begin by looking at the relationship between the relative extrema of a function
and the values of its derivative. Recall that the function f : 7 — R is said to have a
relative maximum [respectively, relative minimum) at ¢ € 7 if there exists ancighborhood
V = V,(c) of c such that f(x) < f{c) [respectively, f(c) < f(x)]forallx in V N J We
say that f has arelative extremum at ¢ € [ if it has either arelative maximum or a relative
minimum at ¢.

The next result provides the theoretical justification for the familiar process of finding
points at which f has relative extrena by cxamining the zeros of the derivative. However,
it must be realized that this procedure applies only to interior points of the interval. For
example,if f{x) ;= x onthe interval 7 := [0, 1], then the endpoint x = 0 yields the unique
rclative minimum and the endpoint x = | yields the unigque maximum of f on 7, but ncither
point is a zeta of the derivative of f.

6.2.1 Interior Extremum Theorem lLet ¢ be an intevior point of the interval T at which
f: I — R has a relative extrermwm. If the derivative of f ar c exists. then f'(c) =0,

Proof.  We will prove the result only for the casce that § has a relative maximurn at ¢; the
proof for the case of a retative munimum is similar.
If f'(¢) > 0.then by Theorein 4.2.9 there exists a neighborhood V € I of ¢ such that

fixy— flo)

X —C

= {) for x eV x #¢.

Ifx € Vand x > ¢, then we have

flx) = Jfle)
s L >

X =7

fxy— fley=x o 0.

But this contradicts the hypothesis that f has a relauve maximum at ¢. Thus we cannot
have f'(¢c) » 0. Similarly (how?), we cannot have f'(c) < (0. Therefore we must have
filc) =10. QED.

6.2.2 Corollary ILet f: I — K be continuous on an interval I and suppose that f has
relative extremum at an interfor point ¢ of I. Then either the derivative of f at ¢ docs not
exist, or 1t 15 equal to zero.

we note thatif f(x) '= |x]on 7 :={- 1, 1], then f has an intertor minimum at x = 0,
however, the derivative of f fails to existat x =0,

6.2.3 Rolle’s Theorem Suppose that f 1s continuous on a closed interval I := [a, D), that
the derivative f' exists at every point of the open interval (a, b), and that f{a) = f{b) =0,
Then there exists at least one point ¢ io (a, b) such that f'(c) = 0.

Proof. 1 f vanishes identically on 7, then any ¢ in (a, b) will satisfy the conclusion of
the theorem. Hence we suppose that f does not vanish identically, replacing f by — f
if necessary, we may suppose that f assumes some positive values. By the Maximum-—
Minimum Thearem 5.3.4, the function f attains the value sup{ f(x) : x € I} > 0 at some
point ¢ in 7. Since f(a) = fF(b) = 0, the point ¢ must lie in (a, k), therefore f'(c) exists.
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Since f has a relative maximum at ¢, we conclude from the ITnterior Extremum Theorem
6.2.1 that f'(c) = 0. (Scc Figure 6.2.1.) QED.

As a consequence of Rolle’s Theorem, we obtain the fundamental Mean Value
Theorem.

6.2.4 Mean Value Theorem Suppose that f 1s continuous on a closed interval [ =
{a, b), and that { has a derivative in the open interval (a, &). Then there exists at least one
point ¢ in {a, b) such that

f{b) = fla) = fi(c)b—a).

Proof. Consider the function ¢ defined on I by

by — flu
p(x) = F(x) — fla) - %_{{Ju _a.

[The function ¢ is simply the difference of f and the {function whose graph is the line
segment joining the points (a, f{a)) and (b, f(b}); see Figure 6.2.2.1 The hypotheses of
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Figure 6.2.2 The Mcan Value Theorem
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Rolle's Theorem are satisficd by ¢ since ¢ is continuous on [a, b], differentiable on (a, b)),
and @ (a) = @(b) = 0. Thercfore, there exists a point ¢ in (a, ») such that

bBY —
0=¢'(c)= flc) — I ; _j:(a)

Hence, f(b) — f{a) = f'(e)b -- a). QED.

Remark The geometric view of the Mean Value Theorem is that there 18 some point on
the curve v = f({x) at which the tangent line is parallel to the line segment through the
pownts (a, f{a)) and (b, f(P)). Thus 1t 1s easy to remember the statement of the Mean
Value Theorem by drawing appropnate diagrams. While this should not be discouraged,
it tends to suggest that s importance 18 geometrical in nature, which 1s quite musleading.
In fact the Mcan Value Theorem 1s a wolf in sheep’s clothing and is the Fundamential
Theorem of Dilfersntial Calculus. In the remainder of this section, we will present some of
the consequences of this result. Other applications will be given later.

The Mean Value Theorem permits one to draw conclusions about the nature of a
function f from information about its derivative f'. The following results are abtained in
this manner.

6.2.5 Theorem Suppose that f is conunuous on the closed intervai I = [u, b, that
is differentiable on the open interval {a, b), and that f'(xy =0 forx ¢ (a. k). Then f is
constant on i

Proof.  We will show that f(x) = f(g) forall x € . Indeed, if x C I, x = u, 15 given,
we apply the Mean Value Theorem to f on the closed interval [e, x]. We obtain a point ¢
(depending on x) between a 2nd x such that f(x) — f(a) = f'(c)(x — a). Since f'(¢) - 0
(by hypothesis), we deduce that f{(x) — f(a) = 0. Hence, f(x) = f{a) forany x ¢ I.
QED

6.2.6 Corollary Suvpposc that f and g are continuous on { .= |a, b], that they are dif-
{erentiable on (a. b)), and that f'(x) = g'(x) for all x € (a, b). Then there cxists a constant
C suchthat f =g+ Conl.

Recall that a funcuon f © 7 — R8s said to be increasing on the interval [ 1f whenever
X\, X, in I satisfy x, < x,, then f(x|) < f(x,). Alsorccall that / is decreasing on [ if the
function — f is increasing on [

6.2.7 Theorem ILet f. 1 — R be differentiabie on the intcrval I. Then:
(a) fisincreasingoni ifandonlyif f'(x) > Oforallx € 1.
(b) f isdeccreasingonl ifandonly il f'{x) <Oforallx e /.

Proof. (a) Supposc that f'(x) = O forall x € I, If Xy, X, in 1 satisfy x; < x,, then we
apply the Mcan Value Theorem to f on the closed interval J := [x), x,] to obtain a point
c in (x,, Xx,) such that

f) — flx) = fle)x, —x)).
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Since f'(¢) > 0 and x, —x, > 0, it follows that Fxy) = f(x;) = 0. (Why?) Hence,
f(xy) = fi{x,) and, since x, < x, are arbitrary poinis in 7, we conclude that [ is in-
creasing on /.

Faor the converse assertion, we suppose that f 1s differentiable and increasing on [
Thus, for any point x = ¢ in I, we have {f(x) — f(c)}/(x — ¢) > 0. (Why?) Hence, by
Theorem 4.2.6 we conclude that

70 = lim L9 = T©@ L
x—c X - -
(b) The proof of part (b) 13 sumilar and will be omitted. QED.

A function f is sald to be strictly increasing on an interval 7 if for any points x|, x, in
[ suchthat x, < x,, wehave f(x;) < f(x,). Anargument along the same lines of the proof
of Theorem 6.2.7 can be made to show that a function having a strictly positive derivative on
an interval is strict]y increasing there. (See Exercise 13.) However, the converse assertion
is not true, since a stoctly increasing differentiable function may have a derivative that
vanishes at certain points. For example, the function f : R — R defined by f(x) 1= x* is
strictly increasing on R, but f'(0) = 0. The situation for strictly decreasing functions is
similar.

Remark [t is reasonable to define a function to be increasing at a point if there is a
neighborhond of the point on which the function is increasing. One might suppose that,
if the denivative 15 stnctly positive at a potnt, then the function is increasing at this paint.
However, this supposition 1s false; indeed, the differentiable funciion defined by

v x 25 sinyx) if x#0.
g(x)._{ 0 § ox =0

is such that g'(0) = 1, yet it can be shown that g is not increasing in any neighborhood of
x = 0. {See Excrcisc 10.)

We next obtain a sufficient condition for a function to have a relative extremum at an
interior point of an interval.

6.2.8 First Derivative Test for Extrema Let f be continunus on the interval [ = [a, b]
and let ¢ be an intenor pointof I. Assume that f is diffcrentiable on (a, ¢) and (¢, b). Then:

(a) If there is a necighborhood (¢ — 8, c+8) C I suchthat f'(x)>0forc—8<x <
and f'(x) < 0forc < x < ¢+ &, then [ has a relative maximurm at ¢.
(b) If there is a neighborhood (¢ — 8,c+8) € J suchthat f{{x)<0forc—d<x <c
and f'(xy > 0 forc < x < ¢+ 8, then f has a relative minimum at c.

Proof. (a) If x € (¢ — 4, ), then 1t follows from the Mezan Value Theorem that there
exists a point ¢, € (x, c) such that f{c) — f(x) = (¢ —x)f’(cx). Since fr(Cx) >0 we
infer that f(x) < f(c) for x € (¢ — 4, ¢). Similarly, it follows (how?) that f{x) < f(c¢)
for x € (¢, ¢ + &8). Theretore f(x) < f(c)forallx € (¢ — 8, ¢ + &) so that f has arelative
maximur at €.

{b) The proof is similar. QED.

Remark The converse of the First Derivative Test 6.2.8 is not true. For example, there
exisrs a differentiable function f : B — X with absolute minimum at x = () but such that
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[’ takes on both posttive and negative values on both sides of (and arbitrarily close to)
x = 0. {(Sce Exercise 9.)

Further Applications of the Mean Value Theorem

We will continue giving other types of applications of the Mcan Value Theorem; in doing
so we will draw more freely than before on the past experience of the reader and his or her
knowledge concemning the derivatives of certain well-known functions,

6.2.9 FExamples (a) Rolle’s Theorem can be used for the location of roots of a function.
For, if a function g can be 1dentified as the denivative of a function f, then between any two
roots of f there is at least one root of g. For example, let g(x) := cos x, then g is known to
be the denvative of f(x) = sinx. Illence, between any two roots of sin x there is at least
one root of cos x. On the other hand, g'(x) = —sinx = — f(x), so another application of
Rolle’s Theorem tells us that between any two roots of cos there is at least one root of sin.
Therefore, we conclude that the roots of sin and cos interlace each other. This conclusion
is probably not ncws to the reader; however, the same type of argurmnent can be applied to
the Bess! functions J of ordern =0, 1,2, - - by using the relations

T ) =x"S (), XU ) = —x

e (X) for x> 0.

The details of this argument should be supplied by the reader.

(b)Y We can apply the Mean Value Theorem for approximate calculations and to obtain
error cstimates. For cxample, suppose it is desired to evaluate +/105. We employ the Mean
Value Theorem with f(x) := /x,a = 100, b = 105, to obtain

- 5
V105 — /100 =
2/¢

for some number ¢ with 100 < ¢ < 105. Since 10 < /o < /105 < /121 = 11, we can
assert that

05— 10 « —>
20D = 20109

whence it follows that 10.2272 < /105 < 10.2500. This estimate may not be as sharp as
desired. Tt1s clear that the estimate /¢ < v/105 < /121 was wastcful and can be improved

by making use of our conclusion that +/105 < 10.2500. Thus, Ve < 10,2500 and we easily
determine that

5
0.2439 <« ———— < /105 — 10.
2(10.2500)
Our improved estimate is 10,2439 < V105 < 10.2500. U

Ionequalities _

One very 1mportant use of the Mcan Value Theorem is to obtain certain inequalities.
Whenever information concermning the range of the derivative of a function is available, this
information can be used to deduce certain properties of the function 1tself. The following
examples illustrate the valuable role that the Mean Value Theorem plays in this respect.
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6.2.10 Examples (a)}) The exponential function f(x) := e* has the derivative f'(x) =
e* forall x € B Thus f'(x) » Lforx > 0,and f'(x) < 1 for x < 0. From these relation-
ships, we will derive the incquality

{1 et > 1+ x for xe R,

with equality occurring if and only if x = 0.

If x =0, we have cquality with both sides equal to 1. Tf x > 0, wc apply the Mean
Value Theorem to the function f on the interval [0, x]. Then for some ¢ with 0 < ¢ < x
we have

e — el = e (x =0,

Since €% = 1 and ¢ > 1, this becomes ¢* — | > x so that we have ¢* > | + x forx > Q.
A similar argument establishes the same strict inequality for x < 0. Thus the inequality (1)
holds for all x, and equality occurs only if x = 0.

(b) The function g (x) := sin x has the derivative ¢'(x) = cos x forall x € R. On the basis
of the fact that —1 < cosx < 1 forall x € R, we will show that

(2) —x <sinx = x forall x >0.

Indeed, if we apply the Mean Value Theorem to g on the interval [0, x], where x > 0, we
obtain

sinx — sin{} = (cosci(x — 0)

for some ¢ hetween 0 and x. SincesinOG=0and —1 < cosec < 1, wehave --x < sinx < x.
Since equality holds at x = 0, the inequality {2) 15 established.
(¢) (Bernoulli's inequahity) I[f & > 1, then

(3) (1 4+x)* > 1+ ox forall x» » —1,

with equality if and only if x = 0.

This incquality was cstablished carlier, in Example 2.1.13(c), for positive integer
values of o by using Mathematical Induction. We now derive the more general version by
employing the Mean Value Theorem.

If h(x):= (1 +x)" then K'(x) = «(! —l-x)“_l for all x > —1. [For raticnal o this
derivative was cstablished in Example 6.1.10(c). The extension to urational will be dis-
cussed in Section 8.3.] If x > 0, we infer from the Mean Value Theorem appliced to £ on
the interval [0, x] that there exists ¢ with O < ¢ < x such that A{x) — A(0) = A'(c){(x — 0).
Thus, we have

(l+x)*=1=o(l+e) 'x

Since ¢ > 0 and @ — 1 > O, it follows that (1 + ¢)*~' > | and hence that (1 +x)* »
l +ax. If —1 < x < 0, a similar use of the Mean Value Theorem on the interval [x, 0]
leads to the same strict inequality. Since the case x = O results in equality, we conclude
that (3) s valid for all x > —1 with equality if and only if x = 0.

(d) Let o be a real number satisfying 0 < « < 1 and let g{x) =ax — x¥ for x > 0.
Then g'(x) = (] — x*7"y, so that g'(x) <O for O < x < 1 and g’'(x) > 0 for x > 1.
Conseguently, if x > O, then g(x) > g(1) and g(x) = g(1) if and only 1f x = I. Therefore,
if x >0and 0 < & < 1, then we have

x¥ <ax 4+ (1 —a)
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Ifa > 0andb > 0andif welet x = a/b and multiply by b, we obtain the 1nequality
a®b'™* < gg + (1 —a)b,

where equality holds if and only if a = &.

The Intermediate Value Property of Derivatives

We conclude this section with an interesting result, often referred to as Darboux’s Theorem.
It states that if a function f 18 differentiable at every point of an interval 7, then the function
f' has the Intermediate Value Property. This means that if £’ takes on values A and B, then
it also takes on all values between A and B. The reader will recognize this property as onc of
the important consequences of continuity as established 1n Theorem 5.3.7. It 1s remarkable
that derivatives, which need not be continuous functions, also posscss this property.

6.2.11 Lemma Let{ CR be aninterval, lct f: I — K, Iet ¢ ¢ I, and assume that f
hus a derivative at ¢. Then:

(@) If f'(c) > 0, then there is a number 8 > 0 such that f(x) > f{(c) for x € I such that
c<x <c+9d. .-

(b) If f'(¢) < O, then there is a number § > 0 such that f(x) > f(¢) for x € T such that
c—d <x <c.

Proof. (a)Since
. f) = fle
lim

Y X —-c

) = f'(c) > 0,

it follows from Theorem 4.2.9 that there is a number 8§ > Q such thatif x € £ and 0 <
'x — | < &, then

fx) - fle)
= (.
X =
If x € I also satisfics x > ¢, then we have

Hence,if x € T and ¢ < x < ¢ 44, then f{x) > f(c).
The proof of (b) is similar. QED

6.2.12 Darboux’s Theorem If f is differentiable on [ = (u, b] and if k 1s 2 number
between f'(a) and f'(b), then there is at Icast one point ¢ in (a. b) such that f'(c) = k.

Proof. Suppose that f'(a) < k < f'(b). We define g on [ by g(x) :=kx — f(x) for
x € I Since gis contintous, it attains a maximumvalue on 7. Since g'(a) = k — f'(a) > 0,
it follows from Lermuna 6.2.11(a) that the maximum of g docs not occur at x = a. Sirilarly,
since ¢' (b)Y = &k — f'(h) < 0, it follows from Lemma 6.2.11(b) that the maximum does not
pceur at x = b, Therefore, g attains its maximum at some ¢ in {«, ). Then from Theorem
62.1 wehave 0 = g'(c) = & — f'(c). Hence, f'(c) = k. QE.D.

6.2.13 Example The function g:[—1, 1] --> X defined by

l for D<«ux =<1,
glx) = 0 for » =0,
—1 forr — 1 <x «0.
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(which 1s a restriction of the signum function) clearly fails to satisfy the intermediate value
property on the interval [—1, 1]. Thercfore, by Darboux's Theorem, there docs nat exist a
function f suchthat f'(x) = g{x) forallx € [—1, 1]. In other words, g is nor the derivative
on{—1, 1] of any function. ' (]

Excrcises for Section 6.2

7.

14.

11

12.

13.

14,

For cach of the following functions on R t¢ X, find points of relative extrema, the intervals on
wllich the function is increasing, and those on which it is decreasing:

(a) f(x):=x?—3x+35, M) g(x) = 3x — 4x7,

(6} hix): = x> —3x —4, (d) k(x) =x? r2x?—4

Find the points of relative extrema, the intervals on which the following functions are increasing,
and those on which they are decreasing:

(a)  f(x):=x-1/x forx # 0, B glxy:=x/(x* + 1) forx € R,

(c) hix):=./x—2J/x +2forx = 0, (d) k(x) = 2x+ I/x*forx £ 0.

Find the points of relative exirema of the following functions on the specified domain:

(@) f(o) = |x?—=1|for —4 < x < 4, M gy =1~ for0<x <2,
(€) h(x) = x|x’ = 12|for =2 < x < 3, (d) K(x) —=x(x —8)' P for0=x <9
Leta,,a,, -+, a, be real numbers and let f be defined on R by

flx) = Z(ar - )" for e k.
i=1

Find the unigue point of relative ininimum for f.

Leta > b > 0and let n & N satisfy n > 2 Prove that a'’* — Y% < (a — p)!¥"_ [Hint: Show
that f(x) ;== x'"" — {x — 1DV" is decreasing for x > 1, and evaluate f at | and a/b )

Use the Mean Value Theorem to prove that | sinx —siny < |x —y' forallx, y in X,

Use the Mean Value Theorem to prove that {(x — 1)/x < lnx < x — 1 forx > 1. [Hinr: Use the
fact that Dlnx = 1/x forx > 0.)

Let f: [a. b] — E becontinuous on {a. k] and differcntiable in (a, b). Show thatif lim f'{x) =

X =il

A, then f'(a) exists and equals A. [Hint: Use the definition of f'(a) and the Mean Value
Theorem.]

Let f . R — IR be defined by f(x) = 2x* 4 x* sin(i/x) for x % 0 and £(0) := 0. Show that
f has an absclute minimum at x —= (), but that its derivative has both positive and negative values
in every neighborhood of 0.

Let g: R — R be defined by g(x) == x + 2xzsin(l,f.r) for x %= 0 and g(0) '= 0. Show that
g'(0) =1, but in cvety neighborhood of 0 the denvative g'(x) takes on both positive and
negative values, Thus g is not manotenic in any neighborhood of .

Give an example of a uniform!y continuous function on [0, 1] that is differentiahle on (0, 1) but
whose dervative 1§ not bounded on (0, 1}

Ifh(x) :=0forx < Oand h(x) ;= Ll forx > O, provctheredoes notexista function f . R — R

suchthat f'(x) = h(x)forallx € R.Give examnples of two functions, not diffenng by a constant,
whose derivatives equal 2(x) for all x

Lct / be an interval and let f . [ —» B be differentiable on 7. Show that if f'is positive on 7,
then f is strictly Increasing on /.

Let / be an interval and let f - 1 —» R be differentiable on /. Show that if the derivative ' is
never 0 on 7, then either f(x) > Oforallx € ! or f'(x) < Oforallx € [.
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15. Let ! be an interval. Prove that if £ 1s differentiable on 7 and if the derivative £ is bounded on
I, then [ sausfies a Lipschutz condition on 7. (Sec Befinition 5.4.4.)

16 Let f:[0,0c) » X bedificrentiable on (0, o) and assume that f'(x) = b as x — ocC.
(a) Show that for any & > 0. we have lim (_f(,r | i) f(x))/h — b
(by Show that if f{x) = aasx — "JO: T.l;:’.:rl b == 0.
(c) Show that lim (If(x)l/x) — b,
X E

17. Let f, g be differentiable on R and suppose that f{0) = ¢(0) and F'(x) < g'(x}forall x = 0.
Show that f(x) < g(x) lorallx > 0.

18, Let ! :=]a, b]andlet [ — K be differentiable at ¢ € 7. Show that for every £ = 0 there
exists & > Qsuchtharif0 < x —yl < danda = x <c <y < b, theu

‘f(x) S
A ey <e
X oy

19. A differentiable unction f @/ — [% is said to he uniformly differentiable on 7 . — [a, A if for
every &£ = O there exists § > Osuchthatif {0 < |x — y| <« §and x, y € [, then
V) — f()) _
X —y

Fi)| < e

Show that if f is uniformly differentiable on 7, then f’ is conlinuous on /.

20. Suppose that £ : [0, 2) — R 1s continuous on [0, 2] and differentiable on (0, 2}, and that
SO =0 fili=1,7(y=1
(z) Show that there exisis ¢, € (0. 1) such that f'(c,) =
{h)  Show that there exists ¢, € (1. 23 such that f'(c,) =
(¢) Show that there exists ¢ ¢ (0. 2) such that f () = 1/3.

Section 6.3 L’Hospital’s Rules

The Marquis Guillame Frangois L'Hospital (1661- 1704) was the author of the first calculus
book, L'Analvse des infiniment petits. published in 1696. He studted the then new differential
calculus from Johann Bernoulli (1667-1748), first when Bernoulli visited L'Hospital's
country cstate and subsequent]ly through a series of letters. The hook was the resull of
L' Hospital's studies. The limit theorem that became known as L'Hospital’s Rule first
appeared in this book, though in fact it was discovered by Bernoulli.

The initial theorem was refined and extended, and the various results are collectively
referred to as L' Hospital's (or L'TT16pital’'s) Rules, In this section we establish the most basic
¢f these results and indicate how others can be derived.

Indeterminate Forms

In the preceding chapters we have often been concerned with methods of cvaluating limits.
Jt was shown in Theorem 4.2.4(b) that if A '= bhm f{(x)and B = lim g(x), and:f B # 0,
Ll Xk

then

However, if B = 0, then no conclusion was deduced. [t will be secn in Exercisce 2 that if
B =0and A # 0, then the Iimit is infinite (swhen 1t exists).

The case A = 0, B = 0 has not been covered previously. In this case, the Iimit of the
quoilent f/g 1s said to be “indeterrunate”. We will see that in this casc the limit may
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not exist or may be any rcal value, depending on the particular functions f and g. The
syrmbolism 0/0 is used to refer to this situation. For example, if @ 15 any rcal number, and
if we define f(x) := «x and g(x) := x, then

. flx) . ux .

lim =lim— =Ilma = a.

x>0 g(x) 1=} x x-+0

Thus the indeterminate form 0/0 can lead to any real number ¢ as a limit.

Other indeterminate forms are represented by the symbols ac/oa, 0 oo, 00, 1%, ocf
and o0 oo. These notations correspond to the indicated Jimiting behavior and juxtaposi-
tion of the functions f and g. Our attention wili be focused on the 1ndetermunate fonms 0/0
and oc/co. The other indeterminate cases are usually reduced to the form 0/0 or oo /o0 by
taking logarithms, exponentials, or algebraic manipulations.

¥

A Preliminary Resull

To show that the use of differentiation in this context 1s a natural and not surprising
developrrient, we first establish an elementary result that is based simply on the definitton
of the derivative.

6.3.] Theorem Lect f andy bedefined onla, b, let f{a) = gla) =0, and let g(x) #£ 0
fora < x < b If f and g are differentiable at a and if ¢'(a) £ 0, then the /imit of f/g at
a exists and is equal to f'(a)/g' («) Thus
- fix) fta)
him = .
trat gix) & (a)

Proaf. Since f(a) = gla) = 0, we can write the quotient f(x)/g(x) fora <« x < b as
follaws:

fx)  fla)
f(-f)_f(x)—f(a): X —a
g g) - gl@) gl —gla)
X —d
Applying Theorem 4.2.4(b), we obtain
i T fl@ .
A ORI ) QED.
X—a+ g(X) hm g * g g ('ﬂ)
x sa+ X —a

Warning Thchypothesisthat f(a) = g(a) == O1sessential here. Forexample, 1f f(x) 1=
x + 17 and g(x) :=2x + 3 for x € R, then

o ey 17 (ORI
m -~ — = — , while ; = -
20 g(x) 3 £2(0) 2

The preceding result enables us to deal with limits such as

Cox4+x 2041 1
Im — = = _.
=0 81n 2x 2cos0 2

To handle limits where f and g are not differentiable at the point a, we need a more general
version of the Mean Value Theorem due to Cauchy.
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6.3.2 Cauchy Mean Value Theorem Let f and g be continuous on |a, b] and differen-
tiabie on (a, b), and assume that ¢’'(x) # 0 for all x in (a, b). Then there exists ¢ in (a. b)
such that

fiB) — flay _ fo)

g(b) —gla)  g(c)

Proof. As in the proof of the Mean Value Theorem, we introduce a function to which
Rolle’s Theorem will apply. First we nate that since g'(x) # 0 forall x in (a, b), 1t follows
from Rolle's Theorem that g(a) # g(b). For x in [a, b), we now define

fb) — fla)

h(x) = —————(g(x) — gla)) — (S (x) — f(a)).

gb) — gla) [ )= )
Then A is continuous an [a, b], differentiable on (a, &), and A(a) = A(b) = O Therefore,
it follows from Rolle’s Thearem 6.2.3 that there exists 2 point ¢ in {«, &) such that

Jb) - fla) :
0=H() = L0 - 110
g(b) ~ gla)
Since g'(c) # 0, we obtain the desired result by dividing by g’(¢). QED.

i

Remarks The preceding theorem has a geometric interpretation that is simualar to that of
the Mcan Value Theorem 6.2.4. The functions f and g can be viewed as determining a curve
in the planc by mcans of the parametric equations x = f (), y = g(t) where a <t < b.
Then the conclusion of the theorem 1s that there exists a point ( f(¢), g(c)) on the curve for
some ¢ 1 (a, p) such that the slope 2'(e)/ f () of the line tangent to the curve ar that point
15 equal to the slope of the Jine segment joining the endpoints of the curve,

Note that if g(x) — x, then the Cauchy Mean Value Theorem reduces to the Mean
Value Theorem 6.2.4.

L'Hospital’s Rule, I

We will now establish the first of L'Hospital’s Rules. For convemence, we will consider
right-hand limits at a point z; left-hand limits, and two-sided limnits are treated in exactly the
same way, In fact, the theorem even allows the possibility that ¢ = —oo. The reader should
observe that, in contrast with Theorem 6.3.1, the following result does not assume the
differentiability of the functions at the point @. The result asserts that the limiting behavior
of f(x)/g(x) asx > a+ isthc same as the limiting hehavior of f'(x)/g'(x) as x — a+,
mecluding the case where this lirut 1s infinite. An important hypothesis here is that both f
and g approach 0 as x — a—+.

6.3.3 I’Hospital’s Rule,1 Let—ooc <a < & < ooandlet f. g be differentiable on (a, b)
such that g'(x) # O for all x € (a, b). Supposc that

(N 1_1131+ fix)=0= hm g(x).
@ 1f tim 25 [ R, then lim & _

x—i- g'(x) iat g(x)
M) If Iim ﬁ =L € {—o0, o0}, then lim f—( —)

x sa- g (tj X a4 g(x)
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Proof. Ua <o < B < b, then Rolle’s Theorem implies that g(B) # g(e). Further, by
the Cauchy Mean Value Theorem 6.3.2, there exists u € {&, ) such that

fBY = fl) _ fw
g(B) —gle)  g(w)
Case(a); If L € R and if £ > 015 given, there exists ¢ € (a, b) such that

(2)

L—~8 <« )<L|g for u € (a, ),

whence 1t follows from (2) that

FB) - fle)
£t <

(3) {— <L +¢ for e« <« f <c
g(8) — zla)
If we take the hinut in (3) as o — a4+, we have
I,-—EE@EL;E for B e (a, cl.
8B}

Since £ > 0 is arbitrary, the asscriion follows.
Casc (b): If L = +ooand 1f M > (15 given, there exists ¢ € (a, b) such that

f-‘(u) > M far u € (a ©),
g (u)
whence it follows {rom (2) that

OO N

(4) for a<o< B <c.
g(B) —gle)
If we take the limut in (4) as @ — a+, we have
f(—ﬁ) > M for B € (a,c).
g(£)
Since M > 0 1s arhitrary, the asszrtion {ollows,
If L = —oo, the argument 18 similar, QED

6.3.4 Examples (a) We have

= lim 2+/xcosx = 0.

x

i sin x ! ©cosx
im = lm | ———
r(4 ﬁ x4 L]}(Qﬁ)
QObserve that the denominator 1s not differentiable at x = 0 so that Theorem 6.3.]
cannot be applied. However f{x) :=sinx and g(x) := /x are differentiable on (0, co)
and both approach 0 as x — (04 Morcover, g'(x) # Oon (0, 0o0), so that 6.3.3 is apphicable.

, l —cosx . Sinx

{b) We have lim | ——— [ = tim ,
x =0 x= =0 2x

We need to consider both left and right hand limits here. The quotient in the second

limit is again indeterrunate 1n the form 0/0. However, the hypotheses of 6.3.3 are again

satisfied so that a second application of L'Hospital's Rule is permissible. Hence, we obtain

{I—COSx} . sinx . COSX 1

lim 5 = lim = lim
¥—0

x x=0 2x x—0 2 2
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x X

et —1 &
(¢) We have 11m = lim — = 1.
-0 X x=0 1
Again, boih left- and right-hand limits nced to be considered. Similarly, we have
et —1—x et — 1 e* 1
lim L—Q— = Iim = lim — = —.
x—0 X =0 Dy x o0 2 2
Inx 1/x
(d) We have lim |:—— } = lim (/) =1 0
x sl X — 1 x—] ]_

L'Ilaspital’s Rule, [T

This Rulc is very similar to the first one, except that it treats the casc where the denominator
becomesinfiniteas x - » a~. Again we will consider only right-hand limits, but it1s possible
that « = —oc. Left-hand limuts and two-sided himiis arc handled similarly.

6.3.5 L'Hospital’s Rule, II T.et —co <a < b < o0 and let f, g be differentiable on
(@, b) such that g'(x) # O for all x € (a, b). Suppose that

(3) Xli.rzl+g(x) = +00.
(@ If lim _,(x) —LeR then lim 1% — 1
FFN I g X —r a1 g(x)
(h) If lim S x =L e {—o0, >}, then lim S =
ron— g (t:] x »a- g(x)

Proof.  We will supposc that (5) holds with limut co.

As before, we have g(8) # gila) fora, 8 € (a, b), o < £ TFurther, cquation (2) in the
proof of 6.3.3 holds for some u € (a, 8).

Casc (a): If 1. e R with I. > 0D and € > 0is given, there 1s ¢ € (a, b) such that (3) in
the proof of 6.3.3 holds whenn « @ <« 8 < ¢ Since g(x) — oo, we may also assume that
g(¢) > 0. Taking 8 = ¢ in (3), we have
(6) L—£~:M{L+s for « € (a, ¢).

gy — gla)
Since g(e)/glee) = 0 as ¢ — a+, we may assume that 0 < g(o)/g(@) < | forall @ €
(a. ¢), whence 1t follows that

g@ =8l £ o o se o
g (o) g (o)
If we multiply (6) by (g(o) — g(c))/g{a) > O, we have
8(6)) fla) f(f) 8(6)
7 L— 1 — — 1—
@ ( E)( @) < gl gy T ( 2]

Now, since g(c)/g{a) — Oand f(c)/g(a) — Oasa — g+, thenforany § with0 < 8 < 1
therc exists & € (g, ¢) suchthat0 < g(c)/g{a) < and | f(c)|/g(x) < S foralla € (a, 4),
whence (7) gives

o fl@)
(8) (L—&Y(1- 8§ —38 < —(54(L+5)—Fé
If we takc 8 := mun{l, ¢, ¢ /{|].] + 1)}, it is an exercise to show that
S (o)

L—2e <22 <] 42,
glo) —
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Since £ > 0 1s arbitrary, this yields the assertion. The cases L. = 0 and L < 0 are handled
sirrularly.

Case (b)y: If . = 4+oc,let M > 1begivenandc € (a, b) besuchthat f'(w) /g’ (u) > M
for alt # € (a, ¢). Then it follows as before that
By = fle) .
g(f) — glx)
Since g(x) = oo as x — a-+, we may suppose that ¢ also satisfics g(¢) > 0, that
| fc)l/gle) < % and that 0 < g(e)/gle) < % for ali o € (a,c). If we take 8 =¢ In
(9) and multipiy by 1 — g(c}/gle) > % we get

Sl — flo M(l— g(c‘)) Y

)

M for a<wa < f <c.

glen) g (o)

50 that

ﬂa—)>%z‘4+ﬁc—)}%(ﬂd—lj for « ¢ (4, c).

s(a) gla) -~
Since M > 1 is arbitrary, it follows that lim+ [(a)/gla) = occ.

i
If L = —oc, the argument 1s sinular. Q.ED.
Inx

6.3.6 Examples (a) We consider im —.

X-a0c X

Here f{x):=Inx and g(x) := x on the interval (0, oc). If we apply the left-hand

: ... Inx o x
version of 6.3.5, we obtain lim - —= lim —— =10.
x—a X X
(b) We consider him e *x?2.
o0

Heie we take f{x) = x? and g(x) = ¢* on R. We obtain

o x? . 2x ) 2
Iim — = Im — = lim — = 0.
X N 8 b O e e e xr—os e
Insinx

(¢) Weconsider lum
x=04 Inx

Here we take f{x) :=Insinx and g(x) :=Inx on {0, 7). If we apply 6.3.5, we obtain

. Insinx . COosXx/sInx _ x
lim = ——— = lim [ _ ][cosx].
-0+ Inx x— D+ I/x 0+ Lginx
Since lim [x/sinx] = 1 and lir[1;1 cas x = 1, we conclude that the 1imit under considera-
-+ x—0-+
tion cquals J. 4

Other Indeterminate Forms

Indeterminate forms such as co — oc, 0 - oo, 1%, 0, o0” can be reduced to the previously
considcred cases by algebraic manipulations and the usc of the logarithmic and cxponential
functions. Instead of formulating these variations as theorems, we illustrate the pertinent
rechniques by means of examples.

6.3.7 Examples (a) Let/ = (0, m/2) and consider

: (I A
lim | — — — .
=04\ X smx )/
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which has the indeterminate form 2¢ — co. We have

_ 1 1 . osinx —x ) caosx — |
him | — — — = Iim —— = lim —,
x>0+ \ x S X x—0+ XSInX =0+ SINX — X COS X
) - SInXx {]
= lim — = - =0.

x—=0+ 2¢cosx — xsiny 2

(b) Let7 := (0, no)andconsider lim x lnx, which has the indcterminate form 00 - (=00},

x-ri4-
We have
_ . Inx . 1/x .
Iim xInx = Iim _n—: m —/—: Hm (—x) =0.
=04 Py, i ]fx x=a 04 _1/)52 x—0+

() Let I = (0, 0oo) and consider lim x*, which has the indeterminate form 0°,

=0

We recall from calculus (see also Section 8.3) that x* = ¥~ It follows from part (b)
and the continuity of the function y > ¢” at y = O that lim x* =" = |.

x— 0+
(d) Let7:= (], 00)andconsider lim (1 + I/x)*, which has the indctetminate form 17
X rdS
We notc that
(10) (1 + l)lx).r — {)A'ln('l-}-lfx}‘
Morcover, we have
. oo In{1T +1/x
Iim xIn{1 +1/x) = Lm (—Q
x »ac X oo 1/x
) (=D !
= lIim 5 = lm — =1.
x>0 —x~ rvoe ] + 1/x

Since y > &’ is continuous at y = 1, we infer that lim (1 + 1/x)* = e.
X->0C

(e) Let/7 := (0, oo) and consider ]ir}; (1 4+ 1/x)*, which has the indetermunate form ool
. x—0F

In view of formula (10), we consider

In(l + 1/ 1
lim xin(1 4+ 1/x) = hm M = lm ——— =0
=0+ x- 0 1/X =0+ 1+ I/x
Therefore we have 1i%] (I+1/xy=e"=1 1
r —=+U+ . -

Exercises for Section 6.3

1. Suppose that f and g are continuous on [a, ], ditferentiable on (a, #), that ¢ € [a, &] and that
glxy# Oforx ea, bl,x #£c. letA:=Im fand B:=lmg. If B =0,andif lim f(x)/g(x)
X X r=rgC

exists in B, show that we must have A = 0. [Hint: f{x) = {f(x}/g{x)1g{x).]

2. In addition to the suppositions of the preceding exercise, let g{x) > 0 for x € [a,b], x # ¢
If A > Oand B = 0, prove that we must have lim f{x)/g{x}) = oc. L A < 0and B =0, prove

that we must have lim f({x)/g(x) = —co.
I —i

3 Let f{x):= xzsin{l/x) for 0 «x < 1and f(0):=0, and let g({x) := x® forx e [0.1]. Then
both f and g are differentiable on [0, 11 and g(x) > 0 for x 3 0. Show that h:%f(x} =0 =

li]T(l)g(X) and that lim f{x)/g(x) does not exist.
£ —* x =
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4 Let f{x) = x? for x rational, let f(x) =0 for x urational, and let g(x) :=sinx for x ¢ R
Use Thearem 6.3.1 to show that Limﬂ_,r’{,t)/g(x) = 0. Explain why Theorem 6.3.3 cannot be
X el

used.

5 let f(x) = x7sin(l/x) for x % 0, et f(0) :=0, and let g(x) :=sinx for x € R. Show that
]irn0 f{x)/g(x) = 0 but that lingJ £ (x)/g'(x) does not exist.
L= £ =

6. Evaluate the following limits, where the domain of the guotient s as indicated.

. In(x +1) _ , ian x
(ay lIm ——= (0.7/2}, (h) lim (0, 7/2),
Ce0F SiMX x—0—
. Incosx . fanx —x i
{c) .tl—]»rtlli-'+ . (0, m/2), (d) r1_1-1'&_ E (G, /%)

7. Evaiuate the following limits:

. Arcianx )
{(a) Im {—oe, o0, (by hm = (0. 1),
r—0 X 0 x(Inx)”
ki
© lim 2 nx (0,00) @ lm . (© o).
o T D
8. Evalnate the following limits:
i Inx 0 . i Inx 0 y
(@ hm — (0.20). _ (b) s (0. 20),
] . . x+lnr
(¢) lmxlnsinx (0, ), (dy Im (0, 00,
x +0 r—o2 yIngx
9. Evaluate the following limis:
{a) Iir{? x5 (0, o), ) 1imom + 3200 (0, oc),
1 1
() lim {1 43/x3° (0, oo}, {(dy lhm ( — —) (0, nc).
t— -0+ \ x  Arctan x
10, Evaluate the following himats:
(2) Lim " (0, o0}, (b) hm (sinx)" (0, 7).
X o0 L0
() 151E+1““" (0. 00), (d li_r*r;.2 (secx —tanx) (0.7/2).

1. Tet f be differentiable on (0, 20) and suppose that Plim (f(x) + _}”(.t)) = L. Show that
lim f(x)=Land lim f'(x) = 0. [Ffine f(x) — ¢ f(x)/c* ]
k' Ao

fanx

12, Try to use ['Hospital's Rule to find the limit of as x — (;1;/2)—. Then evaluate directly
SCCXx

by changing to sines and cosines.

Section 6.4 Taylor’s Theorem

A very useful technique in the analysis of real functions is the approximation of functions
by polynomials. In this section we will prove a fundamental theorem in this area which
goes back to Brook Taylor (1685-1731), although the remainder term was not provided
until much later by Joseph-Louis Lagrange (1736-1813). Taylor’s Theorem 1s a powertul
result that has many applications. We will 1llustrate the versatility of Taylor’s Theorem by
briefly discussing some of 1ts applications to numerical estimation, inequalitics, extreme
values of a function, and convex functions.

Taylor’s Thearern can be regarded as an extension of the Mean Value Thearem to
“higher order” derivatives. Whercas the Mcan Value Theorem relates the values of a
function and its first derivative, Taylor's Theorem provides a relation between the values
of a function and its higher order derivatives.
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Derivatives of order greater than one are obtained by a natural extension of the dif-
ferentiation process. If the derivative f’(x) of a function f exists at every point x in an
interval 7 contaming a point ¢, then we can consider the existence of the denivative of the
function f at the point c. In case £’ has a derivative at the point ¢, we refer Lo the resulling
number as the second derivative of f at ¢, and we denote this number by f”(¢) or by
£y, In similar fashion we define the third derivative fey = 79y, -, and the nth
derivative f[”" (¢), whenever these derivatives exast. Tt is noted that the existence of the nth
dervative at ¢ presumes the existence of the (n — 1)st derivative in an interval containing ¢,
but we do allow the possibility that ¢ might be an endpoint of such an interval.

[f a function [ has an nth denvative at a point x,, 1t is not difficelt to construct
an nth degree polynonual P, such that P (x,) = f(x,) and P;f“(xn) = f® (x,) for k =
1,2,- -, n. Infact, the polynomal

(1) P (x) = flxg) = fllx)x —xp) + ! z(fﬂ) (x — x,)°
(n)
+ -+ ! (lxo) (x —xp)”
M.

has the property that it and its derivatives up to order n agree with the function f and 1ts
denvatives up to order n, at the specified point x,. This polynomijal £ is called the nth
Taylor polynomialtor f at x,. Itis natural to expect this polynomial to provide arcasonable
approximation to f for points near x,, but 1o gauge the guality of the approximation, 1t
1s nceessary fo have information concerning the remainder X, = f - P . The following
fundamentat result provides such information.

6.4.1 Taylor’s Theorem Lerne N letr ! .= (a, bl andlet [ — R be such that |

and us derivatives {7, f", -, f‘-”) are continkous on I and that f“”” exists on (a, b). If
xq € {. then for any x in I there exists a point ¢ between x and x, such that
, AT
(2) [l = flx) + SO —xpy+ 7 Y (x —xp)?
) ARG
I TR e Ty TR U

Proof. Let x, and x be given and let J denote the closed interval with endpoints x, and x.
We define the function F on J by

o - (x_z)n {nj
Fiy:=flg—f)—e=—nf)— - — - --" f70)

for: e J. Then an easy calculation shows that we have
Fiin=—— /"""
If we define G on J by

_ ¢ n+1

— ) F(xp)
0

forr € J, then G(x,) = G(x) = 0. An application of Rolle’'s Theorem 6.2.3 yields a point

¢ between x and x,, such that

x
Gt) = F({t) — (

(.?( . C)”

0= Gr(c) = }:'!(C:] + (?‘I + ]) )n+l_ (XO).

x—xo
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Hence, we obtain

n—1

Flr) = — —— S 750 pry
0 - n + 1 (I _ C)”
] (X _ XO)IH‘I (X . C)ﬁ ) f(ﬁ—l)({‘.) il
B A T e TR T
which implies the stated resuit. QELD.

We shall use the notation P_ for the nth Taylor polynomial (1) of f, and R_ for the
remainder. Thus we may write the conclusion of Taylor's Theorem as f(x) = P (x) +
R _(x) where R, 15 given by

A
BCEN
for some point ¢ between x and x,. This formula for R is referred to as the Lagrange

form (or the derivative form) of the remainder. Many other expressions for B are known;
ane 1s 1n terms of integration and will be given later. (Sce Theorem 7.3.18.)

(3) R (x) (x — xg)" "

Applications of Taylor’s Theorem

The remainder term R in Taylor’s Theorem can be used to estimate the error 1n approx-
tmating a function by its Taylor polynomial P . If the number # 1s prescribed, then the
question of the accuracy of the approximation arises. On the other hand, if a certain accuracy
15 specified, then the question of finding a suitable value of n 15 germane. The following
examples illustrate how one responds to these questions.

3 1 + x,

6.4.2 Examples (a) Use Taylor's Theorem with n =2 1o approximate
x> =1

We take the function f(x) = (1 -+ x)”’j, the pointx; = 0, and 2 = 2. Since f'(x) =
40 and M) =1 (-3 F)7T we have f7(0) = § and £7(0) = —2/9.

3
Thus we obtain
J() = Py(x) 4+ Ry(x) = 1 + 3x — 5x7 + R, (x),

where R,(x) = %f’”(c)xj = %(I + ¢) %3 % for some point ¢ between 0 and x.
For example, if we let x = 0.3, we get the approximation P,(0.3) = 1.09 for V13
Moreover, since ¢ > 0 in this case, then (1 - c)'j'“3 < | and so the error is at most

fi’('D’%){s('?)3 } 0.17 x 10 2
—_— - = = ). x .
’ ~ 81 \ 10 600

Hence, we have |1/1_’3 — 1.09] < 0.5 x 1072, so that two decimal place accuracy 1s assured.
(b) Approximate the number e with error less than 1077

We shall consider the function g(x) :=e* and take x, =0 and x = 1 in Taylor’s
Theorem. We need to determine n so that |[R_(1)] < 1077, To do so, we shall use the fact
that g’(x) = ¢* and the initial bound of ¢* < 3for 0 < x < 1.

Since g'(x) = e, it follows that g“‘) (x) =" forall k € N, and therefore g”‘)(O) =1
for all ¥ € N. Conscquently the nth Taylor polynomial is given by

2 H
X
POy =T4x+o 4+

n |
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and the remainder for x =1 s given by R (1) =¢"/(n + 1)! for some ¢ satisfying
0 <c < 1. Since ¢ « 3, we seek a valne of » such that 3/(n+ 1) < 1075, A calcu-
lation reveals that 6! = 362, 880 > 3 x 10° so that the value 1 = 8 will provide the desired
accuracy, mareover, since 8! = 40, 320, no smaller value of n will be certain to suffice.
Thus, we obtain

1 1
en A= 141+ 4.~ =2.71828
with error less than 107>, O

Taylor's Theorem can also be used to derive inequalities.

6.4.3 Examples {(a) |- _ilxz <cosx [orallx e R,
Use f(x) = cosx and x, = 0 1n Taylor’s Theorem, to obtain

1
cosx — ] — EII + R, (x),

where for some ¢ between 0 and x we have:

) 4 sine g
RE(X) = — 3["‘){ = —'6'—): .

If0 < x < m, then 0 < ¢ < 7 since ¢ and x3 are both positive, we have R,{x) > 0. Also,

if —r <x <0, then =7 < ¢ < 0; since §inc¢ and x° are both negative, we again have

R,(x) > 0. Therefore, we sce that 1 — %xz < cosx {or x| < . If |x| = «, then we have

1 — %f < —3 < cosx and the incquality 1s trivially valid. Hence, the inequality helds for

allx e R

{(b) Forany & € N, and for all x > 0, we have
1 1
2 2% ? 2% +]
— =X = In(1 <X — = cee 4 — X _
x x° 4 X <In(l +x) < x 2):-{— +2f<+1
Using the fact that the denvative of In{1 4+ x) 15 1/(1 4+ x) for x > 0, we sce that the
nth Taylor polynomial for In(1 + x) with x, = O1s

1 2 n—-ll H
Px)y=x—zx"+--- (=)' =x
2 bl

and the remainder 1s given by
_1 A _Ht1
R (x) — .(_)—C
E;] "+ 1

for some ¢ satisfying 0 <« ¢ < x. Thus for any x > 0, if n = 2k is cven, then we have
R, (%) > 0; and if n = 2k + 1 is odd, then we have R, (x) < 0. The stated incquality
then follows immediately. C

n~1

Relative Extrema _

It was established in Theorem 6.2.1 that if a function f . I — R is differentiable at a point
¢ interior to the interval [, then a necessary condition for f to have a relative extremum at
¢ is that f'(¢) = 0. One way to determine whether £ has a relative maximum or relative
minimum [or neither) at ¢, is to vse the First Denvative Test 6.2.8. Higher order derivatives,
if they cxist, can also be used in this detcrmination, as we now show.
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6.4.4 Theorem Lctl beaninterval, letx, be aninterior pointof I, andletn > 2. Suppose
that the derivatives [, f”, -+, ") exist and arc continuous in a ncighborhood of x,, and
that {/(x;) = -+ = fO7V(x,) =0, but " (x,) £0.

(iy Ifnisevenand f("J(xO) > 0, then f has a rclative mumimurm at x,,.

(i) Ifn i1sevenand f(”)(xo) < 0, then f has a relative maximum at x.

(ili} Ifn is odd, then f has neither a relative mynimum poy relative maximurm at X,

Proof. Applying Taylor's Theorem at x,, we find that for x € J we have

F™ e

n! (x = x)",

Sx)=F )+ R _(x)= flx)+

where ¢ 13 some point between x, and x. Since £ 15 continuous, if f'[”l(xn) = 0, then
there exists an interval [7 containing x,, such that £ (x) will have the same sign as f“* (x,)
for x € U. If x € U, then the point ¢ also belongs to I/ and consequently £ (¢) and
_f(”)(x“) will have the same sign.

(i) TIfnisevenand f"(x,) > O, thenforx € U/ wehave F%) > Oand (x — x)" >
0 so that Rn_l(x) > 0. Hence, f(x) = f(x,;) for x € U, and therefore f has a relative
miaimurm at x,

(it) Ifnisevenand £ (xy) < O, then it follows that R__, (x) < O forx € {/, sothat
f{x) £ f(x,) for x € U. Therefore, f has arelative maximum at x,,.

(111)  If n is odd, then (x — x,)" is positive if x > x, and negative if x < x,. Conse-
guently, if x ¢ U, then R, (x) will have opposite signs (o the left and to the nght of x,,.
Thercfore, f has neither a relative mimmum nor a relative maxirmum at x,,. Q.ED.

Convex Functions

-

The notion of convexity plays an important role in a number of areas, particularly in the
modern theory of optimization., We shall briefly look at convex functions of one real vanable
and their relation to differentiation. The basic results, when appropriately modified, can be
extended to higher dimensional spaces.

6.4.5 Definition Let 7 € R be an interval. A function f : I — R is said to be convex
on I if for any ¢ satisfying 0 < ¢ < 1 and any points x|, x, in /, we have

F{O=tx + 1) < (1 — 1) flx)) + 1 (x,)

Note that if x| < x,, then as ¢ ranges from 0 to L, the point (1 — 1)x| + tx, traverses
the interval from x| to x,. Thusif f isconvex on [ and if x|, x, € /, then the chord joining
any two points (x, f(x,)) and (x,. f(x,)) on the graph of f lics above the graph of f.
(See Figure 6.4.1.)

A convex function need not be differentiable at every point, as the example f(x) = |x!,
x € R, reveals, However, it can be shown that if 7 1s an open interval and if f: 7 —
R is convex on f, then the left and nght denvatives of f exist at every point of 7.
As a consequence, 1t follows that a convex function on an open interval is neccssarily
continuous. We will not venify the preceding assertions, nor will we develop many other
interesting propertics of convex functions. Rather, we will restrict ourselves to establishing
the connection between a convex fupction f and its second denvative f”, assuming that
F7 exists,
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y={1-0 70+ (x;)

y=F{(1- 1) x4 txg)

| - .

*y (I —tx rixg I3

Figure 6.4.1 A convex funclion.

6.4.6 Theorem Lecr / be an open interval and let f - [ — R have a sccond denivative
onI. Then f is a convex functionon I ifandonly if f"(x) > Oforallx € .

Proof. (=) We will make use of the fact that the second derivative is given by the Hmit

(4) iy = fim L @R 2@+ fla— k)

P he

for each a € /. (See Excrcise [6.) Givena € J, let & be such thata + /2 and a — & belong
to . Thena = % ((a + M+ (a— h)), and since f is convex on I, we have

fl@y=f(3a+h+3a-m)<ifta+h) +5fa—h.

Therefore, we have f(a + 1) —2f(a) + f{a — h) = 0. Since h® > Oforallh # 0, we sec
that the limit 1n (4) must be nonnegative. Hence, we obtain f7(g) > Oforanya € /.

(<) We will use Taylor’s Theorem. Let Xy, x, he any two points of 7, let 0 < ¢t < 1,
and let x, := (I — 1)x, +rx,. Applying Taylor’s Theorem to f at x, we obtain a point ¢,
between x, and x, such that

f("r]} = f(xﬂ,) + fr(‘r{]){'n - xo) - Iifu(cl)(xl _xojzs

and a point ¢, betwecen x; and x, such that

0
T = Flxg) + J(xdxy — xp) + 577 (63, — 20
If f is nonnegative on 7, then the term
R:=1(1 =) f (e, — 20" + 2 () 0y — x,)°

18 also nonnegative. Thus we obtain

(L= f(x) +1f(x,) = f(x) + f/(x) (1 — Dx, +1x, — %)

5L =) ey — xg) + T X
— f(x(}) + R
> flxy) = f(“ —t)x, +tx2).

Hence, £ 1s a convex function on {. QE.D.

2
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Newton’s Method

It is often desirable to estimate a solution of an cquation with a high degree of accuracy. The
Bisection Method, used m the proof of the Location of Roots Theorem 5.3.5, provides one
estimation pracedure, but it has the disadvantage of converging to a solution rather slowly.
A method that often results in much more rapid convergence is based on the geometrnc
idca of successively approximating a curve by tangent lines. The merthaod 1s named after its
discoverer, Isaac Newton.

Let f be a differentiable function that has a zero at ¥ and let.x, be an initial estimate of r.
The line tangent to the graph at (x, f(x,)) has the equation y = f(x,) + ['(x,)(x — x|},
and crosses the x-ax1s at the point

S
D)
(See Figure 6.4.2.) Tf we replace x; by the second estimate x,, then we obhtain a point x,
and so on. At the nth iteration we gci the point x from the point x, by the formula

Xy =X

n—1
_ fx)
xn[ P = X” Y’ :
S (x,)
Under suitable hypothescs, the sequence {x ) will converge rapidly to a root of the cquation

f(x) =0, as we now show. The key tool in establishing the rapid rate of convergence 1s
Tavlor’s Theorem,

o
w4

r
»a

]

Figure 6.4.2 Newton's Mcthod

6.4.7 Newton’s Method Leér7 :=[a, b]andlet -1 — X be twice differentiablec on 7.
Supposc that f{a) f(b) < 0 and that there arc constants m, M such that | f'(x)} = m = 0
and | f(x), < M for all x € I and let K .= M }2m. Then there cxists a subjnterval I®
containing a zero r of [ such that for any x, € I" the sequence (x_) defined by

flx)
5 X =% = forall ne N,
) * £1ix)

belongs to I and (x} converges to r. Moreover

(6) |Xn+1 - r| <K ‘x,_ - r‘z forall n e N.
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Proof. Since f(a)f(b) < 0, the pumbers f(a) and f(b) have opposite signs; hence by
Theorcm 5.3.5 there exists » € I such that £(r) = 0. Since f'is never zero on I, 1t follows
from Rolle’s Theorem 6.2.3 that f docs not vanish at any other point of 1.

We now let x' € I be arbitrary, by Taylor's Theorem there exists a point ¢ between x’
and r such that

0= J(r) = (XY + flLN —x)+ 5 (N — X)),
from which it follows that
__f(xr) — f.f(xr) (?’ . xr) + %f.f.r(cf)(r - x,)l‘

If x" 1s the number defned from x’ by “the Newton procedure™;

" . D
X =X - o,
F )
then an elementary calculalion shows that
. 1 I -}'
x"=x"+ (r—x")+ —M(r —xy?,
2 f1x)
whence 1t {ollows that
x" —r = l f”(C’) (x’ - ?’)2
— 2 fl,u(xf)

Since ¢’ € 1, the assumed bounds on /" and f” hold and, setting K := M /2m, we obtain
the inequality

-

(7 x" —r {:K‘xf—r

We now choose § > Ososmallthat § < 1/K and that the interval /" :=[r — 8, r + 8]
is contained in f. If x, € I* then {x_ - r| <8 and it follows from (7) that |x,_ ., 1| <
Kx -~ ri* < K&% < 4, hence x, & 1* imphes that x,, € I". Therefore 1f x; € I*, we
mfer that x, € 1™ for all n € N. Also 1f x, € 7, then an elementary induction argument
using (7) shows that x| -- . < (K3)"[x, —r| forn € N. But since K¢ < I this proves

that lim(x ) = r. QLD

6.4.8 Example We will illustrate Newton’s Method by using it to approximate v/2.
If we let f{x) = x* —2 for x € R, then we seek the positive root of the equation
f(x) =0. Since f'(x) = 2x, the iteration formula is

_ fix,)
}Nﬂ-l =X, - '
' o f(xy)

x2-2 1/ 2
A2,
2x, 25\ x,
If we take x, := 1 as ovr initial estimate, we obtain the successive values x, = 3/2 = 1.5,
x,=17/12=1.416666-- -, x, = 577/408 = 1.414215 . .-, and x, = 665 857/470832
= 1414213562374 ... which is comrect to eleven places. D

Remarks (a) If we let ¢ = x_-—r be the error in approximating r, then inequality

(6) can bc written in the form [Ke | < ]Kenlz. Consequently, if [Ke | < [07™ then
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|Ke, | <10 '™ so that the number of significant digits in Ke, has been doubled. Be-
cause of this doubling, the sequence generated by Newton's Method is said to converge
“quadratically™.

(b) Inpractice, when Newton's Method 1s programmed for a computer, onc often makes an
imtial guess x, and lers the computer run. If x| 1s poorly chosen, or if the root is too near the
endpoint of 7, the procedure may not converge to a zero of f. Two possible difficulties are
lustrated in Figures 6.4.3 and 6.4.4. One familiar strategy 1s to use the Bisection Method
to armive at a fairly close estumate of the root and then to switch to Newton’s Method for
the coup de grice.

1

Figure 6,43 x — oo Figure 6.4.4 x oscillates
between x, and x,.

Exercises for Section 6.4

Tet f(x)} :=cosax forx ¢ R wherea % 0. Find f"(x)forn e N, x ¢ &

Let g(x} = |x*| for x € R. Find g'(x) and g"(x) for x ¢ R, and g (x} for x # 0. Show that
£"(0Y does not exist, .
Use Inducton to prove I.eibniz’s vule for the nth denvatve of a product:

n i‘ A (A=K 4

)@ =Y (;()f(" 0™ (x).
¥ 0

Show thatif x = 0, then | + %x — -é,'rz I B %r
Use the preceding exercise to approximate +/ 1.2 and /2. What is the best accuracy you can be
sure of, using this inequality?

Use Taylor's Theorem with n = 2 to obtain more accurate approximations for V1.2 and /2.

If x = 0 show that |[{} + x)3 — (1-+ :];x — %x2}| < (5/81]_1;"’. Use this inequality to approxa-
mate 3/1.2 and V2.

If f(x) = ¢", show that the rematnder termn in Taylor’'s Theorem converges to zero as n — oc,
for each fixed x, and x. [Hinz: See Theorem 3.2.11.]

If g(x) := sin x, show that the remainder term in Taylor’s Theorem converges to zero as n — o¢

for each fixed x, and x.

2 .
Let h(x) .= e V% forx #£ 0and A(0) ‘= 0. Show that 27" (0) = 0 for all n € N. Conclude that
the remainder term in Taylor's Theorem for xy = 0 does rot converge to zero as n — oo for
x s 0, [Hint: By L'Hospital's Rule, lin}}h(x}/_xk = 0 forany k € N. Use Exercise 3 to calculate
X —

R (x) for x 3 0]
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Ifx € [0, 1] and n € N, show that

n

? 3 "

X X X X
l] —_ X - — e _]"‘-1 - 7 .
)+ ( ; Pyt o+ D n) "+

Use this to approxumate In 1.5 wirh an error less than (0.01. Tess than 0.001.

We wish (o approximate sin by a polynemial on [—1, 1] so that the errer is less than 0.001.

Show that we have
i ( £ + x 1 for |x| <1
Sinx — - = —_— or x| =<1
*T %% T 20/ T 040 =

(Calculate e correct to 7 decimal places.

Determine whether or not x = {15 2 point of relative extremum of the following functions:
(@) f(x} =x’+2 by gfx): =sinx — x,

(€ h(x):=sinx+ Ix" (d) k(x):=cosx — 1+ 1x?

Let f be continucus on [a, ] and assumc the second derivative 7 exists on (a. b). Suppose
that the graph of f and the line segment joining the points (a, f{a}} and (b, f (b)) intersect
at a pomnt (x,. f (%)} where a < x, < b. Show that there exists a point ¢ € (a, b} such that
ey =0

Let / € R be an open 1nterval, let £ : 7 — X be differentiable on 7, and suppose f7(a) exists
at 2 € 7. Show that '

y . fla+hY--2f(a)y+ fla A
f7(a}y = hm i( ) fE A }
fr-+0} he
Give an cxample where this lunit exists, but the function does not have a second derivative at a.

Suppose thar 7 € T is an open interval and that f"(x) = OGforallx € 7. If ¢ € /, show that the
part of the graph of f on [ is never below the tangent line to the graph at (¢, f{c)).

Let / © & be an intcrva) and let ¢ € /. Suppose that f and g are defined on / and that
the derivatives £ £™ exist and are continuous on /. If f™(c} =0 and g“)(c) =0 for
k=0.1..--.n— 1, but g™ (c) £ 0, show that

iy 60 £y
I — =

= glx) gty
Show that the function f(x) := x" — 2x — 5 has a zero r in the interval [ .= [2, 2.2} If x, :

2 and if we define the sequence (x,} using the Newton procedure, show that ‘x| = r’

IA

0. NHx, — r|”. Show that x, 15 accurate to within six decimal places.

Approximate the real zeros of g{x) :— «* — x = 3.

Approximate the real zeros of A(x) ;= x° — x — 1. Apply Newton’s Method starting with the
itial choices (@) x, 1= 2, (b) x, := 0, (¢) x, = —2. Explam what happens.

The cquationIn x = x — 2 has two sclutions. Approximate them using Newton’s Method. What
happens if x, 1= % 1s the uutial point?

The function f(x} = 8x* — 8x® + | hastwo zeros in [0, 1]. Approximate them, using Newton's
Method, with the starting poinis [a) X, = l M x, = i Explain what happens.

Approximate the solution of the squation x = c6s x, accurate (o within six decimals.



CHAPTER 7

THE RIEMANN INTEGRAL

We have already mentioned the developments, during the 1630s, by Fermat and Descartes
leading to analytic geometry and the theory of the derivative. However, the subject we
know as calculus did not begin to take shape until the late 1660s when Isaac Newton
created his theory of “fluxions” and invented the method of “inverse tangents” to find areas
under curves. The reversal of the process for finding tangent lines to find areas was also
discovered in the 1680s by Gottfried Leibniz, who was unaware of Newton’s unpublished
work and who arrived at the discovery by a very different route. Leibniz introduced the
terminology “calculus differentialis” and “calculus integralis”, since finding tangent lines
involved differences and finding areas iovolved summations. Thus, they had discovered that
integration, being a process of summation, was inverse to the operation of differentiation.
During a century and a half of development and refinement of techniques, calculus
consisted of these paired operations and their applications, primarily to physical problems.
In the 1850s, Bernhard Riemann adopted a new and different viewpoint. He separated the
concept of integration from its companion, differentiation, and examined the motivating
summation and limit process of finding areas by itself. He broadened the scope by consid-
ering all functions on an interval for which this process of “integration” could be defined:
the class of “integrable” functions. The Fundamental Theorem of Calculus became a result
that held only for a restricted set of integrable functions. The viewpoint of Riemann led
others to invent other integration theories, the most significant being Lebesgue’s theory of
integration. But there have been some advances made in more recent times that extend even

Bernard Riemann
(Georg Friedrich) Bernard Riemann (1826—1866). the son of a poor Lutheran
minister, was born near Hanover, Germany. To please his father, he enrolled
(1846) at the University of Gottingen as a student of theology and philosophy,
but soon switched to mathemtics. He interrupted his studies at Géttingen to
study at Berlin under C. G. J. Jacobi, P. G. J. Dirichlet, and F. G. Eisenstein,
but returned to Gottingen in 1849 to complete his thesis under Gauss. His
thesis dealt with what are now called “Riemann surfaces”. Gauss was so
enthusiastic about Riemann’s work that he arranged for him to become a
privatdozent at Gouingen in 1854. On admission as a privatdozent, Riemann was required to
prove himself by delivering a probationary lecture before the entire faculty. As tradition dictated,
he submitted three topics, the first two of which he was well prepared to discuss. To Riemann'’s
surprise, Gauss chose that he should lecture on the third topic: “On the hypotheses that underlie
the foundations of geometry”. After its publication, this lecture had a profound effect on modem
geometry.

Despite the fact that Riemann contracted mberculosis and died at the age of 39, he made
major contributions in many areas: the foundations of geomeltry, number theory, real and complex
apalysis, topology, and mathematical physics.
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the Lebesgue theory to a considerable extent, We will give a brief introduction to these
results in Chapter 10,

We begin by defining the concept of Riemann integrability of real-valued functions
defincd on a closed bounded interval of IR, using the Ricmann sums famaliar to the reader
from calculus. This method has the advantage that it extends immediately to the case of
functions whose values are complex numbers, or vectors in the space R". In Scction 7.2,
we will establish the Riemann integrability of several important classes of functions: step
functions, continuous functions, and monotone functions. However, we will also see that
there are functions that are not Riemann integrable. The Fundamental Theorem of Calcnlus
is the principal result in Section 7.3. We will present it in a form that 15 slightly rmore
general than 1s customary and does not require the function to be a derivative at every
point of the interval. A number of important consequences of the FFundamental Theorem
are also given. In Section 7.3 we also give a statement of the definitive Lebesgue Criterion
for Ricmann wntegrability. This famous result 1s usually not given in books at this level,
since its proof (given in Appendix C) is somewhat complicated. However, 1ts stalement i
well within the reach of students, who will also comprehend the power of this result. The
final section presents scveral methods of approximating integrals, a subject that has become
increasingly important during this era of high-speed computers. While the proofs of these
results are not particularly difficult, we defer them to Appendix ID. .

An interesting history of itegration theory, including a chapter on the Riemann 1inte-
gral, is given in the book by Hawkins cited in the References.

Section 7.1 Riemann Integral

We will follow the procedure commonly used in calculus courses and define the Riemann
integral as a kind of linut of the Riemann sums as the norm of the partitions tend to .
Since we assume that the reader 1s farmliar—at least informally—with the integral from a
calculus course, we will not provide a motivation of the integral, or disuss its interpretation
as the “‘area under the graph”, or 1ts many applications to physics, enginesring, eCONOMics,
cte. Instead, we will focus on the purcly mathematical aspects of the integral.

However, we first recall some basic terms that will be frequently used.

Partitions and Tagged Partitions

If I ‘= [a, b} is a closed bounded interval in X, then a partition of [ 1s a finite, ordered set
Po= (x4 %, x,_,x,)of points in / such that

<x =£h.

r=1 L]

a—-xn«:x1<---~:x

(See Figure 7.1.1.} The pomnts of P are used to divide / = [a, b] 1nto non-overlapping
subintervals

I =[x ):]], IE = [_x1,x2].---, ! ::[xn 1‘1"],

Figure 7.1.1 A partition of [a, ]
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Often we will denote the partition P by the notation P = {[x,_;, x;1];_,. We define the
norm (or mesh) of P to be the number

(N (PN := max{x, — x5, x, —x;,---,x, —x__,}.

Thus the norm of a partition is merely the length of the largest subinterval into which the
partition divides [a, b]. Clearly, many partitions have the same norm, so the partition is nor
a function of the norm.

If a point 7, has been selected from each subinterval I, =[x;_,,x;),fori =1,2,---,n,
then the points are called tags of the subintervals /;. A set of ordered pairs

P = {(x,_. x;), r;')]?:l

of subintervals and corresponding tags is called a tagged partition of 7; see Figure 7.1.2.
(The dot over the P indicates that a tag has been chosen for each subinterval.) The tags
can be chosen in a wholly arbitrary fashion; for example, we can choose the tags to be the
left endpoints, or the right endpoints, or the midpoints of the subintervals, etc. Note that an
endpoint of a subinterval can be used as a tag for two consecutive subintervals. Since each
tag can be chosen in infinitely many ways, each partition can be tagged in infinitely many
ways. The norm of a tagged partition is defined as for an ordinary partition and does not
depend on the choice of tags.

a =xg X Xz X3 x

Figure 7.1.2 A tagged partition of [a. b]

If P is the tagged partition given above, we define the Riemann sum of a function
f : la, b] = R corresponding to P to be the number

2) SUiPyi=) f)( —x,_p.
i=1

We will also use this notation when P denotes a subset of a partition, and not the entire
partition.

The reader will perceive that if the function f is positive on {a. b], then the Riemann
sum (2) 1s the sum of the areas of »n rectangles whose bases are the subintervals /;, =
[x,_,, x;] and whose beights are f(z,). (See Figure 7.1.3.)

:\ /\ ?\“-—/[/
AN /4 il |
R R | | | |
R | | | }
111 | | I |
(IR | | | |
I | | | |
1 11 ] | [ 1
“‘;t:/ -"l‘\‘r X3 j xarf x4 :f X5 rf.xs

Figure 7.1.3 A Riemann sum.
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Definition of the Riemann Integral _____ -~ _

We now define the Riemann integral of a function f on an interval |a, b].

7.1.1 Definition A function f ! [a, b] — R is said to be Riemann integrable on {a, b]
if there exists a number 7. € I such that for every ¢ > 0 there exists &, > 0 such thatif P
1s any tagged partition of [a, ) with {|P|| < &_, then

IS(f;iP)y—Li<e

The sct of all Riemann integrable functions on [a, b] will be denoted hy R[a, b].

Remark It 1s sometimes said that the integral [, is “the limit” of the Riemann sums
S(f: P)asthe norm [P} — 0. However, since §(f; P)is nota functon of || P}, this himut
is not of the type that we have studied before.

Fitst we will show that if f € R|a. b], then the number L. 15 uniquely determined. Tt
will be called the Riemann integral of f over {a, b]. Instead of L, we will usually write

& b
sz f or V/‘f(x)dx.

It should be understood that any letter other than x can be used in the latter expressian, so
long as 1t docs not cause any ambiguity.

7.1.2 Theorem If f € Rla, b, then the value of the integral is uniquely determined.

Proof. Assume that L' and L” both satis{y the definition and lct £ > (). Then there exists
8,,, > O such that if P. s any tagged partion with | P, | < 8, 5, then

1S(f; P J—L<e/2
Also there exists 5,P > 0 such that 1f P is any tagged partition with | P, Sl < .Srﬂ, then
NEE Pz) — L") < g/2.

Now let &, := rmn{é,/q. ;/2} > 0 and let P be a tagged partinon with 1P| < &, Since
both | P|| < é‘ nand [P < F_,Z, then

S(FPY—L <&/2 and  |S(F;P) - L7 <€/2,
whence it fotlows from the Triangle Inequality that

L= L7 =il = S(/i Py + 8(fs Py — L]
<iL'- S(AP)+IS(P) - L
<g/2+€E/2=c¢.

Since & > 0 is arbitrary, it follows that L' = L". QE.D.

Some Examples -

If we use only the definition, in order to show that a function f is Riemann integrable
we must (1) know (or guess correctly) the valuc L of the integral, and (ii) construct a
8, that will suffice for an arbitrary £ > 0. The determination of . is sometimes done by
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calculating Riemann sums and guessing what L must be. The determination of 4 1s likely
to be difficult.

In actual practice, we usually show that f € R[a, b] by making usc of some of the
theorems that will be given later.

7.1.3 Examples (a) Every constant function on [a, b] 15 in Rla, b]
Let f(x):=kforallx € [a, ). P = {([x,_,.x]. ¢t)}_, is any lagged partition of
la, b1, then it 15 clear that

SUfFPy=) kix,—x, )=kib—a).
i—1

Hence, for any ¢ > 0, wc can choose 8, := 1 so that 1f 1P < 8., then
1IS(F1P) —k(b—a) =0 < &

Since £ > 018 arbitrary, we conclude that f € Rfa, b} and f: [ =k{b—a).

(b) Letg :[0,3] - Rbedetinedby g(x) :=2for0<x <1l and g{x) =3for!l <« x <
3. A preliminary mvcstlgdtlon based on the graph of g (see Figure 7.1.4), suggests that we
might expect that fu g = 8.

¥}

T
L

Figure 7.1.4 Craph of g.

Let P be a tagged partition of {0, 3] with norm < &, we will show how to determine
5 1n order to ensure that |S(g; P) — 8| < £. Let ’P be the subset of P having its tags in
(0, 1] where g(x) = 2, and let 'P be the subset of'P with 1ts tagsin (1, 3] where g(x) = 3.
It is obvious that we have

(3) S(g:P) = S(g: Py + Sig. P,).

Since |I'PJ| <éifuel0, 1—-4d)landu € (x,_,.x,) thenx, |, <1 -ésothatx <x,_ +
5 < 1,whencethctag !, € |0, 1] Therefore, the interval [0, [ — &] is contained 1n the union
of all subintervals in P with tags r. € [0, 1]. Sunilarly, this union is contained in [0, | + 8].
(Why?) Since g(r;) = 2 for these tags, we have

2(1 — 8) = S(g; Py < 2(1 +4).

A similar argument shows that the union of all subintervals with tags ¢z, € (1, 3] contains the
interval [1 + &, 3] eflength 2 — &, and is contained in [1 — &, 3] of length 2 + §. Therefore,

32-8) < S(g; Py <3248,
Adding these inequalities and using cquation (3), we have

838 < 8(g.P) = S(g: P)) + 5(g:P,) <8+ 58,
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whenee 11 follows that
1S(g; P) — 8 <55

To have this final term <« g, we are Jed to take 8, < £/s.

Making such a choice (for example, if we take 8, 1= £ /10), we can retracc the argument
and sec that | S(g; 77) — 8 < & when ||’;"1’|| < & . Since € > 015 arbitrary, we have proved
that g € R[0, 3] and that _[03 ¢ = &, as predicted.

(¢} Let h(x) = xforx & [0, 1]; we will show that A € T[0, 1].

We will employ a “trick™ that enableg us to guess the value of the integral by considering
a particular choice of the tag points. Indeed, if {7,)_, is any partition of [0, 1] and we
choosc the tag of the interval 7, = |x,_,, x;] to be the midpoint ¢, : '( , +x,), then
the contribution of this term to the Rlemann sum comresponding to Lhc tagged partition

Q:={0,.9)]_, i
h(gf)(x| ‘xa—i) = %(Xx' +Xx'-—|)(x| _xi 1) = lj(xlz o xiz—l)'

If we add these tenns and note that the sum telescopes, we obtain

H

Sth Q) = 50 —x)=30" -0 =§
i=1
Now Jet P := [(I!. Ifj}:l_] be an arbitrary tagged partition of [0, 1] with ||| < & so
that x, —x, | <8 fori = 1, - -, n Alsalet Q have the same partition points, but where
we choose the tag g, to be the midpoint of the interval 7. Since both ¢ and ¢, belong to
thisinterval, we have | — g1 < §. Using the Triangle Inequality, we deduce

Zr{. Zq(x —X;

i1

IS(th:P) — Sth: Q)| =

<3 =l x) <8 x —x, ) = blx, = ) = B
r=1 i l

Since S(h; Q) = —é, we infer that if P 13 any tagged partition with | || < §, then
Sth: P) — 1] < 4.

Therefare we are led to take §, =& If we choose SL = £, we can retrace the argument to
conclude that € R{(, 1] and [01 h = f01 xdx = ]2

(d) Let F(x) :=1forx = ;, %, 2 g, and F(x):= 0 elsewhere on [0, 1]. We will show
that F € R[0. 1] and that [, F —=

Here there are four points whcrc F s not O, cach of which can belong to two subin-
tervals In a given tagged partition ’P Only these terms will make a nonzero contribution to
S(F,P). Therefore we choose §_ := £/8.

If 1P| <8, let P, be the subsct of P with tags different from ¢, £, 2, %, and
fet 'P be the subsct of P with tags at these points. Since S(F; P o) = 0, 1 1s seen
that S'(F Py = S(F, P,)+ S(F; P )= 8(F; P ;). Since there are at most 8 terms in

S(F; P ,Jandcachtermis < 1 -4, Weconclude[hato < S(F;P)=S§(F: P ) < 83, — ¢
mmFelemm% =0
(&) Let Gix):=1/nforx =1/n(n ¢ N), and G(x) := 0 clsewhere on [0, 1].

Given € > 0, let £ be the (finite) set of points where G(x) > &, letn_ be the number
of points in F_, and lf.'tcSF =e/(2n,). Let P be atagged partition such that ||P|| < 4. Let
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’PD be the subset of P with tags outside of £, and let ?51 be the subset of P with tags in
£__ Asin (d), we have

0<S(G:P)=S(G,P) < (2n )5, ==

Since £ > 0 is arbitrary, we conclude that G € R[0, 1] and fn = O

Some Properties of the Integral

The gifficultics involved in determining the value of the integral and of &, suggest that
it would be very useful to have some general thearems. The first result in this dircction
enables us to form certain algebraic combinations of integrahie functions.

7.1.4 Theorem Suppose that f and g are in R[a, b]. Then:
(a) Ifk € R, the function kf isin R[a, b] and

]jkf=kfabf.

(b) The function f + g isinR[a, b] and

b h b
f(f—i—g):fwafg

{¢) If f{x) = g(x) forall x € [a, b], then
b b
f f 5[ g

Proof. IfP = {([;f X rf)]:’_] is atagged partition of [a, b], then itis an easy exercise
o show that

StkfiP) —kS(f P, S(f+8:P)y=S(f;P)+ Sg:P),

S(fiPY< S(g P).

We leave it to the reader to show that the assertion (a) follows from the first equality.
As an example, we will complete the proofs of (b) and (c).

Given ¢ > 0, we can usc the argumnent in the proof of the Uniqueness Theorem 7.1.2
to construct a number 8, > 0 such that if P is any tagged partition with 1P < &, then
both

b b
(4) |S(f:'}"7)—[ f <ef2 and ‘S(g:?b)—] g <&/2

To prove (b), we note that

S+ P) - ff+] SUP) + S D) f fg|
< \S(I;P)—f f+ swm- [

< &e/24+¢€/2 =&

Since € > 0 is arbitrary, we conclude that f + g € R[a, b] and that its integral is the sum
of the integrals of f and g.
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To prove (c), we note that the Triangle Inequality appliced to (4) implies

po) )
f f—e/2<8S(fP) and S(g;?)<f g+ &/2.

1f we use the fact that S f; ’P) < S(g: ’P}, we have

b b
ffﬁ/girs.

But, since £ > 0 1s arhitrary, we conciude that j:’ f= fab 2. Q.ED

Boundedness Theorem e

We now show that an unbounded function cannot be Riemann integrable.
7.1.5 Theorem If f € Rla.b], then f 1s bounded on[a. b].

Proof.  Assumec that f is an unbounded function in R[a, b] with integral L. Then there
Cx1sts 4 > 0 such that if P 1s any tagged partition of {a, &#] with [|P] < &, then we have
|S(f;P)— L] <« 1, which implies that

(3) IS(f P < |1+ 1.

Now let () = {[x:_]‘ x|]}:_| he a parmition of [a, b} with |Q]| < 8. Since | f]1s not bounded
on [a, b], then there exists at least one subinterval in @, say [x, ., x,], on which | £ 1s not
bounded - for, if |/ is bounded on each subinterval [x x.] by M, then it is bounded on

i1t

la, &1 by max{M, - - M }.
We will now pick tags for O that will provide a contradiction 1o (3). We tag O hy
t — x fori # kand we pick ¢, € [x,_,, x;] such that

FU0 = x| = LI L [0 £ =30
I L
IFrom the Triangle Inequality (in the form |4 + B| = |[A — |B|), wec have

S 2 1 ()~ 5 D= |3 76, —x, ] > 121+ 1,
i#&

which contradicts (5). QED.

We will close this section with an example of a funclion that is discontinugus at every
rational number and is not monotone, but is Riemann integrable nevertheless.

7.1.6 Example We consider Thomae's function 4 : {0, 1] = R defined, as in Example
5.1.5(h), by hix) ;=D ifx & [0. 1]is rrational, (0) ;= l and by h(x) := 1/nif x € [0, 1]
is the rational number x == m/n where m. n € N have no common integer factors except 1.
It was seen in 5.1.5¢h) that /2 is continuous at every irrational number and discontinuous at
every rational number in [0, 1]. We will now show that A € R|0, 1].

Lete > O thentheset £ 1= {x € (0, 1) : A(x) » £/2} is a finite set. We let n, be the
numher of elements in £, and let§, :=&/(4n,). It Pisa tagged partition with 1P| < 8.,
let ’Pl be the subset of P having tags in £, and 77, be the subset of P having tags elsewhere
in [0, 11 We observe that 7:7! has at most 2n, Intervals whose total length is < 2n.4, =¢/2
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and that 0 < h(s,) < ] for every tag o 751. Also the total lengths of the subintervals in 'Pz
18 < 1 and k(1) < £/2 for cvery tag in 7, Therefore we have

ISP = St PO+ Shi Py < 1208, (6/2) -1 =

Since £ » 01s arbitrary, we infer that A € R[0, 1] with integral 0. L

Exercises for Section 7.1

.}

10.

L1

If I := [0, 4], calculate the norms of the following partitions.
(ay P, =1(0,1,24), (b) P.:=1(0,2,3 4,
(¢ P,:=1(0,1,152344), (dy P,:=1(0,.525,3.5.4).

If f(x) = x? for x e [{}, 4], calculate the following Riemann sums, where P has the same
particion points as in Iixcrc:isu . and the 1ags are selccted as indicated.

(a) P, with the lags at the left endpoints of the subintervals.

(hy P, with the tags at the right endpoints of the subintervals,

(c) P, with the tags at the left endpeinis of the subintervals.

(d) P, with the tags at the right endpoints of the subintervals

Show that f : [a, 5] — R 15 Riemann Integrable on [a, b] if and only 1f there exists 1. ¢ X
sich that for cvery £ > 0 there easts 4, > 0 such that if P 1s any tagged partition with norm
1P| < d_, then [S(f: Py—1 <g

Let P he a tagged narition of [0, 3).

(3) Show that the union U, of all subintervals in P with tags 1o (0, 1] satzsfes (0,1 - |,'P ]1C
U, <10, 1+ [PI | |

(b) Show that the union {/, of all subintervals in P with tags in [1, 2] sausfies [1 + |7,
2- P S, Sl -iPl2+]|P 1

..

Let P = {({,. 1)}/, be atagged partition of [2. b] and let ¢, < r,

(a) If ubelongs toasubinterval 7 whose tag satisfies ¢ <1 < ¢, show thatc) — ||P¥ < u <
e, + P _ _

(by Ifw e [a b]and satislies ¢, + |Pjl < v < ¢, — || P, then the tag ¢ of any subinterval 7

that contains v satishes 1 € [c,, ¢, ).

(&) Let fix) —2if0<x<1land f{x):=1if | =x <2 Show that f = R[G 2] and
evaluate 115 integral.

() Teth(x) =210 =x < ,A(l):=3andh(x):= lif]l <« x = 2 Showthath ¢ R[], 2]
and evaluate 1ts integral.,

Use Mathematical Induction and Theoremn 7.1.4 10 show that if £, -, f, are in Ria. b}

and if k. k, C R, then the lincar combination f =D
4/:{ f z”-_] IJ;‘H fl \
If f cRla bland|f{x)]| = M forall x € [a, )], show that If: fr< M —a)

k. f, belongs to Rla, b] and

=17

If f € Rla, b) and if (‘PH) is any sequence of tagged partitions of [a, &] such that IIPH | — 0,
prove that j: f=lm_ §(f; Iljﬂ]

Let g(x) := 0 if x € [0, 1] 1s rational and g(x) '= ¥/x if x € [0, 1] is irrational. Explain why
g ¢ RIO, 1]. Howevcer, show that there exists a sequence (P of tagged partivons of |4, &) such
that ||P A — Oandlim S(g. P L) exsts.

Suppose that f is bounded on [, b and that there exists two sequences of tagged partitious of
(@. b] such that /P|| — Oand @ || - 0. but suchhat lim_S(f: P ) # lim_S5(f; Q,). Show
that £ isnotin Rla, b].
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14,

15.

16.

18.

Section 7.2 Riemann Integrahle Functions

o e emenee suncuon, muoduced in Example 5.1.5(g), defined by f{x) =1 for
x € [0, 1] ratienal and f(x) := 0 for x € [0, 1] irrational. Use the preceding exercise to show
that f is not Riemann integrable on [0, 1].

Suppose that f : [a. b] — R and that f(x) = O except for a finite tumber of painis ¢, -~ -, ¢
in [a, ). Prove that f € R{a, b] and that fﬂb f=

If g € Rla. p) and if f(x) = g(x) except for a finite number of points in [a, b], prove that
feRla blandthat [* f = [*.

Suppose that ¢ < & are pointsin [a, 5], If ¢ : [a. b] — R satsfies g!?(,r.) =& = O0forx € [r, &)
and g(x) = Oelsewherein [a, &), prave thatg € R[a, b] andrha[f ¢ =0old — o) [Hin: Given
£ > 0let§, '=g/4c and show that if | P < 8 then we have a(d — ¢ —28,) < S(g P) <
o(d —c+26)]

letQ<a < b let Ox) =x>forx € [a, b]andlet P 1= {[x
For cach i, let g, be the pasitive square root of

111 i
% ]}, beapartition of |a. »].

St ax +x).
(a) Showthalg satisfies0 < x, | <g <x.
(b) Show that Qg }(x, —x,_,) = 1(x] —x_ ).
(c) If Qs the tagged pantition with the same subintervals as 7 and the tags g,. show that
S(Q;, @) =" -2%)
(d) Use the argument in Example 7.1.3(¢) to show that @ € Rla, ] and

fQ=[ ,‘(de=%(b3—a1].

letO<a<band melN, et M(x) —x" for x C[a,b) and Jet P o= {[x, ,.x ]}/ |, bea
pariition of [a, £). For each ¢, let g, be the positive mth root of

]
(x-?:+xnr II 'WlIIm]""x )

' 1= =1

mA-1
(a8) Show that g, satishesQ < X,_, 2¢ =x,.
(b) Show that M(g,)x, — x, ) = = (x""' ="'},
(c) TIf & 15 the lageed partiion with the same subintervals as P and the tags g,, show that
S(M: Q) =, """ - "),
(d) Usc the argument in Examplc 7.1 3(c) to show that M € R[a, ] and

h b ]
f M:f xTdx = -
a a m o+

If feTla, b] and c & X, we define g on la+c.b4+cl by p(y) = f(y -c). Prove tnat

g € Rla+c, b+ ) and that f:;: g = J_ f. The function g is called the c-translate of f.

[bm-l—l _ a"’l"‘]_)_

We begin with a proof of the important Cauchy Criterion. We will then prove the Squeeze
Theorem, which will be used to establish the Riemann integrability of scveral classes of
functions (step functions, continuous functions, and maonatone functions). Finally we will
establish the Additivity Theorcm.

We have already noted that direct use of the definition requires that we know the value

of the integral. The Cauchy Criterion removes this need, but at the cost of considering two
Riemann sums, instead of just one.



12 RIEMANN INTEGRABLE FUNCTIONS 203

7.2.1 Cauchy Criterion A function f * [a, b] = R belongs toR|a, b] if and only if for
cvery € > O there exists n, > O such that if P and @Q are any tagged partitions of [a, b]
with [P < n, and [ @, < n_, then

1S(F,P) = S Q) < e,

Proof. (=)W f e Rla, bJ.wiLh integrat 1." let n, :=4_/2 > O be such that if P, O are
tagged partitions such that [|P| < n, and [ 2] < n,, then

S(f;Py— Ll <#/2  and 1S Q) — L] <£/2.
Therefore we have

SULPY=SULDI=ISU i PY =L+ L 8(F, Q)
<[S(f1PY— L. +1L — S(f, Q)
<ef24+e/2—2

(=) For each n € N, let §_ > O be such that if P and Q are tagged partitions with
notms < 4§ , then

ISCPY = SUL Q) <1
Evidently we may assume that §, > §,_, | for n € N, atherwise, we replace 8 by 8 1=

min{al, .

n

For cach n e N, lct Pn he a tagged partition with I’RH < § . Clearly, if m > n then
both i’m and ’P“ have norms < & , so that

(1) 1S(f:Py=S(fi Py < 1/n  for m=n.

Conscquently, the sequence (S(f; .12, is a Cauchy sequence in B Therefore (by
Theorem 3.5.5) this sequence converges in R and we let A . lim S{f. P
Passing o the limit in (1) as m — 00, we have

IS(Fi Py Al < 1yn for all n e N.

To see that A is the Riemann integral of f, given ¢ > 0, let K € Nsatisfy X = 2/e. o)
is any tagged partition with ||@] < 4,., then

1S/ Q) — AL < 1S(f: @) — S(f: Pl + IS(f: Pe) — Al
<1/K+1/K <c.

Since ¢ > 0 is arbitrary, then f € Rla, b} with integral A. QED.
We will now give two examples of the use of the Cauchy Cntenon,
7.2.2 Examples (a) Lelg: IO. 3] — R be the function considered in Exz}mplc 7.1.3(h).
In that exzimple we saw that 1f P 1s a tagged partition of [0, 3] with nom ||P|| < é, then
B— 355 < 8(g;:P) <8+ 55
Hence if Q 1s another tagged partition with || Q|| < 8, then
8 — 58 < S(g: Q) < 8+ 58
If we subtract these two incqualitics, we obtain

[S(g; P) — S(g: Q)] < 108.
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In order to make this final term < &, we are led to employ the Cauchy Cnterion with
n, = £/20. (We leave the details to the reader.)
(b) The Cauchy Criterion can be used to show that a function f : [a, B] = R 1s nor
Riemann integrable. To do this we need to show that: There exists g, > O such thar for
any n > O there exists tagged partitions P and Q with | P|| < n and IO < n such that
1S(fiPY— S(f: Q) = &,

We will apply these remarks to the Dirichlet function, considered in 5.1.5(g), defined
by f{x):= 1ifx € {0, ] is rational and f(x) ;= 0if x € [0, 1] 1s irrational.

Herc we take g, = % If P is any partition all of whose tags are rational numbers then
S(f: Py =1, while if Q is any tagged partitton all of whose tags are trrational numbers
then S(f: Q) = 0. Since we are able to take such tagged paruitions with arbitrarily small

—

norms, we conclude that the Dirichlet function is not Riemann integrable. -

The Squeeze Theorem

The nextresult will be used (o esiablish the Riemann integrability of scme unportant classes
of functions.

7.2.3 Squeeze Theorem let f:[a. b] — R Then f € Rla, b if and only if for every
£ > O rhere exist funciions a, and w, in R[a, b] with

(2) a (x) < flx) <w (x) forall x € [a,b],
and such that -5
(3) ] (w, —a) <&

Proof. (=) Takea, =, = f foralle > 0.
(<) Let £ > Q. Since &, and w, beloag to R'a, b], there exists 8, > O such that if I
15 any tagged partition with |P| < 8, then

'S(ag: P) —[bo:£

It follows from these inequalities that

b
< £ and ‘S‘(wf;’}b)—/ w,

a

< E.

b )
/ o, - €= S(crs; 'P) and S'((uz;'}j) < / w, + £

In view of inequality (2), we have S{w,; ’P) = S{f, ?j) < S{w,; ’P), whence

b b
/crg—a-:S(f;'P)</ w, 1+ E.

[ o

If Q is another tagged partition with |2 < 8., then we also have

b b
f a€—£<5(f;§2)</ w, + €.

If we subtract these bwo mmequalities and usc (3), we conclude that
b h
5GP Sl < [ o [ a2

b
- f (“"s - )+ 28 < 3e.

Since £ > 0 is arbitrary, the Cauchy Cnitenon implies that f € R|a, b). QED.
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Classes of Riemann Integrable Functions .

The Squeeze Theorem is often used in connection with the class of step functions. Tt will be
recalled from Definition 5.4.9 that a function ¢ : [a, b] — 5 is a step Function if it has only
a finite number of distinct values, cach value being assumed on onc¢ or more subintervals
of [a, £]. For illustrations of step functions, see Figures 5.4.3 or 7.1.4,

7.2.4 Lemma [fJ is a subinterval of [a, b] having endpoinus ¢ < d and 1'r"cpj {x) — 1
forx € J and ¢ ,(x) := O clsewhere in [a, b), then @, € Rla, b) and f:’ w, =d—c.

Froof If /= |c, d] with ¢ < 4, this is Exercise 7.1.13 and wc can choose & (== g/4.
A similar proof can be given for the three other subintervals having these endpomta
Alternatively, we observe that we can write

Yoty = Yieat ~ Pl Yot T Peer Pea B Py = e~ oo
Since f: ¢(. . = 0, all tour of these functions have intcgral equal tod — c. ' QED.

It 15 an important fact that any step function is Riemann integrable.
7.2.5 Theorem Ify : [a, b] — R isa siep function, then ¢ € Ria. b].

Pronf. Step functions of the type appearing in 7.2.4 arc called “clementary step functions™.
In Exercise 5 it is shown that an arbitrary step funcuon ¢ can be expressed as a linear
combination of such elementary step functions:

(4) ¥ = ij(pj.'
i1 !

where J; has endpoints ¢, < d . The lemma and Theorerm 7.1.4(a,b) imply that ¢ € K[z, 5]
and that

b ld
(5) f = kid —c). QED.
fud j=1

We will now use the Squeeze Theorem to show that an arbitrary continuous function
is Riemann integrable. '

7.2.6 Theorem If f :[a,b] — R s continuous on [a, b), then f € Rla, b}.

Proof. Ttfollows from Theorem 5.4.3 that f is uniformly continuous on {a, #]. Therefore,
given ¢ = 0 there exists 8, > 0 such that if u, v € [a, b} and |u — v| < §_, then we have
[fu) — f)] <&/b ~a),

LetP = {J.}/_) beaparutionsuchthat [P|| <« §,.letu, € [ be apoint where f atiaing
its minimum value on /;,and let », € /. be a point where f attains its maxamum value on /,.
Let o, be the step function defined by &, (x) := f(u,) for x € [x,_,. x)} (i = 1,
n—1ande, (x}:= flu)forx € [x |, x ] Lete, be defined similarly using the points

v, instead of the ;. Then one has

a (x) < f(x) <w(x) forall x € [a, b).
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Moreover, it is clear that

0<] (0, =) = 3 (F(0) = £ ) x; — 51 y)

i=1

< ;(b i ﬂ!)(x: —X,_)=¢

Thercfore it {ollows from the Squeeze Theorem that f € R[a, b]. QED.

Monotone functions are not necessanly continuous at every point, but they are also
Riemann integrable,

7.2.7 Theorem If f :[a, b) — R is monotonc on [a, b], then f € R[a, b).

Proof. Supposc that f js increasing on the interval [a, b], @ < b. If ¢ > 0 is given, we let
g C N be such that

_ i - fl@ £
= <% .
g b—ua

Let v, = f(a)+kh for Kk =0,1 ---. g and consider sets A, 1= f— ([}'k—l' y,)) for
k=1,--.4g —1and Aq = f l(_[ Yoo )q]). The scts {A, } are pairwise disjoint and have
union {a, b]. The Charactenzation Theorem 2.5.1 implies that cach A, is cither (1) empty,
(1) contains a single point, or (111) i1s a nondegenerate interval (not necessarily closed)
in [a, b]. Wc discard the sets for which (1) holds and relabel the remaining ones. If we
adjoin the endpoints to the remaining intervals {A,}, we obtain closed intervals {/, }. It
is an exercise to show that the relabeled intervals {A }]_, are pairwisc disjoint, satisfy
[a. bl = ;. | A andthat f{x) e[y, y])forx € A,.
We now define step functions @, and w, on [a, b] by setting
o, (x) ==y, and w, (X) 1=y, for X e A

A

[t is clear that a, (x} < flxy < we(x) for all x < [a, ] and that

b
[(wz a,) =

M)

= v D - x )

.
|

h-{x, —x,_)=h-(b—a) <¢

1
Mq

k—

=
|t

-1

Since ¢ > 0 is arbitrary, the Squeeze Theorem 1mplics that f € Rla, 5] QED.

The Additivity Thcorem

We now return 1o arbitrary Riemann integrable functions., Qur next result shows that the
integral is an “‘additive function” of the interval over which the function is integrated. This
property is no surprise, but its proof is a bit delicate and may be omitted on a first reading.

7.2.8 Additivity Theorem [Iet f:[a b|— R andletc € (a, b). Then f € Rla, b if
and only if its restrictions to [a, ¢] and [c, b] arc both Riemann integrable. In this case

®) ff—/f+]f
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Proof. (&) Suppose that the restriction /| of f to [a, ¢]. and the restriction [, of f to
[c, bl arc Riemannintegrable to L and L,, rcspecnwlv Then, givene > 0 there exists 8 >
Oauchthanf’P lsataggedpamuon of[a ¢l with ||TD | < &' then S(f Py - L, <&/3
Also there exists 8 > 0 such that if 2. is a tagged partition of [¢, A] with '|P || < 8" then
15(f5 P D — L <e/3. TEMisa bound for | £1, we define 8, = min{&’, ”, g/6M} and
Jet P be a taggcd partition of [a, b] with || Q|| < &. We will prove that

(7) |S(F; Q) (L, +Ly <.

. (1) Iicisa partition_point of Q‘_we split @ imo a partition Ql of [a. c]land a parljlipn
Q, of |¢, b]. Since S(f: Q) — S(f; Q) + S(f, @,), and since Q, has norm < 6 and Q,
has norm < §”, the inequality (7} is clear.
(1) If ¢ is not a partition pownt 1n Q= {4, 1)), there exists k& < m such that
¢ € x| x,) Welet Q1 be the tagged partition of [a. ¢] defined by

Q| = {(11"{|)‘ i (Ik 1" ) (l-xj( 1 -II )}:
and Q—z be the tagged partition of [¢, £] defined by

Qz = Wlex ooy Uy 4y)o o ()0

A steaightforward calculation shows that

S(f: Q) - S(f; Ql) - S[:f; Q:) = f(fg)(x,l_, _x;(_|) - f(c)(xk _xk—l)
= (fu,() - f(f*)) : (x;( - X 1)~

whence 1t follows that

SCF QY SUfLQ) SOyl =2M(x, —x, ) < £/3.
Bui since ]|Ql{| < $ <5 and :|Q2i. < & =< 6", it follows that

1S(/: Q) = Lyl < 2/3 and 1S(f: Oa) — Lyt < €/3,

from which we obtain (7). Since ¢ » 0 is arbitrary, we infer that f € R[a, b] and that (6)
holds.

(=) Wesuppose that f € Rla, b] and, given € > 0, we let np, > 0 sansfy the Cauchy
Criterion 7.2.1. Let f, be the restriction of f to [a, ¢] and let ”F’l Ql be tagged partitions
of la, c| with ||P,] < n, an_d |[Ql |.< n,- By adding additigna] pa;mmn pornts and lags
from [c, b]. we can extend P, and Q, to tagged partitions P and Q of [, b] that satisfy
1P| < n, and | Q| < n,. If we use the same additional points and tags in (¢, ] for both P
and O, then

SUiPY =S Q) =SULP) = S(f, Q

Since hoth P and @ have norm < N, then |S(f}; 7’1) - SUy QL}l < g. Therefore the
Cauchy Condition shows that the restnction f) of f to[a, c] 1sin Rla, ¢]. In the same way,
we sec that the restnction f, of f to [¢, b] is in Rlc, 4].

The cquality (6) now follows from the first part of the theorem. QED.

7.2.9 Corollary If f € Rla.b] and if(c,d] C [a, k], then the restriction of [ to [c, d]
IsinRec, d].
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Proof. Since f € Rla, k] and ¢ € {a, b), it follows from the theorem that ils restriction
o [c. bl 1sin Rlc, b]. Butif 4 € [c, b], then another application of the theorem shows that
the restrction of f to [¢, 4] 1s in Ric, 4]. QED.

7.210 Corollary If f e Rla, b} and if a =¢, < ¢ < -+ < ¢, = b, then the restric-
tons of f o each of the subintervals [¢, |, ¢, are Riemann integrable and

[re$f

Until now, we have considered the Riemann integral over an interval [a, ] where
a < b1t 15 convenient to have the integral defined more gencrally.

7.2.11 Definition If f € Rla,blandif o, 8 € [a, b] with & < £, we define

/:f: /f and -/:f;:

7.2.12 Theorem If f € Rfa.b] andifwa, B,y arc any numbers 1n [a, b), then

® fjf-—:[fﬂufff.

in the sense that the existence of any two of these integrals mplics the existence of the third
mtegral and the equality (8).

Proaf. 1f any two of the numbcrs &, 8, y arc equal, then (8) holds. Thus we may supposc
that all three of these numbers arce distinct.
For the sake of symumetry, we (ntroduce the expression

& ¥ o
L(Dr,ﬁ,y):—/ f+f f+f 5
o a 4

1t 1s clear that (8) holds if and only if L(e, 8, v) = 0. Therefore, to estahlish the assertion,
we need to show that L = 0 for all six permutations of the arguments o, 5 and y.

We note that the Additivity Theorem 7.2.8 implies that L(e, 8, v) = 0 whena < v <
g. Butit1s casily secn that both L(f. y, @) and L{y, o, 8) equal L{a, 8, y). Morecover, the
numbers

L(B. e y), Lio, y. B), and  L{y. f§, )

arc all equal to —L (&, 8, ). Therefore, L vanishes for all possible configurations of these
three points, QED.

Exercises lor Section 7.2

l. Let f :[a,b) — R Showthat f ¢ R[a, b]if and only if there exists e, > O such that for every
n & N there exist tagged partitions T—" and Q with ||'P A< I/ and ! Q | < I/m such rhat
IS(£2P) = S(f:1 Q)] > 2,

2. Consider the function k defined by A(x) ;== x + 1 for x € [(, 1] rational, and h(x) := 0 for
x € [0, 1] irrational. Show that /& is not Riemann integrable.
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Let Fi{x):=kforx = 1/k (k € Ny and H{x) := 0 elsewherc on [0, 1]. Use Exercise 1, or the
argument in 7.2.2(b), to show that /# 1s not Ricman integrable.

Ta(x) = —xandw(x) — xandife(x) = f(x) < w(x)forall x € [0, 1], does it follow from
the Squceze Theorem 7.2.3 that £ e R[O, 1]? :

If 718 any subinterval of [, £] and ifg,(x) =1 forx € J and @, (x) = { elsewhere on [a. b,
we say that ¢, is an elementary step function on [a, b]. Show that every step function is a linear
combination of elementary step funcuons.

If ¥ : [a, b] — 1 takes on only 2 finite number of distiner values, is ¥ a step function?
It 5(f:P) is say Ricmann sum of f :[a, b] — R, show that there exists a step function
@ :[a, b] > Rsuchthat 9 = S(f. P).

Suppose that fis contnuous on [g, #], that f(x) = Oforall x ¢ [a, b] and that j;b f = 0. Prove
that f(x) = O for all x € [a, b].

Show that the conunuity hypothesis in the preceding exercige cannot be dropped.

If f and g are continuous on [a, b] and if _.f; f= f:’ g, prove that there exists ¢ C [a, b] such
that f(c} = g(c).

If f isbounded by M on [a, 5] and if the restriction of f to everyinterval ¢, b] where ¢ € {a, b)
15 Riemann integrable, show that f € R[a, 6] and that j{b f » f: f as ¢ — a+. [Hmi: Let
a fx) = -Mandw (x) = Mforx g |a, cyandeo, (x) = w (x) = f(x)forx € [c. b]. Apply
the Squeeze Theorem 7.2.3 for ¢ sufficiently near a.]

Show that g(x) := sin(l/x) forx € (0. 1] and g(®) := 0 belongs to R[(, 1].

Give an zxample of 2 tunction f : [a, A] — B thatis in Rlc, &) for every ¢ € (a, &) but which
isnot in Rla, bl

Suppose that f : [a, 5] -» K, thata — Co <€ <, — £ and that the restrictions of f to
e, . ¢;)belong to Rlc _,.c;1fori =1,---.m Prove that f € R[a, &] and that the formula
in Corollary 7.2.10 holds.

If / is hounded and there is a finite set £ such that £ is continuous ac every point of [a, &\ F,
show that f & Rla, b].

Tf f is continuous on [a, 8], @ < b, show that there exisis ¢ € [a, b] such that we have f: =

fi{ey(h a). This result is sometimes called the Mean Vulue Theorem for Integrals.

If f and g arc continuous on {a, &) and g(x) = 0 for all x & [a, b). show that there exusts
¢ € |a. p] such thal f: fg = () f;g. Show that this conclusion fails if we do not have
g(x) = 0. (Note that this result 13 an extension of the preceding exercise.)

Vin
et f be continuous on (a, £, Jet f{x) > O for x € [a. b}, and let M = (fﬂb f”) . Show
that Nm(M ) = sup{f(x) : x € {a, b]}.
Suppose that @ = 0 and that f € R[~a, a}.
(2) 1If fis even (thatis, if f(—x) = f(x) forallx € [0.a)), show that /" f =27 f.
(b) If fis odd (thatis, if f(—x) = f(x) for all x € [0.a)), show that [° f =0,
Suppose that f : la, b} = Rand thatn € I¥. Lzt P, be the partition of (&2, b| into n subintervals
having equal lengths, sothatx; 1= a + i(b —a)/nfori = 0.1, - . n.LatL _(f) = S(f:P D
and R () = S(f; ’f-"’nlrj. where ’;"3” has its tags at the left endpoints, and ’PM has its tags at
the right endpoints of the subintervals (x,_,, x,].
(a) If f1sincreasing on [a, b], show that L (f) = R (/) and that

(b — a)

V2R - L) =(f0)~ f@)-

(b) Show that f{a)(b—a) <L (fy< [7f <R (f) < f(b}b—a).
{c) If fisdecreasing on |a. b], obtain an inequality similar to that in (a).
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(dy If f € Kla, £] 15 nol monotone, show that f:’ f s not necessarily between L (f) and
R_().

21. If fiscontinuous on | -a, g} show that ffﬂ f(xzj dx = 2f; flxHdx.

]
(2

If fiscontinuouson[—1, 17, show Lhatf;r’f2 fleosx)dx —= u'm fisinx)dx = !Efs” fsinx)drx,
(Fine, Examine certan Riemann sums. ]

Section 7.3 The Fundamental Theorem

We will now explore the conrcction between the notions of the dertvative and the integral.
In fact, there are two theorems relating to this problem: one has to do with integrating a
derivative, and the other with differentiating an integral. These theorems, taken together,
are called the Fundamental Theorem of Calculus. Roughly stated, they imply that the
operations of diffcrentiation and integration are inverse (o each other. However, there are
some subleties that should not be overlooked.

The Fendamental Theorem (First Form)

The First Farm of the Fundamental Theorem provides a theoretical basis for the methad
of calculating an integral that the reader learned in calculus. It asserts that if a function
f 1s the denvative of a function F, and if f belongs to R|a. b}, then the integral f: f
can be calculated by means of the evaluation F |::: F(b) Fla). Afunction F such that
F'(x) = f(x) for all x € &, b] is called an antiderivative or a primitive of f on {a, b].
‘Thus, when f has an antidenvative, 1L 1s a very sumple matter to calculate 1ls mtegral.

In practice, it is convenient fo allow some exceptional points ¢ where F’'(¢) does not
exist in R, or where 1t does not equal f(c). It turns out that we can permit a finite number
of such cxceptional points.

7.3.1 Fundamental Theorem of Caleulus (Fivst Form)  Suppose there is a finfte set F
inla, b) and functions f, F : [a, b] > IR such that:

(a) F iscontinuous on [a, b],

(by F(x)= f(x) forallx € |a, bI\E,

(¢) f belongstoR[a, b].

Then we have

b
(1) / f=F®) - Fla).

Proof. We will prove the theorem 1n the case where E (= {a, b}. The gencral case can
be obtained by breaking the interval into the union of a finite number of intervals (sce
Exercise 1).

Lete > Obe given Since f € Rfa, b} by assumption (c), there exists §, > 0 such that
if P is any tagged partition with | P|| < 8. then

b
@ scrim = [ | <
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If the subintervals in P are [x i_11 X1, then the Mean Value Theorem 6.2.4 applied to ! on
[x;_,. x;] implies that there exists u; € (x;_,, x,) such that

‘r(x,') — F(x,'_|) == —F‘f(u;) ’ (x; - X; ]) for [ = L, -~ , .

If we add these terms, note the telescoping of the sum, and use the fact that F’(uf.) = ),
we abtain

M

Fib) — Fla) =Y (Flx) F(x_))= Z Fa)x = x, )
-1 .
Now let ?5u = {({{x;_,. %], u)}; . sothe sum on the right equals S{(f; 7). If we substi-
tute F(b) -- F(a) = S(f_ P L) into (2), we conclude that

'F(b) F(a) /bf‘-::.zr.

But, since £ > 0 is arbitrary, we infer that equation (1) holds. QLD.

Remark If the function F is differentiable at every point of [a, b], then (by Theorem
6.1.2) hypothests (a) 15 antomatically satisfied. If £ 18 not defined for some point ¢ € L,
we take f(¢) := (. Even if F is diffcrentiable at every point of [a, #]. condition (c) is not
automatically satisfied, since there exist functions F such that £ is not Riemann integrable.
(Sec Example 7.3.2(c).)

7.3.2 Examples (a) If F(x):= ix*forallx € {a, b], then F'(x) = x forallx & [a, b,
Further, f = F'iscontinuous soitisin R [a, #] Therefore the Fundamenta) Theorem (with
E = @) implics that

f xdx = F(b) — F(a) = 1(b* — a’).
a

(b) If G(x) := Arctan x for x ¢ [a, b], then G'(x) = 1/(x* + 1) for all x & [a, b]; also
G’ 15 continuous, so it is 1n R[a, ). Therefore the Fundamental Theorem (with £ = &)
implics that

4]

/ 5 : dx — Arctan b — Aactana,
a x° 41

(€) If A(x) = lx|forx € [—10, 10], then A'(x) = =1 if x € |~10,0) and A'(x) = +1

for x € (0, 10]. Recalling the definition of the signum function {in 4.1.10(b)), we have

A'(x) = sgn(x) for all x € [—10, 103\{0} Since the signum function is a step function, it

belongs to R[—10, 10]. Therefore the Fundamental Theotrem {with £ = {0}) implies that

10
f sgn{x)dx = A(10) — A(- 10) =10 10—-0
—10
(d) If H(x) :=2/x forx € [0, b), then H 1s continuous on {0, b] and H'(x) = 1//x for
x € (0, b]. Since h 1= H' is not bounded on (0, 4], it does not belong to 2|0, »] no matter
how we definc 2(D). Therefore, the Fundamental Theorem 7.3.1 does not apply. (However,
we will see in Example 10.1.10(a) that k is generalized Ricmann integrable on [0, £])

(&) LeatK(x):= x?cos{l/x")forx € (0. 1]1and let X (¢)) := 0. It follows from the Product
Rule 6.1.3(c) and thc Chain Rule 6.1.6 that

K'(x) = 2x cos(1/xY) + (2/x) sin(1/x?) for x € (0, 1].
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Further, as in Example 6.1.7(d), we have K'(0) = 0. Thus X 1s continuous and differentiable
at every point of [0, 1] Since the first term in K 1s continuous on {0, 1]. it belongs to
[0, 1]. However, the second term in K’ is not bounded, so it does not belong to R{0, 1].
Consequently K ¢ 7|0, 1], and the Fundamental Theorem 7.3.1 does not apply to X',
(However, we will see in Examnple 10.1.10(b) that K’ is generalized Ricmann integrable.)

L]

The Fundamental Theorem {Second Form) _

We now turmn to the Fundamental Theorem (Second Form) in which we wish to differentiate
an integral involving a vanable upper Jimit.

7.3.3 Definition 1f f & Rla, ], then the function defined by

(3) F(z) '—/ | for ze€la,b),

is called the indefinite integral of f with basepoint a. (Sometimes a point other than @ is
used as a bascpoint; see Exercise 6.)

We will first show that if f € R[a, |, then its indefinite intcgral F satisfics a Lipschitz
condition; hence F 13 continuous on [a, b].

7.3.4 Theorem The indefinite integral F defined by (3) is continuous on {a, »). In fact,
Fi e < M foralix € {a, b}, then |F(e) — F(u)| < M|z — w| forallz, w € [a, b|.

Proof. The Additivity Theorem 7.2.8 implics thatif z, w € [a, bl and w < z, then

F(zj:ffZ] f+[lf=F(w)+f 5

F(zy — F{uw) :f £

whence we have

Now 1f —M_g S(x) < M forall x € [a, ], then Theorem 7.1.4(¢) implies that

7
—Mz—u) < f f < Miz—w),
whence it follows that
@ = real | [ 5] < w1z

as asserted. Q.ED.

We will now show that the indefinite integral F is differentiable at any point where f
18 continuous.

7.3.5 Fundamental Theorem of Calculus (Second Form) Let f € Rla, b] and let f be
continuous at apointc € [a, b]. Then the indefinite intcgral, defined by (3), 1s differentiable
at ¢ and F'(c) = f(c).
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Proof. Wec will suppose that ¢ ¢ |a, b) and consider the right-hand derivative of F at ¢
Since f is continuous at ¢, given & > § there exists , > 0 such thatif ¢ < x < ¢ + 7,
then

(4) flo) ~e < fx) < fo)+e

Let hsatisfy 0 < A < 7,. The Additivity Theorem 7.2.8 impties that f 15 integrable on the
intervals [a, ¢], [¢. ¢ + A) and [c, ¢ + A#] and that

c+h
F(c+h)—F{c)=/ £

Now on the interval [¢, ¢ -t k] the function f satisfies inequality (4), so that (by Theorcm
7.1.4(¢)) we have

r+h
(f(é‘)—ﬁ)'h_‘?F(C"rh)—F(C)Zf f 2l +e)-h

It we divide by £ = 0 and subtract f{¢), we ohtain

Fle+hy— F
=T s

<E,

But, since £ > 0 is arbitrary, we conclude that the right-hand limit 1s given by

i Fle+h) - o) = o)

h— }?

[t is proved in the same way that the left-hand Iimit of this difference quotient also equals
f(c) when ¢ € (a, b], whence the assertion follows. Q.ED.

If f is continuous on all of [a. b], we obtain the {ollowing result.

7.3.6 Theorem If f is continuous on [a, b), then the indefinite integral F, defined by
(3), is differentiable on [a, b) and F'(x) — f(x) forall x € [a, b).

Theorem 7.3.6 can be summarized: If f is continuous on [a, b), then its indefinite
integral is an anuderivative of f. We will now see that, 1n general, the indefinite integral
nced not be an antiderivative (cither because the derivative of the indefinite integral does
not exist or does not equal f(x)).

7.3.7 Examples (a) If f(x) = sgnxon[—1,1],then f € R[—1, 1] and has the indef-
inite integral F(x) ‘= [x|{ — 1 with the basepoint —1. However, since F'(0) does not exist,

F is not an anudenvative of f on [—1, 1].
. e eem e miy s eratan At 111 od Uy LILGAE 44D AIURCLIIEILE ll"lll:gfal

H(x) = [, k 1s identically O on [0, 1]. Here, the derivative of this indefinite integral
exists at every point and H’'(x) = 0. But H'(x) # h(x) whenever x € @ N[0, 1], so that
H is not an antiderivative of 4 on (0, 1]. 0

Quhetifutian Thearem ) e e i g moiinen L AL et it ¥

COUrscs.
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7.3.8 Substitution Theorem Let J .= (o, 8] and let ¢ : J -> R have 2 continuous
derivattve on J. If f - 1 — R is continuous on an interval I containing @(J), then

B w{8)
(3) f fle)) ¢'(0) de :/ Fix)ydx.
o 7

)]
The proof of this theorem is based on the Chamn Rule 6.1.6, and will be outlined i
Exercise 1S, The hypotheses that f and ¢’ are continuous are restrictive, but are used to
ensure the exastence of the Riemann integral on the left side of (5).

4 -
t
7.3.9 Examples {a) Consider the integral s { dt.

!

Here we substitute ¢{t) ;= /f for t € [1,]4] S:)/-that @'(t) = 1/(24/1) is continuous
on [1,4]. If we let f(x) :=2sinx, then the integrand has the form (f o ) - ¢ and the
Substitution Theorem 7.3.8 implies that the intcgral equals ff 2sinxdx = —2cosx|f =
2(cos ] —cos?).

\/_

(b) Consider the integral f ——dr.

Since @(t) ;= /1 does not have a continuous derivative on [(0, 4], the Substitution
Theorem 7.3.8 15 not applicable, at least with this substitution. {In fact, it is not obvious
that this integral exists; however, we can apply Exercise 7.2.11 to obtain this cenclusion.
We could then apply the Fundamental Theorem 7.3.1 to F{1) := —2¢0s /7 with E = {0)
to evaluate this integral ) ]

We will give a more powerful Substitution Theorem for the generalized Riemann
integral in Section 1{.1.

L.ebesgue’s Integrahility Criterion

We will now present a statement of the delinitive theorem duc to Henn Lebesgue (1875~
1941} giving a nccessary and sufficient condition for a function to be Riemann integrable,
and will give some applications of this theorem. In order to state this result, we need w0
introduce the important notion of a null set,

Warning Some people use the term “null set” as a synonym for the terms “empty set”
or “voud set” referring to B (= the set that has no clements). However, we will always use
the term “null set™ in conformity with our next definition, as is customary in the theory of
Integration.

7.3.10 Definition (a) A setZ C Rissaidtobe anull setif forevery ¢ » 0 there exists
a countable collection {(a,, b,)],_, of open intervals such that

2 oo
(6) 7z U(ak, b,) and Z(bk —a,) <«
k=1

k=1

(b) If O(x) is a statement about the point x € 7, we say that O(x) holds almost every-
where on ! (or {or almost every x € [}, if there exists a null set Z C [ such that
Q{x) holds for all x € I\ Z. In thig casc we may write

O{x) for ae. x €]

It is trivial that any subsct of a null set 15 also a null set, and it is casy to sec that the
union of two null sets 15 a null set. We will now give an example that may be very surprising.
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7.3.11 Example The €, of rational numbers in [0, 1] is a null set,

We enumerate Q) = {r,, r,.---]. Given £ > 0, note that the open Interval J, '=
(r, —&/4,r, + £/4) contains r| and has length £/2; also the open interval J, 1= (r; —
£/8,r, v £/8) contains r, and has length £/4 In general, the open interval

7o £ £
N N TR Ry
contains the point r, and has length 2,12;‘. Therectfore, the union Uf’il J, of these open

intervals contains every point of {J,; morcover, the sum of the lengths is PR (£ /2%y = ¢
Since £ = 01s arbitrary, @1 is a null set. C

The argument just given can be modified to show that: Everv counfable ser is a null
set. However, it can be shown that there exist uncountable null sets 1n R; for example, the
Cantor sct that will be introduced in Definition 11.1.10.

We now state Lebesgue’s Integrability Criterion. It asserts that a bounded function on
an interval is Riemann integrable if and only 1f its points of discontinuity form a null set.

7.3.12 Lebesgue’s Integrability Criterion A hounded function f : [a, b] —> R is Rie-
mann integrable if and only if it is continuous almost everywhere on [a, b].

A proof of this result will be given in Appendix C. However, we will apply Legesgue’s
Theorem here to soine specific functions, and show that some of our previous resulis follow
immediately from 1t We shall also use this theorem to obtain the impertant Composition
and Product Theorems.

7.3.13 Examples (a) The step function g in Example 7.1.3(b) is continucus at every
point except the point x = 1. Therefore 1t follows from the Lebesgue Integrability Criterion
that g 18 Riemann integrable.

In fact, since every step function has at most a finite set of points of discontinuity,
then: Every step function on [a, b] is Riemann integrable.

{b) Since it wasseenin Theorem 5.5.4 that the set of points of discontinuity of a monotone
function is countable, we conclude that: Every monotone function on [a, b) is Riemann
integrable.

(¢) The function G in Example 7.1.3(e) is discontinuous precisely at the points D =
{1,1/2,---,1/n, - --}. Since this is a countable set, it is a null set and Lebesgue’s Criterion
implics that G is Ricmann integrable.

(d) The Dirichlet function was shown in Example 7.2.2¢b) not to be Ricmann integrable.
Note that it is discontinuous at every point of [0, 1]. Since it can be shown that the
interval {0, 1] 1s not a null set, T.ebesgue’s Cnterion yiclds the same conclusion
(e) Leth [0, 1] — R be Thomac’s function, defined in Examples 5.1.4(h) and 7.1.6.
In Example 5.1.4(h), we saw that h is continuous at cvery imrational number and is
discontinuous at every rational number in [0, 1]. By Example 7.3.11, it is discontinuous on

a null set, so Lebesgue's Criterion implies that Thomae's function ts Riecmann integrable
on {0, 1], as we saw in Example 7.1.6. =

We now obtzain a result that will enable us to take other combinations of Riemann
integrable functions.
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7.3.14 Composition Theorem Ler f € Ra, b] with f([a, b)) € [¢,d]and ety : [c, d]
— R be continuous. Then the composition ¢ o f belongs 1o Rla, b

Proof. If fiscontinuous at a point u € [, b}, then ¢ o f 1s also continucus at u. Since
the set 1 of points discontinuity of f is a null set, it follows that the set D; € D of points
of discontinuity of ¢ ¢ f is also a null set. Therefore the composition ¢ » [ also belongs
to Rla, b|. QED.

It will be seen in Exercise 22 that the hypothesis that ¢ 1s continuous cannot be dropped.
he next result is a corollary of the Composition Theorem.

7.3.15 Coranllary Supposc that { € Rla, b]. Then s absolute value | f) is in Ria, b],

and
b b
[z [ insme-a

where | f(x)| <= M forallx € [a, b).

Pronf, We have seen in Theorern 7.1.5 that if { is integrable, then there exists M such
that | f(x)] <= M forallx € [a.b). Let@(t) = |r|forr € [—M, M]. then the Composition
Theorcm impliesthat | f| = ¢ o f € R[a, b]. The first incquality follows from the fact that

1 = f < |fland 7.1.4(c), and the second {rom the fact that | f{x)| = M. QED.

7.3.16 The Product Theorem If f and g belong to Ra, b], then the product fg belongs
to Rla, b].

Proof. 1f (1) :=1¢* for 1 € [—M, M}, it follows from the Composition Theorem that
f*=oc f belongs to Ria, b]. Similarly, (f } ¢)* and g? belong to R[a, b]. But since
we can write the product as

Je=3[(F+8)° —rt—g*,
it follows that fg € Kla, b]. QED.

Integration by Parts - -

We will conclude this section with a rather general form of Integration by Parts for the
Riemann integral, and Taylor's Theorem with the Remainder.

7.3.17 Integration by Parts Lct F, G be differentiable on [a, b] and let f = F' and

g ‘= G’ belong to R[a, b]. Then
b b b
7) f 1G = FG —/ Fg.
a f a

Proof. By Theorem 6.1.3(c), the denvative (FG)' exists on [a, b] and

(FGY = F' G+ FG' = fG+ Fg.

Since F, G arc continuous and f, g belong to Rla, 4], the Product Theorem 7.3.16 implies
that fG and Fg are integrable. Therefore the Fundamental Theorem 7.3.1 implies that

3 ) b b

from which (7) follows. QED.

FG
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A special, but vseful, case of this theorem 1s when f and g arc continuous on [a, &)
and F, G are their indefinite integrals F(x) := | fand G(x):= [ g
We close this section with a version of Taylor's Theorem for the Riemann Integral.

7.3.18 Taylor’s Theorem with the Remainder Suppose that /', - -, &, F7tD exist
on [a, b} and that f"''Y e Ria, b]. Then we have

o (r)
(8) f(b):f(a){—#(b—a)—l—-- f ()(b— D"+ R,

where the remainder is given by

| L
) R, = —.f £y b — 0y dt
e £

Proof Apply Integration by Parts to equation (9), with F(¢) := f™(t) and G(1) :=
(b—1)"/nl sothat ety = —(b — )" 7' /(n — 1)!, to get
r=h

R, == {0 (b
.

H

1
n {1) ) . w1
. + —(n 1y f,—,, U (b —a)t de

i b
@ (b—a)" + (”_L})./ AU ORICEN (3

n!

If we contipue to integrate by parts in this way, we ob:ain (8). QED.

Exercises for Section 7.3

1. Extend the proof of the Fundamental Theorem 7.3.1 to the case of an arbitrary inite set £

2. IftneWNand H”(.r} = x""/(n + 1} for x & [a, b], show that the Fundamental Theorem 7.3.1
implies that j;b dx = (" — gt Y0+ 1) What 1s the sct E here?

3. If gtx)y:=x for [x] > 1 and g(x}) = —x for x < 1 and if G{x} = % x? - 1!, show that
f3 glxydx = G(3) — G{(-2) = 5/2.
4. Let B{x}:= —mx forx < Dand B(x) = %x"’ for x = 0. Show that j:’ x| dx = B(hy ~ B(a}.
5. Let fi[a,b) = Randlet C & R
(ay If & : [a, b] — K isan antiderivative of f on{a. b], show that (¢} := ®(x} + C 1s also
an antiderivative of f on [a. ).
(b) Tf @, and ®, are antidenivatives of f on [a, b, show that ¢ - &, is a constant function
on [a, b].
6. If f € Rla, b] andif ¢ € [a_b], the function defined by F (2= frz f for z € [a, b]1s called the
indefinite integral of f with basepoint ¢. Find a relation between F_and F .
7. We have seen in Example 7.1.6 that Thomae's function 1s 1n R[0, 1] with integral equal 10 0. Can
the Fundamental Theoremn 7.3.1 be used to obtain this conclusion? Explain your answer.
8 Let F(x)bedefinedforx >0by Fx} =(n I}x (n- lmm/2forxen—innelN
Show thar F is continuous and evaluate F'(x) at points where this derivative exists. Use this

result to evaluate f [x]dx for0 < a < b, where [L1] denotes the greatest integer in x, as defined
in Exercise 5.1.4.

5. Let f € R[a, b] and define F(x) = f; f for x ¢ fa. b].
(a) Evaluate G(x} = f finterms of F, where ¢ € |a, b].
(b) Evaluate H#(x) = f” f in terms of F.
(¢} Evaluate §(x}:= (7% £ in terms of F.
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10, Let f :[a, b] —+ R be continnons on [a, b ard let v [¢, 4] — X be differentiahle on [¢, 4)
with u([c, d]} € [a, b] If we define G(x) = fﬁ‘"“"‘ £, show that G'(x) = F{v{x}} - »'(x} for all

e [, d]
11. Find F'(x) whcn F 15 defined on [0, 1] by:
(&) Foo= [0+ (b FQo) = [ T+17dr

3]

Ter f:[0,3) - K be delfined by fixy=x{or0<x < i, fy:— 1 forl<x<?2 and
filxy —xfor2 < x < 3 QObrtain fonnulas for F(x) .— fDr f and sketch the praphs of f and F
Where is F differentiable? Evaluate F'(x) at all such points.

13 i f R »Riscontinuous and ¢ » 0, defire g : R — K by g(x) = f _;'f(r} dr. Show that
g s differcntiable on ® and find &'(x).

14. If f:[0. 1] = R is continuous anc¢ fo f=1, ' ¥ for all x e [0, 17, show that Fixy =0 for al
x [0, 11

15, Uscthe following argument to prove the Substitution Theorem 7.3.8 Define F(u) — f::fc:‘, F(xydx
forw ¢ I oand A () 1= F{p() forr € J. Show that 1’ (1) = F{p()) (1) fort € J and that

L A
f fixydx = Flg(fny = H(B) = [ floitne' () dr.

sl

16, Use the Substitution Theorem 7.3.8 to evaluaie the following integrals.

1 e 3
(4) frv’#lﬂ“dr (b} /r3(1-+:3)—‘--’2dr=4/3,
n
1 s /
/\/ : dr, (d) f mq\/_ = 2{sin2 —si 1}.
1 v"

7. Somectiines the Subsitution Theorem 7.3 8 cannot be appbed but the following result, called
the “'Sccond Substitution Theore:n™ is useful, [n addition to the hypotheses of 7.3.8, assume
that ¢'(1) # Ofoerall ¢ ¢ J, sothe function ¢ ; ¢(J) —> R inverse o ¢ exists and has derivative

vei'lelryy = 1/g'(n). Then
i G M)
f Fle(t))ydr =f Fl (x)dx.

2@}
To prove this, lei G :=f; fles)yyds for 1€ J, so that G'(7) = fp(n)). Note that
Kix) = G(yr(x}) is differentable on the interval {J} and that X' {x) = G (¢ ' (x) =
Fleg sy ony (x) = flx)y'(x). Caleulate G{B) — K((#)) in two ways to obtain the tor-

mula.

18. Apply the Second Substtion Theorem to evaluate the following integrals.

) dr ode e

o [ 305 R Rl

{ch 4-& (dy /4— at = Arctan{1} — Arcran(l-2)
A k S+ 4)

19, Fuxplain why Theorem 7.3.8 and/or Exercise 7.3.17 cannot be applied to evaluate the following
integrals, using the indicated suhstitution.

(a) /‘E/‘E—d—! ¢ty =, (b} _/ M ol = /1,
o 1—4/1

|
(c) f ,,/rl + 2jr,de @ty = ||, @1y = Arcsin ¢,
|

J |-
20. (a) If Z and Z, are null scts, show that Z, U 2, is a null set.
(b) More generally, if Z_is a null set foreach n £ N, show that U,z . is anull set. [Hins:
Givene = (Jandn ¢ N let {J7 : & € T4} be acountable collection of open intervals whose
Union contding 47 and the sum of whose l{-‘nb[hs 5 < 5‘/."3” Now consider the countahle
collection {7 © n, ke N}.]
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21. let f, g ¢ Rla, bl
(a) TIft € X, show that f:(:f +gy > 0

(b) Use (a) to show tnat 2| f7 fgl <t f7 72+ (1/1) [*g> fort 0.
(¢) 1f [7 f* =0, showthat [* fg =0.

{d} Now prove that fdb fz ‘hf { r* |fg|)2 = (f; fz} - (f: gz). This inegquality is called the

v it

Cauchy-Bunyaléovsky-Schwarz Inequality {or simply the Schwarz Inequality).

22, Leth: (0,1} — R Le Thomae's function and let sgn be the signum function. Show that the
composiie function sgn = # is not Riemann integrablie on [0, 1].

Section 7.4 Approximate Integration

The Fundamental Theorem of Calculus 7.3.1 vields an effective method of evaloating
the tntegral f:’ f provided we ¢an [ind an antiderivative F such that F'(x) = f(x) when
x € [a, b]. However, when we cannot find such an F, we may not be able to use the Funda-
mental Theorem. Nevertheless, when f is continuous, there are 2 number of techniques for
approximating the Riemann integral fab S by using sums that rescmble the Riemann sums.

One very elementary procedure to obtain quick estimates offah £, bascd on Theorem
7.1.4(c). 13 to note that if g(x) < f(x) < h{x) forall x € [a. k], then

~ b b b
fg*:ffs/h.
1 a a

: ;
If the integrals of g and & can be calculated, then we have bounds for f; f Often these
bounds are accurate enough for our needs.
. . 1 2 .
For cxample, suppose we wish to estimate the value of f; e™ dx. It is easy to show

2
thate™ < e < I forx € (0, 1], so that

i v 1
f e “dx 5] e~ dx 5[ ldx.
0 0 0

Consequently, we have 1 — 1/e < fol e.'_’(2 dx < 1. I we use the mean of the bracketing
values. we obtain the estimate 1 — 1/2¢ & 0.816 for the integral with an error less than
1/2¢ < 0.184. This estimate is crude, but it is obtained rapidly and may be quite satis-
factory for our needs. If a better approximaton is desired, we can attempt to find closer
approximating functions g and 4.

Taylor's Theorem 6.4.1 can be used o approximate e - 2 by a polynomial. In nsing
Taylor’s Theorem, we must get bounds on the remainder term for our calculations to have
significance. For example, if we apply Taylor's Theoremto e™ for0 < y < |, we get

x

e = 1—y+3y — 5y + Ry,

where Ry = y4e_‘/24 where ¢ 1s some number with 0 < ¢ < 1. Since we have no better
information as to the location of ¢, we must be content with the estimate 0 < R, < y® /24
Hence we have

: 2
e =] X+%x4—éx6+R3,
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where 0 < R, < x 824 for x € [0, 1]. Therefore, we obtain

1
/ — dx—f(l—x + 6x)d.x+f R,dx
o
— 1 l 1

Since we have 0 < f) Rydx < 5oz = 52 < 0.005, it follows that

1
/ — gy A 2~ 0.7429),
O

with an error less than 0.005,

Equal Partitions

If f:[a,b] — R is conunuous, we know that its Riemann integral exists. To find an
approximate value for this integral with the minimum amount of calculation, 1t 1s convenient
to consider partitions P of [a, #] into n equal subintervals having length A := (b —a)/n.
Hence P18 the partition:

a{(a—l—hﬂ{a-{—Zhr_<---<:a+nhr_=b.

[f we pick our tag points to be the left endpoints and the right endpoints of the subintervals,
we obtain the nth left approximation given by

n-1
(f)i=h, Y fla+kh),

k=D
and the nth right approximation given by

H

R.(fy:=h, Y fla+kh)
k=1
It should be noted that it 1s almost as easy to evaluate borh of these approximations as only
one of them, since they differ only by the terms f («) and f(b).
Unless we have reason to believe that one of L (f) or R (f) is closer to the actual
value of the integral than the other one, we generally take their mean:

3 (LD + R,

which 15 readily seen to equal
rn—1

(1) T(f)=h,(Afl@)+>  flat+kh)+17b),

k=]

. . b
as a reasonable approxumation to fa .
However, we note that if [ is increasing on [a, b], then it is clear from a sketch of the
graph of f that

(2) L.(f) S./ fF =R, (f).

In this case, we readily sce that

_ 'I'”(f)| < LR — L))
= 3h, (f(b) = fl@) = (f{b) — f@)

(b — a)
. 2n
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An crror eshimate such as this 1s useful, since 1t gives an upper bound f{or the error of the
approximation in terms of quantities that are known at the outset. In particular, 1t can be
used 1o deterrnine how large we should choose » in order 1o have an approximation that
will be correct to within a specified error £ > (.

The above discussion was valid for the case that f 1§ increasing on [a, b]. If f 1
decreasing, then the mnequalities n (2) should be reversed. We can summarize both cases
in the following statemnent.

7.4.1 Theorem If f :[a,b] > Rismonotoncand i T (f) 1s given by (1), then

<1y~ flay] LD

h
@) f T

7.4.2 Example If f(x):=¢ <! on [0, 1], then f s decrecasing. It follows {rom (3)
2
that if n =8, then | [} ¢™* dx — T,(f)| < (1 —e ')/16 < 0.04, and if n = 16, then

|_j:; e « dx — T ()l =1 — e~ 11/32 « 0.02. Actually, the appreximation is consider-
able better, as we will see in Example 7.4.5. L

The Trapezoidal Rule

The method of numerical integration called the “Trapezoidal Rule” is based on approximat-
mg the continuous function f : [a, #] — R by a piccewise linear continuous function. Let
n € Nand, as before, let 2, := (b — a)/n and consider the partitiop 72, . We approximate f
by the piecewise lincar function g that passes through the pomts {a | ki, f(a + khr_)),
where k = 0,1, - - -, n. It scems reasonable that the integral j;b f will be “approximately
equal to’ the integral f: g, when n Is sufliciently large (provided that f is reasonably
smooth).

Since the area of a trapezoid with horizontal base A and vertical sides/, and [, is known

to be éh(!| +1,), we have
a4(k+1)n
f g, =3ih [fla+kh)+ fla+ (k+ )],
a-Hd':”

for k=0,1, -, n—1. Summing these terms and noting that ecach partition point in P,
except a and b belongs to two adjacent subintervals, we obtain

b N
f g, = fr,,(é—f(a) “ @) @ k= DR+ 1B .

But the term on the nght is precisely 7 ( f), found in (1) as the mean of L _( /) and R (f).
We calt 7, (/) the nth Trapezoidal Approximation of f.

In Theorem 7.4.1 we obtained an error estimate in the case where f is monotone; we
now statc onc without this restriction on f, but in terms of the second derivative f” of f.

7.4.3 Theorem Let f, /' and f” be continuous on [a, b] and Jet T (f) be the nth
Trapcroidal Approximation (1). Then there exists ¢ € [a, b] such that

5
(4) I.(f) - ff*—a)-f”(C)-

A proof of this result will be given in Appendix D; it depends on a number of results
we have obtained in Chapters 5 and &,
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The equality (4} 1s interesting 1n that 1t can give both an upper bound and a lower bound
for the difference 7 (f) — _[ab f.Forexample,if f"(x) > A > Cforallx € [a, b], then (4)
implics thar this difference always exceeds ﬁA(b — aYh®. If we only have f"(x) > O for
x € [a, b], which is the case when S is convex (= concave upward), then the Trapezoidal
Approxumation 1s always too large. The reader should draw a figure to visualize this.
However, it i1s usually the upper bound that is of greater interest.

7.4.4 Corollary Let f, f" and f" be continuous, and let | {"(x)| < B, forallx € [a, b].
Then

_ hZ b— 3
(5) T(f)—ff a) 5=
12n

When an upper bound B, can be found, (5) can be used to determine how large n must
be chosen in order to be certain of a desired accuracy.

7.4.5 Fxample Tf f(x) — e~ on [0, 1], then a calculation shows that f’(x) =
2 N ]
' {2x° — 1), so that we can take B, = 2. Thus, if n -- 8, then

i
— —_— i —— 0.003.
‘”f) ff|—17 61 g = 00
On the other hand, if » 16, then we have
T(f) f]f' ’ : 0.000 66.
—_ { - =
16 o T 12.256 1536

Thus, the accuracy in this case is considerably better than predicted in Example 742 U

The Midpoint Rule

One obvious method of approximating the integral of f is to take the Ricmann sums
evaluared at the midpoints of the subintervals. Thus, if P 1s the equally spaced partition
given before, the Midpoint Approximation of f is given by

M) =k (fa+ir)+ fla+3h)++f(a(n—3)R))
(6) =h“2f(a+(k —1}h,).

Another method might be to use piecewise lincar functions that are tanpen: to the
graph of f at the midpoints of these subintervals. At first glance, 1t seems as if we would
need to know the ‘ilOpL of the tangent hine to the graph of f at each of the muidpoints
a+ (k- —h (k=12 ---,n) However, it 18 an excrcise in geometry to show that the
areq of the lIdpLLOld whose Lop is thus tangent line at the midpoint a — (k — %)hn 1s equal
to the area of the rectangle whose height 18 f(a + (k — %)hn). {Sce Figure 7.4.1.) Thus,
this arca 1s given by (6), and the “Tangent Trapezoid Rule™ mms out to he the same as
the “Midpoint Rule”. We now statc a theorem showing that the Midpoint Rule gives better
accuracy than the Trapezoidal Rule by a factor of 2.
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|
!
fla+ (k é—)h) |
i
:
|

i 4

a t (k- 1k a+{k——;-)h a + kh

[

Figure 7.4.1 The tangent wapezoid.

7.4.6 Theorem Let f f' and f” be continuous on [a, b) and let M_(f) be the nth
Midpoint Approximation (6), Then there exusts v € [a, b) such that

(b — a)hi

74 -

b
7 f fo M) =

The proof of this result is in Appendix D.

As In the case with Theorem 7.4.3, formula (7) can be used to give bolh an upper
bound and a lower bound for the difference f: F — M, (f), although it 18 an upper bound
thar 1s usually of greater interest. In contrast with the Trapezoidal Rule, if the function is
convex, then the Midpoint Approximation is always too small.

The next result is parallel to Corollary 7.4.4,

7.4.7 Corollary Let f, f°, and [ be continuous, and let | f"(x}] < B, forallx € [a, b}
Then

2

b 3
-l . (b-a)
(8) \Mn(f) - /ﬂ f} < __24— . 82 - 24”2 2!

Simpson’s Rule _

The final approximation procedurc that we will consider usually gives a better approxi-
mation than either the Trapezoidal or the Madpownt Rule and requires essentially no extra
calculation. However, the convexity (or the concavity) of f does not give any information
about the error {or this method.

Wherteas the Trapezoidal and Midpoint Rules were based on the approximation of f
by piecewise linear functions, Simpson’s Rule approximates the graph of f by parabolic
arcs. To help motivate the formula, the rcader may show that if three points

(_-h| yﬂ)‘ (Ou)ﬂ)u and (hl)’z)

arc given, then the quadratic function g(x) := Ax® + Bx + C that passes through these
points has the property that

h
/; g = 3h(y+4y +3)
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Now let f be a continuous function on [a, b] and let n € N be even, and let 1, =
(6 —a)/n. On cach “double subinterval™

[a,a—+20) (at2h  a+4r], -~ [b 2k bl
we approximate f by n/2 quadratic functions that agree with f at the points
o= f@, yim fladl b yi=flat k) Ly, = f)
These considerations lead to the #th Simpson Approximation, defined by
Sfy= h(fla)y—afla+h)+2f(a+2h)+4f(a+3h)
©) F2f(a+4h) 4 2f(h = 2h) H4f(h—h )+ (D))

Note that the coefficients of the values of f aithe n 4 1 partition points follow the paticin
1,4,2,4,2,-.-,4,2,4,1.

Wc now state a theorem that gives an cstimate about the accuracy of the Simpson
approximation; 1t involves the fourth derivative of f.

7.4.8 Theorem Let £, ', 7, F™ and % be continuous on [a, b) and let n € N be
even. If § (f) is the nth Simpson Approximation (9), then there exists ¢ € [u, b] such
that

h | 4
. . _ . (w —a)k, ),
(10) S.(F) f S = 180 P

A proof of this result 1s given in Appendix D.
The next result 1s paraliel to Corallanes 7.4.4 and 7.4.7.

7.4.9 Corollary  Let f, ' 7, 3 and £ be continuous on [a, b} and Iet | f ¥ (x)| =
B, forallx ¢ [a. b] Then

h A 5

. (b —a)h, (b - a)
g < B, - —— B
) [ il s 180 17 Tgont

(I

Successful use of the estimate (11) depends on being able to find an upper bound for
the fourth derivative.

7.4.10 Example If f{x) .= 48_':? on |0, 1] then a calculation shows that

FAG) =40 F (dxt — 1257 4 3),

whence it follows that [ (x)| < 20 for x € [0, 1], so we can take B, = 20. Tt follows
from (11) that if n = 8 then

! 1 1
_ - .2
S, (f) /[; f‘ < 0 & 20 36868 < 0.00003

and that if n = 16 then

by ]
S (F)— < 0.000 001 7. C
‘ 160 fa F = g5 <
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Remark The nth Midpoint Approximation M, (f) can be used to “step up" to the (2r)th
Trapezoidal and Simpson Approximations by using the formulas

T, (Y= M+ IT () and S, (Y= IM (/) + 7,0

that are given in the Exercises. Thus ance the initial Trapezoidal Approximation 7, = 7, (f)
has been calculated, only the Midpoint Approximations M, == M (f) nced be found. That
is, we emplay the following sequence of calculanens:

T, = 3(b - a)(f (@) + f(B)):

M=b-af(Ge+d), L=1iM +17) S, =M, + 3T,
| 1 2 1 .

M, Ty — My + 3T, Sa—iMz']“ ETQI

M, T:s:;Ma*’ ;Tar S :iM‘tJF%TM

Exercises for Section 7.4

L.

Use the Trapczoidal Approximahon with n = 4 to evaluate In2 = fﬁ(l/x]dx. Show that
068066 = In? < 0.6958 and that

! |
D3 < <=7, In2= < 0.0103.
0.0 je8 =4 NP S g <00

ah

Use the Simpson Approximation withn = 4o evaluate ln 2 = j"(1/x) dx. Show that 0.6927 <
In2 < 0.6933 and that

55 1920 — ¢ = 1020
Let f(xY:=(l+x" " for x € [0, 1]. Show that f"(x) =2(3x> - D! + x5 and that
f”(x)i < 2 for x € [0, 17 Use the Trapezoidal Approximation with »n = 4 to evaluate 7/4 =
13 f (x) dx. Show that T,(f) — (7/4)) < 1/96 < 0.0105.

D.0000D16 < < 0.000521.

If the Trapezoidal Approximation 7, (f) 18 used to approximate x /4 as in Exercise 3, show that
we must take 7 > 409 in order to be sure that the ervor js less than 10 .

et f be as in Exercise 3. Show that f(x) = 24(5x* — 10x% -+ 1)(1 + x17> and that
F™ x| <96 forx €10, 1). Use Simpson’s Approximation with n = 4 to evaluate /4. Show
that | S, (f) — (7/4)] < 17480 < 0.0021.

If the Simpson Approxunatiaon 8 (£} 15 used to approximate /4 as in Exercise 5, show that we
must take 7 = 28 in order to be sure that the error is less than 10 °.

If p1s a poiynomizl of degree at most 3, show that the Simpson Approximations are exact.

Show thatif f7(x) > 0on [a, k) (thatis, if f iscanvex on [a, 4]), then for any natural numbers
m nwehave M _(f) < ff fxadx =T (.0 f7(x) = Oon[a, b, this inequality is reversed.

Show that Ty (f) = $[M,_ (/) + T (f)).
Show that S, (f) = 5M () + 1T.(f).

Show that one has the estimate |Sn{f) - j:ff(x)dx| < [(b —a)1/18n2J B,. where B, >
|f”(x)‘ forall x € [a, b].
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12. WNote that fﬂl (1 - xH' 2 dx = m/4 Explain why the exvor estimates given by formulas (4), (7,
and (10) cannot be used. Show that if h(x) = (1 — x2 for x in (0, 1}, then T (hy<na/d<
M, (h). Calculate M () and T (k).

13. If his as in Fxercise 12, explain why K = _ﬂj‘f’ﬁh(x)dx = /8 + 1/4. Show that |[h"(x)| <
2% and that 4™ ()] =9 2" for x € [0, 1/+/2]. Show that [K — T, (h)| < 17122 and tha:
K - S”(h)} < 1/10a", Use these results to calculate 7.

In Fxercises 14-20), approximate the indicated integrals, giving estimates far the exror. Use a calculator
to obtain a high degree of precision.

7 2 «1
¢ dx
14, f (1+xHYdx. 15. / (41 " dx. 16. j 5.
0 ] o 1+ x
T 5inx T dx wiE
17 dx. is _— 19, ~sinx drx.
n X G l + simx a

I
20. fcos(.xz) dx.
0



CHAPTER 8

SEQUENCES OF FUNCTIONS

In previous chapters we have often made use of sequences of real nurnbers. In this chapter
we shall cansider sequences whose terms are functions rather than real numbers. Sequences
of functions arise naturally in real analysis and are especially useful in obtaining approxi-
mations to a given function and defining new functions {from known ones.

In Section &.1 we will introduce two different notions of convergence for a sequence of
functions: pointwise convergence and uniform convergence. The latter type of convergence
is very important, and will be the main focus of our attention. The reason for this focus is
the fact that, as1s shown in Section 8.2, uniform convergence “preserves’ certain propertics
in the sense that 1f each term of a uniformmly convergent sequence of functions possesses
these properties, then the limit function alse possesses the properties.

In Section 8.3 we will apply the concept of uniform convergence to define and denve
the basic propertics of the cxponential and logarithmic functions. Section 8.4 is devoted to
a simmlar treatment of the trigonometric functions.

Section 8.1 Pointwise and Uniform Convergence

[et A € K be given and suppose that for each n & N therc is a function f A — R; we
shall say that (f ) is a sequence of functions on A to [X. Clearly, for cach x € A, such a
sequence gives 1ise to a sequence of real numbers, namely the sequence

(1 (£, (x)).

obtained by cvaluating each of the functions at the point x. For certain values of x € A
the sequence {1) may converge, and for other values of x € A this sequence may diverge,
For each x € A for which the sequence (1) converges, there 1s a umquealy determined real
number im(f_(x)). In general, the value of this limit, when it exists, will depend on the
choice of the point x € 4. Thus, there arises in this way a function whose domain consists
of all numbers x € A for which the sequence (1) converges.

8.1.1 Definition Let (f))be a sequence of funcrionson 4 € Rto R, let A; € 4, and let
f A, — R Wesay that the sequence (f) converges on A, to f if, foreachx € A,, the
sequence { f, (x)) converges to f(x) mn R. In this case we call f the limit on A, of the
sequence ( f ). When such a function f exists, we say that the sequence (f, ) is convergent
on A, or that (f,) converges pointwise on A,

It follows from Theorem 3.1.4 that, except for a possible modification of the domain
Ay, the limit function is uniquely determined. Ordinarily we choose Ay to be the largest
set possible; that is, we take A to be the sel of all x € A for which the sequence (1) is
convergent 1n [R.
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In order to symbohze that the sequence (f,) converges on A, o f, we sometimes
wrlie

S =lm(f) on A, or f, = f on A,
Somctimes, when fand f are given by formulas, we write
fixy =l f (%) for x ¢ Ag. or f(x) = f(x) for xe€ A,
8.1.2 Examples (a) lim{x/n) =0forx € R.
Forn € N, let f (x) :=x/n and let f(x) :=0 for x € R. By Examnple 3.1.6(a), we
have hm(1/n) = 0. Hence it follows from Theorem 3.2.3 that
Hm(f,(x)) =hm{x/n) =xlim{}/n) =x-0=0

forall x € & (See Figure 8.1.1.)

b
b
{1,810
f2
&1
fa &2 3
Figure 8.1.1 f {x) =x/n Figure 8.1.2 ¢ (x) = x".

(b) limm(x").

Let ¢ (x) = x" for x € R, n € N. (See Figure 8.1.2.) Clearly, if x =1, then the
sequence {g (1)) = (1) converges to 1. It follows from Example 3.1.11(b) that lim(x") = O
for 0 < x < 1 and 1t is readily seen that this is also true for —1 < x < 0. If x = —1, then
g,(—1) = (—=1)", and it was scen in Example 3.2.8(b) that the sequence is divergent.
Similarly, if |x| = 1, then the sequence (x”) 18 not bounded, and so 1t is not convergent
in R. We conclude that if '

0 for -1 <x <,

glx) = ] for x =1,

then the sequence (g ) converges to g on the set (—1, 1],
(c) lim ((J:2 +nx)/n) —xforx € R.

Let /i (x) 1= (x2+nx)/nforxeR,neN, and let h(x) ;= x for x € R. (See Fig-
ure 8.1.3.) Since we have h _(x) = (xi/n) + x, 1t follows from Example 3.1.6(a) and
Theorem 3.2.3 that 1 (x) — x = A(x) forall x € R,
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i ;'(] ,12 }In H
Fy
Fs
};.)I
e, o —aine. ol
T E
Figure 8.1.3 A (x) = (x? +nx)/n, Figure 8.£.4  F (x) = sm{nx ~n)/n.

(d) ]im((l/n) sin(rx + n)) =0forx ¢ R
Let F (x) = (1/n)sin{nx +n) forx €e R, n € N,and let F(x) = 0forx € R (Sec
Figure 8.1.4.) Since |siny| < 1 forall y € R we have

1
-(_: —

]
@ F,(x) — Flx)| = ‘; sin(nx | n)

for all x € R. Therefore 1t follows that hm(F_(x)} = 0 = F(x) for all x € R. The reader
should note that, given any £ > 0, if n Is sufficiently targe, then | F_(x) — F(x)| < ¢ forall
values of x simultaneously! L

Partly to reinforce Defimition 8.1.1 and partly to prepare the way for the important
notion of uniform convergence, we reformulate Definition 8.1.1 as follows.

8.1.3 Lemma A sequence (f) of functions on A € R to R converges to a function
f A, = RonA, fandonly if foreachs > 0 and each x € A, there is a natural number
K(e, x) such thatifn = K (&, x), then

(3) |0 o] <.

We leave it to the reader to show that this 15 equivalent to Definition 8.1.1. We wish to
emphasize that the value of K (¢, x) will depend, in general, an both ¢ > Oand x € A. The
reader should confirm the fact that 1n Examples 8.1.2(a—), the value of K (¢, x) required
to obtain an incquality such as (3) does depend on both ¢ > 0 and x € A,. The intuitive
reason for this 1s that the convergence of the sequence is “‘significantly faster” at some
points than it is at others. However, in Example 8.1.2(d), as we have seen in inequality (2),
if we choose n sufficiently large, we can make | F (x) — F(x)| < ¢ torall valuesof x € K.
Tt is precisely this rather subtle differcnce that distinguishes between the notion of the
“pointwisc convergence” of a sequence of functions (as defined in Definition 8.1.1) and the
notion of “uniform convergence”.

Uniform Convergence

-
1

8.1.4 Definition A sequence (f ) of functions on A € K 10 R converges uniformly
on A, C A to a function f : A, = R if for each ¢ > 0 there is a namral number K (¢)
(depending on € butnotonx € A ) such thatif n > K (), then

(4) |fn(x) - f(.r)| - g forall x e A,



230 CITAPTER 8 SEQUENCES OF FUNCTIONS

In this case we say that the scquence () is uniformly convergent on A;. Sometimes we
write

f.o23f on A or f.(x) = f(x) for x ¢ A,.

It 1s an immediaic consequence of the definitions that if the sequence { £} 1s uniformly
convergent on A to f, then this sequence also converges pointwise on Ay to f 1o the sense
of Definition 8.1.1. That the converse is not always truc is seen by a carcful examination of
Examples 8.1.2(a—c), other examples will be given below.

It is sometimes uscful to have the following necessary and sufficient condition for a
sequence ( f,) to fail to converge uniformly on A to £

8.1.5 Lemfna A sequence (f, ) of functions on A € R to R does not converge uniformly
onA, C A to a function f A, = Rifandonly if for some £, > O there js a subsequence
[f"k) of (f,) and a scquence (x,) in A, such that

(5) 7, () — f(xk)| > £, forail k e N.

The proof of thus result requires only that the reader negate Definition 8.1.4; we lcave
this to the reader as an important exercise. We now show how this result can be used.

8.1.6 Examples (a) Consider Lxample 8.1.2(a). If we let n, := & and x, :— k, then

f, (x)) = lsothat|f (x,) — f(x)] =11 —0| = 1. Therefore the sequence ( £, ) docs not
3 IS

converge uniformly on X o f.

(b) Consider Fxample 8.1.2(b). If n, '= k and x, := (3

2

)Iﬂ, then

g, (5) — g =)~ 0] = 1.

Therefore the sequence (g, ) does not converge uniformly on (=1, 1] o g.

(¢) Consider Example 8.1.2(c). If n, :=k and x, := —¥k, then h”a (x;) =0and A(x,) =
k sothat lhnl (x,) - h(x)| = k. Therefore the sequence (A, ) does not converge uniformly

oniR to A, T

The Uniform Norm

In discussing uniform convergenee, it 1s often convenient to use the notion of the uniform
norm on a set of bounded functions.

8.1.7 Definition If4 C Rand ¢ 4 — Risa function, we say that ¢ 1s bounded on A
if the set (A) is a bounded subsct of K. Tf ¢ is bounded we define the uniform norm of
w on A by

(6) el , := sup{le(x)} . x C A}.
Note that it follows that if £ » 0, then
(7 lo), <¢ —> ()| < & forall x € A.

8.1.8 Lemma A sequence (f) of bounded functions on A C R converges uniformly on
Ato fifandonlyif |f - fl, — 0.
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Proof. (=) If (f,) converges uniformly on A to f, then by Definition 8.1.4, given any
¢ » Othere exists K(&) such that if n > K(eyand x € A then

[x) - fx)] =e

Fromthe definition of supremum, itfollows that | f, — f([, < £ whenevern > K (g). Since
£ > 01 arbatrary this implies that ||/, fI] , — 0.

(=) I f, — fl, = 0, then given € > 0 there 1s a natural number H (¢) such that if
n> He)then || f — fll, <& Itfollows from(7)that| f (x)  f(x)| < e foralln > H ()
and x € A. Therefore (f,) converges uniformmly on A to £ QE.D.

We now illustrate the use of Lemma 8.1.8 as a tool in examining a sequence of bounded
functions for uniform convergence.

8.1.9 Examples (a) We cannot apply Lesmuma 8.1.8 to the sequence 1n Example 8.1.2(a)
since the function f (x)  f(x) = x/» is not hounded on X.

For the sake of 1illustration, let A4 := [0, 1]. Although the sequence (x/») did not
converge uniformly on R to the zero funcrion, we shall show that the convergence is
uniform on A. To see this, we abserve that

1
If, — Sl —sup{lx/n=0 0<x<l}=-—

fl
sothat | £ — f |, = 0. Theretore (£} 13 uniformly convergent on A to f

(b) Tetg (x):=x"forxe A:— [0, ]jandn & N, and let g(x) :=0for 0 < x < 1 and
g(1) == 1.The functions g, (x)  g(x) are bounded on A and

— X" for O<x <1 o
"g”—_gi,dl_gup 0 v = _
for any n ¢ N. Since [ g, gl, docs nor converge to 0, we infer that the sequence (g, )
does noi converge uniformly on A to g.

(¢) Wecannot apply Lemma &.1.8 to the sequence in Example 8.1.2(c) since the function
h () —h(x) = x*/n is not bounded on R.
Instead, let A ;= [0, 8] and consider

lh, —h|, = sup{x?/n 0 <x <8} = 64/n.

Therefore, the sequence (h ) canverges uniformly on A to A )

(d)} 1f we refer to Example 8.1.2(d), we see from (2) that ||, — F| 5 < 1/n. Hence (F))
converges uniformly on R to F.

(&) LetG(x) :=x"(1 —x)forx € A :={0.1]. Then the scquence (G, (x)) converges 1o
G(x) = 0foreachx € A To calculate the uniform normof G, - G = G_on A, we find
the derivative and solve

Go(x) —x"'(n—(n+ Dx) =0

to obtain the point x_:=mn/(n + 1} This is an interior point of |0, 1}, and it 1s casily
verificd by using the First Denvative Test 6.2.8 that G, attains a maxirmum on [0, 1] at x_.
Therefore, we obtain

1G4 =0, (-"n) ={1+1/n"- Tl

which converges to (1/e) - 0 = 0. Thus we sce that convergence 1s uniform on A. [
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By making use of the uniform nomm, we can obtain a necessary and sufficient condition
for uniform convergence that is often uscful.

8.1.10 Cauchy Criterion for Uniform Convergence Let (f ) be a sequence of bounded
tunctiops on A € R. Then this sequence converges uniformly on A to a bounded function
f ifand only if for cach € > O there is 2 number H(¢) in N such that for allm, n > H(s),

then | f;:: - fn”,‘i = £

Proof. (=>)1f /. = f on A, then given ¢ > O there exists a natural number K (1£) such
thatifn > K (és) then |l f, — f1, = %e. Hence, if bothm, n = K(%E), then we conclude
that

£, ()~ 0| € fF00 = FO|+ 7,00 - fio] <le+le=¢

forall x € A. Therefore || — f 4, <& form,n> K(38) = H(s).
(&) Conversely, suppose that for £ = 0 there is H(¢g) such that if m, n > H(¢), then
]fm -7 'A < r. Therefore, foreach x € A we have

(8) £~ £ <|f, - f,

It follows that (f {x}) 1s a Cauchy sequence in R; thercfore, by Theorem 3.5.5, 1t 15 a
convergent sequence. We definc f : A — R by

F(x) = hm{f {x)) for xe A

£ for m,n> H ().

If we let 1 -> o0 1n (8), 1t follows from Theorem 3.2.6 that for each x € A we have
‘fmu)—f(x)\fe for m > H(e)

Therefore the scquence (f,) converges uniformly on A to f. Q.ED.

Exercises for Section 8.1

1. Showthatlim(x/{x +n)) —Qforallx e &, x = 0.

|~

Show that im{nx /{1l +n°x%}) = O forallx ¢ K.

Evaivate lim(nx /(1 Frx}) forx e R, x = 0.

Rl

Evaluate im(x" {1 + x" ) forx e R, x = O

LA

Bvaluate im((sinnx) /{1 + nx)) forx e R, x = O
Show that lim{Arctan ax) = (r/2)sgn x for x € R.
Evaluate lim(e "Yforx ¢ &, x = 0.

Show that lim{xe ™™y =0forx € R, x = 0.

oo 3 oh

Show that im(x e™"") = 0 and that lim{rx%e ™} = O forx € R, x > 0.
1. Show that im ((cos JTX}E"I) exists for all x € 2. What 15 its Lirmat?

1. Showthatifa > 0, then the convergence of the sequence in Exercise 1 is uniform on the interval
[0, &), but is not uniform on the interval [0, o).

12. Show thatifa > 0, then the convergence of the sequence in Exercise 2 is uniform cn the interval
[a, o0}, but 55 not uniform on the interval [0, o).

13, Show thatif g > 0, then the convergence of the scquence in Exercise 3 15 uniform on the interval
[a, 2o} but is not uniform on the interval [0, o),
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14 Show thatif 0 < b < 1, then the convergence of the scquence in Fxcreise 4 is uniform on the
interval [0, b], but is not uniform on the interval [0, 1],

15. Show thatif g > 0, then the convergence of the sequence in Exercisc 515 uniform on the interval
[a, 20), but 15 not uniforn on the interval [0, co).

16. Showthatif 2 = 0, then the convergence of the sequence in Exercise 6 1s uniform on the interval
la, oo, but is not uniform on the intervas {0, oo},

17. Showthatifa = 0, then the convergence of the sequence in Exercise 7 is uniforto on the interval
[a, ©0), but is not uniform on the interval [0, o).

18. Show that the convergencs of the sequence 1n Exercise 8 15 uniform on [, oo}
19. Show that the sequence (x2e ™"} converges uniformly on [0, 00).

20. Show thatif 2 > (}, then the sequence (n°x’e™ ") converges uniform'y on the interval ¢, 00),
but that it docs not converge uniformly on the interval [0, o).

21. Show thataf (f), (g,) converge umiformly on the set A to f, g, respecuvely, then (f, + 5 )
comverges uniformly on A to f + g,

22, Show thatif j:1 (xy =x+1l/nand f(x) —x forx € K, then (f ) converges uniformly on R
to f, but the sequence (fn‘?) does not converge uniformly on K. (Thus the product of unuformly
convergent sequences of functions may not converge uniformly.)

23, let (f). (g,) be sequences of bounded functions on A that converge uniformly on A to f, g,
respectively. Show that ( f_ g ) converges uniformly on A (o fg.

24 Let (f)) be a scquence of functions that converges umformly o f on A and that satisfies
|f () < M foralln € Bvandall x € A If g 1s continuous on the interval | —Af, M), show that
the sequence (g o £ ) converges uniformly to g « f on A

Section 8.2 Interchange of Limits

It 18 often uscful to know whether the limit of a sequence of functions 15 a continuons
function, a differentiable function, ar a Riemann integrable function. Unfortunately, it
is not always the case that the limit of a sequence of functions posscsses these useful
propertics.

8.2.1 Example (a) Letg (x):=x" for x € [0, 1] and n € N. Then, as we have noted
in Example 8 1.2(b), the scquence (g, ) converges pointwisc to the function

0 for 0 <x <1,
glx) = _

i for «x 1.

Although all of the functions g are continuous at x = 1, the limit function g is not
continuous at x = 1. Recall that it was shown in Example 8.1.6(b) that this sequencc does
not converge uniformly to g on [0, 1],

{b) LCach of the functions g, (x) = x" in part (a) has a continuous derivative on [0, 1].
However, the limit funcilion g does not have a derivative at x — 1, since it is not continuous
at that point.

(¢) Letf :[0/1}— R be defined for n > 2 by

2

n°x for 0 <x <1i/n,
LY== 3—n*Gx-2/n) for l/m<x<2n
0 for 2/m=<x <1



(See Figure 8.2.1.) 1t is clear that cach of the functions f, is continuous on {0, 1]; bence
it is Riemann integrable. Either by means of a direct calculation, or by referring to the
significance of the integral as an area, we obtain

1
/ fiydx =1 for n>2
0

The reader may show that f, (x) — O forall x € (0, 1]; hence the linut function f vanishes

identically and 1s continuous (and hence integrable), and fol f(x)dx = 0. Therefore we
have the uncomfortable sitnation that:

1 1
f fx)dx=0#1 -_limf [ (x)dx.
0 u

2 1

]

Fipure 8.2.1 Example 8.2.1(c).

(d) Those who consider the functions f, in part(c}to be “artificial” may prefer to consider
the scquence (4,) defined by k_(x) = 2nxe™ for x € [0, 1].n € N. Since h, = H_.
where F (x) - —e"’”‘?, the Fundamental Theorem 7.3.1 gives

o
/ h(xydx —IL(1) —H Q) =1—¢ "
4]

It is an exercise to show that A(x) := him(A, (x)} = O for all x € [0, 1[; hence

1 1
[ hix)dx % lim/. h (x)dx. [
40 0 :

Although the extent of the discontinuity of the limit function in Example 8.2.1(a) is
not very great, it is evident that more complicated examples can be constructed that will
produce morc cxtensive discontinuity. In any case, we must abandon the hope that the limit
of a convergent sequence of continuous [respectively, differentiable, integrable] functions
will be continuous [respectively, differentiable, integrable].

It will now be seen that the additional hypothesis of uniform convergence is sufficicnt
to guarantce that the lirnit of a sequence of continuous functions 1s continuous. Similar
results will also be established for sequences of differentiable and integrable {unctions.

Interchange of Limit and Continuity

8.2.2 Theorem Let (f ) be a sequence of continuous functions on a st A C R and
suppose that ( f, )} converges uniformly on A to a function f - A — R. Then f is continuous
on A
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Proof. By hypothestis, given £ > 0 there exists a natural number H = ff(%E) such that

if n > H then |f (x) — f(x)| < %E for all x € A. Let ¢ € A be arbitrary, we will show
that f s coatinuous at ¢c. By the Trnangle Inequality we have

1F ) = fE <[00 = fr@|+ [0 = £ + f,0) —~ f(o)
%5 + ‘f;{(x) - fH(r)‘ + é*—"‘

IA

Since fH 1s continuous at ¢, there exists a number § ;= 5(%3,{:, fH) = 0 such that if
lx —¢| < $and x € A, then | f,{x) — f,(e)] < %s. Thercfore, if |x —¢] < dandx € 4,
then we have { f(x) — f{c)! < €. Since £ > 0 is arbitrary, this establishes the continuity of
f at the arhtrary point ¢ € A. (See Figure 8.2.2)) QLD

{x, fy X))

{x, f D)

- {c, f, (Y

Figure 8.2.2 |f(x) flc) <«

Remark Although the uniform convergence of the sequence of continuous functions
is sufficient to zuaraniee the conunuity of the himit function, it 1s not necessary, (See
Exercise 2.)

Interchange of Limit and Derivative

We mentioned in Section 6.1 that Weierstrass showed that the function defined by the senics

9]
fixy: = Z 2% cos(3"‘x)

k=0
is continuous at every point but does not have a derivative at any point in R, By considering
the partial surns of this series, we obiain a sequence of functions (f,) that possess a
derivative at every peint and are uniformly convergent to f. Thus, even though the sequence
of differentiable functions (f,) is uniformly convergent, it does not follow that the limit
function 1s differentiable.

We now show that if the sequence of derivatives ( ) is uniformly convergent, then
all is well. If one adds the hypothesis that the denvatives are continuous, then it is possible
to give a short proof, based on the integral. (See Excrcise 11.) However, if the derivatives
are not assumed to be continuous, a somewhat more delicate argument is required.

8.2.3 Theorem LectJ € R be a bounded interval and let (f,) be a sequence of functions
on J to . Suppose that therc ¢xists x, € J such that (f (x,)) convcrges, and that thc
scquernce () of derivatives exists on J and converges uniformly on J to a function g.

Then the sequence () converges uniformly on J to a function f that has a derivative
at every pointof J and f' = g.
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Proof. Lcta < bbe the endpoints of J and let x € J be arbitrary. If m, #» © N, we apply
the Mean Value Theorem 6.2.4 to the difference £ — £, on the interval with endpoints x,,
x. We conclude that there exists a point y (depending on m, n) such that

Ju(X) = J00) = £, (%) = Julxg) + (x = xa){f,;(}’) — fa(v)}

Hence we have

(1) Lf = £, < fxe) = L)+ o —a) i o = £,

From Theorem 8.1.10, it follows from (1) and the hypotheses that ( f_(x,)) s convergent and
that (£,) 1s uniformty convergent on J, that (£, ) is uniformly convergent on J. We denote
the limut of the sequence (f ) by f. Since the f are all continuous and the convergence s
vniform, it follows from Theorem 8.2.2 that £ is continnous on J.

To establish the existence of the derivative of f at a point ¢ ¢ J, we apply the Mean
Value Theorem 6.2.4 to f, — f on aninterval with end points ¢, x. We conclude that there
ex1sts a point z {(depending on i, 1} such that

[f. = fl={f, 10— fia) == /2 - fiD].

Ilence, if x £ ¢, we have

— S £ S

X —C X —C

<=5l
Since (f,) converges uniformly on J, 1if ¢ > 0 is given there exists H{£) such that if
m,n > H(gyand x 3 ¢, then

[l = 1,00 F10 = £,

X —=r X —c

(2)

If we take the himit 1n (2) with respect to m and use Theorem 3.2.6, we have

BT ION A A

X = X —c

provided that x # c.n > (). Since g(c) = im(£,(c)). there exists N(g) such that if
n > N(g), then | fi{c) — g(c)] < £. Now let K :=sup{lI(g), N(g)} Sincc fp(c) exists,
there exists &, {e) > Osuch that1f 0 < |x — ¢l < &, (¢), then

Jel9) = S ()

X =

- _fq(f)

< E.

Combining these inequalitics, we conclude that 1f 0 < [x — ¢] < &, (€), then

f00 = S

i x—=c

- g(c) < 3e.

Since ¢ > O1is arbitrary, this shows that f'(¢) cxists and equals g(¢). Since ¢ e J is arbitrary,
we conclude that f = gon J. QED.

Interchange of Limit and Integral

We have scen in Example 8.2.1(c) that if ( f, ) is a sequence R[a, »] that converges on [a, b]
to a function f 1n R[a, b}, then 1t need not happen that

3) f—hmff

o=
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We will now show that uniform convergence of the sequence is sufficient to gharantee that
this equality holds.

8.2.4 Theorem [.et (f ) be a sequence of functions in Ra, b] and suppose that (f,)
converges uniformly on {a, b]to f Then f € Rla. b] and (3) holds.

Proof. It follows from the Cauchy Criterion 8.).10 that, given £ > O there exists H(g)
such that if m > n > [I(¢} then

—e< f()—f(x)<e¢ for x e la.b].

Theorem 7.1.4 implics that

b b
_g(b_a)gf fm—[ fnx_:g(b—a).

Since & > 0 1s arbitrary, the sequence (f: £} 1s a Cauchy sequence in R and therefore
converges to seme numher, say A € X

We now show f ¢ 7¢[a, b] with integral A. If £ = 0 1s given, let K(£) be such that
if m > K(e), then {f (x) — f(x)| < e forall x € [a, b1 IF P := ((Ix,_,. x.], t)}7_, is any
tagged partition of (@, | and 1if m > K (&), then

H

YW =} & =X )

[

1SCF P = SO Py =

< oA~ syl x - x
=1

=< Z.E(I’ ~x )y=c(b—a).
i—1

We now choose r > K (&) such that |f:’ S, — Al <& and we let 3“_, = (} he such that

| J? 7, = SUF:P)l < & whenever [P < 8. Then we have
b
[ 1-4]

But since £ > 0 1s arbitrary, it follows that f € R [a, 5] and f: f=A. QED,

. . ] ] b
ISPy =A< [SUAPY =SSP+ SUPY— | f +

<sgh—a)+e+e=¢{b—a+2).

The hypothesis of uniform convergence 1s a very stringent one and restricts the utility
of this result. In Section 104 we will obtain some far-reaching generalizations of Theorem
8.2.4. For the present, we will state a result that does not require the uniformity of the
convergence, but does require that the limit function be Riemann integrable. The proof is
omitted.

8.2.5 Bounded Convergence Theoremn I.ct (f,) bc a scquence in Rla, b] that con-
verges on [a. b] to a function f € Rla, b). Suppose also that there exists B > 0 such that
|f,(x)| < B forallx € [a, b],n € N. Then equation (3) holds.
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Dini’s Theorem

We will end this section with a famous theorem due to Ulisse Dinl (1845-1918) which
gives a partial converse to Theorem 8.2.2 when the sequence 1s monotone. We will present
a proof using noncanstant gauges (see Section 5.5).

8.2.6 Dini’s Theorem Suppose that(f, ) is a monotone sequence of continuous functions
onl :— [a. b] that converges on [ to a continuous function . Then the convergence of the
seguence Is uniform.

Proof.  We suppose that the sequence (f)) is decreasing andletg = f — f Then (g )
is a decreasing sequence of continuous functions converging on I to the 0-function. We
will show that the convergence 1s uniform on /.
Givene > 0,7 € I, there exists m,, € Nsuchthat0 < g () < ¢/2. Sincc g, 1s
' 3 &t

& . .t
continuous at 7, therc exists 4§, (1) > O such that 0 < g (x) < ¢ for all x € 7 satisfying
£t

x — 1| = 3.(f). Thus, 4, 15 a gauge on /, and if P = {(£,. 1)}, s a §_-fine partition. we

sct M, :=max{m, - m,  }Ifm> M andx ¢ J, then (by Lemma 5.5.3) there exists
) nr

an index 7 with [x — (| < 4 _(¢;} and hence

=g, =g, () <e
Therefore. the sequence (g, ) converges uniformly to the O-function. Q.ED.

It will he seer in the exerciges that we cannot drop any one of the three hypotheses: (i)
the functions f are continuous, (i1) the limut function f is continuous, (111} { is a closed
boundcd interval.

Exercises for Section 8.2

1. Skow that the sequence {(x" /({1 — x")) does not converge uniformly on [0, 2} by showing thar
the mit funetion 18 not continueus on {0, 2.

2. Prove that the sequence 1o Example 8.2.1(c} 15 an example of a sequence of continuous functions
thar corverges nonuniformly to a continuous lirmit,

3. Construet a secuence of funetions on [G, 1] each of which is discontinuous at every point of [0, 1]
and which converges uniformly to 4 function that is continuous at every pount.

4. Suppose (f,) is a sequence of continuous functions on an interval 7 that converges uniformly on
Ttoafunction f.1If (x ) © I converges to x, € 7, show that hm(f (x_)) = f(x,).

5. Let f:R » X be uniformly continuous on X and let f (x) := f{x + 1/n) for x € K. Show
that ( £, ) converges uniformly on Rto £

6. fet f (x):=1/00 + x)" for x € [(0, 1]. T'ind the pointwise limit £ of the sequence (f,)onl0 1]
Does (f ) convarge uniformly to f on {0.1])7

7. Suppose the sequence ( £} converges uniformnly to f on the set A, and suppose that gach S 1s
hounded on A. (That is, for each n there is a constant M such that [f,(x}] < M“ forallx € 4)
Show that the function f is bounded on A

8 Let f(x):=nx/(l —nx") for x € A = [0, oc), Show that each f, is bounded on A, bur the
pomtwise timit f of the sequence is not bounded nn A. Does (£, ) converge umformly to f on A?
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9. Let f (x) :=x"/nfor x € |0, 1]. Show that the sequence ( f ) of differentiable functions eon-
verges uniformly to a differcntiable function f on [0, 1], and that the sequence {f,) converges
on [}, 1]1to a function g, but that g(1) # f(1}.

10 Letg (x):i=e ™ /nforx 2 0, n ¢ N. Examine the relation between lim(g ) and lim{g,)-

11. Let 7 :=[a, b] and let (f,) be a sequence of functions on 7 > R that converges on [ to f.
Suppose that each derivative f; is continuous on 7 and thai the sequence (/) is uniformiy
convergent to g on J. Prove that f{x) — f{a) = f; gindydiand that ' (x) — g(x)forallx € .

12. Show that lim f]:! e " dx = 0.
13 Ifa > 0, show that im f;(r&in nx}/(nx)dx = 0. What happens ifa = 0?

14, Let f (x) =nx/{] —nx) for x € [0, ]]. Show that (f,) converges nonuniformly te an inte-
grable function f and that f f(x)dx =lim [} £ (x)dx.

15, Letg, (x)} = nx(l —x) forx e [0, 1], n € N. Discuss the convergence of (g ) and (fn] g, dx).

16, Let {r,,ry, -+, r, -} be an cnumeration of the rationa! numbers in /= [0, 1], and let f -
I — RXbedefinedtobe iifx == r, -, r, and equal to 0 otherwise. Show that £ is Riemann
integrable foreach r € M, that fl (xy < fo{x) <. < f(x) <. .andthat f(x) .= lim(f (x))
is the Dirichlet function, which is not Riemann integrable or [0, 1].

17. Let f (x}:=1forx € (0, 1/n) and f (x) := Oelsewhere in |0, 1]. Show that (f,) 15 a dccreas-
ing sequence of discontinuous functions that converges 1o a continuous limit function. but the
convergence is not uniform on [0, 1),

18, Let f (x) = x" for x €10, 1], n € N. Show that (f,) 15 a decreasing sequence of continuous
functions that converges to a function that 15 not contnuous, but the convergence is not uniform
on [, 1]

19, Let f (x) ;= x/ntorx € [0, 00). n ¢ M. Show that { /) 15 a decreasing sequence of continuons
functions that converges to a continuous limit function, bui the convergence 1s not uniform on
[0, 0],

20, Guve an example of a decreasing sequence () of continuous functions on [0, 1) that converges
{0 4 coniinuous hmi: function, bt the eonvergence is not uniform on [, 1).

Section 8.3 The Exponential and Logarithmic Functions

We will now ntroduce the exponential and logarithmic functions and wilt dernive some of
their mostimportant propertics. In earlier sections of this bock we assumed some familianty
with these functions for the purpose of discussing examples. However, 1t 1s neccssary at
some point {0 place these important functions on a firtn foundation in order to establish
their existence and determine their basic properties. We will do that here. There are several
altemative approaches one can take to accomplish this goal. We will proceed by fitst proving
the existence of a function that has irself as derivative. I'rom this basic result, we obtain
thc main propertics of the exponential function. The logarithm function is then introduced
as the inverse of the exponential function, and this inverse relation 18 used to derive the
properties of the loganithm function.

The Exponential Funetion -

We begin by establishing the key existence result for the exponential function.
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8.3.1 Theorem There exists a function E - IE — 2 such that:
iy E'tx)=E(x)forallx e R,
i) E@ =1

Proof. We inducuvely define a sequence (E yof continuous functions as follows:
(1) Ex) =14x,

I
(2) E () =1 +/ E ()dt,

0

forall n ¢ N, x € R. Clearly £, 1s continuous on R and hence 1s integrable over any
bounded interval. If £ has been defined and is continuous on K, then 1t 1s integrable over
any bounded interval, so that £ ., is well-defined by the above formula. Morcover, it
{ollows from the Fundamental Theorem (Second Form) 7.3.5 that £ | 1s differentiable at
any point x ¢ R and that

1

(3) E, (x)=F (x) for nelN.

An induction argument (which we leave to the reader) shows that

(4) E ()= 14 =4z =2 for xeR

n+1 xm
(3) |E_ (x) — E_(x)) ! +’"‘-.|
_ Anol l AJ_ N A m—r—1
Yl il e
A"_l
< - N
(n - 1)

Since lim{A” /n!y = G, 1t follows that the sequence (E ) converges umformly on the interval
[-A, Al where A > 015 arburary. In particular this means that (E, (x}) converges for each
x € R Wedefine £: R — Rby

E{x) :=1lim£E (x) for x e R.

Sinceeach x € Kiscontained inside some interval [- A, A], it follows {from Theorem 8.2.2
that £ 1s continuous at x. Moreover, it 1s clear from (3) and (2) that £_(0) = 1 foralln € N.
Therefore E(Q) — 1, which proves (i1).

On any interval [—A, A] we have the uniform convergence of the scquence (£)). In
vicw of (3), we also have the uniform convergence of the sequence (E;} of derivatives. It
therefore follows from Theorem 8.2.3 that the limyt function E is differentiable on [—A, A]
and that

E'(xy = lim(E, (x)) = lim(E,_ (x)) = E(x)

foralix ¢ [—A, A]. Since A > 0 is arbitrary, statement (i) is established. QED.

8.3.2 Corollary The function E has a derivative of every order and E™ (x) = E(x) for
allneN xeXR
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Proof. 1f n = 1, the statement is merely property (i). Tt follows for arbitrary n € N by
Induction. QED.

8.3.3 Corollary Ifx > 0, then ]l +x < E(x).

Proof. Tiis clear from (4) that if x > 0, then the sequence (£ (x)) is strictly increasing.
Henee El(x) < E(xyforallx > O QED.

{tis next shown that the function £, whose existence was established in Theorem 8.3.1,
1S unigue.

8.3.4 Theorem The function E : & — [K that satisfies (1) and (11} of Theorem 8.3.1 is
unigue.

Proof. Let E| and E, be two functions on R to R that satisfy properties (1) and (ii) of
Theorem 8.3.1 and let 7 := £, E,. Then

F'(x) = E{(x) — Ej(x) = E(x) - E,(x) = F(x)
forall x € R and
FO=E{0)—-E0=1-1=0

It is clear (by Induction) that F has derivatives of all orders and indeed that F(“)(x) = F{x)
forn e N, x € X.

Let x € R be arbitrary, and tet /_ be the closed interval with endpomts 0, x. Since F
1s continuous on 7 , there exists £ > 0 such that F(¢)| < K for all r ¢ / . If we apply
Taylor’s Theorem 6.4.1 to £ on the interval 7 and use the fact that FE@O) = F(0)=0
for all k € N, 1t {ollows that for cach i € N there 15 a point ¢ € I such thal

F' () Fin 1 . Fin (C. )
F)=FO) + —x+ 4 ——x" 14— "
) = FO) 4 = Yoot T
F(Cn) 11
= “xt
nt
Therefore we have
K |x|”
Fole =2 foral neN.
n

But since lim(ix|"/n!) = 0, we conclude that #(x) = 0. Since x € K is arbitrary, we infer
that £ (x) — E,(x) = F(x) = O0forallx € R. Q.15.D.

The standard terminology and notation for the function £ (which we now know exists
and 18 unique) is given in the following definition.

8.3.5 Definition The unique function £ ' K — R such that E'(x) = E(x) forall x ¢ R
and £((Q) = 1, 1s cailed the exponential function, The number ¢ 1= E (1) is called Euler’s
number. We will frequently write

exp(x) — E(x) or et = E(x) for x € &,

The number e can be obtained as a limit, and thereby approximated, in several different
ways. [Sce Exerciscs | and 10, and Example 3.3 6 ]

The use of the notation ¢* for E(x) is justified by property (V) in the next theorem,
where it is noted that if 7 is arational number, then E(r) and ¢” coincide. (Rational expanents
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were discussed in Scction 5.6.) Thus, the function £ can be viewed as extending the 1dea
of exponentiation from rational numbers to arbitrary real numbers. For a definition of a*
for @ > 0 and arbitrary x € &, sce Defimtion §.3.10.

8.3.6 Theorem The exponcntial function satisfies the following properties:
(iil) E(x) £ 0 forallx € R;

(iv) Ex L+ y)y=- FEx)E(y) forallx, y € &;

(v) E(My=¢ forallr € 1)

Proof. (1) Let o ¢ X be such that E(a) =0, and let J, be the closed interval with
endpoints 0, . Let X > 'E(t)|forallt € J, Taylor's Theorein 6.4.1, implies that for cach
n ¢ N there exists a point ¢, € J_ such that

[ -(n- 1)
| = E0) = Fler) + w (—a) + -+ P_ ﬂ (—e)" !
1 (n — 1)!
E(r!] E{r
N (o) (—a)" = (c,) (—a)"
(n)! n!

Thus we have 0 < 1 < (K /n!) |e|" forn € N. But since im(|e|"/n!) = 0, this is a con-
tradiction.

(iv) Let y be fixed; by {tin) we have E(y) # 0. Let G : R — IX be defined by

(r{x) 1= M for x € K.
E(y)

Evidently we have G'(x) = E'(x + y)/E(y) — E(x + y)/E(y) — G{x)forallx ¢ &, and
G0y = E0+ y)/E(y) = 1. Itfollows from the umqueness of E, proved in Theorem B 3 4,
that GG{x) = E(x)forallx € R. Hence E(x + y) = E{(x)E(y) forallx € R Since y ¢ X
18 arbifrary, we obtain (iv).

(v) It follows from (1v) and Induction that if n € N, x € ], then

Flnx) = FE{x)"

If we let x = 1/n, this relation implies that

e=E1) =E[n- %) = (E(i))

whence it follows that E(1/n) = e'/". Also we have E{(—m) = L/Em)=1/e" =¢7"
for m € N. Therefore, 1f m € Z, n € Iv, we have
E(m/n) = (E(l/n))m — (c,'.fn)m — gm/"n.

This establishes (v). Q.E.D.

8.3.7 Theorem The exponential function E is strctly increasing on R and has range
cqual to {y € R : y > 0}. Further, we have

(vi) Hm E(x) =0 and Im E(x) =2

X——0xa X —> a0

Proof. We know that E(0) = ] > 0 and E(x}) 3 0 for all x € K. Since E is continuous
on X, it follows from Bolzane’s Intermediate Value Theorem 5.3.7 that E(x) = 0 for all
x € R Therefore E'(x) = E{x) > Ofor x € R, so that E is sirictly increasing on ®.
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[t follows from Corollary 8. 3 3 that2 < e and thqt 1m E(x) = oo, Also, if z > 0, then
since 0 <« E(—z) = 1/E(2) itfollows that lun E(x) — O Therefore, by the [ntermediate

EANE N

Value Theorem 5.3.7, every y € R with y > 0 belongs to the range of E. QE.D.

The L.ogarithm Function

We have secn that the exponential function £ s a stnctly increasing differentiable function
with domain K and range {y € R : y > 0}. (See Figurc 8.3.1.) It follows that ® has an
inverse function.

—"/ (0.1) a O/
S . . '

Figure 8.3.1 Graphof E. Figure 8.3.2 Graphof [

8.3.8 Definition The function inverse to £ : R - > R is called the logarithm (or the
natural logarithm). (Sce l'igure 8.3.2.) It will be denoted by L, or by In.

Sinee FE and L are inverse functions, we have
(Lo EYx)=x forall xc &
and
(Eocl)(y)=y forall yc R,y >0
These formulas may also be written in the form

Ine” = x, e =y,

8.3.9 Theorem The logarithm is a strictly increasing function L with domamn {x e B ;
x > 0} and range R. The dernvative of L is given by

(viiy L'(x)=1/xforx > 0.

The logarithm satisfies the functional cquation

(viii) L{xy) = L{x) + L{y) forx = 0,y > 0.
Moreover, we have

(ix} L(1)=0 and L(e}=1,

(x) Lx)=rLx) for x>0, e Q.

(xi) Hm L(x)=—-00 and lim L(x) =10

=0+ r—x
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Proof. That L 1s stnctly increasing with domain {x € IR : x » 0} and range R follows
from the fact that I :s strictly mcreasing with domain R and range {y € B 1 y > 0}.

(vil) Since F'(x) = E(x) > 0, 1t follows from Theorem 6.1.9 that L is differentiable
on {0, o0) and that

1 ] 1
L'(x) - = = — = - for x € (0, 00).
(E' o L)(x) (E o L)(x) X
(vin) If x > 0, v > 0, let w:=L{x) and v = L{¥). Then we have x = £(u) and
v = F(v). It follows from property (iv) of Theorem 8.3.6 that

xy = E)EQ@) = E(u +v),

sothat L(xy) = (L o EY(u +v) = w - v = L{x) -+ L(y). This establishes {(vu1),

The properties in (ix) follow fromn the relations £(0) = T and F(1) = ¢.

(x) This result follows from (vis) and Mathematical Induction for » ¢ N, and 15
extended to r € @ by arguments similar ro those in the proof of 8.3.6(v).

To cstablish property (xi), we first note that since 2 < ¢, then lim{e") = oo and
lim(e™™) = 0. Since L{e") = n and L{e™") - —n it follows from the fact that L is strictly
increasing that
lim L(x) =limL(¢") — o0 and tlirgl Lx)=bmL(e™"™) = —-00. QEI.

e &1

Fower Functions ___

In Definition 5.6.6, we discussed the power function x + > x7, x > 0, where r is a rationa!
numher. By vsing the exponential and logarithm functions, we can extend the notion of
power functions fram rational to arbitrary real powers.

8.3.10 Definition I[fe ¢ B and x > 0, the number x* i3 defined to be

%= eV — E(al (X)),

The {function x — ¥ for x > {1 is called the power function with exponent .

Note Tf x > 0 and o = m/n where m € Z, n € N, then we defined x% = (x™)" in
. - a -
Scction 5.6. 1lence we have In x® = ¢ In x, whence x% = ™ = ¢*'™*, Hence Definition

8.3.10 1s consistent with the definition given in Section 5,6.

We now state some propariies of the power functions. Their preofs are immediate
consequences of the properties of the exponential and logarithm functions and will be left
to the reader.

8311 Theorem Ifa € R and x, y belong to (0, ), then:
(a) 1" =1, (b)y x% = 0,
(€) (x2)% =x%y", (d) (x/y)" =x"/y".

8.3.12 Theorem Ife,f € R andx € (0, 20), then:
(@) 2%+ = x%xf, by () =x? = (F)”,
(¢) x7°®=1/x°%, (d) ifa < B, thenx® < <P forx > 1.

The next result concerng the differentiability of the power funciions.
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8.3.13 Theorem Leto € R. Then the function x +> x% on (0, o) to K (s continuous
and differentiable, and

Dx® =wx for x e (0, o0).

Proof. Ry the Chain Rule we have

Dx® — Deuhlr — 67::r]n_:c D{xlnx)

a Y a—1

=x¥. - =ax for x e (0, x). Q.ED.
X

It will be seen in an exercise that if @ > 0, the power function x +— x% is strictly
increasing on (0, oo} to R, and that if & < 0, the function x — x¥ 1s strictly decreasing.
(What happens if ¢ = 07)

The graphs of the functions x — x% on (0, o¢) to R are similar to those 1n Figure 5.6.8,

The Function log_

If a > 0,a # 1, it is sometimes useful to define the function log,.

8.3.14 Definition Leta > 0,a # 1. We define

Inx
log, (x) == — for x e (0, no).
Ina
For x € (0, oo), the number log_(x) 15 called the logarithm of x to the base «. The
casc @ = ¢ yields the Jogarithm (or natural loganthm) function of Definition 8.3.8. The
case a = 10 gives the base 10 Joganthm {(or common loganithm) function log,, often used
in computations. Propertics of the functions log, will be given 1n the exercises.

Exercises for Section 8.3

1. Shkowthatif x = 0 and if n > 2x, then
x ) - x" \| 2yt
1 NN EECESY

Use this formula to show that 2% < e < 23 hence ¢ is not an integer.

/
et — {1+
A}

2. Calculate ¢ correct 1o 5 decimal places.

3 Showthatif0<x <wgandr € N, then
" n-1

X x . X X e x”
1+ 4+ —<e*<l——+ .+ + .
1! n! 1! (n — 13! n!

4. Show thatif n = 2, then

£ 1 1 e
O<en!~ | 1414+ -+ -+ = |nl< < 1.
\ 2! n! n+ 1

{Jsc this ingquality to prove that € 1s not a rational number,

5. Ifx = 0and n € N, show that

:1_x_i_x'z_xj_;rl_l_!_(_x)."!‘] 1

¥~ 1 Ty
Use tus to show that

2 3 " X ¢ gyE
ln(xf-l)z-r—f—+x—~---+(—1)”"'i—+[ Sl
2 3 n S0
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and that

! 2 3 " rn+|
X X n l.r X

1y — - - —_ . —1 — [ )

In(x + 1) (x 5+ 3 + (=1 n) <

6. Use the formula in the preceding exercise to calculate In 1.1 and In 1.4 accurate to four dectmal
places. How Jarge must onc choose a1 1n this inequality to calculate In 2 accurate to four decimal
places?

7. Show that In{e/2) = | — In 2. Use this result to calculate In 2 accurate to four decimal places.

R. Let f: & — 3 be such that f'(x) = f(x) for all x € K. Show that there exists K € R sich
that f{x1 = Ke'* forally e &

9 Teta,>0fork=1 - - nandlst A:={a +  -+al/nbethe anthmetic mean of these
numkers. Foreach &, putx, :—a, /4 — lintheinequality I + x = ¢ (valid forx > 0). Multiply
the resuliing terms to prove the Arithmetic—Geometric Mean Inequality

y 1
(G} (al ._.an)"“ = ;(a] + - +a).

[

Moreover, show that equality holds in (&) if and only if ¢, = a, = - = a .

{0+ 1/n)“).

P

10.  Evaluate L'(1) by using the sequence (1 -+ 1/x) and the fact that e — lim

11, Lstablish the assertions in Theorem 8.3.11.
12 Establish the assertions in Theorem 8§.3.12.

13. (a) ShowthatilTe = , then the function x — x" 1s stnctly increasing on (0, o) to R and thar

im x™ =0and lim x® = ~x.
a— = £
{(h) Show that if & < 0, then the function x + » x™ 18 strictly decreasing on (0, no) to & and

that lim x* = ocand Iim x® =10.

a— 0+ r—

14, Prove thatif @ > 0, @ 2 1. then @"% " = x forall x € (0, oc) and log (a') = yforall y € <.
Therefore the function x + log, x on (0, oo) to R is inverse to the function y k> a* on R.

15 I @ > 0,a# 1, show that the function x+ > log_x 1s differentiable on (0, oc) and that
Dlog x = 1/(xIna} for x € (0, 20).

16 Ifa = 0,a f 1,and x and y belong to (0, 00), prove that log_(xy) = log_ x +log_y.
17 Ifa>0,a# 1. andb = 0, b # 1, show that

b
log, x = (i—:;) log, x for x (0, ).

In particular, show thatlog., x = (Ine/In 10} Inx = (log,, &) In x for x € (0, o).

Section 8.4 The Trigonometric Functions

Along with the cxponential and loganthmic functions, there is another very imporlant
collection of transcendental functions known as the “trigonometric functions”. These are
the sine, cosing, tangent, cotangent, secant, and cosecant functions. In ¢lementary courscs,
they are usually introduced on a geometric basis in tenms of cither tmangles or the unit
circle. In this section, we introduce the trigonometric functions 1in an analytical manner
and then establish some of their basic propertics. In particular, the various properties of
the tngonometric functions that were used in examples in earlicr parts of thus book will be
derived rigorously in this section.

It sutfices to deal with the sine and cosine since the other four trigonometric functions
arc defined in terms of these two. Our approach to the sine and cosine is similar in Spirit to
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our approach to the exponential function in that we first establish the existence of functions
that satisfy certain differentiation properties.

8.4.1 Theoremm ThereexistfunclionsC R > RandS$:® — R such that
() C'(x)=~C{x)and 8" (x)— —S(x) forallx ¢ R
(u) CO) =1, C‘())-—O and $(0)y =0, §'(0) = 1.

Proof. We define the sequences (C,) and (S, ) of continuous functions inductively as
follows:

(1) Cl(x):= | 5,(x) =x,
(2) Sﬂ(x):=] C (1) dt.
2
(3) Co@) =1 —/ S (1) dt,
o]

foralln € N, x € &,

One secs by Induction that the functions € and S, are continucus on R and hence they
are integrable over any bounded interval; thus'these functions are well-defined by the above
formulas. Morcover, it follows from the Fundamental Theorem 7.3.5 that §, and Coqq &€
differentiable at every point and that

(4) S, (x) = C {x) and Crx)y—= 8§ (x) for neN xeclR,

Induction arguraents (which we leave to the reader) show that

x* xt x?
Cofx) = 1-- "2_'+E A+ (=1 e
X3 x5 2n i
S (X) = x 37 “i—-s— --+(—!)”m_
Let A > Obe given. Thenif x| < A and m > n > 2A, we have that (since A/2n < 1/4):
o L2 =2
(5) 1C, (1) = C, (0)] = (2@!—(2”?2)@-&(27_7)!
\ 2 \ 2n-21-2
: (zm [ L;) | (%) }

Al (]6)
< - = \
(2n)! \ 15

Since lim(A**/(2n)") = 0, the scquence (C, ) converges uniformly on the interval [— A, A],
where A > 0 is arbitrary. In particular, this means that (C (x}) converges for each x € R.
We defme € R — R by

C(x) = lim C (x) for x e R.

It follows from Theorem 8.2.2 that C is continuous on R and, since C_(0) = 1foralln € I,
that C(0) = |
If ix] < Aand m > r > 2A, it follows from (2) that

S, (x) —S"(_r):f [C ) —C (1) ar
0
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If we use (5) and Corollary 7.3.15, we conclude that

1S, () - 8,0 < (IGA)

) <
2m) \ 15
whence the sequence () converges uniformly ont A, A]. Wedefine S: X > Kby
Six) = limSﬁ(_r) for x e R,

It follows from Theorem 8.2.2 that §18 continuous on X and, since § (0) = O foralin € Iy,
that ${0) = 0.

Since C,(x) = -5, (x)for n > 1, 1t follows from the above that the sequence (C)
converges uniformly on [— A, A]. Hence by Theorem 82 3, the limit function € is diffcr-
entiable on [— A, A] and

C'(x) = limC, (x) = lm(=8, | {x)) = —S(x) for xc [—A4, Al
Since A > 0 is arbitrary, we have
(6) C'(x) = =S(x) for x e R

A similar argument, based on the fact that S} (x) = C,_(x), shows that § 15 differentiable on
R and that

(N §(x) = C(x) forall xelk.
It follows from (6) and (7) that
C'(x) = —=(Sx)) = - Cx) and S"(x) = (C) = - Sx)
for all x € K. Moreover, we have
C'(0) = —S(0) = 0, S0y = C) = 1,

Thus statements (i) and (1) are proved. Q.E.D.

8.4.2 Corollary IfC, § are the functions in Theorem 8.4.1, then
(i) C'{(x) = —8(x) and S'(x) = C(x) forx € K.
Morcover, these functions have denivatives of all orders.

Proof. The formulas (n1) were established in (6) and (7). The existence of the higher
order derivatives follows by Induction, Q.ED.

8.4.3 Corollary The functions C and S satisfy the Pythagorean Identity:
vy (CON + (SN =1 forx e R,

Proof. Lct f(x) .= (C(x))?‘ + (S{x))? for x € R, so that
Fx) =200 (=S(x)) +28(x)(C(x)) =0 for xe R

Thus 1t follows that f(x) i1s a constant for all x € E. But since f(0) =14 0= 1, we¢
conclude that f{x}) = 1 forall x € R. QED.

We next establish the uniqueness of the functions C and .

8.4.4 Theorem The functions C and § satisfving properties (1) and (ii) of Theorem 8.4.1
dre unique.
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Proof. Let C, and C, be two functions on R to R that satisfy Cj’(x) = —C,(x) for all
xeRand C (0)=1C;(0)=0for j =12 If we let D:=C = C,, then D"(x) =
—D(x) for x € R and D(0) == 0 and D(0) - - O forall k € N.

Now let x € R be arbitrary, and let [, be the interval with endpoints 0, x. Since
D=0, —-C,and7 =5 =35, = C’ — (" are continuous on /_, there exists K > 0 such
that |D(r)| < K and |T(r)| < K for a]l t e .. 1f we apply T’w]or s Theorem 6.4.1 t¢ D
on / and use the fact that D(0) -0, p® (0) = O for k € N, it {follows that for eachn € N
there 1s & point ¢, € /_such that

D'(0) DD (@)

— - ——— - PR rr_]__
Py =D+ --mox et v

(e,
n!

Now either Di”)(_c”) ==£D{c)or D(")(cn) = £7(c ). In either case we have

r
A .

K |x|”

|D(x)] =
n!

But since lim(|x["/n!) 0O, we conclude that D(x)  O. Since x € R is arbitrary, wc infer
that C. (x) — Cy(x) =0 foratlx ¢ K.

A similar argument shows that if § and §, are two functions on R — [ such that
S;'(x) = S';(x)for allx € Rand §;0) =0, ST (0) = | forj — 1, 2. thenwchave §,(x) =
52().') forullx € . Q.ED.

Now that existence and uniqueness of the functions ¢ and § have been established, we

stall give these functions their familiar names.

8.4.5 Definition The unigue functions € 'R — R and §: R — R such that C7 (x) =
Cx) and §8"(x) — S{x) for all x e R and C(0) =1, C(0) =0, and S(0) =
S’(O) = 1, are called the cosine function and the sine function, respectively. We ordi—

narily wriie

cosx ;= C'(x) and sx = S(x) for x e [R.
The differentiaton properties in (1) of Theorem 8.4.1 do not by themselves lead 1o
uniquely determined functions. We have the following relationship.
8.4.6 Theorem If f: R — R issuch that
Fixy = —=fix) for x ¢ R,
then there exist real numbers «, 8 such that
f)y=aCx)+8Sx)  for xeR

Proof Let g(x) == f(OYC(x) 4+ f(0YS(x) for x € R. It is readily scen that g"(x) =
—g{(x) und that g(0) = f(0), and since

glx) = —f10)8§(x) + f(0)C(x),

that g'{0) = £'(0). Therefore the function & := f — g is such that k”(x) = —h{x) for all
x € B and #(0) = 0. &' (0) = 0. Thus it follows from the proof of the preceding theorem
that #(x) = O for all x € R. Therefore f(x) = g(x) forallx € & QED



We shall now dentve a few of the basic properties of the cosine and sine functions.

8.4.7 Theorem The function C is even and S 1s odd in the scnsc that

(v) C(—x)=C{x)and S(—x) = —85(x) forx ¢ R,

Ifx, vy € R, then we have the “addition formulas”

(Vi) Clx t y) =CL)CH) = S)SH).  Sx ) =SECH) 4 C)SH).

Proof (v} If ¢(x) ;= C(—x) for x € &, then a calculation shaws that ¢"(x) = - p{x)
for x € B. Moreover, ¢ () = 1 and ¢'(0) = 0 so that ¢ = C_Hence, C(—x) =~ C{x) for

all x € X In a similar way onc shows that S(-~x) = —=8§(x) forall x € R.

(vi) ety € Rbe givenand let fix) ;= C(x + y) for x € R A calcuiation shaws that
J7(x) = — f(x) for x € R. Hence, by Theorem 8 4.6, there exists real numbers ¢, 8 such
that

F)=Clx+y)=al(x) | 85(x) and
Fix)— ~S{x+y) = —aSx) + C(x)

for x £ R If we let x =0, we obtain C(y) = @ and - S(y) = 8, whence the first formula
in (vi) follows. The second formula is proved similarly. QED.

The following inequalities were used earlier (for example, in 4.2.8).

8.48 Theorem I x e R x > 0, then wc have

vii) —x < 8(x) < x; (viii) I —3ixP < Clx) < 1,

(ix) X axt < S(x) < x; (x) I —ix < C) <1 - dx? oy xt

Proof. Corollary R 4.3 imphies that —1 < C(1) < 1 fort ¢ R, sothatif x = 0, then

X
—XE/ C{yde < x,
0
whence we have (vii). [f we integrate (vil), we obtain
X
—1ix? 5/ S(r) dr < 1x%
h)
whence we have
*-%:(2 <=Cx)y+1< Lx?.

Thus we have 1 — %.rz < C(x), which implies (vin).
Inequality (ix) follows by integrating (viil}, and (x) follows by integrating {ix). QED,

The number v is obtained via the following lemma.

8.4.9 Lemma There exists a root v of the cosine function in the interval (+/2, +/3).
Moreover C{x) > 0 forx ¢ [0, y). The number 2y s the smallest positive root of S.

Proof. Inequality (x) of Theorem 8.4.8 implics that C has a root between the positive
root /2 of x* —2 = 0 and the smallest positive root af x 124 £ 24 = 0, which i3

V6 — 23 « /3. Weiet v be the smallest such root of .
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It follows from the second formula in (vi) with x = y that S(2x) = 285(x)C(x). This
rclatton implies that S(2y) = 0, so that 2y 1s a pasiuve root of S. The same relation implies
that if 28 > 0 is the smallest positive root of S, then C(8) — 0. Since y is the smallest
positive root of €, we have § = y. QED.

8.4.10 Definition Il.et 7 .= 2y denote the smallest positive root of S.

Note The inequality /2 < y < V6 — 2\/§imp]ies that 2.828 < r < 3.183.

8.4.11 Theorem The functions C and S have pcriod 2 In the sense that

xi}y Clx +2n)=C(x)and S{x +2n) = S{x) forx C R,
Morcover we have

(i) S)=C(3m —x)=—C(x+37)., Clx)—S(37m —x)=S(x+ 7} forall
x e X

FProof {x1) Since §(2x) = 285(x)Cix)and S(r) =0, then S2) = 0. Further, ifx =y
in (vi), we obtain C(2x) = (C(x))? ~ (S(x))’. Therefore C{27) = 1. Hence (vi) with
y = 27 gives

Clx +2m) = C(OHC2m) = §(x)S27) = C(x),
and
S(x =2y = S(OC2TYy+ C(x)S27)y = Six).

(x11}) We note that C(%rr) = (), and 1t 1s an cxercise 1o show tha: S[%ﬂ') =1.If we
employ these together with formulas (vi), the desired relations are obtained. Q.E.D.

Exercises for Section 8.4

1. Calculate cos(.2), sin(.2) and cos 1, sin 1 correct to four decimal places.

Show that |sinx] < 1 and jcosx| < 1 forall x € R,

(3]

3 Show that property (vii} of Theorem 8.4.8 docs not hold if x < 0, but that we have |sinx| < |x|
forall x & K. Also show that |sinxy — x| < xi*;‘G forail x € =2

4. Show that if x > 0then

x? x! ' x? x”

1 — e <1 - - )
2t oq gy TS s 2 oy

1se this incquality to cstablish a lower bound for &t

5. Calculate m by approximating the smallest positive zero of sin, (Either bisect intervals or use
Newton’s Meathod of Section 6.4.)

6. Decline the scquence (cn) and (s, }inductively by ¢,{x) := 1. 5, {x) ;= x, and

s, (%) ::/ ¢ (t)dt, £, () i=14 f s (1) de
0 4

for all # € N, x € B Rcason as in the proof of Theorem 8.4.1 o conclude that thare exist
functons ¢ : R~ Rands : R — R such that (j) ¢”(x) = c(x} and s"(x) = s{x) forall x € [,
and (ij) €(0y =1, (0} =0 and s(0) = 0, 5'(0) = 1. Moreover, ¢'{x) = s(x) and s'(x) = ¢(x)
forall x € K.
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Show that the functions ¢, 5 1n the preceding cxercise have derivatives of all orders, and that they
satisfy the identity (¢(x))* — (s(x))* = | forall x € K, Moreover, they are the upigue funetions
sausfying (J} and (|3). (The functions ¢, s are called the hyperbolic cosine and byperholic sine
functioms, respectively}

If f: R — Rissuchthat f7(x) = f(x) forall x € &, show that there exist rezl numbers o, A
such that f(x} = ac(x) 4 Bs(x} for all x € R. Apply this to the functions f {x) :=¢" and
f>(x) = ¢"" for x € K. Show that cix) = é—(ex 4 e "yand s{x) = :]—,(ex —e Y forx e R

Show that the functions «, s in the preceding exercises are even and odd, respectively, and that
clx + ) = e(xdely} | s(x)ys(y), x4+ v) = s{)ed W) + clx s,
forallx, ve R

Show that c(x} = 1 for all x € X, that both ¢ and s are strictly increasing on (0, n}, and that
lim e{x) = lim s{r) = ~c.

X = O K= D



CHAPTER 9

INFINITE SERIES

In Section 3.7 we gave a brief introduction to the theory of infinite series. The reader will
do well to look over that section at this time, since we will nol repeat the definitions and
results given there.

Instead, in Section 9.1 we will introduce the important notion of the “absolute conver-
gence” of a series. In Section 9.2 we will present some “tests’ for absolute convergence that
will probably be familiar to the reader from calculus. The third section gives a discussion of
series that are not absolutely convergent. In the final section we study series of functions and
will establish the basic properties of power serics which are very important in applications.

Section 9.1 Absolute Convergence

We have alrcady et (in Scction 3.7) a number of infinite series that arc convergent and
others that are divergent. For example, 1n Example 3.7.0(b) we saw that the harmenic
SEries:

2

n=1

is divergeni sincc its sequence of partial sums s == 1 {- ) 4 -t (n = N) is un-

bounded. On the other hand, we saw 1n Example 3.7.6(0) that the alternating harmonic
series:

1
H

o~ (=D
2

n=1

is convergent hecanse of the subtraction that takes place. Since

[__l)r:-f-l B l

n 4]

these two serics itlustrate the fact thataseries ) x, may be convergent, but the series 3 €, |
obtained by taking the absolute values of the terms may be divergent. This observation leads
us to an importani definition.

9.1.1 Defipition Let X = (x ) he a sequence in R. We say that the series > x  is
absolutely convergent if the series ) |x | is convergent in R. A series is said to be
conditionally (or nonabsolutely) convergent if it 1s convergent, but it is not absolutely
convergent.
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It 15 trivial that a serics of positive rerms 15 absolutely convergent 1f and only 1f it
is convergent. We have noted above that the altermating harmonic series 1s conditionally
convergent,

9.1.2 Theorem Ifascries in R 1s absolutely convergent, then it is convergent.
Proof.  Since > x |18 convargent, the Cauchy Criterion 3.7.4 implics that, given € > 0
there exasts M () € N such that if 7t > n > M (g}, then
|xﬂ+j| 4 |x”_|_1i + o+ x| <&
However, by the Triangle Incquality, the lefr side of this expression dominates
15, — st = x, ;4 x, 5+ +xi

Since & > 01s arbitrary, Cauchy’s Criterion implies that )~ x, converges. QED.

Grouping of Series _

Given a series 3 x, , we can construct many other series ) y, by leaving the order of the
icrms x, fixed, bul insetling parentheses that group together finlte numbers of terms. For
exarmple, the series indicated by

11<1 1) (11|1) 1+(1 LY
2T\ 3T T TG 13)

is obtained by grouping the terms in the alternating harmonic series. It is an intcresting
fact that such grouping docs not affect the convergence or the value of a convergent series.

9.1.3 Theorem [faseres  x_ 1sconvergen, then any series obtained from it by group
ing the terms is also convergent and to the same value,

Progf. Suppose that we have
y] ::Xl -+_..I+'r"€]' }Iz - xk|+1 +...+xk2'

If 5, denotes the nth partial sum of 3 x, and ¢, denotes the kth partial sum of ) y,, then
we have

L=y =5 f2=y1‘|’-3’2'—5k2'

Thus, the sequence (¢,) of partial sums of the grouped series 3 y, is a subsequence of the
sequence (5, ) of partial sums of 3 x_. Since this latter series was assumed to be convergent,
so 1s the grouped series 3 y, . QED.

It is clear that the converse to this theorem is not true. Indeed, the grouping
(1-D+ =D+ A—-1)+..

produces a convergent sedics from Y e (—1)", which was seen to be divergent in Example
3.7.2(b) since the terms do not approach (1
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Rearrangements of Series

.oosely speaking, a “rearrangement” of a series is another series that is obtained from the
given one by using all of the terms exactly once, hut scrambling the order 1n which the
terms are taken. For example, the harmonic scrics has rearrangements

1}1}1}1| 1I 1+
2714’3 T on | 2n— 1 '
I 1 17 1 11
St -+ -+ -—F -+

The figst rearrangement 18 abtained from the harmonic senes by interchanging the first and
sccond terms, the third and fourth terms, and so forth. The second rearrangemcnt is obtained
from the harmonic series by taking one “odd term”, two “even terms”, threc “odd terms”,
and so forth. It is obvious that there are infinitely many other possible rearrangements of
the harmonic series.

9.1.4 Definition A series ) |y, in R is a rearrangement of a serics » x_ if therc is a
bijection f of N onto N such that v, = X o) foralik ¢ N

While grouping serics does not affect the convergence of a series, making rearrange-
ments may do so. If fact, there 1s a remarkable observation, due to Riemann, thatif ) s 1sa
conditionally convergent series in IR, and if ¢ € R is arbitrary, then there 1s a rcarrangement
of 3~ x, that converges (o ¢.

To prove this assertion, we first note that a condinonally convergent series must contain
infinitely many positive terms and infinitely many negative terms (see Exercise 1), and that
both the serics of positive terms and the scries of negative terms diverge (sec kxercise 2,
To construct 4 series converging to ¢, we take positive terims unul the partial sum is greater
than ¢, then we take negative tetins until the partial sum is less than ¢, then we take positive
terms until the partiat sum 1§ greafer than ¢, then we take negative terns, cic,

In our mampulactons with series, we gencrally want to be sure that rearrangements
will not affect the convergence or the value of the serics. That 1s why the following result
1S important.

9.1.5 Rearrangement Theorem Let)  x beanabsolutely convergent sericsin R. Then
any rearrangement y_y, of Y x_ converges to the same value.

Proof Suppose that 3 x converges to x € K. Thus, if ¢ > 0, let N be such that if
n.g>~Nands :=x +-- f x_ then

g
x—5|<¢ and Z X< e
kN
Let A7 ¢ N be such that all of the terms x .-+, x,, arc contained as summands in 7, ‘=
Yt Y It follows that if sm > Af then t,, S, 1sthe sum of a finite number of terms

x, with index k > N. Hence, for some ¢ > N, we have

i

1, — 5] =< Z x| < €.

k—NM-1
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Therefore, if m > M, then we have
|!"m — x| <t -8+, —x]l <ete=— 2¢.

Since £ > 018 arbitrary, we conclude that Z ¥y, convergesto x. QED

FExercises for Section 9.1

1. Show that if a convergent sernes contains only a finitc number of negative terms, then it 15
absolutely convergent.

2. Show thatif 2 senes 15 conditionally convergent, then the series obtained from its positive erms
is divergent, and the series obtained from its negative terms 1s divergent.

i It Ear 1s conditionally convergent, give an argument to show that there exists a rearrangement
whose partial sums diverge to oG,

4. Where is the fact that the scrics Z x 15 ahsolutely convergent used in the proof 6f 9.1.57

5. If 3" a, is absolutely convergent, is it true that every rearrangement of 3 a  is also absolutely
comvergent? .

6. Find an explicit expression for the ath partia) sum of 3 2%, In(1 — {/»?) to show that rhis series
converges to — In 2. Is this convergence absolute?

7. (&) If 3 a_ is absolutely convergent and (b ) is a bounded sequence, show that 2.ahb s

absolutely convergent.
(b) Give an example to show that il the convergence of ) a_ is conditional and (& } is a
bounded sequence, then ) | a b may diverge.
8. Give an example of a convergent serics 3 a, such that 3 a; is not convergent. (Compare this
with Exercise 3.7.8)
9 If (a ) is a decreasing sequence of strictly positive aumbers and if ) a, is convergeni, show
. that Jim(na ) = 0.

10.  Give an example of a divergent series 3 ~a, with (g ) decreasiog and such that lim(na ) - 0.
L1 It (a ) is a sequence and if lim(nzan) exists in %, show that 3 _a_is absolutely convergent.

12. Let @ > 0. Show that the scries 3 (1 +a”) ' is divergent if 0 < 2 < 1 and is convergent if

. B ]
YN R
13. (a) Docs the scres 3 /r _ % converge?
nol \/n
\/ +1 h
(b) Docs the senes L k . n converge?
n=1 n

14, 1f(a, ) is a subsequence of {a,), then the series ) "4, 1scalled asubseriesof 3 o . Show that

2a, s absolutely convergent if and only if svery &;uhchm; of it 1 convergent.

15. Leta: M x N — R and wnte a, =ali, ) If A = L;_Ia for cach j e W and if A =
Yo, A,, wesay that A is an iterated sum of the a,, and write A = pIRAD B ;- We define
the othc1 jterated sum, denoted by 377, 37, a, m a similar way.

Suppose a,, = 0 fori, j g & If (¢} 1s any enumcration of {a
following siatements are equivalent:

(iy Theinterated sum )77, 3°7° . a,; converges to B.

(i) The serics 3 | ¢, converges o C.

In this casc, we have B == C.

1, j € W}, show that the

i)



9.2 TESTS FOR ABSOL.UTE CONVERGENCE 257

16, The preceding exercise may fail if the tertns are not positive. For example, let a, =411t

i ji=1 a, = —tifi  j=—tl and g, == Oclscwhere. Show that the iteratcd sums
F
=2 (g% -y [ )
Z 4 and Z Za”-
1t j=L i=1

both exist but are not equal,

Section 9.2 Tests for Absolute Convergence

In Section 3.7 we gave some results concerning the convergence of infinite senes; nametly,
the nth Term Test, the fact that a series of positive terms is convergent if and only if its
sequence of partial sums is bounded, the Cauchy Cnterion, and the Comparison and Limit
Companson Tests.

We will now give some additional results that may be farmliar {rom calculus. These
results are particularly useful in establishing absolute convergence.

9.2.1 Limit Comparison Test, II.  Suppose that X ;= (x_} and Y := (y,) are nonzero
real sequences and suppose that the following himit exists in R

X
(b ro=lim -%|
y”

(a) If r#0, then 3 x, is absclutely convergent if and only if 3"y, is absolutcly
convergent.
(by If r =0andif ) y isabsolutely convergent, then ) x_ 1s absolutely convergent

Proof.  This result follows immediately from Theorem 3.7.8. Q.E.D.

The Root and Ratio Tests

The following test is due to Cauchy.

9.2.2 Root Test Let X = (1) be a sequence in R
(a) Ifthereexisty € R withr « | and K € N such that
(2}

then the series y_ x, is absolutely convergent,
(b) Ifthercexists K € N such that

(3) Ao

then the serics 3 x 18 divergent.

l,fn
<7

x, for n > K,

”"zl for n> KX,

Proof. (a) I{(2)holds,thenwehave|x | < r" forn > K. Sincc the geometric series Y r”
15 convergent for 0 < r < 1, the Comparison Test 3.7.7 implies that 3~ x | is convergent.

(b) If (3) holds, then lx | > 1 forn > X, so the terms do not approach (0 and the nth
Term Test 3.7.3 apphes. QED.

In calculus courses, one often meets the following version of the Root Test,
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9.23 Corollary Iet X :— (x,} be a sequence in R and suppose that the Innit

lLin

(4) ro=lmix |

exists in R. Then Y x, is absolulely convergent when r < 1 and is divergent whenr > 1.
Proof.  If the limit in (4) cxists and » < 1, then there exist rowithr <r, < land K e N
such that |x, Un o r, forn > K. In this case we can apply 9.2.2(a).

If r > 1, then there exists X € M such that |x”|1-M > | for n > X and the nth Term
Test applies. QED.

1

Note  No conclusion is possible in Corollary 9.2.3 when r = 1, for either convergence or
divergence is possible. See Example 9.2.7(b).

Qur next test1s due to D' Alembert.

9.2.4 Ratio Test Let X :— (x) be a sequence of nonzero real numbers.

(a) Ifthereexistr « A withQ < r <= 1 and K & N such that

X

(3)

n—1

=r for n=> K,
%, |
Hi
then the senies y | x s absolutely convergent.
(b)y [fthereexists K € N such that

.1
A | for n

X,
"

(6)

IV
-~

then the series | x, is divergent.

Proof.  (a) I (5) holds, an [nduction argument shows that x, | < |x, /™ form € N.
Thus, for n = K the terms in ) |x | are dominated by a fixed multiple of the terms in
the geomelric series ¥ 1™ with 0 < r < |. The Comparison Test 3.7.7 then implics (hat
> x| is convergent.

(h) Tf (6) holds, an Induction argument shows that [X g oml = [Xg] form & N and the
nth Term fest applies, Q.ED.

Once again we have a familiar Tesult from calculus.
9.2.5 Corollary Let X = (x_) be a nonzero sequence [n R and suppose that the limit

: Xn¢l
{7) r = lm '
X

n

exists in R. Then ) x 1s absolutely convergen: when r < | and is divergent whenr > 1.

Proof 1fr <landifr <r <1, then there exists K € & such that |x__,/x,| < r, for

n > K. Thus Theorem 9.2.4(a) applics to give the absolute convergence of Zx”.
Ifr > 1, thenthere exists K € Nsuchthat|x _,/x | > I forn > K, whence it follows
that |x, | does not copverge to O and the nth Term Test applies. QE.D.

Note No conclusion is possible in Corotlary $.2.5 when » = 1, for either convergence or
divergence is possible. Sec Example 8.2.7(c).
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The Integral Test —

The next test—a very powerful one—uses the notion of the improper integral, which is
defined as follows: If f isin R[a, b] for every b > a and if the it }lim _j;b f{t)ydr exists
i — 00

in R, then the improper integral J;Oc f{t)dr is defined to be this limit.

9.2.6 Integral Test Let f be a positive, decreasing function on {f 1 1 > 1}. Then the
series 3 oo f(k) converges if and only if the improper integral

~o b
[ f(yd: = blim f fityde
1 = d

exists. In the case of convergence, the partial sum s = 37 | f(k) and the sum s =
fe.a] B . R Fi] =
> vy J (k) satisfy the estimate

o0 o0
(8) ] f('-’)deS“S,,E/ fwyde
nil n
Proof. Since f is positive and decreasing on the interval [k — 1, k], we have
. .I<
9 flk) < fiyde < flk—1).
£
By adding this meqguality for & = 2, 3, - - -, n, we obtain

s,,—f(uzf fuyde <s, |
1

which shows that either both or neither of the limits

n—oc n— X3

lims  and lim] 7y di
|

exist. If they exist, then on adding (9) for k = n + 1. .- -, m, we obtain

m
s, =S, ff fyde=<s__, s, 4,
n

whence it follows that

mH e
f fwydi <5, — s, 5[ f)dr.

+1

If we take the it in this tast inequality as m — ©o, we ohiain (R). QED.

We will now show how the results in Theorems 9.2.1 9.2.6 can be applied to the
p-series, which were Introduced in Example 3.7.6(d,c).

9.2.7 Examples (a) Consider the case p = 2; that is. the series > 1/n” We comparc
it with the convergent senies »_ 1/{(n{n + 1)) of Example 3.7 2(c). Since

1 1

‘_n+1 ]
n?  nln b 1) n

=14 =1,
n

the Limit Comparison Test 9.2.1 implics that 3 1/r* is convergent,
(b) We demonstrate the failure of the Root Test for the p-serics. Note that

1 ]Un 1 ]

NG

n_‘p_[ = (”F‘)‘/ﬂ
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Since (sec Example 3.1.11(d)) we know that #'/" — 1, we have r = 1 in Corollary 9.2.3
and the theorem does not give any information.

(c) We apply the Ratio Test to the p-senes. Since
1 1 n? |

i B - - - —
(+ 107 2P 41" A+ 1/m)°
the Rario Test, tn the form of Corpllary 9.2.5, does not give any information.
{d) Finally, we apply the Integral Test to the p-series. Let f(¢) = 1/¢7 for ¢ > 1 and

recall that
1) l
/ —dt — Inn —Inl,
|t

/ b ( L) for p
—dt — —— | —— - or 1.
o tf L- pan”! / g

From these relations we sce that the p-senics converges if p > 1 and diverges if p < 1, as
we have secn before in 3.7.6(d,¢). T

Raabe's Test

i

If the limits limjx, 1" and hm(lx, /x_ ) that are vsed in Corollaries 9.2.3 and 9.23
cqual 1, we have seen that these tests do not give any information about the convergence or
divergence of the senes. In this case it 15 often useful to employ a more delicate test. Here
15 one that 18 frequently useful.

9.2.8 Raabe’s Test Ler X o= (x,) be a sequence of nonzero real numbers.
(2) Ifthere existnumbersa > 1 and K ¢ M such that

[
<l-- for n> K,

X n
n

1 -1

(10

then ) x is absolutely convergent.
(h) If there exist real numbers @ < | and K & N such that

X
"

s
xn

(11)

[44
! =1 - for n>= K,
; n
then Y x, 15 not absolutely vonvergent,

Proof. (2) If the inequality (10) holds, then we have (after replacing n by & and muti-
plying)

kix, | <k Dix, ] — (a~ Dix,| for k> K.

At
On reorganizing the incquality, we have
(12) (n’f"l).x;(i-'klx;{“[i(ﬂ—l)]xﬂ}'ﬂ fO]' k‘-‘jK,

from which we deduce that the sequence (k|x, |} is decreasing for & > K. If we add (12)
fork = K, -+, n and note thar the left side telescopes, we get

(K — Dixgm—alx, 1= @=D{lxpl+ -+ 1x 1)

This shows (why?) thar the partial sumns of }~ |x | are bounded and establishes the absolute
convergence of the seres.
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(b) If therelation (11) holds fora > K| thensincea < 1, we have
nx, | = (n—a)x | > {n—1x | for n= K.

Therefore the sequence (n|x, | |) is increasing for # = K and there exists a number ¢ > 0
suchthat [x, | > ¢/nforn > K.Butsince the harmonic series 3 ° 1/n diverges, the series
> Ix | also diverges. QED.

In the application of Raabe's Test, it is often convenient to use the following limiting

form.

9.2.9 Corollary Let X := (x_) bc a nonzero sequence tn R and let

n—t ))

xr.

whenever this limit exists. Then 3" x_ is absolutely convergent when a > 1 and is not
ahsolutely convergent whena < 1.

X

(13) o= 1tm(n(1 -

Proof.  Suppose the limit in (13) cxists and that @ > 1. If a, 15 any number with
a > a > ], then there exists K € N such thatay < n(1 - jx__,/x, |) for n > K. There-
foreix, /x| <1 —a /nforn > K and Raabe’s Test 9.2,8(a) applies.

The casc where ¢ < 1 1s similar and is left to the reader. QED.

Note There is no conclusion when ¢ = 1; either convergence or divergence is possible,
as the reader can show.

9.2.10 Examples (a) We reconsider the p-series in the tight of Raabe’s Test. Applying
L'Hospital's Rule when p > 1, we obtain (whv?)

, - nf \ , (n+ 1) —n*®
a = lim (n LI —————] =1m (n[ ———})
. (n+1)F |/ (n+ 1)7

. ((1+1/n)f’—1\ i
= lim

lim L

1/n {1+ L/n)p
We conclude that if p = 1 then the p-series is convergent, and if 0 <« p < | then the
serics is divergent (since the tenms are positive). However, if p = 1 (the harmonic series!),
Corollary 9.2 9 yiclds no information.

|—p I=p

(b)Y We now consider
) nL‘l ne +1

An easy calculation shows that hm(x,, /x )} =1, so that Corollary 9.2.5 does not
apply. Also, we have m(n{l —x_ . /x )) = 1, so that Corollary 5.2.9 does not apply
either, However, 1t 15 an exercise to establish the inequality X,,1/%, = (# — 1)/n, whence
it follows {from Raabe's Test 9.2.8(b) that the serics is divergent. (Of course, the Integral
Test, or the Limit Comparison Test with (y ) = (1/#), can be applied here.) C

Although the limiting form 9.2.9 of Rabbe’s Test is much easier to apply, Example
9.2.10(bh) shows that the form 2.2.8 1s stronger than 9.2.9.
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Exercises for Section 9.2

1.

L0.
1.

3.
14.

Establish the convergence or the diverpence of the serics whose nth term is:

1 n
ay -—— ——, by —————— ..
@ (n 4+ 13(n+2) (0) (n+ D(n+2)
ey 2 7, (@ n/2".
Establish the convergence or divergence of the series whose aith term is;
(@ (n(n + 1377, ® Pty
€y nl/n", (d) ( D'njln+ 1)
Discuss the convergence or the divergence of the series with #th term (for sufficiently large »)
given by
(@) (Inn}~7, by (nmy™",
() (nmy~"", () (amy= "7,
(&) (ninr) (© (rlam)ainn)?) .
Discuss the convergence or the divergence of the serics with nth term
(’a) zﬂe !II‘ (‘b} nﬂe .I'I}
(c) e ", ' @ (nmye V7,
(e} nle™™ ) nle~"

Show that the senes lez -+ 1/23 -+ ];‘33 + 1/43 + - -- 18 convergent, but that both the Ratio
and the Root Tests fail to apply.

If @ and b arc positive numbets, then » (ar -+ b)™7 converges if p > 1 and diverges if p < 1.

Discuss the seres whose xnth term is

n! (n!y’
@ TS T ®
© 2.4 (2m @ 2.4-..(2n)
3.5 (2n 4+ 1Y 5.7 -(2n-3)y

Let0 < a4 = 1 and consider the series
at+a+at a4 wa¥ et 4
Show that the Root Test applies, but that the Ratio Test does not apply.

Ifr ¢ (0. 1} satisfies (2} inthe Root Test 9.2.2, show that the partial sums s, of ) x, approximate
its it s according to the estunate |s -5 =7 “/ (1 —-rforn> XK.

If r € (0. 1) satisfies (3} in the Ratio Test 9.2.4, show that \s — .v"| <r |xn] /W —ryforn > K.
If a > | satisfies (10} in Raabe's Test 9.2.8, show that |s - s”‘ <n |xn| Jila— 11 forn = K.

For each of the senes in Exercise 1 that converge, estimate the remainder if only four terms are
taken. It only ten terms are taken. If we wish to determune the sum of the sertes within 1/1000,
how many terims should be taken?

Answer the questions posed in Exercise 12 for the series given in Exercise 2.
Show that the series 1 + 3 — £ + 1 + 1 — L + +— .. is divergent,

Forn e N, let ¢, be defined by ¢, := T + % + 4 1/n —Inn. Show that (¢ _}is a decreasing
sequence of positive numbers. The limit C of this sequence is called Euler’s Constant and is
approximarely equal to 0.577. Show that if we put

I 1 1 1

b =
" 1 2 3
then the sequence (b, ) converges to In2. [Hint: b =¢, — ¢ +In2.
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16. Let {n,, n,, -} derote the collection of natural numbers that do not use the digit 6 in their
decimal expansion. Show that 3 1/n, converges to a number less than 80, If {m,,m,, - }is
the collection of numbers that cod in &, then Y 1/m, diverges. If {p,. p,. -+ .} isthe collection
of numbers that do not end in 6, then ) 1/p, diverges.

17. If p » 0,4 > 0, show that the series
Z (p+=p+2)---(ptn

(g =g —2-(g+m
converges farg > p 4+ 1 and diverges forg < p— 1.

18. Suppose that none of the numbers a, b, £ 15 a negalive mteger or zero. Prove that the hyper-
geometric series

ab ala+ D)bb+ 1) ala + (a +2Yb(b-+ 13Mb + 2)
e (e 4+ 1) 3lefc | 1¥e + 2}
15 absolutely convergent for ¢ > a + b and divergent for¢ < a + b

-+ - -

19. Leta_ > 0 and suppose that ) Ja, converges. Construct a convergent series 3 b withb > 0
such that lim{a, /b } = 0: hence 3 b_converges less rapidly than 3 a_. [Hint: Let (A ) be the
partial sums of 3~ a_and A its limit. Define b, = VA - JA=A and b, = A A | —
JA—A forn=1]]

20. Let (a,) be a decreasing sequence of real numbers converging to O and suppose that 3 a,
diverges. Construct a divergent series 3_ b with b > 0such thatlim(b /a ) = 0; hence ) b,
diverges less rapidly than J_a . [Hint: Let b c=a /. /A where A  is the nth partial sum of

Ya,l

Section 9.3  Tests for Nonabsolute Convergence

The convergence tests that were discussed in the preceding section were pnimanly directed
to establishing the absolute convergence of a series. Since there are many series, such as
s D R
(1) > . R
r=1 n ne n
that are canvergent but not absolutely convergent, 1t is desirable to have some tests for this
phenomenon. In this short section we shall present first the 1est for alternating series and
then tests for more general series due to Dirichlet and Abel.

Alternating Serics

The most familiar test for nonabsolutely convergent series 1s the one duc to Leibniz that 18
applicable to scres that are “alternating™ 1n the following sense.

9.3.1 Definition A sequence X := (x_) of nonzero real numbers is said to be alternating
if the terms (—-1)"" 1x”, n ¢ IN, are all positive (or all nepative) real numbers. If the sequence
X = (x,) is aliemating, we say that the series ) © x_ 1t generates is an alternating series.

In the case of an alternating series, itisusefultosetx, = (=1)"*'z [orx, = (—=1)"z,1.
where z > O foralln € N.

9.3.2 Alternating Series Test LctZ .= (z,) be a decreasing sequence of strictly positive
numbers with1im(z,) == 0. Then the alternating series 3 (—1)" t 12” 1§ convergent.
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Proof.  Sincc we have

S, =& )ty =zt + (7, | — 5
and since z, — z, ., = O, it follows that the subsequence (s, ) of partial sums 1s increasing.
Since

Spn =8 T Z T 7)) — {2y, o 7y ) T T,

it also follows that 5, < z for all n & N. It follows from the Manotone Convergence
Theorem 3.3.2 that the subsequence (s,, ) converges to some number s € IR.

We now show that the entire sequence (s, ) converges to s. Indeed, if ¢ > 0, let X be
suchthat it n > K then |5, — .v| < %8 and |7"z1n-l < %F‘ It follows that 1t n > K then

34 _S| = |S:1n + Zln——l _S‘

rn—1

e e — o al, Lol — .
= |52n 5 +|‘2m-1|525+25‘t'

Therefore every partial sum of an odd number of terms is also within € of s 1f n 15 large
enough. Since £ > 0 is arbitrary, the convergence of (5} and hence of 3 (—1)"+! 7, 18
cstahlished. - Q.ILI.

Note [t 1s an exercise to show that if 5 15 the sum of the alternaung series and 1f 5 15 1§
nth pactial sum, then

(2} s —s,| <7

LENE

It 1s clear that this Alternating Scries Test establishes the convergence of the two serics
already mentioned, in (1)

The Dirichlet and Abel Tests

We will now preseat two other tests of wide applicability. They arc based on the {ollowing
lemma, which 1s sometmes calied the partial summation formula, since it corresponds
to the familiar formula {or integrauon by parts.

9.3.3 Abel’'s Lemmra Let X = (x ) and Y = {y ) be sequences in R and let the partial
sums of Z v be denoted by (s, ) wirh Sy 1= O.Ifm > n, then

mi m=1

1]
(3) Z Y = (xmsm X l'tn) - L (xk - xa’(+])sk'
korn -1 r=n 1
Proof. Since y, =35 —s,_, for k=1 2,- - the left side of (3) is seen 1o be equal to
N o X (s =8 ) [ we collect the terms multiplying s . Spqr Sy WE obtain the
right side of (3). QED.

We now apply Abel’s Lemma to obtain fests for convergence of series of the form

quyn'

9.3.4 Dirichlet’s Test If X := (x) is a decreasing sequence with hmx = 0, and 1f the
parrial sums (s5,) of ) v, are bounded, then the senes Y x,y, is convergent,
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Proof. Let|s, I’s Lemma 6.3.3 and the

factthatx, — x, | > 0 that

mo]
‘ Z ALYy < (xm —+—)C"~_1)B + Z (xk uxk-l—ljB
.:cv—n-‘-] k n—1
= [(xm + xn-H) + (.ICR 1 'rm)]B

=2r B

-1

Since lim(x,) = 0, the convergence of Zxkyk follows from the Cauchy Convergence
Crterion 3.7.4. Q.ED.

9.3.5 Abel's Test If X := (x ) is a convergent monotone scquence and the series 3 y,
is convergent, then the scries 3 x, y, Is also convergent.

Proof. 1M (x,)is decreasing with limit x, let u, :—=x — x, n &€ N, so that («, ) decreases
to 0. Then x, = x +u , whence x,y, = xy, +u, y, It follows from the Dirichlet Test
034 that Y u y is convergent and, since ) xy, “convcr_gcs (becausc of the assumed
convergence of the series )y ), we conclude that 3~ x, y _1s convergent
If (x,} is increasing with limit x, let v ;= x —x_, n € N, so that (v ) decreases to 0.
Here x, = x — v, whence x y = xy_ — v ,¥,, and the argument procecds as before.
QED.

ﬂ’

9.3.6 Examples (a) Since we have
2 (sin %x:] (cosx + - +cosnx) = sin (n — %)\ sin &,
it follows that if x £ 2kx (k ¢ ), then

cosx+---+cosnx|=E‘“M*‘—Slﬂ x| ]

|r\.

‘2511’; ix‘ sin ix‘

Hence Dirichlet’s Test implics that if (g, ) is decreasing with lim (a,) = 0. then the serics
> X, a, cosnx converges provided x # 2k,
(b) Since we have

2 (sintx) (sinx 4 -+ +sinnx) =cossx cos(n+ 3}x

it follows that if x £ 2k (k € N), then
1

[sinx + - +sinnx| £ ———.
]smix]

As before, if (a,) 1s decreasing and if lim(a,) = O, then the series Zjil a, sinnx converges
for x # 2k (and it also converges for these values), C

Exercises for Section 9.3

1. Test the following serics for convergence and for absolute convergence.

( l)F‘H ( l)nrl

(a) En+l {by g — T
o _ln-ln & l

@ 32N @ Lot

n=1
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Tf 5, is the nth partial sum of the alternating series Y -, (—1)""' z_, and if 5 denotes the sum
of this senes, show that |s — 5”’ <z

-1

Give an example to show thai the Alternating Scries Test 9.3.2 may fail if (z_ ) is not a decreasing
seguence.

Skow that the Alternaung Series Test 1s a consequence of Dinchlet's Test 9.3 .4

Consider the series
{ ] t 1 1 1 1
T2 3Tty T T
where the signs come in pairs. Does it converge?
Leta, € 7 forn e Nandlet p < g. If the sexies 3~ a /n” is convergent. show that the serics
2, /n" is also convergent.

If p and g are positive numbers, show that 3 (— )" (lnn)” /n? is a convergent scrics.

Discuss the series whose nth teim is:

A (U — " b "

A ' . —

{ {o” — 1)(.'—-} (n + 1)4‘1'{'1
in—1 n 1 n

© (- 5 C @ £

If the partial sums of 3 a_ are bounded, show that the series D, a e "' converges fort > 0.

If the partia! sums s, of 3°° a_ are bounded, show that the senes y oo, a, /n convelges (o
= ’
s intn+

Can Dinchlet's Test be applied (o establish the conveigence of
E 1 N 1 1 1

2 3 4 5 6
where the number of signs increases by one in each “block™? If rot, use another method (o
establish the convergence of this series.

Show trat the hypotheses that the sequence X ;= (x,) is decreasing in Dirichlet's Test 9.3 .4 car
be replaced by the hypothesis that 3>

nei X, — x| 1s convergent.

If (u,) is a bounded decreasing sequence and (b ) is a bounded increasing sequence and if
LR ! e . w - oG P n .
x, —a, + o forn € N showthat 3707 [x, — x . | is convergent

Show that if the partial surs s, of the series Y .., a, satisfy |5, < Ma” for some r < 1, then
the secles 3% | 4 /#a converges.

Sppposc thai 3 a, is a convergent sc_rics of real numbers. Cither prove that 3 | b, converges or
give a counter-example, when we define b by

(a) a,/n. by Ja,/n (a, =0)
(¢} a_sinrn, (dy fa, in (u" = f]},
(¢) n'a (H a/{1+'a])

Section 9.4 Series of Functions

Because of their frequent appearance and importance, we now present a discussion of infinite
serics of functions. Since the convergence of an infinjte series is handled by examining
the sequence of partial sums, questions concerning series of functicus are answered by
exarnining corresponding questions for sequences of functions. For this reason, a portion
of the present section is merely a translation of facts already established for sequences
of functions into series terminology. However, in the sccaond part of the section, where
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we discuss power series, some new features arise because of the special character of the
functions involved.

9.4.1 Definition If (f )isasequenceof functions defined on asuhset D of R with values
i R, the sequence of partial sums (s, ) of the infinite series Y £, is defined for x 1n D by

S[(x) = f] (x),
$,{x) 1= s () + fo(x)

In case the sequence (s ) of functions canverges on D to a function f, we say that the
infinite series of functions y f. converges to f on D. We will often wnte

Y £ ot > f,

n=—1

to denote either the series or the limit function, when it exists.

If the series Y |f (x)| converges for each x in D, we say that } f is absolutely
convergent on D If the sequence (s,) of partial sums is uniformly convergent on D to
£, we say that 3 f is uniformly convergent on D, or that it converges to f uniformly
on D.

One of the main reasons for the interest in uniformly convergent series of functions is
the validity of the following results which give condutions Justifying the change of order of
the summation and other limiting operations.

9.4.2 Theorem Iff _iscontnuousonD C R to Rforeachn € Nandif )_ f, converges
to f uniformly on D, then f is contimious on D.

This 1s a direct translation of Theorem 8.2.2 for series. The next result is a translation
of Theorem B.2.4.

9.4.3 Theorem  Suppose that the real-valued functions f, ,n € N, are Riemann integrable
on the interval J = [a, b]. If the scries 3 f converges to f uniformly on J, then f is
Riemann integrablc and

b o0 h
(1) /f=Z/ £,
& p=144a

Next we turn to the corresponding theorem pertaining to differentiation. Here we
assume the uniform convergence of the series obtained after teom-by-term differentiation
of the given series. This result is an immediate consequence of Theorem 8.2.3.

9.4.4 Theorem Foreachn elN, let £, be a real-valucd function on J .= {a, b) that has
a derivative f, oo J. Suppose that the series $ S, converges for at least one point of J and
that the scries of derivatives ) f, converges uniformly on J.

Then there exasts a real-valued function f on T such that 3 f converges uniformly
on J to f . Inaddition, f has a derivativeon J and f' =Y £/
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Tests for Uniform Convergence

Since we have stated some consequences of uniform convergence of series, we shall now
present a few tests that can be used to establish uniform convergence.

9.4.5 Cauchy Criterion Lct (f) be a sequence of functions on D € R to IR. The series
Y f, is uniformly convergent on D if and only if for cvery € > Q there exists an M (¢) such
that if m > n = M (&), then

| £ GO+ £ 00 < e forall x e D.

9.4.6 Weierstrass M-Test Let (M) be a scquence of positive real numbers such that
't (:r)| < M_forx € D, n € N.If the serics > M_ isconvergent, then > f, isuniformly
convergent on D.

Proof. 1f m > n, we have the relation
[ O+ f ] <M o+ M, for xeD.
Now ap;_ﬂy 3.7.4,9.4.5, and the convergence of 3 M, . Q.EDL.
In Appendix E we will use the Weierstrass M -Test to construct two intercsting exam-

ples.

Power Series

We shall now turn to a discussion of power series. This 15 an important class of scries of
functions and enjoys properties that are not valid for general senies of functions.

9.4.7 Definition A series of rcal functions Y~ f is said to be a power series around
x = ¢ if the function f has the form

) =a,(x—2ca)f,

where ¢ and ¢ belong to R and wheren =0, 1,2, -- .,

For the sake of simplicity of our notation, we shall treat only the case where ¢ = 0.
This is no loss of generality, howcver, since the translation x’ = x — ¢ reduces a power
serics around ¢ to a power senes around 0. Thus, whenever we refer to a power series, we
shall mean a scries of the form

X0
(2) Zaﬂx”:a0+alx—|—---+anx”+---,
n—q
Even though the functions appearing in (2) are defined over all of R, it is not to be

expected that the series (2) will converge for all x in R. For example, by using the Ratio
Test 9.2.4, we can show that the series

(e a2} o o
E nlx", E x" E x"/nt,
= a—0 n=r{)

converge for x in the sets

{0}, fx e R |x{ <1}, R
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respectively. Thus, the set on which a power series converges may be small, medium, or
large. However, an arbitrary subset of R cannot be the precise set on which a power scries
converges, as we shall show.

If (k) is a bounded sequence of nonnegative real numbers, then we define the limit
superior of (b_) (o be the infimum of those numbers v such that 5 < v for all sufficiently
large n € N. Thus infimum 15 uniquely determuned and 1s denoted by limsup(&_). The only
facts we need to know are (1) that if v > limsup(s, ], then b, < v for all sufficiently large
n €N, and (ii) that if w < limsup(b, ), then w < b, for infinitely many n € N,

9.4.8 Definition L.ct > a x" be a power seres. If the sequence (|an|”"') 15 bounded, we

set p = lim sup(lan|””); if this sequence 1s not bounded we set p = +co. We define the
radius of convergence of > a _x" 1o be given by

0 if  p =420,
R:=41/p if 0<p<+0,
+x if o =0.

The interval of convergence is the open interval (— R, R},
We shall now justify the term “radius of convergence™.

9.4.9 Cauchy-Hadamard Theorem [f R 15 the radius of convergence of the power series
Z an,x", then the series 15 absolutely convergent if [x| < R and 1s drvergent if | x| = R.

Proof. We shall treat only the case where 0 < K < -+-0o, leaving the cases £ = 0 and
R = +40oc as exercises, If 0 < |x| < R, then there exists a positive number ¢ < 1 such
that {x| < ¢R. Therefore p < ¢/ |x| and so it follows that 1f n is sufficiently large, then

ga” S < ¢/ |x|. This is equivalent to the statement that

(3) a x"| <

for all sufficiently large n. Since ¢ < 1, the absolute convergence of )« _x” follows from
the Comparison Test 3.7.7.

If |x| > R = 1/p, then there are infinitely many n € N for which |an‘u" > 1/|x].
Therefore, |a x” ‘ > 1 for infinitely many », so that the sequence (e, x”) does not converge
to zero, Q.ED.

Remark It will be noted that the Cauchy-1Tadamard Theorem makes no statement as Lo
whether the power serics converges when |x| = R. Indeed, anything can happen, as the
examples

n — 1 " ] "
2. L;L Z;z*"

/"y = 1, each of these power series has radiug of convergence equal fo |

show. Since hm(n

The first power scries converges at neither of the points x = —1 and x = +1, the second
scrics converges at x == —1 but diverges at x = -+ 1; and the third power series converges at
both x = —1 and x = +1. (Find a power series with R = | that converges al x = +1 but

diverges atx = —1.)



270 CHATTER 9  INFINITE SERIES

It is an exercise to show that the radius of convergence of the series ) a x" is also
given by
a

{(4) Im| 7
a

==

provided this limit exists. Frequently, it is more convenient 1o use (4) than Defirution 9.4.8.
The argument uscd in the proof of the Cauchy-Hadamard Theorem yields the uniform

convergence of the power serics on any fixed closed and bounded interval in the interval of

convergence (K, R).

9.4.10 Theorem Lct R be the radius of convergence of 3 a_x" and lct K be a closed
and boundcd interval contained In the interval of convergence (—R, R). Then the power
serzes converges uniformly on K.

Proof. Thc hypothesis on K € (—R, R) implics that there cxists a positive constant
¢ < | such that [x! < ¢R for all x € K. (Why?) By the argument in 9.4.9, we infer that
for sufficiently large n, the estimate (3) holds for all x € K. Since ¢ < 1, the uniform
convergence of » a x” on K is a dircct consequence of the Weierstrass M-test with
L n

J'w” =0 QED
9.4.11 Theorem The limut of a power series Is continuous on the interval of convergence.,
A power series can be integrated term-by-term over any closed and bounded interval
contained 1n the interval of convergence.

Proof. 1f x. < R, thenthc preceding result asserts that > a,x" converges uniformly on
any closed and hounded neighborhood of x; contained in { R, R). The continuity at x,
then follows from Theorem 9.4.2. and the term-by-term integration is justificd by Theorem
9.4.3. QE.D.

We now show that a power series can be differennated term-by-term. Unbke the
sttnation for gencral series, we do not nced to assume that the differentated senes 1s
uniformly convergent. Hence this result is stronger than Theorem 9.4 4.

9.4.12 Differentiation Theorem A power series can be differentiated termn-by-term
within the interval of convergence. In fact, if

e

Jx)= Zc’enx"! then [ = Znanr” ! for |x| < R.
n=_(

n=1

Both scries have the same radius of convergence.

Proof Sincelim(rn'’")y = 1,the sequence (|na”|1f’”) is bounded if and only if the sequence

(|an|1"""‘) 18 bounded. Moreover, it 15 casily seen that

lim sup (‘na“ |”") = lim sup ('an‘]'f”) ,

Therefore, the radius of convergence of the two series 1s the same, so the [ormally differen-
tiated series 1s uniformly convergent on cach closed and bounded interval contained in the
mterval of convergence. We can then apply Theorem ©.4 4 to conclude that the formally
differentiated series converges (o the denvative of the given series. Q.ED
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Remark It is to be ohserved that the theorem makes no assertion about the endpoints of
the interval of convergence. If a series is convergent at an endpont, then the differentiated
series may or may not be convergent at this point. For example, the series 3 o, X" /n?
converges at hoth endpoints x = —] and x = +1. However, the differentiated serics given
by 377, x""'/n converges at x = —1 butdiverges at x = +].

By repeated application of the preceding result, we conclude that if ¥ € N then

o ga,x" can be differentiated term-by-term & times to obtain

2 n!
5 ————a x"7k
) ;(n—-k)!a"x

Moreover, this series converges ahsolutely to F®¥(x) for |x| < R and uniformly over any
closed and bounded interval in the interval of convergence. I we substitute x = 0 in (5),
we obtain the important {formula

FE0) = kla,.

9.4.13 Uniqueness Theorem If )_« x" and > b x" converge on some mterval
i n (==
(=r.r).r > 0, to the same function f, then

a, = b, forall ne I
Proof. Our preceding remarks show that nla, = FEy = n'b, foralln e N Q.ED.

Taylor Series

It a funcuon f has derivatives of all orders at a point ¢ 1n R, then we can calculate the
Taylorcoefficientsbya, := f(¢).a, = ey nt forn € Nandinthis way obtain a power
senes with these coefficients. However. it 1s not necessarily true that the resulung power
series converges to the functon f in an interval about ¢. (See Exercise 12 for an example.)
The issue of convergence is resolved by the remainder term R in Taylor's Theorem 6.4.1.
We will write

ja.w} 1)
(6) fo=>7 D

n_0

for [x — ¢| < R if and only if the sequence (R (x}) of remainders converges to 0 for each
x in somc interval {x: |x — ¢ < R}. In this casc we say that the power serics {(6) is the
Taylor expansion of f at ¢. We observe that the Taylor polynomials for f discussed in
Section 6.4 are just the partial sums of the Taylor expansion {(6) of f. (Recall that Q0! = 1.)

9.4.14 Examples (a) If f(x):=sinx, x € R, we have f®x)=(—=1)"sinx and
FEtD iy = (=1)"cosx forn € N, x € B. Evaluating at ¢ = 0, we get the Taylor coeffi-
cleats a,, = 0and a,, ., = (—1)"/(2n + 1) for n € N Since [sinx| < ] and |cosx| < 1
for all x, then Rn(x)‘ < |xI"/n! for n € N and x C R. Since lim(R, (x)) = 0 for each
x € R, wec obtain the Taylor expansion

o0 n
: _ (-_-1) In+1
sinx = ,,E_O (2n_+ lix + forall x ¢ R.
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An application of Theorem 9.4.12 gives us the Taylor expansion

cosx_z; (Qn)r X forall xe R
n.-(

(b) Ifg(x} =¢" x € R theng'(x) = &% foralln € N, and hence the Taylor coefficients
are given by @, = 1/n!forn ¢ N. For a given x € R, we have ‘R”(x)| < e'” {x|* /n! and
therefore (R, (x)) tends to 0 as n - » oc. Therefore, we obtain the Taylor expansion
201
X o W
(7) 4 —Zﬂn!,\ forall x ¢ [R.

YWe can obtain the Taylor expansion at an arbitrary ¢ & [§ by the device of replacing x by
x = ¢in (7} and noting that

et = e - = i—x—c :Z- x o)f for xe R -
= 0

Exercises for Section 9.4

1. Discuss the convergence and the uniform converpence of the series S f,. where f (x)1s given

by

(@) (x~ ~n") ", By () 2 (x £ 0),

(©) sin(x/n%), @ " +1)! (x50,

(el x"jix"—=1) (x=>0), (h (=1t —x)"" (x> 0).

2. If ) a_ is an absoluely convergent series. then the serics Y« sinnx is absolutely and ur-
form'y convergent.

3 let (¢ ) be adeereasing sequence of positive numbers. If 3¢ sinnx is uniformly convergent,
then lim[nC”) = 0.

4. Discuss rhe cases R = 0. K = t oo in the Cauchv-Hadamard Theorem 9.4 9

5. Show that th.: rfachlus of convergence R of the power 5cncs.Zaﬂx Is given _by Lim (|an/a{I e )
whenever this limit exists. Give an exumple of a powey series whete this limat does not exast.

6. Deteonine the radivs of convergence of the sedes 3~ a x", where a is given by

(a) 1/n", by n"/n!,
() n'/nl, (dy (ory ', n=>2,
€y (n"hY /) (H n"
7. 1fa, =1 when n s the squarc of a natural number and a, := 0 othcrwise, find the radius of

convergence of 3_a x". If b =1 whenn =m! for m € N and &_:= 0 otherwise, find the
radins of convergence of the series 3 b x”.

8. Prove in datail that Lim S“Pf|nan ‘ |._-"n) — Lim Sup(lan | |__..-,,)
Y H0<p= ‘unl = g forall n € N, find the radius of convergence OIHZ(IH.'(”.

100 Let f(x) =% a x" for |x] < R.If flx)= f(—x) for 2}l ix{ < R, show that a_ = 0 for all
odd n.

11, Prove thatif f isdefined for |xj < r and if there exists a constant B such that 'f{")(.r)i < B for
all |x! < r and n € N, then the Taylor series cxpansion
f{ﬂf (O) .,
—x

n!

=3

canverges to fix) for |x) < r.
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e 2
Prove by Induction that the function given by f{x) :=¢ " for x # 0, f{0) :— 0, kas denva-
tives of all orders at every point and that all of these denvauves vanish at x = 0. Hence this
function 1s not given hy 1ts Taylor expansion abour x = (.

Give an example of a2 function which is cqual to its Taylor series expansion about x = 0 for
x = 0, but which 15 not equal to this expansion for x < 0.

Use the Lagrange form of the remainder to justify the general Binomial Expansion

(1 +x)" = Z(’:) %" for 0 <x <t

LR
nc n

(Geometric series) Show directly thatif [x < Tothen 1/(1 —x) =%~ x

Show by integrating the series for 1/(1 + x) that if {x| < I, then

X3 0l
In (1 -—x)zz( U—x”.
n

nc
20

_l L
Show that if lx; < 1, then Arctan x = 3 0 e
n=0 2” + 1

o L3 (20 - 1) x
Show that if |x! < 1, then Arcsinx = ) ( ) . .
n=0 2 4°-2n 2n 4+ 1

I
- 1 . . - ? - hig
Find a scries expansion forf e dtforx e R
g

o )
Ife e Rand lkl < |, the integral Fia, k) = f (l — k7 (sin x}’)'”' dx is called an elliptic
0
integral of the first kind. Show thar

g3 P T3 (2 YT
F _‘k),_ K for k| < 1.
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CHAPTER 10

THE GENERALIZED
RIEMANN INTEGRAL

In Chapter 7 we gave a rather complete discussion of the Riemann integral of a function
on a closed bounded interval, defining the integral as the hmit of Riemann sums of the
function. This is the integral (and the approach) that the reader miet in calculus courses, it is
also the integral that 1s most frequently used in applications to cngincering and other areas.
-We have seen that continuous and monotone functions on [a, ] arc Riemann integrable, so
mos! of the functions arising in calculus are included in its scope.

However, by the end of the 19th century, some 1nadequacies in the Riemann the-
ory of integration had hecome apparent. These failings came primarily from the fact that
the collection of Riemann integrable functions became inconveniently small as mathe-
matics developed. Tor example, the set of functions for which the Newton-Leibniz for-
mula:

b

] F' = F(b) — F(a)

holds, does not include a!l differcntiable functions. Also, limits of sequences of Riemann
integrable functions are not necessartly Riemann integrable. These inadequacics led others
to invent other integration theones, the best known of which was due to Henn Lebesgue
(1875-1941) and was developed at the very bezinming of the 20th century. (For an accoun:
of the history of the development of the Lebesgue integral, the reader should consult the
book of Hawkins given 1n the References.)

Indeed, the Lebesgue theory of integration has become pre-cminent 11 contemporary
mathematical research, since it enables one to integrate a much larger collection of functions,
and 10 take limits of integrals more freely. However, the Lebesgue integral also has several
inadequacies and difficulties: (1) There exist functions I that are differentiable on fa, b)
but such that 7 is not T.ebesgue integrable. (2) Some “improper integrals”, such as the
imuortant Dirichlet integral:

* sinx
f dx,
0 X

do not exist as Lebesgue integrals. (3) Most treatments of the Lebesgue integral have
considerable prercquisites and are not easily within the reach of an undergraduate student
of mathematics.

As limportant as the Lebesgue integral 18, there are even more inclusive theories of
integration. One of these was developed independently in the late 1950s by the Czech
mathematician Jaroslav Kurzweil (b. 1926) and the English mathematician Ralph Henstock
(h. 1923). Surprisingly, their approach 1s only slightly different from that used by Riemann,
yet it viclds an integral (which we will call the generalized Riemann integral) that includes
hath she Winmann and the T ehecone intearals as snecial cases. Since the approach is so
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Ralph Henstock and Jaroslav Kurzweil

Ralph Henstock (pictured on the left) was bom on
June 2, 1923, in Nottingbamshire, England, the son of
a mineworker. At an early age he showed that he was a
gifted scholar in mathematics and science. He entered
St. John’s College, Cambridge, in 1941, studying with
J. D. Bemal, G. H. Hardy, and ). C. Burkhill and was
classified Wrangler in Part II of the Tripos Exams in
1943, He eamed his B.A. at Cambridge in 1944 and his
Ph.D. at the University of London in 1948. His research
is in the theory of summability, linear analysts, and inte-
gration theory. Most of his teaching has been in Northern
Ireland. He is presently an Emeritus Professor at the Coleraine Campus of the University of Ulster.

Jaroslav Kurzweil (pictured on the right) was born on May 7. 1926. in Prague. A student of
V. Jamik, he has done a considerable amount of research in the theory of differential equations and
the theory of integration, and also has had a serious interest in mathematical education. In 1964 he
was awarded the Klement Gottwald State Prize, and in 1981 he was awarded the Bolzano medal
of the Czechoslovak Academy of Sciences. Since 1989 he has been Director of the Mathematical
Institute of the Czech Academy of Sciences in Prague and has had a profound influence on the
mathematicians there.

similar to that of Riemann, it is technically much simpler than the usual Lebesgue integral—
yet its scope is considerably greater; in particular, it includes functions that are derivatives,
and also includes all “improper integrals™.

In this chapter, we give an exposition of the generalized Riemann integral. In Sec-
tion 10.1, it will be seen that the basic theory is almost exactly the same as for the ordinary
Riemann integral. However, we have omitted the proofs of a few results when their proofs
are unduly complicated. In the short Section 10.2, we indicate that improper integrals on
[a, b] are included in the generalized theory. We will introduce the class of Lebesgue in-
tegrable functions as those generalized integrable functions f whose absolute value | f] is
also generalized integrable: this is a very different approach to the Lebesgue integral than
is usual, but it gives the same class of functions. In Section 10.3, we will integrate functions
on unbounded closed intervals. In the final section, we discuss the limit theorerus that hold
for the generalized Riemann and Lebesgue integrals, and we will give some interesting ap-
plications of these theorems. We will also define what is meant by a “"'measurable function”
and relate that notion to generalized integrability.

Readers wishing to study the proofs that are omitted here, should consult the first
author’s book, A Modern Theory of Integration, which we refer to as [MTI], or the books
of DePree and Swartz, Gordon, and McLeod listed in the References.

Section 10.1 Definition and Main Properties

In Definition 5.5.2, we defined a gauge on [a, b] to be astrictly positive function$ : [a, b} —
(0, 00). Further, a tagged partition P := {(,, 1,)}i_, of [a, b], where I, := [x,_,, x;], is said
to be §-fine in case

e} 1, €1 g[tf"‘a(f,-).f,--l-ts(fi)] for i=1,.--.n.

This is shown in Figure 5.5.1. Note that (i) only a tagged partition can be 5-fine, and (ii)

Lo € Emnanace nf a taoged narhinan. dcvac o ~octhacab ~ian ~F tha tanr o ased slon cendiane £76 )
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In Examples 5.5.4, we gave some specific examples of gauges, and in Theorem 5.5.5
we showed thatif § 1s any gauge on |a, b], then there exist §-fine tagged partinons of [a, b].

We will define the generalized Riemapn (or the “Henstock-Kurzweil”) integral. It
will be secn that the definthion is very similar 10 that of the ordinary Ricmann integral,
and that many of the proofs are essentially the same. Indeed, the only diffcrence between
the definttions of these integrals is that the notion of smallness of a tagged partition 1s
specified by a gauge, rather than its norm. Jt will be seen that this—apparently minor—
difference results in a very much larger class of integrable functions. In order to avord some
complications, a fow proofs will be omitted, they can be found in [MTI].

Before we begin our study, 1t 1s appropriate that we ask: Why are gauges more useful
than norms? Bnefly, the reason is that the norm of a partition 1S a rather coarse measure
of the fineness of the partition, since it 1§ merely the fength of the largest subinterval in the
partition. On the other hand, gauges can give one mote delicate control of the subintervals
in the partitions, by requinng the usc of small subinterals when the function 1s varying
rapidly but permutung the use of larger subintervals when the function 15 nearly constant.
Morcover, gauges can be used 1o force specific points to he tags; this 1s often useful when
unusual behavior takes place at such a point. Since gauges are more flexible than nomns,
their use permits a larger class of functions to become integrable.

10.1.1 Definition A function f :{a, b] — R is said to be generalized Riemann inte-
grable on [a, b] if therc cxists a number L € R such that for every € > 0O there exists a
gauge & on [a. b] such that 1t P is any 8 _-fine partition of [a, b], then

1S(/;P)—L| <.
The collection of all gencralized Riemann integrable functions will usuatly be denoted by

R¥a, bl

It will be shown that if { € R ™{a, b], then the number L is uniquely determined; it will
be called the generalized Riemann integral of f over fa, b). [t will also be shown that 1f
f € Rla, b, then f € R¥[a, b] and the value of the two integrals is the same. Therefore,
it will not cause any ambiguity if we also denote the generalized Riemann integral of
f € R*[a. b] by the symbols

b b
f f or f flxydr.

Qur first result gives the uniqueness of the value of the generalized Riemann integral.
Although ts proofis almost 1dentical to that of Theorem 7.1.2, we will write 1t out to show
how gauges are used instead of norms of partitions.

10.1.2 Uniqueness Theorem If f € R¥[a, b, then the value of the integral is uniqucly
deterrmned.

Proof.  Assume that L’ and L" both satis{y the definition and let € > 0. Thus there exists
a gauge &, ,, such that1f P, is any 4, ,-fine partiion, then

ISCHPY = LT < e/,
Also there exists a gauge 5, , such that if 'Pg 1s any &, »-fine partition, then

(S(fFiP) = L' < e/2.
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We define 6_by §_(#) .= mun{$ _m(f) 542(:)] fore € [a, b], sothat §_ is a gauge on [a, b).
IfFPisa 8 ﬁne partition, then the partition 7 is both b ,-fine and 55;2 -fine, 5o that

1S(f; Py —L'| <2/2 and |S(f-.P)—L-”| <¢e/2,
whence it follows that

1L — 1| <L = S(fiPY +1S(f, Py — L
<g/2-+ef2=c¢.

Since € > Qs arbitrary, it follows that L' = L". QED.

We now show that every Riemann integrable function f is also generalized Riemann
integrable, and with the same value for the integral. This is done by using a gauge that is a
constant function.

10.1.3 Consistency Theorem If f € RJa, b] with integral L, then also [ € R'[a, b]
with integral L.

FProof. Given ¢ > 0, we neced to construct an apprepriatc gauge on [a, ). Since
f € Rla, b}, there exists a number §_ > 0 such that if P is any tagged partition with
NPl < 3., then [S(f, Py — L < £. We define the function a7 () = 513£ fort € [a, b], 50
that 47 1s a gauge on {a, #].

If P = {(I, 1)}, where ] =[x,

_1: X, ], 1s a §]-fine partition, then since

Ll =80) s +8 =1 — lér’{ +%5£}'

isreadily seenthat0 < x; —x; | < %SE < ¢ foralli = 1,.--, n. Therefore this partition
also satisfies [| P < 4, and consequently [S(f; 'P) - Ll <e

Thus every 8:-fine partition P also satisfies [S(f; P) — L| < e Since £ > 0 is arbi-
trary, 1t follows that f 1s generalized Riemann integrable to L. Q.ED.

From Theorems 7.2.5, 7.2.6 and 7.2.7, we conclude that: Every step function, every
continuous function and every monotone function belongs to R*[a, b]. We will now show
that Dirichlet’s function, which was shown not to be Riemann integrable tn 7.2.2(b) and
7.3.13(d), is generalized Riemann integrable.

10.1.4 Examples (a) The Dirchlet function f belongs to R*[0, 1] and has integral 0.

We cnumerate the rational numbers in [0, 1] as {r };-,. Given ¢ » 0 we define
5.(r,) 7= ¢/2**" and §,(x) := 1 when x is irrational. Thus , is a gauge on [0, 1] and
if the paI'thlOn'P = {(I t.)}= is §,-fine, then we have x, — X, ; =28 (+) Since the only
nanzero contributions to S(f‘ P) come from rational tags t, = r,, where

2e £

0 < f('ric)(xi - 'rr'—ij =1 (xa' - x."—1) = 5?—;5 = -2T:T'

and since each such tag can occur in at most two subintervals, we have
i 8
k=1 2

1
Since & > Qs arbitrary, then /' € R*[0, 1] and f f=0.
0

=4 ]

0=<S(f;P) <

k=1
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(b) Let 7 {0, 1] —» R be definedby H(l/k) = k for k € N and H(x) := 0 elsewhere
on [0, 1]

Since H is not bounded on [0, 1], 1t follows from the Boundedness Theorem 7.1.5 that
it is not Ricmann integrable on [0, 1]. We will now show that # 1s generalized Riemann
integrable to Q.

In {act, given ¢ > 0, wedefine §,(1/k) = &£/ (k252) and set 8,(x) := 1l elsewhere on
[0, 1], s0&_isagauge on [0, 1]. IfPisa 4,-finc partition of {0, 1] then x, — x,_, < 25,(1).
Since the only nonzero contributions to S(H; P) come from tags 1, = 1/k, where

2& £

0 < HA/K)(x; —x,_ )=k x_) <k g2k T ks

and since each such tag can gceur in at most two subintervals, we have

g4l
- £
0 < S(H: P) <Z§ — .
k=)
I
Since ¢ > 01s arbitrary, then A € K7[(, 1] and f H=0 M
D

The next result is exactly snmndar to Theorem 7.1.4.

10.1.5 Theorem Suppose that f and g are in R [a, b]. Then.
(a) Ifk € R, the funetion kf is in R*[a, b] and

f:kf:k-/ﬂbf_

(b} The functon f + g is in R*[a, b] und

b b b
f(f+g)=/ f*f ¢

(€) If f(x) < g(x) forall x € [a, b), then

B b
[refe

Proof. (b) Givene > 0, we canuse the argument in the proof of the Uniqueness Theorem
10.1.2 to construct a gauge 58 on [a, b] such thatif P is any 8 _-fine partition of [a, k], then

] b
‘S(f;ib)—f f| < &/2 ang S(g;?j)—f gl < £/2.

Since S(f + 2: P) = S{f, Py + S(e: P), it follows as in the proof of Theorem 7.1.4(b)

that
|S(f+g;’P) -(/bf-i-fbg)‘s‘sﬁf;?)~fbf + S(g;lb)*/bg‘

<2+ &/2=c¢

Since £ > 0 is arbitrary, then £+ g € R*[a, b] and its integral is the sum of the integrals
of fand g.
The proofs of (a) and {c) arc analogous and arc left 10 the reader. QED
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It might be expected that an argument similar to that given in Theorem 7.1.5 can be
nsed to show that a function in R*[a, #] is necessarly bounded. However, that 1s nor the
case; indeed, we have already seen an unbounded function in R*[0, 1] in Example 10.1.4(b)
and will encounter more later. However, 1t is a profitabie exercise for the reader to determine
exactly where the proof of Theorem 7.1.5 breaks down for a function in R*{a, b].

The Cauchy Criterion

There 1s an analogous form forthe Cauchy Critcrion for functuonsin R*[a, &]. It1s imporiant
because 1t eliminates the need to know the value of the integral. Its proof 1s essentially the
same as that of 7.2.1.

10.1.6 Cauchy Criterion A function f : [a. b] = R belongs to R*[a, b] if and only if
for every £ > O there exist a gauge n, on [a, b] such that if P and Q are any partitions of
[a, b] that are n,-fine, then

IS(f.P) = S(F, Q)] <&

Proof. (=) If f € R*[a, b} with integral L, lc18_, be a gauge on [a, b] such that if P
and Q are 3, ,,-fine partitions of [a, £], then

IS(F1P)—L| <€/2  and  IS(f;0)- L| <e/2.
We set (1) = 55;3(’) fort € la, b], sol P and Q are n, hne, then
SO PY = SO Q) <ISULPY— LI+ 1L = S(f: Ol
< £/24+e/2=¢

(<) Foreachn € N, leté be a gauge on [a. £] such that if P and Q arc partitions
rhat arc 8, -fine, then

SO PY = S(f D) < 1/n,

We may assumc that § (1) = 8, (1) forallt € [, b] and n € N: otherwise, we replacc &,
by the gauge &, (z) :=min{8 (), - .4 (¢)} forallt € [a, b]

For cach n € N, let P, be a partition that s 8 -finc. Clearly, if m > »n then both P and
P are §, -fine, so that

(2) ISCfPY=S(f; POl < l/n for m>n

Consequently, the sequence (S¢S Pm));'f*_l is a Cauchy sequence in X, so if converges to
some number A. Passing ta the limit in (2) as m — o0, we have

IS(F:P) - Al<i/n forall neN

To sec that A 18 the generalized Riemann integral of f, given £ > (), let K € N satisfy
K > 2/e. If Qis ad,-finc partition, then

ISUF QD = AL < 1S(F1 Q) = SU L POL+ISUF Py) — Al

=
<1/K + 1/K <.

Since ¢ > 0 1is arbitrary, then /' € R*[a, b] with intcgral A. QED.
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10.1.7 Squeeze Theorem Iet f : [a, b] — K. Then f € R'[a, blifandonly if forevery
& > 0 there exist functions ¢, and w_ i R*[a, b} with

a,(xy = f(x) <wlx)  foratl x¢€la, bl

b
f (w, —e,) <&
s

The proof of this result 1s exactly similar to the proof of Theorem 7.2.3, and will be
left to the reader.

and such thai

The Additivity Theorem __ S _

We now present a result quite analogous to Theorem 7.2.8. Its proof 1s a modification of
the proof of that theorem, but since it 1s somewhat technical, the reader may choose to omit
the proof on a first reading.

10.1.8 Additivity Theorem Let f :|a,b] — K and letc € (a,b}. Then f € R [a, b
if and only if its restrictions to [a, ¢] and [¢, b] arc both generalized Riemann intcgrable.
In thts case

[ [ 7]
5 (e[ refs

Proof. (&) Supposc that the restricion f| of f to [a,c). and the restriction f, of
f 1o |c.b] arc generalized Riemann integrable to L, and L,, respectively. Then, given
e > () there exists a gauge & on [a, ¢] such that if ’P] is a & -fine partition of [a, ¢] then
SO '15]) — 1.,] < £/2. Also there exists a gauge 6" on {c, b] such that if 752 is a 8”-fine
partition of [c, b] then [S(f,; Py) — Ly| < /2.

We now define a gavge 4, on [a, b} by

run{8'(1), 3(c — 1} for ¢ € {a,c).
5 (£ := Jmun{s’(e), 8" (o)} for t=rc,
min{5"(r), 3{t — ¢)) for 1 ¢ (c,bl.

(I'his gauge has the property thatany §_-finc partiton must have ¢ as atag for any subinterval
contaimng the point ¢.) -

We will show that if Q is any & -fine partition of [a, £], then there exist a &'-finc
partition Q1 of [«, c] and a &”-fnc partition QQ of |¢, ] such that

(4) S Q) = S(f; @)+ S(fy: Q).

Case (i) If ¢ is a partition point of Q, then it belongs to two subintervals of Q and is
the tag for both of these subintervals. If Q1 consists of the part of Q baving subintervals in
[z, ¢1, then Q] is &'-fine, Similarty, if Qz consists of the part of Q having subintervals in
[c, b]. then Q, is §”-fine. The relation (4} is now clear

Case (i) If ¢ is not a partilion point in Q = {(/., )}, then 1l Is the tag for somc
subinterval, say [x, _, x,]. We replace the pair ([x, ,, x,]), ¢) by the two paits ([x, . ¢}, ¢)
and (|c, x.]. ), and let QI and Qz be the tagged partitions of [a, ¢] and [¢, b| that result
Since f(e)(x, —x, )= f(c)(c —x,_) + flc){x, — ), 1t is seen that the relation (4)
also holds.
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In cither case, equation (4) and the Trrangle Inequality imply that

|S(Fr Q= (L) + L) = |(SU Q)+ S(f:0)) — (L, + L,)
= [$(f5 2P "'Ll‘ - 'S(f; Q) L,
Since Q.l is &' -finc and Qz 1s 8”-fine, we conclude that
|S(f; Q) — (L] + Lz) | < E.
Since ¢ = 0 1s arbitrary, we infer that f € R*[a, b] and that (3) holds.
(=) Suppose that f € R™a, b] and, given € > 0, let the gauge », satisfy the Cauchy
Criterion. Let f) be the restriction of £ 10 [a. c] and let P,, Q| be n, -fine partitions of
[a, c]. By adding additional partition points and tags from [c. b}, we can extend P, and

Q, to n,-fine partitions P and Q of [a, b). If we use the same additional points and tags in
[c. b] for both P and ©, then

SUGP) = SUL Q) =SUL P — S Q).

Since both P and Q are n,-fine, then |S(f;, I""]} - S Q])| < ¢ also holds. Therelore
the Cauchy Condition shows that the restriction f; of f to [a, ¢) 15 1n R7[a, ¢|. Similarly,
the restriction f, of f o [c, d]1sin " [c, d].

The equality (3) now follows fram the first part of the theorem. QED

Tt iy easy to see that results exactly similar to 7.2.9-7.2.12 hold for the generalized
Riemann integral. We leave their statements to the rcader, but will use these results freely.

The Fundamental Theorem (First Form)

We will now give versions of the Fundamental Theorems for the generalized Riemann
integral. It will be scen that the First Form is significanily stronger than for the (ordinary)
Riemann integral; indeed, we will show that the derivative of any function automatically
belongs 1o R°|a, b, so the integrability of the function becornes a conclusion, rather than
a hypothesis.

10.1.9 The Fundamental Theorem of Calcolus (First Form) Suppose there cxists a
countable sct E in(a, b], and functions [, F : [a, b] > R such that:

(a) F iscontinuousonla, bl.
(b) F'ixy= f{x)forallx c[a, b]\E.
Then f belongs to R'[a, b) and

h
(5) / f=F@)— Flay

7

Proof. We will prove the theorem in the case where Z = (4, lcaving the general case to
be handled in the Exercises.

Thus, we assume that (b} holds for all x € |a, &]. Since we wish to show that f €
R*a, b], given € = Q, we need to construct a gauge §,; this will be done by using the
differentiability of F on [a,5] Tf r € I, since the derivative (1) = F'(z) exists, there
cxists 8, (£) > Osuchthatif 0 < |z —¢| < §_(t), z € [a. b] then

F(z) - F(1)
zZ—t

— f(n)| < e
If we multiply this inequality by |z — ¢|, we obtain

F(D) = F() = f(1)(z—1n)| < 1elz —1i
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whenever z € [t —8,(1), £ + 8,(1)]1 N [a, b]. The function & is our desired gauge.
Now letu, v e [a b w1th u < vsatisfyr € [u, 1] C [r ~4.(6), 1 — 8, (£)]. If we sub-
tract and add the term F(t) — f(¢) -t and use the Triangle Inequa]it.y and the fact that
y—1>0andr —u = 0, we gct

|F(v) — F(u) — f{)(w — )
< F) = F@) = fOw =D+ F@) — Flu) — fO —u)l

< %;:(n -+ %s(z — )= %E(b‘ — u).
Therefore, if 7 € fu, 0] €t -5, (1), t -+ 8_(£)], then we have
(6) F(v)— F@) — fiH @ —w)| < 36(v—u).

We will show that f € R"[a, b] with integral given by the telescoping sum

1

(7) Fibh) — Flay=) [F(x) - F(x,_ )}

i=1
For, if the partition D= {([x,_,. %) t))7= is 8_-fine, then

1€ [x

f !l‘

x )€t =8 (1)t + 8 (1)) far i =1,- -.n,

and s we can use (7). the Triangle Inequality, and (6) to obtain

n

[F(b) = Fla) = S(s Pl = D [F(x) = Flx, ) = )0, = x|

i—

< Z'F(XI) - F(Iﬂ- ) - f(rj)(xf — X 1)
i

< Z %s(x!. —x;, ) <&b—a)
)
Since & > () 18 arbitrary, we conclude that f € R [a, b] and (5) holds. QOED.

10.1.10 Examples (a) If H(x) := 2/x for x € [0, b). then H is continuous on [0, b)
and H'(x) = 1//x forx € (0, b]. We define h(x) := H'(x) for x € (0, bl and R(0) := 0.
It follows fl om the FFundamental Theorem 10.1.9 with £ .= {0} that & helongs to R*[0, &]
and that f h = H{(b) — II{0) = H(b), which we write as

b

= dx =2Jb.
\/—
(b) More generally, if « >0, let H_ (x) = x"/o = e*N fo for x € (0,h] and let
1 (0) :— 0 so that F is continuous on [0, ] and [ (x) = x*" for all x € (0, b]; see
8.3.10 and 8.3.13. We define &_(x) = I, (x) forx € (0, b] and h_(0) := 0.
Then Theorem 10.1.9 implies that k€ R*[0, 5] and that fub h,=H,(b) — H,(0) =

H_ (b)), which we wrlte as
b tr
b
f XV dy =
o o

(¢) Let L{x):=xlnx —x forx € (0, b] and L(0) := 0. Then L is continuous on |0, &)
(use I'Haspital’s Rule at x = 0), and it 1s scen that I.'(x) = Inx for x & (0, b].

o
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It follows from Theorem 10.1.9 with I = {0} that th¢ unbounded function{{x) = Inx
for x € (0, 5] and {(0) := 0 helongs to R7[0, b] and that f;’! = L{b) — L{0), which we
write as

b
/ inxdx=blnb -5,
0

(d) Let A(x):= Arcsinx for x e [—1,1] so that A4 15 continucus on |—1,1] and
Ax)=1/V1 —x* for x € (-1,1). We define s(x) := A'(x) for x € (--1,1) and let
s(—1) = (1) ‘=0,

Then Theorem 10.1.9 with £ = {—1, 1} implies that s € R*[—1, 1] and that f_‘l 5 =
A(l) -~ A(-1) = x, which we write as

1
d
/ ¥ = Arcsinl - Arcsin( -1) = 7. 0

1\/1—).’2

The Fundamental Theorem {Second ¥Form)

We now tumn to the Second Form of the Fundamental Theorem, in which we wish to
differentiate the indefinite integral F of f, defined by:

(R) F(z) = f | flx)dx for ze€[a, bl

10.1.11 Fundamental Theorem of Calculus (Second Form) Let f belong to R [, b]
and let F be the indefinite integral of f. Then we have:

(a) F iscontinuouson{a, bl

(b) There exists a null set Z such that if x € [a, b\ Z, then F is differentiable at x and
F'(x) = f(x).

(&) If f iscontinunus atc € [a, b], then F'(c) = f(c).

Proof. The proafs of (a) and (b) can be found 1in [MTI]. The proof of (¢} is exactly as the
proof of Theorem 7.3.5 except that we use Theorems 10.1.8 and 10.1.5(c). Q.ED.
We can restate conclusion (b) as: The indefinite integral F of f is differentiable to f

almost everywhere on [a, b].

Substitution Theorem

In view of the simplicity of the Fundamental Theorem 10.1.9, we can improve the theorem
justifying the “substitution formula™. The next result 1s a considerable strengthening of
Theorem 7.3.8. The reader should write out the hypotheses in the case E, = E,=E= @

10.1.12 Substitution Theorem (a) Let! .= |a,bhland) = [e, fl.andlet F . ] — R
and ¢ : J -» R be continuous functions withw(J) C 1.

(b} Suppose there exist scts Ef C [ and Eg, C J suchthat f(x)= F'(x) forx e T\ E,
that ¢'(t) exusts fort € J\ E, and that £ ;= o) (Ef) U Egc 15 countable.

(¢) Setf(x):=0forxekE, and ¢’ (1) ;=0 fort ¢ E,

We conclude that § € R*(@(J)), that {f o @) - ¢’ € R*(J) and that

fil ~$(8)
-
o @)

3
(9) f(fow)-co’:f’ow
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Proof. Since ¢ 15 continuous on J, Theorem 5.3.8 implies that (/) 1s a closed interval
in 7. Also (p"l(Ef) is countable, whence Ef Ne(t) = @lp 'I(Ef)) s also countable.
Since f(x) = F'(x) forall x € o(I)\ Ef, the Fundamental Theorem 10.1.9 implies that
f € R(g(J)) and that

¥ 1f) (#(B
| = = Few) - )
@ wla)

i)

Itt e J\E, thent € J\ E,and (r) € I\ K, Hence the Chain Rule 6.1.6 implies
that

(Fop) ()= fle®)) o' ) for 1€ J\E.
Since E is countable, the Fundamental Theorem implics that (f o ) - ¢’ € R*(J) and that

3
[ o

The conclusion follows by equating these two terms. Q.ED.

* cos Jr
o V!

Since the integrand i1s unbounded as ¢ - » {3+, there is some doubt about the existence
of the integral. Also, we have seen 1n Exercise 7.3.19%(b) that Theorem 7.3.8 docs not apply
with @(f) := /. However, Theorem 10.1.12 applics.

Indeed, this substitution gives ¢'(t) = 1/{2/1) for¢ € (0, 4] and we set ¢(0) := 0. If
we put F(x) = 2sinx, then f(x) = F'(x) = 2 cosx and the integrand has the form

f = Fle®) ~ Flo@).

10.1.13 Examples (a) Considerthe integral

IRCIR W(f)—k?_cos«/—) for 120,

&

Thus, the Substitution Theorem 10.1.12 with £ = {0}, £, := ¥, £ = {0} implics that

i-4 r 2
COS 4/?
f fdr:f 2cosxedx = 2sin2.
) J1 x=0

(b} Consider the mtegral/

- 7=

Note that this inregrand 1s unboundecd as ¢+ — 0+ and as ¢ —» 1—. As In (*1) we let
x—cp(t): =/t for + ¢ [0, 1] so that ¢'(t) = 1/(2+/t) for t & (0, 1]. Since ~t =
\/l — x% the integrand takes the form

2 1 2

S ad ot

which suggests F(x) = 2/ 1 — x? for x # 1. Therefore, we are led o choose F(x) =
2 Arcsinx forx € [0, 1], since
2
— = F'(x) = (2 Arcsinx)’ for x e [0, ).
vV1—x?
Conscquently, we have Ew = {0} and EJ, = {1}, so that £ = {0, 1}, and the Substitution
Theorem yiclds

=i 2dx ) 1 ,
/ = 2 Arcsinx| — 2Arcsinl = . -
0

-0 fvlf x=0 \/]u):
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Other formulations of the Substitution Theorem are given in [MTI].

The Multiplication Theorem

In Theorem 7.3.16 we saw that the product of two Riemann integrable functions is Rie-
mann integrable. That result 1s not true for gencralized Riemann integrable functions; see
Excrcises I8 and 20. However, we will state a theorem in this direction that is often vsctul.
Its proof will be found in {MTI].

10.1.14 Multiplication Theorem If f € R*[a, b) and if g is 4 monotone function on
[a, D). then the product f - g belongs to R™{a, b].

Integration by Parts

The following version of the forrmula for integration by parts is useful.

10.1.15 Integration by Parts Theorem Lect F and G be differentiable on [a, b). Then
F'G belongs to R*[a, b) if and only if FG' belongs to R [a, &]. In this case we have

. h b b
(10) ’ /F’G = FG —] FG'.

o

The proofuses Theorem 6.1.3(¢c); it will be left to the reader. In applications, we usually
have F'(x) = f(x) and G'(x) = g{x) for al! x € [a, b] It will be noted tha: we nced to
assume that one of the functions fG = F'G and Fg = FG' belongsto R7[a, b

The reader should contrast the next result with Theorem 7.3.18. Note that we do no!

need to assume the integrability of fFinth,

10.1.16 Taylor’s Theorem  Suppose that £, £/ f7 - f and £t exist on [a, b].
Then we have

! (n)
(1) f=r@+ 20—+ Py -k
wherce the remainder Is given by
l h
(12) R = —If Fe D (b - 0" de.
h 43

Proof. Since fU!'V 5 aderivative, it belongs to R*{a, b]. Morcover, since 7 — (b —1)”
is monotone on [a, b, the Multiphication Theorem 10.1.14 1mplies the integral in (12)
cxists. Integrating by parts repeatedly, we obtain (11). QFE.D.

Fxorcises for Section 10.1

1. T.2t § bea gauge on [g¢, &] and Jel P = {(fx;_y0 .1, rI,J}_f’:] be a §-fine partition of [a, b).
(a) Showthatll < x;, —x, | < '25{:;_) fori =1, - ,n.
(by T 8" :=sup{é(s) : ¢t & [a, b]} < oc, show that 1P < 28",
(¢) If & :=wf{8(t) 1 € [a. b)) satisfies 8, > 0, and if Q is a tagged partition of {a, b] such
that we have | Q] < 8., show that Q is §-finc.
(@) If g = 1, show rhat the gauge §, in Example 10.1 4¢a} has the property that inf(d,(#) 1 €
[0,1)) = 0.
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{a) fPisa tagged pactition of [a, 5], show that each tag can belong to at stost two subintervals
n 7P
(b) Arxc there tagped pattitions in which every tag belongs to exactly two subintervals?

Let 8 he a gauge on [a, b and ler P be a 5-fine partition of [a, b].
(a)  Show that there exysts a §-fine pertinon Q such that (i} no tag belongs to two subinlervals
in Q., and (i) S(f: © D= S P) for any function f on |a. b].
{b) Dou therc exist a :5 hm. gartmon ﬂ; such that {J) every tag helongs to two subintervals in
Q,,and () S(f: &,) = S(f; P) for any function { on |a, b]?
(¢)  Show that there cxists a §-fine partiton Qj such that (i} every tag is an endpoint of its
snbinterval, and (kk) S{f: @} — S(f: P} forany function f on [«, b].

If & iz defined on [0, 2] by 8(1) = j = 1iforx 1 and 8(1} ;= 0.01, show that every §-fine
partition 7 of [0, 2] has 1 = ] as a tag for at lcast one subiaterval, and that the total length of
the subintervals in P having | as atag is < 0.02.

{1y Construct a pauge & on {0, 4] that will force the numbers 1,2, 3 to be 2gs of any d-fine
part:tion of this inicrval.

(by Given a gauge 8. on [0), 4], constiuct a gauge 4, such that every &, -fine partition of [0, 4]
will (1) have the numbers 1,2, 3 in its collection of tags, and (11} be & -fine.

Show that f € T*{a. b] with integral 7. 1f and only if for every € = 0 there exists a gauge
on |a, »] sueh that if 72 = ({[x xox 1)) 18 any tagged pattition such that § < x; — x;_, 5
y (¢ )yfori — 1, - n then [S(f: 7Y — L| < &. (This provides an alternate -but equivalent—

way of defining the gereralived Riemann integral )

Show thst the following functions belong to ][0, 1] by finding a function F, that 1s continuous
on [0, 1] and such that #,(¢) = £, (x) for x € [0, 11} E,, for some finite set £,

(a) fiix)o-(x+1D/GJx forx €0, 1] and f(0):— 0.

(hy filo) o r[«,-"rl —x Jorx g [0, 1)and f.z(l) = Q.

(€} fla)i— Sxlnx  forx e {0, 1}and £f,(0) :=0.

(d) f.(x):=(Inx)/ X forxe (0, 1iand £,(0):=0.

{e) fq{xj = J{1 + x)/(1 —x3 forx €0, 1)and fs{l) -

i fo0 1A XV —x) forx e (0, 1]and f,(0) = 0.

Explain why the arsument in Theorem 7.1.5 docs not apply to show that a function in R*[a, b]
15 hounded.

et fix)y:-—-1/xforx € (0, 1) and f(0) :=0; then f 15 continuous except at x = 0. Show that
f does not belong to [0, 1]. {fint: Compare f with s (x}:=1o0on (1/2,1], 5 (x) '=2 on
(1/3,172), s (x) = 3on {174, 1/3].- - s {x} :=non [0 1/n]]

Let k- [0, 1] - R wedefined by &(x3 ;= 0if x € [0, 1]is 0 or 18 irrational, and k{(m/n) :=n
if m, n & W have no common intteger factors other than 1. Show that k£ € R*[0, 1] with integral
equal 10 0. Also show that £ 15 not continuoiis at any point, and not bounded on any subinterval
fe,d] withe < 4.

Let f be Dinichlat's function on [0, 1] and F{x) := 0 forall x € {0, 1]. Since F'{x} = f(x) for
allx ¢ |0, 1]\, show that the I'undamental Theorem 10.1 9 implies that { € R*[0, 1]

Let M{x) :=la|x| for x # 0 and M(0) := 0. Show that M'(x} = 1/x for all x £ 0. Explain
2

why it docs not follow that [7,(1/x)dx =In} =2[—-1In2=0.

Let L. (x) =xInlx| —xtorx #0and L (0) ;= 0,and let!, (x) = In{xjifx # 0and/ (0} =

0. If [a. b) is any interval, show that {, € R¥[a, b] and that [ In |x|dx = L, (b} — L, (a).

Let £ 1= {c,, ¢,. -~} and let F he continuous on [a, 5] and F'(x) = f(x) for x € [a, b}\ E

and f(c ) = - 0. We want to show that [ € R’[a, b] and that equation {3} holds.

{a) Given ¢ > 0 and ¢t € [a, b]Y E, let § (1} be defined as in the proof of 10.1.9. Choose
53((-:} » Osuchthatif |z ¢l <, (C;:) and z € [a, b], then |F(2) — F(c)! < E/ZH‘.



16.

17.

18
15.

21

22.

24

10.2 IMPROPER AND LEBESGUE INTEGRALS 287

(b} Show thut if the partition P s Sg—ﬁne and has a tag { = ¢,. thea we have
|F(xY = Flx, ) — fle3x, —x,_ Y <e/2"h

(¢} Use the argumentin 10.1 0 to get [S(f; P) — (F(k) Fla))| < eb—-a+ 1)

Show that the function g (x):= x~M¥sin(1/x) for x € (0. 1] and g,(0) =0 belongs (o
R*(0, 11. |Hine: Differentiate C (x) = x> cos(1l/x) for x € (0, 1] and ', (0) := 0.

Show that the functicn g,(x) = (1 /x)sin{l/x) for x € (0, 1] and §,(0) '= 0 belongs to
R0, 1]. [Hint: Dafferenttate C,(x) 1= x cos(1/x) for x € (0, 1] and C,(0} = 0, and usc the
result for the cosine funcuon that corresponds 1o Exercise 7.2.12.]

Use the Substitution Theorem 10.1.12 ta evaluate the following intcgrals.

! YT de
{(a} [ (2r+l}sgn(r2+r—2)dr =6, (b) [ h .
-3 o 11

() [s dt 2 Arctan 2 (d) /I J1—1rd
= AT 2, —_ fr.
LIS =1 ' )

Give an example of a function f € R*[0. 1} whose square 2 does not belong to R*[0, 1].

Let Fixy:=xcos{m/x}for x e {0, 1) and F(0) := 0. It will be seen that f :— F' € R7[0, 1]
but that its absolute vaiue | f| = |F'l ¢ R7[0, 1]. (Here f(0) .= 0.}

(1) Show that F' and | F'[ are continuous on any interval [, 1], 0 < ¢ < Land f €.R%(0, [].
{0y Ifa, :=2/(2k 4 lyandb, = 1/kfork ¢ IN, thentheintervals [a, , & Jare non-overlapping

and 1/k < fab* DR
&
(€) Since the series ) ¢ ; | /k diverges, then | f] € R*[0. 1]

Iet f be as in Exercise 19 and let m(c} :— (—1)" for x € [a,. b} (ke N), and m{x) =0
¢lsewhere in [0, 1]. Show that m - §f = 1m - fI. Use Exercise 7.2.11 to show that the bounded
functions »t and || belong to R[0. 1], Conclude that the product of a function in 270, 1] and
a bounded function in K [0, 1] inay net belong to R7[0, 1].

Let &(x) :— x|cos{m/x)| forx € (0, 1] and let &(0) ;= 0. Then & (s continuous on [0, 1] and
' () exists for x & E = {0} L. {a, & € ¥}, where g, i=2/(2k + 1). Let p(x) = &'(x) for
x ¢ E and @(x) :=0for x € F. Show that ¢ is not bounded on |0, 1]. Using the Fundamental
Theorem 10.1.9 with £ countable, conclude that ¢ € R*[0, 1] and that j:’ w = b)) — Dla)
fora, b € [0, 1]. Asin Exercise 19, show that ¢ ¢ [0, 1]

Let Wix) ;= x? cos(r/x)| for x «© (0. 1) and W (0) := Q. Then ¥ is continuous on [0, 1] and
W(x) exists for x ¢ E = [ak}. Let ¥rix) i— Wix) for x ¢ E and ¥ (x):=0for x € E.
Show that v 18 bounded on [0, 1] and (using Execcise 7.2.11) that ¥ € R[0, 1]. Show that
Iy = W(b) — W(a) fora, b e 0. 1], Also show that || & R0, 1].

I f:lu. bl - Riscentinuous and if p € 77 [a, b] does not change sign on [a, ), and if fp €
R*[a.b). then there exists & € [a, b) such that [ fp = f(£) Jr;b p. (This is 2 generalization of
Exercise 7.2.16; it is called the First Mean Value Theorem for integrals.)

Let f € R7a, bl, let g be monotene on [a, b] and suppose that f > 0. Then there exists
t & [a, b] such that _[ﬂb fg =gla) f; f - glb) ‘f‘: f. (Thig 15 a form of the Second Mean Value
Theorem for integrals }

Section 10.2 Improper and Lebesgue Integrals

We have seen in Theorem 7.1.5 that a function f 1n R[a, ») must be bounded on [a. b]
(although this necd not be the case for a function in R*|a, £1). In order to integrate certain
functions that have infinite limits at a point ¢ in {a, ], or which arc highly oscillatory
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at such a point, one learns in calculus to take limits of integrals over subintervals, as the
cndpoints of these subintervals tend to the point ¢.

For example, the function A{x) ;= 1//x for x € (0, 1]and ~A(0) := 0 is unbounded on
a neighborhood of the left endpaint of [0, 1]. However, it does belong to Ry, 1] for every
y € (0, 1] and we define the “improper Riemann integral™ of & on [0, 1] to be the lumit

-1 1 1 1
—dx ;= Im f — dx.
l] ‘\/E y +0— ¥ ﬁ
We would treat the oscillatory function 4 (x) ;= sin{1/x) for x € (0, 1] and k{0) := 0 1n
the same way,

One handles a function that becomes unbounded, or is highly oscillatory, at the right
cndpoint of the interval in a similar fashion, Furthermore, if a function g 18 unbounded, or
is haghly oscillatory, near some ¢ € {(a, b), then we define the “improper Riemann integral”
to be

b e b
= i I :
(1 f g a]l“?/a g—f—ﬂ_lgp%_]ﬁ g

These limiting processes are not necessary when one deals with the generalized
Riemann integral.

For cxample, we have seen in Example 10.1.10(a) that if A(x) := 2./x forx € [0, 1]
then H'(x) = 1//x — h(x) for x ¢ (0, 1] and the Fundamental Theorem 10.1.9 asserts
that h € R*[0, 1} and that

bl
—dx = H(1)— HO) = 2.
|7
This cxample is an instance of a remarkabie theorem duc to Heinrich Hake, which we now

state in the casc where the function becomes unbounded or is oscillatory near the right
endpoint of the interval.

10.2.1 Hake’s Theorem If f . [a, b] — R, then f € R™[a, b] :f and only if for every
v € (a, by the restriction of f to[a, y| belongs to R*[a, y] and

14
(2} Jim f—Ae€elR

b
In this casc/ f=A.

The idea of the proof of the (&) part of this result is to take an increasing sequence
(v,) converging to b so that f € R*[a, ] and lim_[” { = A. In order to show that
f € R'[a, b], we nced to construct gauges on [a, b]. This is done by carcfully “piecing
together” gauges that work for the intervals {y; ;. v,] to obtain a gauge on [a, 5]. Since the
details of this construction are somewhat delicate and not particularly informative, we will
not go through them here but refer the reader to [MTI].

It is 1mportant to understand the significance of Hake's Theorem.

« It tmplies that the generalized Ricmann integral cannnt be extended by taking limits as
in (2). Indeed, if a function f has the property that ils restriction to every subinterval
la, y]. where ¥ € (a, b),1s generalized Riemann integrable and such that (2) holds, then
f already belongs to R [a, b].
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An altemative way of expressing this fact is that the generalized Ricmann integral does
not need to be extended by taking such limuts,

One can test a function for integrability on [a, £] by examining its behavior on subin-
tervals [a, y] with y < b. Since it iz usually difficult to establish that a function is i
R"[a, b] by using Definition 10.1.1, this fact gives us another tool for showing that a
function 1s generalized Riemann intcgrabic on [a, &].

It is often useful to evaluate the integral of a functien by using (2).

We will usc these abservations to give an important cxample that provides insight into
the sct of generalized Riemann integrable functions.

10.2.2 Example (a) Let 3 ° a, be any scries of rcal numbers convering to 4 € R,
We will construct a function ¢ € R*[0, 1] such that

1 o<
[ e=Ya=a
0 k=1

Indeed, we define ¢ ¢ [0, 1] — % to be the function that takes the values 2a,, 22a.2,
23a3. -+ - on the intervals [0, %), [;—, %). [%‘ %). ---.{See Figurc 10.2.1) For convenience,
lete, =1 1/2%fork =0, 1, then

olx) = 2kak for ¢ ,<x<c¢ (keN),
¢ for x=1
—0 2%,
3
2%,
22,
l 4
0 1 3 1 7211
Z 4 ' 8 lo
2333
|
‘14__\"

Figure 10.2.1 The graph of ¢.

Clearly the restriction of ¢ to each interval [0, y] for y € (0, 1), 1s a step function and
therefore is integrable. Infact, if y € lc,, ¢, ;) then

v 1 I ; 1
/O @ = (2a,) - (E) ~+ (22a2) - (2—2) +---+{2%,)- (5;) +7,

:a1+a2+"‘+(1]1+ry,

where Ir},l < ia, ., |- But since the scries is convergent, then r, > 0 and so

¥ il
lim p = lim E a, = A.
}"*1— 0 ¥ X =1
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(b) If the series Y -, a, is absolutely convergent in the sense of Definition 9.1.1, then it
follows as in (a) that the function ¢ also belongs to R7[0, 1] and that

1 ~C
ffw=ZWﬂ
0 k=]

However, if the series Z;C:l \a, | is not convergent. then the function [¢| does not belong to
R*[0. 1].

Since there are many convergent series that are not absolitely convergent (for example,
3 ey (—1)* /&), we have examples of functions that belong to R0, 1] but whose absolute
values do not belong 10 R* [0, 1]. We have already encountered such functions in Exerciscs
10.1.19 and 10.1.21. -

The fact that there are generalized Riemann integrable functions whose absolute value
1s not generalized Ricmann integrable 1s ofien sunynanzed by saying that the generalized
Riemann integral 1s not an “absolute integral”. Thus, 1n passing to the generalized Riemann
integral we lose an important property of the {ordinary) Riemann integral. But that is the
price that one must pay in order to be able to infegrate a much Jarger class of functions.

I.ehesgue Integrable Functions

In view of the importance of the subsct of funciions in R*[a, b] whose absolute values also
helong to R*a, b], we will introduce the following definition.

10.2.3 Definition A function f € R7[a, b] such that |f| € R7[a, b] is said to be
L.ebesgue integrable on [a, £]. The collection of all Lebesgue integrable functions on
[a, b] is denoted by L[a, b]

Note  The collection of all Lebesgue integrable functions 1s usually intreduced in a
rofally differert manner. One of the advantages of the generahized Riemann integral i
that 11 mcludes the collection of Lebesgue integrable functions as a special—and casily
identifiable—collectior. of functions.

It 1s clear that if f € R¥[a, b] and f f(x) > 0 for all x € [a, k], then we have
[fl= f € R |a, bl sothat f € L|a, ] That is, a nonnegative function f € R [a, b]
belangs to La, £). The next result gives a more powerful test for a function in R7[a. b] 10
belong to L[4, b).

10.2.4 Comparison Test If fiw € R [a, b) and | f(x)| < w(x) for all x € {a, 5], then
f e Lla, b] and

h k h
3) ‘[ﬂffiﬂffm

Partial Proof. The factthat | £| € R*[a, b]is proved in [MTI]}. Since | | = 0, this implics
that [ € Lla, b].
To establish (3), we note that —=' fI < /' < | f] and 10.1.5(¢c) unply that

—Lﬂﬂsl?glﬂn
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whence the first inequality 1 (3) follows. The second inequality follows fram another
application of 10.1.5(c). Q.E.D.

The next result shows that constant muluples and sums of funcuons in L[a, »] also
belong ta L[a, bl.

10.2.5 Theorem Iff g € Lia, b]andifc € R, then ¢f and f + g also belong to L|a, b).
Morcover

b b b b i
{4) ]cf:C/ f anrd ]If+g|£_/ f|+/ Fq

Praaf. Since cf(x)| = ||| f(x) for all x € [a, b], the hypothesis that | f] belongs to
R*a, b] implies that ¢f and |¢f| also belong to R [a, b), whence ¢f € L]a, ).

The Triangle Inequality 1mplics that | f(x) + g(x)] < | fCO+ |gx)] for all x €
[z, b]. But since e 1= | f| + |gl belongs to R¥[a, b], the Comparison Test 10.2.4 implies
that / + g belongs te L[a, £] and that

flf-rg f:f f|f|+|g|)—f I+ f1g| QED.

The next result asserts that one only needs to establish a one-sided inequality in order
to show that a function f € K [a, b] actually belongs to L[a., b].

10.2.6 Theorem If f € R'[a. b), the following assertions are equivalent.
(a) f € Lla, bl

(b) There exists o € Lla, b] such that f(x) < w(x) forallx ¢ {a, b].

(¢} Therccxists € Lla, b] such that a(zx} < f{x) forallx e |a, b].

Proof. (a} —»> (b Letw = .
(b) = (a) Note that [ = w — (w — f). Since @ — f = 0 and since w — f belongs
o 7 [a, ). it follows that e — [ € Lla, &|. Now apply Theorem 10.2.5,

We leave the proof that (2) <= (c) to the reader. QLD

10.2.7 Theorem If f, ¢ € L[a, b], then the functions max{ f. g} and runi{ f, g} also be-
long to Lla, b].

Proof. Tt follows from Exercise 2.2 16 that if x € [a, b], then
ax{f(x), g} = 3(f(xX) + g(x}+ | F ) — 2D,
min{ f(x), g(0} = 3(f )+ g — 1/ (x)  glOD.
The asscrtions follow from these equations and Theorem 10.2.5. QL.D.

In fact, the preceding resuit gives a useful conclusion about the maximum and the
minimum of two functions in R*[a, b].

10.2.8 Theorem Suppose that f, g, & and > belong to RY[a, b] If
ffw g<w orif o< fo<g

then max{f, g} and min{ f, g} also helong to R*[a. b].
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Proof. Supposc that / < w and g < w; then max{/. g} < w. It follows from the first
equality in the proof of Theorem 10.2.7 that

O0=< f—gl=2max{fg}—f—g<2w—f—g

Since 20 — f — g = O, this function belongs to L£la, #]. The Companson Test 10.2.4
irnplies that 2 max{ f, g} — f — gbelongsto L]a, |, and so max{ f. g} belongsto R*[a, b].
The second part of the assertion is proved similarly. QED.

The Seminorm in L, b]

We will now define the “sermunorm’ of a function in L[a, #] and the “distance between”
two such functions.

10.2.9 Definition If f € £L[a, b], we define the seminorm of | to be

h
i S 1=/ Fat

If 1, g € L[a, b], we define the distance between f and g to be
b
dist( £, g) =i f — 8l =/ 1f - gl
i
We now establish a few properties of the seminorm and distance functions.

10.2.10 Theorem The seminomm {unction satisfies:

W |f| =0 forall f € Lla. b)

() If fix)=0 forx e la.b] then | fil =0,

Qi) If f e Llo. bl and e ¢ . then |of Il — |} - | £1.
(iv) If fige Lla bl then | f+gi| = | f] + lgll.

Proof. Parts (1) - (1) are easily secen Pant (1v) follows from the fact that  f + g| < | f] -
|e| and Theorcm 10.1.5(c). QL.D.

10.2.11 Theorem The distance function satsfies:

(i) dist(f gy =0 forall f,g € La, B

(i I f(x) = pg(x) forx € [a, b), thendist(f, g) = 0.

(333} dist(f. g) = distig, f) forall f g € L]a, b).

(jv) dist( f, R) < dist(f, g) + dist{g, h) forall f g, h € L[a, b].

These assertions follow from the corresponding ones in Theorem 10.2.10, Their proofs
will be left as exercises.

Using the sermnorm (or the distance functon) we can define what we mean for a
sequence of functions () in £]a, b] to converge to a {unction f € L[a, b]; namely, given
any € > 0 therc exists K(g) such thatif n = K (&) then

1f, = Fll =dist(f,, /) <&

This notion of convergence can be used exactly as we have used the distance function in R
for the convergence of sequences of real numbers.
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We will conclude this section with a statement of the Completeness Theorem for
L[a, b] (also called the Riesz-Fischer Theorem). It plays the same role in the space £[a, b]
that the Completeness Property plays in .

10.2.12 Completeness Theorem A sequence (f ) of funciions in Lla. b] converges to
a function f ¢ Lla. b) if and onlv if 1t has the property that for every € > 0 therc cxists
Hie) such that if m n > H(g) then

1S, = £, =dist(f,. f,) < &

The direction (=) 18 very casy to prove and is left as an exercise. A proof of
the direction (<) 1s more avolved, but can be based on the following i1dea: Find a
subsequence (g,) = (f"k) of (f,) such that g,,, — &l < 1/2* and define flx) =

g,(x)+ 3572, (g“ (X)) = gk(x)),whcrc this series is absolutely convergent, and f(x) =0
elsewhere, It can then be shown that f € L[a, b] and that || f, — f[| — 0. (The details are
given in [MTI].)

Exercises for Section 10.2

1. Show that Hake's Theorem 10.2.1 can be given the following scguential formulation: A function
f € R[a.b]if and only if there exists A & 2 such (at for any increasing sequence (¢, ) in (a, b)
withe, > b, then f € R*{a, ¢, Jand [° f = A,

2, () Apply Hake's Theorem to conclude that g (x) := 1/x°* forx € (0, 1]und g(0) :— O belongs
70,1
(b) Explain why Hake's Theorem does not apply to f(x) = /el x e (0, Y] and F(0Y =0
{which doces not belong to .7[0, T]),
3. Apply Hake's Theorem to g(x) := (1 - x) ¥ forx € [0, 1) and g(1) := 0.
4. Supposethat f € Ra. clforallc € (g, by andthatthercexists y ¢ {(a, A and w € L]y, £] such
that | f{x)] < w(x) forx ¢ [y. b} Show that f € R*[a h].

5. Show that the function g {x) := x 2 sin(l/a) forx € (0. 11 and g,(0) := 0 belongs to £[0. 11.
(This function was also considered in Exercise 10.1.15.)

6. Show that the following functions (properly defined when necessary) arc in £[0, 17

xInx sinmx
(a) . ()
14 x Inx
Inx
(C) (lnx){ln(l - I}), (d) e
\/I - x

7. Determine whether the following integrais are convergent or divergent. (Define the inegrands to
be 0 where they are not already defined.)

' sinx d | cosvd

(a) f“j..f'. (b) ffi’ii;f
0 X 0 X

) f% @ [ A
0 x\/_l—;(* 0 1 —x

(@ [('- Y(sin(1/x)) @ M f 7

c nx)(sin{1/x)) dx, S

o ‘ o Jx(l-x)

& If f € Rla. b], show that f € Lla, b).
9. If f e L{a b], show that f?' is not necessarily in L[z, b].



294 CHAPTER 10 THE GENLERALIZED RIEMANN INTEGRAL

10. If f,g ¢ L{a. b] and if g is bounded and monotone, show that fg € L[a, b). More exactly, if
ig{x} <= B, show that |l feil < B f.

11, (a) Give an exampte of a function f € 72°[0, 1] such that max{f, 0} does not belong to
R0, 11
{(b) Can you give an example of f € £0, 1] such that max{ f. 0} ¢ £{0, 1]

12, Write out the details of the proo? that min{ £, g} € R*[a. &] in Theorem: 10.2.8 whener < f and
o < og.

13, Write owt the details of the proofs of Theorem 10.2.11,

4. Givean f € Lla, b] with f not identically 0, but such that || f| = 0.
15. ¥ f, g € Lfa, b}, show that || £ i Jlgn\ < | f *gl.

16. Lstablish the easy part of the Completeness Theorem 10.2.12,

17. K f {(x}:=x" for n € N, show that f, € L]0, 11 and that sl — {). Thus I f, =€l — 0,
where § denotes the function identically equal to 0,

18, Letg (x):=-1forx €[], =1/n) letg (x):=nxtorx €[—1/n, 1/n]andlet g (x) =
forx € (1/n.1]. Show that llg_ g | -» 0asm, n — o0, so that the Completeness Theorem
10.2,12 implies that there exists g ¢ L{—1. 1] such that (g ) converges to g in £]—1, 1]. Find
guch a function g.

19. Leth (x):=nforx ¢ (0.1/n)and h (x) = Oelsewhere in [0, 1] Does there exist h € £{0, 1]
such that £ — i | — 07

[
=

Letx {a)y = nforx e (D. 1/n%y and k_(x):= Oelsewheren [0, 1]. Docsthercexistk € £[0, 1]
such that f&_ - &fi — 07

Section 10.3 Infinite Intervals

In the preceding two sections, we have discussed the integration of functions defined
on bounded closed intervals [a. £). However, in applications we often want 1o integrate
functions defined on unbounded closed intervals, such as

[a, o), ( co,b] or (~ 00, 00).

In calculus, the standard approach is to define an integral over [a, o) as a Jimit:

fmf:: hm f/_f,
a LG Sy

and to define integrals over the other infinite 1ntervals similarly. In this section, we will
treat the generalized Riemann intcgrable (and l.ebesgue inteprable) functions defined on
infinitc intervals,

In defining the gencralized Riemann integral of a function f on [a. o), we will adopt a
somawhat different procedure from that in caleulus. We note thatif Q 1= {([xg. x, Lory )
{fx,_ x 1), (lx,.ocl.r, )} is atagged partion of [, oo, then x, = a and X, _, =
and the Riemann sum corresponding to Q has the form:

(1 FUP =X o+ f )y, —x, )4 flr, )00 — x,),

Since the fal term f(2 | ){co — x,) in (1) 18 not meaningful, we wish to suppress this
ternl. We can do this in two different ways: (i) define the Riemann sum to contain only the
first n terms, or (i1} have a procedure that will enable us io deal with the symbols + oo tn
calculations in such a way that we eliminate the final term in (1),
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We choose to adopt method (1): instcad of dealing with partitions of [a, oo} into a
finitc number of non overlapping iniervals (one of which must necessarily have infinite
Jjength), we deal with certain subpartitions of [a, o¢c}, which are finite collections of
non-overlapping intervals of finite length whose uruon is properly contained in [a, oc).

We define a gauge on [, 00) to be an ordered pair consisting of a strictly positive
function § defined on [a. oc) and a number d” > 0. When we say thal a tagged subpartition
Po={lxg x 100 - (x__, x5 t)) is (8, d”)-fine, we mean that

(2) {a.c0y =} Ix;_,. %, U Lx,, ),
=1
that
(3) X1 Sl = 8@t +8))  for i=1 - n
and that
(4) lx,. 00) € [1/d", 00)

ar, equivalently, that

(4N 1/d™ < x .

Note Ordinanly we consider a gauge on [a, oo] to be a strictly positive function § with
domain [a, 0o} := [a. o) U {oc) where §(oc) 1= 4™

We will now define the generalized Riemann integral over (a, o0).

10.3.1 Definition (a) A function [ :[(a, oc) — K is said to be generalized Riemann
integrable if there exists A € R such that forevery ¢ > 0 there exists a gauge 8, on [a, 0o]
such that if P is any &_-fine tagged subpartition of |a, o0), then S(f; Py — Al < ¢ Inthis
case we write f € R [a, oc) and
[ d]
-[ f=A,
4]

(b)Y Afunction f :[a.2c) > Rissaidto be Lebesgue integrable if both f and | f| belong
0 R*[a, oo). In this case we wiite f € Lla, 20).

Of particular importance is the version of Hake's Theorem for functions in R*[a, oc).
Other results for functions in £[a, oc) will be given in the exercises.

10.3.2 Hake’s Theorem If f :7a, o¢) — R, then f € R*[a, 0o) if and only if for every
v € (a, o¢) the restriction of f to [a, y] belongs to R¥[a, y] and

¥
(5) hm f=Ack.

y—roo f,

o0
In Uu’scasc[ f=A

The idea of the proof of Hake's theorem is as before; the details are given in [MTT].

The generalized Riemann integral on the unbounded interval {a, oo) has the same
propertics as this integral on a bounded interval [a, b] that were demonstrated 1n Section
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10.1. They can be obtained by cither madifying the proofs given there, or by using Hake's
Theorem. We will give two examples.

10.3.3 Examples (a) If f, g ¢ R®*[a, o), then f + g € R¥[a, o¢) and

fff+m=f f+f

If £ > 0is given let F be a gauge on |a, oc] such that if P is 5 -fine, then S'(f' Py —

f fl < &/2, and therc exmlsagmgeﬁ such r_h'ulf’P]sé -fine, [hen]j(g Py —j gl <
5/2 Now letd_(t) = min{ 8,(1), 8 Y forr € [a, co] and argue as 1n the proof of 10.1.5(b).

(b) Let f . |a, 00)-> Randletc € (a, o). Then f € K{a, o) if and only if 1ts restric-
uons to [a, ¢] and [c, o) are integrable. In this case,

(6) £Mf=[}+£wﬁ

We will prove (<) vsing Hake's Theorem. By hypothesis, the restnction of f to
lc, o) is 1ntegrable. Therefore, Hake's Theorem implies that for every y € (¢, o), the
restnction of f to [c, ] 1s integrahle and that

f — lum / f-
= O
If we apply the Additivity Theorem 10.1.8 to the interval [a, y) = [a, ¢] UL, ¥1, we
copclude that the restrniction of f to [a, y] 18 integrable and that

j = ff+f_f
whence 1t follows that

v e = [

Another application of Hake's Theorem cstablishes (6). C

10.3.4 Examples (a) Lete >t andlet f (x):— 1/x" for x € | 1. o0). We will show
that £ € R*[1, o0).
Indecd, if y € (1, oc} then the restriction of #, to (1, y] is continuous and therefore
belongs to R*[1, vy |. Morcover, we have
v ] [ 1 '[
= 1= - |
o — | o

Yol 1
[P
| X 4 1 Y B

But since the last term tends to 1/(x 1) as y > oo, Hake's Theoremn implies that f €
R*[1, 00) and that

© ] 1
—dx=— - when o > 1.
LX o —1

(b) Let 3 7%, a, beaseries of real numbers that converges 1o A € R. We will construct a
function £ € R*[0, o0) such that

oo oz
f § = E a, = A,
a k=1
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Indeed, wedetines(x) = g, forx € [k — 1, k), k € N.Itis clear that the restricion of
s to every subinterval |0, ] is astep function, and therefore belongs to 727[0, v]. Moreover,
if v €|n,n+ 1), then

b4
f .cr-al—+—---—|—a!‘+ry,
0 '

where |r | < @, | Butsince the serics is convergent, then r, > 0 and so Hake'’s Theorem
10.3.2 unplies that

}; n
- : - "
I'm s = him 2 a, = A.
Yoo [ n—mck_]

(c) If the function s 1s defined as in (b}, then |s| has thc value 'a,| on the tnterval
[k~ 1,%). k € N, Thus s belongs 10 £[0, o) if and only if the seres ), la, | 1s conver-
gent; that is, if and only if Z:ﬁl a, is absolutely convergent.

(d) Let D(x):= (sinx)/x forx ¢ (0, 00} and let D(Q) .— 1. We will consider the impor-

tant Dirichlet integral:
oe ° sinx
Dix)dx = dx.
0 0 X

Since the restraction of D to every interval [0, y]18 continuous, this restriction bé]ongs
to R*[0, y] Tosce lhalfo" D(xydxhasalimitasy — o0, weletQ < £ < ¥y Anintegration
by parts shows that

Y £ Y sinx
Dixydx — Dix)dx = dx
0 4] A X

¥ Y cosx
— 5 dx,
B 5 X

But since [cos x| < 1,1t 15 an cxercise fo show that the above terms approach O as 8 < v
tend to oo. Therefore the Cauchy Condition applics and Hake's Theorem implies that
D e R0, 0co).

However. it will be seen 1n Exercise 13 that ! 2| does rnor belong to [0, o). Thus
the function D does not belong to £[0. oo). [l

cosXx

X

we close this discussion of integrals over [a, oc) with a version of the Fundamental
Theorem (farst Formn).
10.3.5 Fundamental Theorem Suppose that E is a countable subset of [, co) and that
f. F [u, o0) — R are such that:
(a8) F 1scontinuous onla, oc) and h'm F(x) exists.
A —= 00

(b) F'ix)= f(x)forallx € (a,00). x ¢ E.
Then f belongs to R [a, 00) and

(N f f=lim F(x) - Fa).

Proof. If y is any number in (a, 20), we can apply the Fundamental Theorem 10.1.9 to
the interval {a, y] to conclude that f belongs to R*|a, v] and

¥
f f=F@) - F@.
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I.etting ¥y — 00, we conclude from Hake's Theorem that f € 7 [a, oo) and that equation
(7) holds. Q.ED,

Integrals over (—o0,b] .

We now discuss integration over closed intervals that are unbounded below.

Leth € Rand g ¢ (—o0, b] -> R be a function that is to be integrated over the infinite
interval (—oc, b]. By a gauge on [ —oc, ) we mean an ordered pair consisting of a number
d. > 0 and a strictly positive function é on (—oo, b). We say that a tagged subpartition
P o= {([xo, x Lo (e x,)og), - (x4, B, zn)} of (—oc,b) is (d,, §)-fine 1n case
that

(—oo, b) = (—oe. x U J 1%, |, %1,

f=1

that
[x, ;xS [t —8(8) £, +8(2)] for i=1, -, n,
and that
(—oc, x,1 € (—oc, —-1/d ]
or, equivalently, that

)Cn E _‘]/d.,

Note Ordinarily we consider a gauge on [—a¢, 5] to be a strictly positive function § with

Here the Ricmann sum of g for 7 is S(g: Py = 3 gUdx,  x,_ ).
i—t
Finally, we say that g : (—o¢, b| — K is generalized Riemann integrable 1f there
exists B € R such that for every £ > 0 there exists a gauge §, on [—oc, ] such that if
P is any & _-fine subpartition of (—o0. 5], then S(g: P) — B] < £. In this case we wiite

g € R*(—oo, bl and
b
f g =25
-0
Similarly, a function g : (—oc, 8] = R is said to be Lebesgue integrabte if both g and jg'
belong to R*(—oc, £]. Inthus case we will write g € L{ ¢, bl

The theorems valid for the integral over [a, oc) are obtained in this case as well. Their
formulation will be left to the reader,

Integrals over (—o¢, 00)

Let #: (—oo, o0} = 2 be a function that we wish 10 integrate over the infinite interval
{(—oo. o). By a gauge on {—co, o¢) we mean a Iriple consisting of a strictly positive
function 8 on (- 0o, o) and two strictly positive numbers d,, d”. We say that a tagged sub-
partition P = {([xﬁ, x,) 80, ([xl, Xl t)0 e, ([x,_,.x.], r”)} 15 (d,, 5, d")-fine 1n case
that

{—00,00) = (—00, x,]U U [x,_;, x, ] J[x, . 0c),
i=1
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that
(e X ) Sl =80, +8())  for i-=1.. ,n,
and that
(—a¢, x,] € (—o0, —1/d ] and [x,. o) C[1/d7, o)
or, equivalently, that

Xy = —1/d, and 1/d" < x .

Note Ordinarily we consider a gauge on [—00, oc] to be a sixictly positive funciion & with
domam [~co, oc] 1= {—o0] U (00, oc) U {20} where 8(—c0) 1= d_ and §(o0) = d".

Here the Riemann sum of & for P is S(h; P) = 3, h(£)(x, — x, )
=1

Finally, we say that b : {(—20, o¢) -— R is generalized Riemann integrable if therc
exists C € R such that for every £ > O there exists a gauge 8, on {—ox, co] such that if
P is any 3 _-fine subpartition of (—oo, o¢), then [S(k, Py — Cl < ¢. In this case we write
h e R (—00, 00) and

e
[ h=C.
[ o]

Simiiarly, a function & : (—2¢, o0) — K is said to be L.ebesgue integrable if hoth & and
[R| belong to T* (--o0, o). In this case we write h € L{—c, oc).

In view of its importance, we will state the version of Hake's Theorem that is valid for
the integral over (—oo, 00).

10.3.6 Hake’s Theorems Ifh . { -co,o0) - R, thenh € R*(—00, oo) if and only if for
every 8 < v in (—00, 00), the restriction of h 1o |8, v] is in R*(8, v] and

¥
lim f h=C ek
s Js

o
In Lbjscascf h=0C.

e o)

As before, most of the theoraims valid for the finite interval [a, £] remain true. They
are proved as before, or by using Hake’s Theorem. We also state the first form of the
Fundamental Theorem for this case.

10.3.7 Fundamental Theorem Suppose that F is a countable subset of (—oo, oo) and
thath, H | {(—00, 00) —» R satisfy.

(a) H is continlous on (—co, oo) and the limits lim  H (x) cxist.
(by H'(x)=h(x)forallx € (—co, ) x & E.
Then h helongs to R™{—o0, oc) and

(8) / f= lim H(x)— lim H().
- y— =0

oc X oD
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10.3.8 Examples (a) Let A(x) = 1/(x* + 1) for x € (=00, 00). If we let Fyy _

Arctan x, then H'(x) = h{x) forall x € (—o0, oc). Further, we have lim H(x) = %H and
A= O
lim H(x) = —37. Therefore it follows that
[7 = dr- ()
“ x=ir-(-ix)=m.
e X4 1 2 2

(L) Letk{x) .= |xle a? for x € (—oc, o0). If we let K(x) (= %(l -e"IQ} for x > 0 ang

Kx).= —%(l — (f_'tj) for x < 0, then 1t is secn that X 1s continuous on (—oc, 00) and

that K'(x) = k(x) for x # 0. Further, lim K (x) = J and lim K (x) = —5. Therefore
X—r A —r — 0

follows that

.
/ xle™ dx = 3~ (=3} =1. i

- 00

Fxercises for Section 10.3

1. Let§ oe a gauge on [a, oo). From Theorem 5.5.5, every bounded subinterval {a. b] has a 3-fine
partiion, Now show that [a, oc] has a 3-fing partition.

2]

Let f € R[a. y] forall y > a. Show that £ € R*(a. o¢) if and only if for every £ = 0 there
exists K(g) = a suchthatif g > p > K(g), then | ff Il < &

3. Let fand ' fibelongto R*[a, y]forall > a. Show that f € L]a, o) if and only if for every
£ > Dthere exasts K(g) = g wuch thatif g > p = K{&) then f; If| < e,

4. Let fand f belong to R'[a, v} for every y > o. Show that f € Lfa. =) if and only if the
set Vo= {f: "fl i x = a)is tounded in X,

5 IF f.g e La co) show that f— g ¢ £]a, oc). Morcover, if ||i{} f:o h| for any h e
Lla, ooy, show that | f -+ gl < ' - gl

6. If f(x):— l/xforx £ [1, x), show that f € Te™[1, ~a).

7. If f iscontinuous on [1, ac) and if | f(x)| = K/x" for x € [1, 00), show that f ¢ L[, oc).

o

[et f{x) = cosx forx € [0, o). Show thut f ¢ R*[0, no).

o

Ifs >0 etg(ny:=e “forx € [0 00)
(a) Use Hake's Theorem 1o show that g € £{0, o) and fnxe'“ dx = 1/s.
(by TUse the Fundamental Theorem 10.3.5,

10, (a) Use Iotegration by Parts and Hake's Theorem to show that ﬁm xe *dx = 1/s*fors > 0.
(b Use the Fundamental Theorem 10.3.5.

11. Show thatifn & N, s > 0, then f° x"e™™ dx =n!/s"*".

12. (a) Show that the integral [ x ' Inx dx does not converge.
(b) Show thatif e > [, then [ x*Inxdx = /(e — 1)*.

13. (a) Showthat [77"7 x7 sinx|dx > 1/4(n — 1).
(b) Show that [D] ¢ R0, 20). where D is as in Example 10.3.4(d).

14.  Show that the integra! flﬂw(l/\/.t) sin x dx converges. (Hint: Integrate by Parts.]

15. Establish the convergence of Fresnel’s integral chr:o sinfx?) dx. [Hine: Use the Substitution
Theorem 10.1.12.]
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16. Establish the convergence or the divergence of the following integrals:

@) f lnzx dx‘ by f ]nx dx
0 X +1 [ \.r)( +|
© [‘” dx ) [ xdx
c -
o x{x+ 1) x—‘—l

& dx % Arcianx dx
{e) == {ﬂ 'z 3 '
o J.r'l Jf‘l} |
17. Let fio : [a. &) — R Abel’s Test asserts that if f € R7[a, =) and ¢ i1s bounded and monoe-
tonc on [a, 00), then ¢ € R*[a, co).
{a) Show that Abel’s Test does not apply to estahlish the convergence of f(fc(l /xysinx dx by
taking ¢(x) ;= 1/x. However, 1t does apply Uf we take ¢ (x) = 1/ /x and use Fxercise 14.

(bY Use Abel’s Test and Exercise 135 (o show the convergence of fo (x/(x + 1N sin(x?) dx.
(c) Use Abel's Test and Exercise 14 to show the convergence of _fﬂx x Yx t ysinxdx.
(d) Use Abel’s Test to obtain the convergence of Exercise 16(fy.

18. With the notation as 1n Exercise 17, the Chartier-Dirichlet Test asserts that if [ € R*[a, y)
forally = a,if F(x):= [} f is bounded on [z. co), and if ¢ is inonotone and lim gtx ) 0,

then fo e RM'[a, o). I

(a) Show that the inwepral fomtljx] sin x dx converges.

(b) Show that [;7(1/1Inx) sinx dx converges.

{c) Show that fnm(]/ﬁ) cos x dx converges.

(d} Show that the Chartier-Durichlet Test does pot apply o establish the convergence of
f:fﬂ(x/(.t + 1)) sin(x ) dx hy taking f{x) := sin(x?).

15, Show that the integral fo x %m{x Ydx is convergent, even though the integrarnd s not
hounded as x - » oc. [#int: Make a substitution. ]

20, Estahlish the convergence of the following integrals.

£l
(a)f ey, () f (x — 2ye " dx.

2 = 2xdx
(C) j et dI, (d) / -~
- e —e

section 10.4 Convergence Theorems

We will conclude our discussion of the generalized Riemann integral with an indication of
“he canvergence theorems that are available for it. It will be seen that the resulis are much
stronger than thosc presented in Section 8.2 for the (ordinary) Riemann integral. Finally,
we will introduce a “measurable” function on [a, b] as the almost everywhere limit of a
equence of step functions. We will show that every integrable function is measurable, and
that a measurable function on [a, b] 1s generalized Riemann integrable if and only if it
-atisfies a two-sided boundedness condition.
We proved in Fxample 8.2.1(c) that if (f,) 18 a sequence in R [a, b] that converges on
[a, b] to a function f € R[a, #], then it need not happen that

b [}
0 f_f:kzgf 1
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However, in Theorem 8.2.4 we saw that uniform convergence of the scquence is sufficien
to guarantee that this equality holds. In fact, we will now show that this is even true for .
sequence of generalized Riemanno integrable functions.

10.4.1 Uniform Convergence Theorem Let(f,) be asequence inT™[a, b) and SUPposC
that { f,) converges uniformly on [a.b] to f. Then f € R*[a. b] and (1) holds.

Proaf. Givene = 0, there exists K () such thatifk > K(g) and x ¢ [a, ], then we Eave
tf,(x) — f(x)] < £. Consequently, if /i, & > K (#), then
—2e < f(x)— f(x) < 2¢ for x e [a,b].

Theorem 10.1.5 implics that
b b
—2glh—n) <« f i —f fo <2 a).

Since £ = (O 15 arhitrary, the sequence (f: fi) is a Cauchy sequence in & and therefore
converges to some number, say A € R. We will now show that f € R[a, b] with integral
A For, if ¢ = 015 given, let KX (&) he as above. If y 2 {{([x,_q0 %], t‘)}’f:l 15 any tagged
parition of [a, b)and 1f & > K(¢), then

i

(S Py = S Py =

S — I, x5 )

i=1

< S0 = feplen = x )
=1

< Ze(xl —x_)=¢&(b—a)

i—=1

Now fix r > K(r) such that |fj’ f.— Al < ¢ and let §_  be a gauge on [a, b) such that
| J:J £ S P)| < ¢ whenever P is 8, .-finc. Then we have
b
+ |f f,—A

Butsince & > (0 1s arbitrary, it follows that f € R™la, b] and J:b f = A Q.ED.

1SCFAHPY — Al < [SCF Py SUF.P) + ‘S(f,:??l -/ £,
<ceb—a)—e+e=¢b—a+2). )

It will be seen in Example [0.4.6(a) that the conclusion of 10.4.1 is falsc for an infinite
interval.

Equi-integrability -

The hypothesis of uniform convergence in Thearem 10.4.1 is a very stringent one and
restaicts the utility of this result. Conscguently, we now show that another type of uniformity
condition can be used to obtain the desired limit. This notion is due to Jaroslav Kurzweil,
4% 13 Theorem 10.4.3.

10.4.2 Definition A sequence (f;) in R7({) is said to be equi-integrable if for every
£ > 0 there exists a gauge & on J such that if P 1s any §_-fine partition of / and k € N,
then 'SCf,. ) —ff fil < e
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10.4.3 Equi-integrability Theorem If (f,) € R*(J) is cqi-integrable on I and if
fixy=1Um f (x) forallx € I, then f € R*(I) and

[t

Proof. We wili treat the case [ = [a, b]; the general cage can be found in [MTT].

Given £ > 0, by the equi-integrability hypothesis, there exists a gauge 8, on I such that
P = {([x,_,. %], £,)}7_, is a §,-fine partition of 1, then we have |S(f,; P) — [, f;| < ¢
forallk € N. Since P has only a tinitc number of tags and since f, (z) — f(¢) fort € [a, b],
there exists a K, such that fh k=K, then

(3) |SC/ Py = SULPY 2 D A0 = £,(6)](x; — x,_)) 2 e(b—a).
=1
If welet h — oo in (3), we have
4 1S P)=S(f:P) <eth—a)  Tfor k=K,
Morcaver, tf A, k > K, then the equi-integrability hypothesis and (3) mve
|_[:f;, - -/;fh| < ‘,/;fk - S(fx.p)’ + |S(f;_,. P} — S(fh. p)l
+|S(fh;'f7)—ffh. <et+eb—a)+e=e(2+b—a)
!

Since £ > 015 arbitrary, then (f! fJ 18 a Cauchy scquence and converges to some A € R,
If welet h — oo 1n this last inequality, we obtain

£

(5 ‘ffk AEEEQ-FE)—H) for k> K._.
I |

We now show that f € R*(I') with integral A. Indeed, given £ > 0, if Pisa 5€—ﬁne
partition of / and k > K, then

M

1S(f. D) — 4] = |s<f;?'3>—5(f1.:?>>!+\S(fk:7b>—/fk +Uf;—A\
I I
<eb—a)+e4+e@+b—a)=¢e(3+2b-2a),

where we used (4) for the first term, the equi-integrability for the second, and (5) for the
third, Since ¢ > Ois arbitrary, f € R*(J) withintegral 4. QED.

The Monotone and Dominated Convergence Theorems

Although the Equi-integrability Theorem is tnteresting, it is difficult to apply because it is
not casy to construct the gauges 8 - We now state two very important theorems sumnmarizing
the most important convergence theorems for the integral that are often useful. McLcod
(pp. 96- 101] has shown that both of these theorems can he proved by using the Equi-
mtegrability Theorem. However, those proofs require a delicate construction of the gauge
functions. Direct proofs of these results are given in [MTT], but these proofs also use results
not given here; thevefore we will omit the proofs of these results.

We say that a sequence of funciions on an interval 7 € R is monotone increasing if it
sausfies f,(x} £ fy(x) £ -+ < fol) = fk+1(X) < ...forallk e N, x € I.ltissaid o be
monotone decreasing if it satisfies the opposite string of inequalities, and to be monotone
if it is cither monotone increasing or decreasing,



-t ow Pa—

in ’R*(!) such thaf f(r) = lim £ (x) ﬂlmmtcwrywhcre onl. Then f € R*(I) if and only

if the sequence of integrals (f, f,) is bounded in R, in which case
(6) ff “kllm /fk
. 0K
LIS LICAL LESLLL 13 v (Ll On 40 LR TAVTT P FRL R . e — e

functions. Itis an extension of the cetebrated” LCbC‘iEUC Dommaled Com crgencc Thcorcm
from which it can also be proved.

10.4.5 Dominated Convergence Theorem Let (f ) be a sequence in X (f) and [eg
f(x) = lim f, (x} almost everywhere on I If therc exist functions a, w 1n'R*(1) such that
(7) e(x) £ filx) <w(x) for almost every x € [,

then f € R*(I) and
(8) ff:mnfﬂ.
Moreover, if @ and w belong to L(1), then f, and f belong to L(I) and

©) Hﬁ—ﬂ=£m—ﬁ*0

Note If o and w belong to £(1), and we put ¢ 1~ max{lal, jw|}, then ¢ € L£{1) and we
can replace the condition (7) by the condition

(7" lfk(x)f < @lx) for almostevery x ¢ /.

Some Examples

10.4.6 Examples (a) Ifk e Nlet f (x} = l/kforx € [0, k]and f, (x) ;= Oclscwhere
in [C, oc).

Then the sequence converges uniformly on (0, oo) to the O-function. However f(fo =
1 for all k¥ € N, while the integral of the O-function equals 0. It is an exercise to show that
the function sup{ f, (x) : & € N} does not belong to R*[0, ac), so the domination condition

(7Y is not satisfied.
|

1
by We have llm k)
~+aa Jg X +3

For, if g, (x) = (x* + 1)/(xF +3), then 0 < g (x) = land g (x) — 1/3 for x €
[0, 1). Thus the Dominated Convergence Theorem 10.4.5 applies.
k k
() Wechave lim / (1 + f) e “Tdx =
o k

k=

dX—_‘.

f o= 1.

7

Leth, (x) := (1 + x/ kY e forx e [0, k] and hy(x) = 0 elsewhere on [0, oc). The
argument in Example 3.3.6 shows that (k) 1s an increasing scquence and converges ©
e¥e™ = 7 60 [0, oc). If @ = ] this limit function belongs to £[0. oo). Moreover, if
F(x) = e"D% /(1 — @), then F'(x) = "'~ 50 that the Monotone Convergence Theorem
10.4.4 and the Fundamental Theorcm 10.3.5 1imply that

[y al e, ] o
tim | B, = f gy = F(x)| =
0 0 0

k »oa a_ll
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(d) TIf f 1s bounded and continuous cn {0, oc) and if @ > 0, then the funcuon defined by
L(t) = [ e f(x)dx is continuous for 1 € J_ == (a, o).

Since e~ f(x)| = Me™®* for ¢ € J_,if (r,) 18 any sequence in J converging to
ty € 4, the Dominated Convergence Theorem implies that L(1,} — [.(t,). But since the
sequence (¢,) — ¢, 1s arbitrary, then L is continuous at f,.

() Theintegral in (d) is differentiable forr > o and

(10) L'(t) = / (—=xde " fl)ydx,
0

which is the result obtained by “differentiating under the integral sign'™ with respect to 7.

Fix a number 1y € J . If t € J , then by the Mecan Valuc Theorem applied to the
function ¢ — e~'* there exists apoint 7, between , and ¢ such that we have e ™% — ¢ 0* =
—xe W (1 — 1) whence

—fx —-rCX
Eie! < xe T < xeT%
r—ty
Since w(x) = xe™ %" f(x) belongs w0 L]0, o), then for any scquence () in J with

t, # 1, = 15, the Dominated Convergence Theorem imphes that

lim [L_(rk);f.(r_u)} ='/.' khm [e-_-(__—e-or] Flx)dx
0

£-woD I:'c - I'J —r Ik — 30

- f (—x)e ™" f(x) dx.
4]

Since () is an arbitrary sequence, then L'(f,) exists and (10) is proved.

(0 Lot D () = f e™'" (SIM) dx forke Nt > 0.
{l

Ro
Since |(e™Fsinx) /x| < ¢ < 1forr = 0, x = 0, the integral defining D, exists. In
particular, we have

k .
D,(0) = / "2 ax
o X

We want to show that D, (0) - %R’ as k& = oc¢. By Example 10.3.4(d), this will show
that fom(sin ) /xdx = %n. The argument is rather complex, and uses the Dominated

Convergence Theorem several times.
e sinx

_ 0
Since the partial derivative satisfics |§
x

x > (, an argument as in (e} and the Domnaied Convergence Theorem 1mply that

)‘:[—e"":sinxl < Iforr >0,

k
Dy (t) = —[ e "Msinxdx for A eN, =0
0

_ _ _ 3 /e "(tsmx 4+ cosx) .
Since a routine calculation shows that — 3 = —¢ " sinx, then an
gx \ -+ 1
application of the Fundamental Theorem gives

e ®(tsink + cosk) !

D)= I .
(1) tr 41 241
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e (rsink t cosk)

S
application of the Fundamental Theorem gives

If weputg, (?) := forQ <t < kand g, (r) = 0fors > k then another

& L X
(11 Dk(r’c}—Dk(O}:f D;(I)drﬁj 0 (1) dr f .
0 0 p 1541

:—f g (tydt - Arctank.
0

If we note that g, (1) — Ofor¢ > 0as k — oc and that (since k¥ = 1)

e+ 1)
E
then the Daomunated Convergence Theorem gives fom g, (Ydr — Q.

In addition, since [(sinx)/x| < |, we have

lg ()] < < 2e”" for ¢t >0,

|Dk(3€)| - f e‘kli‘-{]—xdx _f e dx = ¢
0 X a _k x=0
L2
1 —e™" L
=% 0
Therefore, as &k — o, formula (11) becomes
0— lim D (0) =0— lim Arctank = — 3.
Lorsa  * k—mxa

As we have noted before, this gives an evaluation of Dirichlet’s Integral:

.
(12) f P dx o bx -
0

X

Measurahle Functions - -

We wish to charactenize the collection of functions in R™(7). In order to bypass a few minor
details, we will limit our discussion ta the case [ := [a, b3 We need to introduce the notion
of a "measurable function”; this class of functions contains all the functions the reader is
ever likely to encounter. Measurable functions are often defined in terms of the notion of
a "mecasurabie set”. Howcever, the approach we will use 18 somewhat simpler and docs not
require a theory of measurahle sets to have been developed first. (In face, the theory of
measure can be derived from propertics of the integral; see Exercises 15 and 16.)

We recall from Definition 5.4.9 that a function s : (2. 5] — R is a step function if
it has only a finite number of values, each value being assumed on a finite number of
subintervals of [a, b).

10.4.7 Definition A function f : [a, ] ~ R is said to be (Lebesgue) measurable if
there exists a sequence (s} of step functions on |a, b] such that
(13 fixy= klim 5. {x) for almost every x € [a, b].
—* G
We denote the collection of all measurable functions on la, £] by M|a, b).
We can reformulate the definition as: A function f is in M|z, b} if there exists a null

set Z C [a, b] and a sequence (s,) of step functions such that

(14) S =lim () forall x€lab\Z



104 CONVERGENCE TITEOREMS 307

It is tnvial that every step function an [a, b] 15 a measurable function. By Theorem
54.10, a continuous function on [a, £] is a uniform limit of a sequence of step funcuons;
therefore, every continuous function on an interval (g, ) is measurable. Simularly, every
monotone function on [a, b] 18 a uniform himit of step {unctions (sce the proofl of Theorem
7.2.7); thercfore, every monotone function on an interval is measurable.

At first glance, it mught seem that the collection of measurable functions might not be
so very large. However, the requirement that the limit (13) is required to hold anly almost
everywhere (and not everywhere), enables one to obtain much more general functions. We
now give a tew examples.

10.4.8 Examples (a) The Dirichlet function, f{x):=1 for x € [0, 1] rational and
f(x) =0forx € [0, 1] irrational, 15 a measurable function.
Since DN [0, 1]1s anull set, we can take gach 5, to be the (-function. We then obtain
5,(x) = f(x)forx € {0, 11\ G
(b) Thomae’s function A (see Examples 5.1.5(h) and 7.1.6) is a measurable function.
Again, take s, to be the O-function. Then s, (x) — A(x) forx € [0, 1]\ .
(¢} ‘The function gix) ;== 1/x for x € (0, 1] and g(0) := 0 is a measurable function.
This can be seen by taking a step function s, (x) =0 for x € [0, 1/k) and {using
54.10) such that [s (x) - 1/x| < 1/k for x e {1/k 1]. Then s (x) — g(x) for all x €
[0, 1].
(d) If fe Mla. p] and 1f ¥  [a,b] — R 18 such that ¥ (x) = f(x) ac, then ¥ €
Mla. b}
For, if f(x) = lims,(x)forx € [a, b]\ Z andif w(x) = f(x)forallx € [a. b]\ Z,,
then ¥(x) = lims, (x) for all x € [a, 5]\ (2, U Z,). Since Z, U Z, is a null set when Z,
and Z, are, the conclusion follows. L

The next result shows that elementary combinations of measurable functions lead to
measurable functions,

10.4.9 Theorem I.et f and g beleng to M(a, b] and lctc € R.

(a) Then the funclionscf | fl. f + ¢ f —gand f - g also belong to Miu, b].
(b) If¢: R - Riscontinuous, then the composition g o f & Mla, b].

() If(f) isasequence in Mla, »] and f(x) =lim f (x} almost everywhere on [, then
f e Mia, b].

Proof. (a) We will prove that | f1 15 measurable. Let Z ¢ [a, b] be a null set such that
(14) holds. Since [5,] is a step function, the Trnangle Inequality implies that

0 < [1f )= s, ()| < ' f(x) — 5,00 = 0

for all x € [a, b]\ 7. Therefore | /| € Mia, b].

The other assertions in (a) follow from the basic properties of limits.

(b) If £, 18 a step function on [a, b], it i3 easily seen that ¢ o s, is also a step function
on [a, b]. Since ¢ is continuous on R and f(x) = lims, (x) forall x € [a, b] } Z, it follows
that (¢ o f)(x) = @(f{x)) = himp(s, (x)} = lm(p o 5, )(x) forall x € [a, b] \ Z. There-
fore ¢ o f is measurable.

(c) Thus conclusion 1s not obviaus; a proof 1s outlined in Exercise 14. QED.
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The next result 1s that we can replace the step functions in Defirntion 10.4 7 by
continuous functions. Since we will use only onc part of this result, we content oursetyee
with a sketch of the proof of the other part.

10.4.10 Theorem A function f : |a, b| - R is in Mfa, b] if and only if there exises 4
sequence (g,) of continuous functions such that

(15) flx)y= hm g, (x) for almost cvery  x € [a, bl.
ko O

Proof. (<) let 7 C [a, b] be anull set and (g,) be a sequence of continuous functiong
suchthat f{x) limg,(x)forx € {a, 5]\ Z. Since g, is continuous, by 5.4.10 there exisrs
4 step funcuon s, such that

|gf{(x) -5 ()] < 1/k for all x € [a, b].
Therefore we have

0= |f)—s,(0f < [f(0) — g () + |g, (%) — 5, (x)
< flx) — g (x) +1/k,

whence it follows that f{(x) = lim g, {x) forall x € [a, b]\ 2

Sketch of (=) Let Z be a null set and {5.) be a sequence of step functions such thar
Sy =hms (x) for all ¥ ¢ {a, b]\ Z. Without loss of generality, we may assume that
each g is continuous at the endpoints a, b. Since 5, 1s discontinaous at only a finite number
of points in (., #). which can be enclosed 1n a ﬁmte umon J, of intervals with tofal length
< 1/k, wec can construct a piecewise linear and continuous function g, which coincides
with s, on [¢. b)Y J,. Tt can be shown that g, (x} — f(x) ae. on ] (Sce [MTI] for the
details)) Q.ED.

Functions in K7ja. b) are Measurable

We now show that a generalized Riemann integrable function 18 measurable.
10.4.11 Measurability Theorem If f € R7|a, b), then [ € M|a, b).

Proof let £ Ja, b+ 1] — R be the indefinite integral

x) .—f f if x e [ﬂ. b].

andlet F(x) . — Fibyforx € (b, b + 1] Tt follows from the Fundamental Theorem (Sccond
Form) 10.1.11(a) that F is continuous on [a, b]. From 10.1.11(c), there exists a null set Z
such that the derivative F'(x) — f(x) exists for x € |a. b] \ 7. Theretfare, if we introduce
the difference quotient functions

Fix+ 1/ky— F(x)

 (x) 1= f x € la, b), k e N,

g.(x) /% or (a. ). :
then g, (x) — f{x)forall x € [a, b] \ Z. Since the g, are continuous, it follows from the
part of Theorem 10.4 10 we have proved that £ € Ma, b). QED
Are Measurable Functions Integrable? __ _

Notevery measurable fonction 1s gencralized Riemann integrable. For example, the funcuon
g(xy = l/xforx € (0 11 and g(0) := 0 was secn in Example 10.4.8(c) to be measurable;
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howeveritis notin R7[a, b| because it is “too large” {as x -» 0+4-). However, if the graph of
a mcasurable function on [a, b] lies between two functions in R [«, £/, then it also belongs
to R7[a, b].

10.4.12 Integrability Theorem Let f € AM{a, b]. Then f € R™[a, b] if and oaly if there
exist functions o, w € R*[a, b] such that

(16) o(x) < f(x) < w(x) for almost every x € la,b].

Morcover, if cither e or w belongs to L(a, b, then f € Lla, b].

Proof. (=») This implication is trivial, sincec one cantake @ = w = f.

(¢—) Since f ¢ Ma, b], there exists a scquence {s,) of step functions on [a. &] such
that (13) holds. We definc s, := mid{e, 5,, @] for k € N, so that 5, (x) is the middle of the
numbers a(x), 5, (x} and w(x) for cach x € la, #]. It follows from Theorem 10.2.8 and the
facts

mid{a, b. ¢} = min{max{a, b}, max{b, ¢}, max{c, a}},
min{a’, ¥, '} = min{min{a’, ¥}, ¢’}.

that 5, € R*[a, b] and that ¢ <5, < w. Since f = lims, =1ims, ae., the Dominated
Convergence Theorem now implies that f € R¥[a, b].

If either o or w belongs to £[a, b], then we can apply Theorem 10.2.6 to conclude that
f belongs to £(a, b). Q.E.D.

A Final Word

In this chapter we have made frequent reference to Lebesgue integrable functions on an
iterval [, which we have introduced as functions in R*(7) whose absolute value also
pelongs to R*(7). While there is no single “srandard approach” o the Lebesgue integral,
our approach is very different from any that are customary. A critic might say that our
approach is not useful because our definition of a function in £(/) is not standard, but that
would be wrong.

Alfter all, one seldom uses the definition to confirm that a specific function is Lebesgue
integrable. Instead, one uses the fact that certain simpler functions (such as step functions,
solynomials, continuous functions, bounded measurable functions) belong to £(J), and
that more complicated functions belong to £(7) by taking algebraic combinations or var-
vus limiting operations (e.g., Hake’s Theorem or the Dominated Convergence Theorem).
A famous analyst once said, “No one ever calculates a Lehesgue integral; instead, one
calculates Riemann integrals and takes limats™.

It is the same as with real numbers: we listed certain propertics as axioms for R and
hen derived consequences of these propertics which enable us to work quite effectively
with the real numbers, often by taking limits.

Ixercises for Section 10.4

Consider the following sequences of functions with the indicated domains. Does the sequence
converge? If so, to what? Is the convergence uniform? Is it bounded? If not bounded, is it
dominated? Ts it monotone? Evaluate the limit of the sequence of integrais.
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@ —— 0.1 SRR
a L ; v 2]
1 +kx 1+x"
1 i
(C) U [O' 1‘]! (d) T [O- 2]
1 +x 1+ x
Answer the questions posed in Exereise 1 for the following sequences {when properly defined)
x 1 ’ '
(8 ——— [0, 1]. (hy ——— [0, 1],
) Tvk EVIET
1 1
< -0 1, 2], dy —— [0, 1}
© s 2 @ —=s—r O

Discuss 1he following sequences of functions and their integrats on [0, 1]. Evaluate the limit of
the integrals, when possihle.

(a) e **. M e */x,
() kxe ™, (@) k'xe ™,
(&) kxe*% () kxe 5"
boxMdx ‘ , D kxkdx
(a) Show that lim / — =0 () Show that lim / — - =1
k—soC 0 (1-,—‘):) k= ac a 1+X -

If f{(x):=kforx e[l/k 2/k}and f (x):= 0elsewhere on {0, 2], show that £, (x) — 0 but
that foz fo=
et ( f,) be a sequence on {a, b] such that each f, 15 differentiable on [a, bl and f/{xr) = g(x)

with | f,(x}| € K for all x € {a, b). Show that the sequence (f,(x)} either converges for all
x € [a, b| or it diverges for all x € [a, b].

If £, are the functions in Example 10.4.6(a). show that sup{ f,} does not belong to R*[0, o).

Show directly that fy~ e ™" dx = 1/t and f;° xe™ dx = 1/¢* for 1 > 0, thus confirming the
results in Examples 10.4.6(d e} when f{x) 1= 1.

Use the differentiation formula in 10.4.6(f) to ohtain fnoc £ sinxdx = 1/(tF + 1),

Ifr = 0, define E{t) fc fe “sinx)/x]dx.
{a) Show that £ exists and is continuous for ¢ > a > 0. Moreover, E(¢t) — Oast — oo.
. 3 fe "“sinxy ' —ar , -1
(d) Since |~ | ———— | <e ™ fors > a > 0, show that E'(2) =
ar x / [ |
(¢} Deduce that E(¢) = rr — Arctant forr = O\
(d) Explain why we cdnnor use the formula in {¢) to obtain equation (12).

fort = 0.

In this exereise we will establish the important formula:
*o0
(17) [Tetan=ym
: 0

@ Let G = [e Y 4(x? & 1)) dx for ¢ > 0. Since the integrand is dominated by
1/(x% + 13 for ¢t > 0, then G is continuous on {0, 60). Moreover, G{0) = Arctant = f‘-
and 1t follows from the Donunated Convergence Theorem that G(f) — Qast — oo,

(h) The partial dgnvame of the mrcgrand with rcspcc[ t0 ¢ is bounded fort > 0, x € [0, 1.

SO (7(1) == —2¢e™ fj 5 g 27" JO e du.
{c} If we set F(r [fo - dx] then the Fundamental Theorem 10.1.11 yields F'{) =

26" fo —* gx for ¢ > 0, whence F'(t) -~ G'(t) =0 for all + = 0, Therefore, F(!)
G(y=Cloralt = 0.

(d) Using F(0) =0.G(0) = 41,1 and lim;ﬂm G(t) = 0, weceonclude thathm, | F (1) = 41.7.
so that formula {17} holds.

Suppose 7 C R 15 a closed interval and that f @ |a, 5] x { — R is such that gf/ot cx
ists on {a, b] x [, and for each r € [a, b] the function x — f(f, x) is in R*(J) and thert
exist tr, w € R7(1) such that the partial derivative satisfies a(x) < 3f(r, x)/ir < w(x) for
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ae.x el If F(r) = ff fr, xYdx, show that F is differeotiable on [a, ] and that F'(1) :=
{,8f (. x) /81 dx.

(a)
(b)

(a)
{b)

(c)

If f g € M[a, b, show that max{ f, g} and nun{ f, g} belong to AM[a, b].
If £ g, h e M[a,b], show that mid{ £, g. &} € Mla. b).

If { f,) is a bounded sequence in Ma, b] and f, —» fae, show that f € Mla, b [Hint:
Use the Dominated Convergence Theorem. ]

If (g,) is any sequence in M[ea, b} and if f, = Arctano g, show that (f,) is 2 bounded
sequence in M(a, b].

If (,) is a sequence in AM[a, b]and if g, — g 2.e., show that g € Mla, b].

A set Ean {e, b] 1s said to be (Lebespgue) measurable if its characteristic function 1, (defined
byl (x)y=1ifx € Eand L (x):=0ifx € [a, ]\ E) belougs 1o M[a, b]. We will denote
the collection of measurable sets in [a. B] by MM {a, »]. In this excrcise, we develop a number of
propertics of B[a, ~].

(a)
(b)

(e)
(d)

(e

(f)

Show that £ € Ml[a, b] if and only if 1, belongs to R*|g, &].

Show that @ € W[z, £] and that if [c, d] € [a, &), then the intervals [¢, 4], [¢, d), (¢, d]
and (¢, d) are in M[a, #].

Show that E € M([a, b] if and only if E' 1= [a.b]\ E isin M[a. b].

If £ and F are 1n M [a, £], then EU F, E™ Fand E \ F arc also in M[a, b]. [Hinz: Show
that 1, . =max{l., 1.}, etc]

If (£ ) is an increasing sequence in B[a, b), show that £ = Uf_i £, 151n M[a, b]. Also,
if {£,) is a decreasing sequence i M[a. 6] show that 1= (", F, is in ¥il[a, b}. (Hinn
Appy Theorem 10.4.9(c).j

If (£} is any sequence in Mfa, b], show that |_Ji2, £, and (7, E, are in M[a. b].

If £ € M[a, b], we define the {(Lebesgue) measure of L to he the number m(E) = j;b 1. In
thus exercise, we develop a number of properues of the measure function m : K(a, ] — R.

(a)
(b)
(c)
{d)
(<)

(t)

(g)

Showthat m(@) =0and 0 < m(E) < b —a.

Show that m([c. d}) = m{[c. d)) = m{{c. d]) = m{(c. d)) =d — ¢.

Show that m(E'Y = (b — a) — m(E).

Show that m(E U FY+ m(ENFY=m(E) + m{F).

IWEMNF =@, show that m(£ U F) = m{(E) + m(F). (This is the additivity property of
the measure furction.)

If{£, )15 anincreasing sequence in Mia, 5], show that m(_J7, E))=Lm, m(£). Hint:
Use the Monotone Convergence Thearem. ]

If (C,) is a sequence m [e, b] that is pairwise disjoint {in the sense that CJf ne, =4
whenever j # k), show that

(18) m(UCk_) = m(C,).
P k-1

(This is the countable additivity property of the measure function.)



CHAPTER 11

—

A GLIMPSE INTO TOPOLOGY

For the most part, we have considered only functions that were defined on intervals. Indeed.
far certain important results on continuous functions, the intervals were also assumed to
be closed and bounded. We shall now examine functions defined on mare general types
of sets, with the goal of establishing centain important propertics of continuous functions
in a more general sciting. For example, we proved in Section 5.3 that a {unction that js
continuous on a closed and bounded interval attzins a maxumum value. However, we wi)l
sce that the hypothesis that the set is an interval 18 not essential, and in the proper conrext
it can be dropped.

In Sechon 11.1 we define the notions of an open set, and a closed set. The swudy
of open scts and the concepts that can be defined in terms of open sets 1s the study of
point-set topology, so we are 1n fact discussing certain aspects of the topology of I2. (The
mathematical area called “topology™ 1s very ahstract and goes far beyond the study of
the real line, but the key ideas are to be found in real analysis. In fact, it 15 the smdy of
continuous functions on R that morivated many of the concepts developed in topology.)

The notion of compact sct i1s defined 1n Section 11.2 in terms of open covernngs.
In advanced analysis, compactness is a powerful and widely used concept. The compact
subsets of i€ are fully characterized hy the Heine-Bore]l Theorem, so the full strength of the
idea is not as apparent as it would be in more general settings. Nevertheless, as we establish
the basic propertics of continuous functions on compact sets in Section 11.3, the reader
should begin to appreciate how compactiness arglinients are used.

In Section 11.4 we take the essential features of distance on the real Jine and 1ntroduce
a generalization of disrance called a “metric”. The much-used triangic inequality 1s the key
property in this general concept of distance. We present examples and show haw theorems
on the real line can be extended to the context of a melric space.

The ideas in this chapter are somewhal mmore abstract than those in earlier chapters;
however, abstraction can often Jead to a deeper and more refined understanding. In ths
case, 1t leads to a more general serting for the study of analysis.

Section 11.1 Open and Closed Scts in K

There are special types of scis that play a distinguished role in analysis—these are the open
and the closed sets in R To expedite the discussion, it is convenient to have an extended
nouon of a neighborhood of a point.

11.1.1 Definition A neighborhood of a point x € K 1s any sct V that contains an
e-neighborhood V.(x):—(x & x+¢)ofxforsomece > 0

312
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While an £-neighborhoad of a point is required to be “symmetric about the point”, the
idea of a (general) neighborhood relaxes this particular feature, bul often scrves the same

purpose.

11.1.2 Definition (i) A subset G of R is open in R if for cach x € G there exists a
ncighborhood V of x such that V C G-

(i1} A subsct " of 2 is closed in R if the complement C(F) = E\F is open in R.

To show that a sct G € R is open, it suffices to show that cach point in G has an
¢-neighborhood contained in GG. In fact, & is open if and only if for each x € (7, there exists
£, > Osuchthat (x —¢ ., x +¢ ) is contained in G.

To show that a set F C R 1s closed, 1t suffices to show that cach point y ¢ F has an
g-neighborhood disjoint from [, In fact, F is closed if and only if for each y ¢ F there
2X1SL8 £, > 0 such that F N (y — £,.¥ F 8_}?) = ff.

11.1.3 Examples (a) The cntire set K = (—o0, o<) is open.

For any x € K, we may take ¢ 1= 1.

‘b) Theset G :={x e X:0 < x < 1}is open.

Forany x € G we may take £ to be the-smaller of the numbers x, 1 - x. We leave it
to the reader to show thatif |[u — x| < £ thenu € G

¢}  Any openinterval [ ;= (a, b) 1s an open set.

In fact, if x € I, we can take £, to be the smaller of the numbers x —a, b —x.
The reader can then show that {x - £ ,x + ¢, ) € [. Simularly, the wrervals (- oz, b)Y and
Wi, OQ) arc open scls.

(d) Theset! := [0, 1]1snot open.

This follows since cvery neighborhood of 0 € { contains points not in 7.
(¢) Theset f =0, 11is closed.

To see thislet y ¢ I; theneither y < Qor ¥y > 1. If y < 0, we take £, = [v], and if
v > 1 we take £, =y~ 1. We leave 1t o the reader to show that in either case we have
SNy «-s:y,y—l—gy) = U
) Theset H := {x:0 < x < I} is neither open nor closed. (Why7)
fa) The emply sct B is openin R,

[n fact, the empty set containg no points at all, so the requirement 1n Definition 11.1.2(1)
1s vacuously sausfied. The empty set is also closed since its complement R is open, as was

:en in part (a). L.

In ordinary parlance. when applied to doors, windows, and minds, the words “open™
~ad “closed™ are antonyms. However, when applied to subsets of K, these words are not
antonyms. For example, we noted above that the sets ¥, R are both open and closed i K.

‘he reader will probably be relieved o leam that there are no other subsets of R that bave
noth properties.) In addition, there are many subsets of K that are neither open nor closed:
= fact, most subscts of IR have this neutral character.

The following basic result describes the manner in which open sets relate to the
~=erations of the unjon and intersection of sets in [,

11.1.4 Open Set Properties (a) The union of an arbitrary collection of open subsets in
is open.
(b) The intersection of any finite collection of open sets in R is open.
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Proof. (a) Let {C, © 4 € A} be a famuly of sets jn R that are open, and let G be thesr

union. Consider an clcment x € G, by the defimition of union, x must belong o G, for

some ~, € A Since (G, 1s open, there exists a neighborhood V of x such that v C (“
But G, < G, sothat V c‘ G. Since x is an arbitrary elemert of GG, we conclude thar ¢ |«
open 1r1 ]5&

(b) Supposc G, and (5, are open and lct G == G| 1 G,. To show that G is open, wy
consider any x € G then x € G| and x € G,,. Since G 1s open, there exists ¢, > O such
that (x &, x — ¢ ) 1s contained in G, Simularly, since G, 1s open, there exists £, » ()
such tha (x —fy Xt _ﬂ) 15 Comamcd n t" If we now take ¢ 1o be the smalicr of b
and ,, then the &- nelghborhoocl U= (x—¢g x+r)sanisfieshoth{/ € G, and U C <G,
Thus, x € I/ C (. Since x i1s an arbitrary element of G, we conclude that G 1S open in %,

[t now follows by an Induction argument (which we leave to the reader to write our;
that the interscetion of any finite collection of open sets 15 opern, QED

The corresponding properties for closcd sets will be established by using the general
De Morgan identitics for sets and their components. (Sec Theoremn 1.1 .4.)

11.1.5 Closed Set Properties (a) The intersection of an arbitrary collection of closed
scts in R s closed.

(h) The union of any finite collection of closed scis in X 1s cloged.

Proof. (a) II{F, % e A}isalamily of closcd setsin R and F = (] F,, then C(F) -
bea

|J C(F)) 1s the union of open sets. Hence, C(F) is open by Theorem 11.1.4(a), and

PR

consequently, F 1s closed.

(b) Suppose F . F, .- . F_ areclosed in Raod let # :— F JF, ... L F By the
De Morgan identity the complement of £ 15 given by

CF)y=CF) - - NC(F )

Since each set C(F,) 15 open, 1t follows from Theorem 11.1.4(b) that C(F) is open. Hence
F g closed. Q1D

The finiteness restrictions in §:.1.4(h) and 11.1.3(b) canrat be removed. Consider the
following examples:

11.1.6 Examples (a) bet G_:= (0, 1+ 1/n) for n ¢ ¥ Then & is open for cach

n e N, by Example 11.1.3(c). However, the intetsection (G 1= ﬂ G, is the interval (0. 1]
n—1

which is not open. Thus, the intersection of infinirely many open seis in 'R need not be open.

o0
(b) let F = [1/n. 1) forn € N.Each F, is closed, but the union F = |} £ 1s the scl
n=1 .
{0, 17 which is not closed. Taus, rhe union of infinitely many closed sets in R need not ¢
closed. -

The Characterization of Closed Sets -

We shall now give a characterization of closed subscts of [ in terms of sequences. As We
shall see, closed sets are precisely those sets F that contain the limits of ali convergen!
scquences whose elements arce taken from F.
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11.1.7 Characterization of Closed Sets Lct F C X; then the following asscrtions are
equivalent.

() F isaclosed subset of R.
(ii) If X = (x_) is any convergent sequence of elements in F, thenlim X belongsto F.

Proof. (i) = (ii) Let X = (x,) be a sequence of elements in F and let x = lim X; we
wish to show that x € F. Suppose, on the contrary, that x ¢ F, that is, that x € C(F)
the compleraent of £ Since C(F) is open and x € C(F), il {ollows that there exists an
e-neighborhood V. of x such that V, is contained in C(F). Since x = llm(x ), it follows
that there exists a mtural number K = K (e) such that x, € V . Therefore we must have
X, € C(FY; but this contradicts the assumption that x_ E F for all n € N. Therefore, we
conclude that x € F.

(11} = (1) Suppose, on the contrary, that F is not closed, so that & := C(F} 15 not
open. Then there exists a point yo €  such that for cach n € N, there 18 a number y €
C(G) = Fsuchthat|y, — y,| < I/n.Ttfollows that y, := lim(y, ), and since y € F forall
n € N, the hypothesis (1) implies that y, € F, contrary to the assumption y, € G = C(F).
Thus the hypothesis that F is not closed implies that (1) is not true. Conscquently (i1}
umplies {1}, as asserted. Q.ED.

The next result 1s closely related to the preceding theorem. It states that a set F is
closed 1f and only if 1t contains all of 11s cluster points. Recall {rom Section 4.1 that a point
x 15 a cluster point of a set F 1f every ¢-neighborhood of x contains a point of F different
from x. Since by Theotem 4.1.2 each cluster point of a set F is the limit of a sequence
of points in F, the result follows immediately from Theorem 11.1.7 above. We provide a
second proof that uses only the relevant definitions.

11.1.8 Theorem A subsetof R isclosed if and only if it coniains all of its cluster points.

Proof. Lot F be a closed setin B and let x be a cluster point of F; we will show that
x € F.lfnot. then x belongs to the open set C(F). Therefore there exists an £-neighborhood
V. of x suchthat V. € C(F). Consequently V_ N F = @, which contradicts the assumption
that x 15 a cluster pomt of F.

Conversely, let F be a subset of X that contains all of its cluster points; we will show
that C(F} 1s open. Forif y € C{F), then y 18 not a cluster point of F. It follows that there
exists an £-ncighborhood V_ of y that does not contain a point of F (except possibly y).
But since y € C(F), 1t follows that V. € C(F) Since y is an arbifrary element of C(F), we
deduce that for every point in C(F) there is an £-neighborhood that 1s entirely contained in
C{F). But this means that C(F) is open in K. Therefore F is closed in R, QED.

The Characterization of Open Sets

The 1dea of an open set in R 18 a generalization of the notion of an open interval. That this
generalization does not lead to exiremely exotic sets that are open 18 revealed by the next
result.

11.1.9 Theorem A subsct of X is open if and only if it is the union of countably many
disjoint ogen intervals in
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are not empty. (Why?) If the set A_ is bounded below, we set a_ = inf A ifA

s not
. . . . X
bounded below, we seta, 1= —oo. Note that in either case @, & G Ifthe set B, 1s bounged
above, we set b, 1= sup B,; if B, is not bounded above, we set b, 1= 00. Note that in either
case b, ¢ G.

We now define {_:= (a_, b ); clearly /_1is an open interval containing x. We claim
that /, € G. Tosce this, lety € 1 and supposc that y < x. It tollows from the definition
of a, thar there exists @’ € A, vuth a' <y, whence y € (a', x] € G Similarly, if y ¢ f
and;. < vy, there exists b’ € B with 'y < b’, whence it follows that y € [x, b") C G. smcc
y € I 15 arbutrary, we have that [, CG.

Since x € Gisarbitrary, we conclude that |_ I € G.Ontheotherhand, since for each
xely
x € (7 there 1s an open interval [ with x € /. & G, we also have G C L I,. Therefore
P
we conclude that G = | J /..

We claim that 1f xIL; € G and x # y, then cither I = =1, or I NI =8 To prove
this suppose that z € [, /" [, whence it follows thata, < 7z < b anda <z<b_ (Why
We will show thata, = a, lf not, 1t {ollows from tha, Trichotomy Pmpen\ that etther 1)
a, <a. or (11) a, <a, [n case (1), then a, € I, =(a_b) <G, which contradicts the
fac[ that a, é Snrmlarly, in case (i1}, then a, € I (a b ) C G. which coptradicts
the fact that a ¢ G. Therefore we must have a, = a and a elrmlar argument implies tha
b, =bh,. Thcreforc we conclude thatif 7 N /) ;f: @, thcn I, = I}

It i‘cmajns to show that the collection of distincl in[crvals {/_ . x € G} 1s countable.
To do ttus. we enumerate the set @ of rabonal numbers @ ={r,.ry, - -y r, -} (see
Theorem 1.3 11). [t follows from the Density Theorem 2.4 8 that each interval I, contajns
rational numbers; we select the rational number in 7 that has the smallest index # in
this enumeration of @ That is, we choose Ty € 2} such that Irm‘ =1, and n{x) is the
smailest index n such that /= [ . Thus the sct of distinct intervals I . x € G,isputinio
correspondence with a subset of N. Hence this set of distinet intervals is countable.  QED.

It is left as an exercise to show that the represcntation of (7 as a disjoint union of open
mtervals 1s uniguely determined.

{t does not follow from the preceding theorem that a subset of R is closed if and only 1f
it 1s the intersection of a countable collection of closed inrervals (why not?). In fact, there
are closed scts in R that cannot be expressed as the intersection of a countable collection of
closed intervals in R. A sct consisting of two points is one example. (Why?) We will now
describe the construction of a much more intercsting example called the Cantor set.

The Cantor Set -

The Cantor set, which we will denote by =, is a very interesting example of a (somewhal
complicated) sct that is unlike any set we have seen up to this point. It reveals how tn-
adequalte our 1ntuiton can sometimes be in trying to picture subsets of .

The Cantor set T can be described by removing a sequence of open intervals from the
closed unit interval 7 := [0, 1]. We first remove the open middle third (% %) of (. 1] w0
obtain the set

. 2
Fo=[o.2]0l3).
We next remove the open muddle third of each of the two closed intervals in F, to obtait
the set
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We sce that £, is the unton of 22 = 4 closed intervals, each of which is of the form
[k/.’ig. (k — l)/32]. We next remove the open middle thirds of cach of these sets to get £5,
which is union of 2* = 8 closed intervals. We continue in this way. In general, if F has
kheen constructed and consists of the union of 2" intervals of the form [k/?}”. k + l)/3"1,
then we obtain the set F,_, by removing the open muddle third of each of these intervals.
The Cantor set F 1s what remains after this process has been cammied out for every n € N,
(See Fipgure 11.1.1.)

F

Er —— ———

Fy -t ———— - ——

Fa -

Figure 11.1,1  Constructoen of the Cantor set.

11.1.10 Definition The Cantor set F i1s the inlersection of the sets F,, n € N, obtained
by successive removal of open middle thirds, starting with {0. 17.

Since it is the intersection of closed sets, T 1s itself a closed set by 11.1.5(a). We now
list some of the properties of i that make 1t such an interestng set.

(1) Thc tota) length of the removed intervals is 1.

We note that the first middle third has length 1/3, the next two middle thirds have
lengths that add up to 2/3%, the next four middle thirds have Iengths that add up 1o 22/3%,
and so on. The total length L of the removed intervals is given by

I 2 2” fi

RN B
3N - o 3 i~ 3 ’

L =-
3 3
Using the formula for the sum of a geometric senes, we obtain

3 1—(2/3)

Thus F is a subset of the unit interval [0, 1] whose complement in [0, 1] bas total length 1.
Note also that the total length of the intervals that make up 15 (2/3)", which has

limitOasn — 0o. Since F C F_foralln € N, we see that if = can be said (o have “length".

it must have Jength 0.

(2} The sct = contains no noncmpty open interval as a subset.

Indeed, if B contains a nonempty open interval J '= {a, b), then since J € F_ for all
neN,wemusthaved < b —a < (2/3)" forall n € N. Therefore b — a = 0, whence J is
ampty, a contradiction.

(3) The Cantor set = has infinitely (even uncountably) many peinis.
The Cantor sef contains all of the endpoints of the removed open intervals, and these

arc all points of the form 2*/3" wherc k = 0, 1, -+ -, n for each n € N. There are infinitcly
many points of this form.
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The Cantor set actually contains many more points than those of the form 2% /37 i fac¢
I 1s an uncountable set. We give an outline of the argument. We note that each x ¢ [0, 1)
can be writlen in a ternary {base 3) expansion

X a
* :Z 3% = (aa;-a, )y

n=1
where each a is cither 0 or | or 2. (See the discussion at the end of Section 2.5 ) Indeed,
each x that lies in one of the removed open intervals has a, = 1 for some n: for example,
cach point in (% %) has @, = 1. The endpoints of the removed intervals have two possible
ternary ¢xpansions, one having no 1s; for example, 3 = (100 ), = (.022-- 3y If we
choose the expansion without 1§ for these points, then = consists of all x € [0, 1] that have
temary expansions with no 1s; that is, ¢_1s 0 or 2 for all n € N. We now define a mapping
@ of F onto {0, 17 as follows:

w(i g*f-) = i (ang] for xel

n=1 ne=i

Thatis, p((.a,a, - );) = (b by -, where b =a /2foralln e Nand (.b,b, ), de-
notes the binary rcpreseniation of a number. Thus ¢ 1s a surjection of ' onto [0, 1)
Assuming that ¥ is countable, Theorem 1 3.10 implies that there exists a surjection \ of
N onto IF, so thal ¢ ¢ ¢ is a surjection of N onto [0, 1]. Another application of Theorem
1.3.10 implies that [0, 1] is a countable set, which contradicts Theorem 2 5.5, Therefore IF
1$ an uncountable set.

Excercises for Section 11,1

I. Ifx ¢ (0.1) et e beasn Example 11.1.3(b). Show that if .u — x| < £_, then w ¢ (0, 1}.

2. Show that the intervals (a, oo) and (—o¢, a) are open sets, and that the intervals [6, o) and
{(—oc, #] arc closed seis.

3. Write cut the Induction argument in the proof of part (b) of the Open Set Properties 11.1.4.

4. Prove that (0. 1] — (22, (0, 1 + 1/n}, as asserted in Example 11.1.6(a).

5. Show that the set ¥ of natural numbers is a closed set.

6. Show thar A = (1/n2n e [} is not a closed set, but that A L {0} is a closed set.

7. Show that the set 93 of rational numbers 1s neither open nor closed.

8. Show rhatif G is an open set and F 1s a closed set, then G\ 7 is an open set and F\ G is a closed
set

9. A point x ¢ i is said 10 be aa interior point of A € [ in case there is a neighborhood V of x
such that V € A Show that a set A < R is open if and only if every point of A is an intenor
point of 4.

10 A point ¥ € X is said to be a boundary point of A € X in case every neighborhood V of x
contains points in A and points in C(A4). Show that a set A and its complement C(A} have exactly
the samme boundary points.

11. Showthataset G € Ris open if and enly of it does not contain any of its boundary points.
12, Show thataset F C K isclosed 1f and only if it contains all of its boundary points.

13 If A € X, let A” be the union of all open sets that are contained m A; the set A is called the
interior of A. Show that A 1s an open set, that it js the larpest open set contzined in A, and that
a point z belongs to A” 1f and only If z 15 an intenor point of A.
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14. Using the notation of the preceding exercise, let A, B be sets in 2. Show that A° € A4 (A%Y =
A®, and that (AN B)" = A® ™ B”. Show also that A°U B* € (A U B)”, and give an axample
to show that the inclusion may be proper.

15. If A € R, let A” be the intersection of all closed sets containing A: the set A is called the
closure of A. Show that A™ is a closed set, that it is the smallest closed set containing A, and
that a point w belongs to A7 if and only if w is either an interior point or 2 boundary point of A.

16. Using the notation of the preceding exercise, let A, B be sets in ®. Show that we have A ©
AT (A7) " =A",andthat (AU B)" =ATUER  Showthat (AM 8) A NE ,and pive
an cxample to show that the 1nclusion may be proper.

17. Give an example of aset A C R such that A° =P and A~ =R,
18. Show thatif F C Ris a closed nonempty set that 1s bounded akove, then sup F belongs to F.

19. If G 15 open and x € &, show that the scts A.r and Bl_ m the proof of Theorem 11.1.¢ are pot
empry.

20. Iftheset A in the proof of Theorem 11.1 9 is bounded below, show that g, :— inf A does not
helong to .

21, Ifin the notation used tn the proof of Theorem 11.1.9, we have o < y < x, show that y ¢ G,
22 Ifin the notation used in the proof of Theorem 11.1.9, we have I N1 3# 8, show thath = b..
23. Show thar each point of the Cantor set IF 18 a cluster point of .

24, Show that each point of the Cantor set IF 1s a cluster point of C(F).

Section 11.2 Compact Sets

Inadvanced analysis and topology, the notion of a “‘compact’ set1s of enormous impaortance.
This 5 less true in R because the Heine-Bore] Theorem gives a very simple charactenzation
of compact sets in R. Nevertheless, the definition and the technigues used in connection
with compactness arc very tmportant, and the real line provides an appropriate place to see
the idea of compactness for the first aume.

The definition of compactness uses the notion of an open cover, which we now define.

11.2.1 Definition Lect A be asubset of R. An open cover of A is a collection § = {G }
of open scts in R whose union contains Aj; that is,

Acl G,
=3

If ' iz a subcollection of scts from G such that the union of the sets in §' also contains
A, then G is called a subcover of G. If G’ consists of finitcly many sets, then we call G a
finite subcover of G.

There can be many differcnt open covers for a given set. For example, if A .= [1, o),
then the reader can verify that the following collections of sets are all open covers of A:

Gy = {0, 00},
G, ={r-Lr+bL:reQr>0j
G, = {n=1T,n+1}:neN},
G,:={@.n):neN)

G, ={(0.n):meNn=>23}
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We note that 92 15 4 subcover of Q.J, and that 9’4 15 4 subcover of Qj. Of course, many other
open covers of A can be descnibed.

11.2.2 Definition A subset K of [R14 said to be compact if every open cover of X has a
finite subcover.

In other words, a set K is compact if, whenever jt is containcd in the vnion of 3
collection G — {G,} of open scis in R, then it is contained in the union of seme finite
number of setsin &,

[t is very important to nale that, in order to apply the definition to prove that a set £
1S compact, we must exanune an arbizrary collection of open sets whose union containg
K, and show that X is cortained in the union of some finite number of sets in the given
collection "T'hat is. it must be shown that anv open cover of K has a finite subcover. On
the other hand, to prove that a set A is rot compact, it is sufficient to exhibit one specific
collection G of open sets whose union contains 7, but such that the union of any finire
number of setsin G fayls to cantamn £1. Thats, /7 1s not compact if there exists soame open
cover of H that has no finne subcover.

11.2.3 Examples (a) Lot K = {x,.x,.---.x, ) beafintesubset of R If G = {G_} 15
an apen cover of K, then each x| is contained in some set G in & Then the union of the
sets in the collection {G . (;a.,' S Gg”} contains K, so that it is a {inite subcover of G,
Since & was arbitrary, it follows that the fimite set K 15 compact.

(b} Let H := [0, oc). To prove that H is nor compact, we will exhibit an open cover that

oo
has no finite subcover. It we let G := (—~1.n) for cach n € N, then /1 € | ) (5 . s0 that
|

G .= {6, :n N} is an open cover of If. However f (G, G G |15 any fimte
subcollection of G, and 1f we letyn := sup{n,, n,, -~ . n. b then

G, 4G, J--UG, =G, =(~1.m.

lzvidently, thiz union fails to contain 4 = [0, ~0) Thus no finite subcollection of & will

have its union contain . and therefore A 1s not cownpact.

() Let J:= (0, . Hwelet G = (1/n. 1) for each n € N, then it is rcadily scen that
[ )

Jooy G, Thus G .— (G, . n € N} isan opencoverof J. If {Gn], an, - G} s any

a1 2 .
finite subcollection of C. and 1f we set s ;= sup {n]. Ny s nr} then

G"| “JGn:U"'UGn_, =G, = {1/ 1}
Since 1/s is in J bui not in (7, we see that the union does not contain /. Therefore, J i3

not compact. (-

We now wish 1o describe all compact subsets of K. First we will establish by rather
straighiforward arguments that any compact set in Ik must be both closed and bounded.
Then we will show that these propertics in fact characterize the compact sets in R, Tius 18
the content of the Heine-Bore] Theorem,

11.2.4 Theorem If X is 2 compact subset of R, then K is closed and bounnded.
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Proof. We will first show that X is bounded, For each »r € N, lct A_ = (=m,m). Since

m.
cach /7 isopenandsince K € | ] H = R, wesee thatthe collection {H . m € N}1san
=]

open cover of X Since X 1s compact, this calleclion has a finite subcover, o there ¢xists
M ¢ N such that

M
Kc\JH, =H, = (-MM,
m=|

Therefore K 1s bounded, since it {s contained in the bounded interval (— A, A7)
We now show that X 15 closed, by showing that its complement C(K) is open. To do
so, Jer u € C(K) be arbitrary and forcachn e N welet G, = {y c K : |y —ui > 1/n}.

o
It is an exercise to show that cach set G, 15 open and that R\{u} = | J G, . Since u ¢ K,

n=1

o
we have K © | | (5. Since K 1s compact, there exists m € N such that

ri=1

K-CCJanGm'
n=1

Now it follows from this that X N (u — 1/m, 20+ 1/m) = @, sothat the interval (0 — 1/m,
u~+ 1/m) € C(K). But since & was an arbitrary point in £(K), we infer that C(K) 15
open. Q.ED.

We now prove that the conditions of Theorem 11.2.4 are both necessary and sufhcient
for a subset of R to be compact.

11.2.5 Heine-Borel Theorem A subsct K of R is compact if and only 1f it is closed and
bounded.

Proof. 'We have shown in Theorem 11.2.4 that a compact set in [X must be ¢losed and
bounded. To establish the converse, suppose that X s closed and bounded, and let G = {G )}

be an open cover of K. We wish (o show that K must be contained in the union of some
finite subcollection from ¢. The proof will be by contradiction. We assume that:

H K is not contained in the umon of any finite number of sets in §.

By hypothesis, K is bounded, so there exists » > 0 such that X C [—r.r]. We lef I =
[—r. r] and bisect /, into two closed subintervals /] i= |-, 0) and 1] := [0, r]. At lcast
one of the two subsets X M /], and K N 7" must be nonvoid and have the properly that
1t 1s not contained in the union of any finite number of sets in G. [For if both of the scts
K M I{ and K M f| are contained in the union of some finite number of sets in G, then K
= (K N IYU (K NI is contained in the union of some finite number of sets in §, con-
trary to the assumption {13.] If K 7 {] is not contained in the union of some finite number
of sets in G, we let £, .= [|; otherwise K M [} has this property and we let 7, := I’

We now bisect , into twao closed subintervals /5 and 7. If K N/, is nonvoid and 1s
not contained in the union of some finite number of sets in G, we let J, *= f;; otherwise
K N I has this property and we let £, = I3,

Continuing this process, we obtain a nested sequence of intervals (7 ). By the Nested
Intervals Property 2.5.2, there 15 a point z that belongs to all of the 7, n € N. Sincc cach
interval /_ contains infinitely many points in K (why?), the point z 1s a cluster point of X'
Moreover, since K 1s assumed 1o be closed, 1t follows from Theorem 11.1.8 that z € K.
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Therefore there exists a set &G, in G with z € G, . Since (&, is open, thete exists £ > 0 sy},
that

z—ez+)<G,.

On the other hand, since the intervals 7 are obtained by repeated biscctions of I, =
[~ 7], the Jength of /15 772777 1t follows that if # is so large that r/2°7% < ¢, then
I < (z—e& z+ )< G,. Burthis means that if » is such that r/2" % <&, then K 0 I 1s
contained in the single set G, in §, contrary to our construction of /. This contradiction
shows that the assumption (1) that the clascd bounded set X requires an 1nfinite number of

sets 1n & to cover it 15 untenable, We conclude that K is compact. QEND

Remark It was seenin Example 11.2.3(b) that the closed set H = [0, co) 1s not compact;
note that A 15 not bounded. It was also seen in Example 11.2.3(c) that the bounded set
J 1= (0, 1) 15 not compact; note that J 15 not closed. Thus, we cannot drop either hypathesis
of the Heine-Rorel Theorem.

We can cambine the Heine-Borel Theorem with the Bolzano-Weiersitass Theorem
3.4 8 to obtain a scquential charactenzation of the compact subsets of R.

11.2.6 Theorem A subset K of X is compact if and only if every sequence in K has a
subsequence that converges to a point in K.

Proof.  Supposethat X 1s compact and let (x ) beasequence withx € K foralln € N. Ry
the Heine-Borel Theorem, the set X 1s bounded so that the sequence (x ) is bounded; by the
Bolzano-Weicrsirass Theorem 3.4 8, there cxists a subscquence (an) that converges. Since
K 15 closed (by Theorcm 11.2.4), the limit x .= Iim(xnk) 18 1n XK. Thus cvery scquence in
K has a subszguence that converges to a point of K.

To establish the converse, we will show that if X is either not closed or not bounded,
then there must exist a sequence in K that has no suhsequence converging to a point of K.
First, if K 1s not closed, then there is acluster point ¢ of X that does not belong to K. Since
¢ 1s acluster point of K, there is a sequence (x ) withx, € K and x5 ¢ forall n € N such
that lim(x,} = ¢. Then every subseguence of (x, ) also converges to ¢, and since ¢ g K,
there 1s no subsequence that converges to a point of X

Second, if K is not bounded. then there exists a sequence (x_) in K such that jx | > »
foralln € N.(Why?) Then every subseguence of (x_) 1s unbounded, so that no subsequence
of 1t can converge to 4 point of K. QED.

Remark The reader has prohably noticed that there 15 a similarity between the compact-
ness of the interval {a, A] and the cxistence of §-fine partitions for [a. b]. In fact, these
properlics are eguivalent, each being deducible from the other. However, compactness
applies to sets that are more general thap intervals.

Exercises for Section 11.2

1. Exhibit art open cover of the interval (1, 2] that has no fitute subcover.
2. DLxhibit an open cover of N that has no finite suhcover.

3. Exhibit an open cover of the set {1/2: n € N} that has no finite subcover.
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4. Prove, using Definition 11.2.2, that 1if F 15 2 closed subset of a compact set X in X, then F is
compact,

5. Prove,using Definition 11.2.2, thatif X'\ and K, are compact scts in R, then their union X, U K,
is compact.

6. Use the Hetre-Borel Theorem to prove the following version of the Bolzano-Weierstrass The-
orem: Every bounded infinite subset of R has a cluster point in R. (Note that if a set has no
cluster points, then 111s closed by Theorem 11.1.8))

Tu)

o 3

Find an infinite collection {K_: n ¢ N} of compact sets in R such that the union {j X 15 not
nr=]

compact,

8. Prove thal the intersection of an arbitrary collection of compact sets in K 15 compact,

9. Let (K ' n € N) he a sequence of nonempty compact sets in I such that X 2 K, 2 --- 2
K_ 2 - Prove thal there exists at least one point x € R such that x € K for all n € IV, that

s W
is, the intersection () K is not cmpry.

n—=1

10. Let K = @ be a compact set in )®. Show that inf X and sup K £x3st and belong to X.

11. let K # @ be compact in X and let ¢ € K. Prove that there exisis a point @ in K such that
le—a =wf{c—x|: xe K}

12. Lel K # & be compact in B and let £ € R. Prove that there exisls a point & in X such that
e —b] = sup{lc—x; 1 x € K}

13, Use the nolon of compactness to give an alternative proof of Exercise 5.3 18,

14 If K| and K, are disjoint nonempty compact sets, show that there exist &, € K| such that
0 < kg~ k0 =infllx, — x| 1 x, € K}

15. Give an example of disjoint closed sets F,, £, such that 0 = inf{lx, — x,] - x, € F,}.

Section 11.3 Continuous Functions

In this section we will cxamine the way in which the concept of continuiry of functions can
he related to the topological ideas of opent scis and compact sets. Some of the fundamental
propertics of continuous functions on intervals presented in Section 5.3 will be established
in this context. Among other things, these new arguments will show thar the concept
of continuity and many of its important propertics can be cared to a greater level of
abstraction. This will be discusscd briefly in the next section on metric spaces.

Continuity

In Section 5.1 we were concerned with continuity at a point, that is, with the “local”
continuity of functions. We will now be mainly concerned with “global” continuity in the
scnse that we will assume that the functions are continuous on their entire domains.

The continuity of a function f : A — IX ata point ¢ € 4 was defined 1n Section 5.1.
Theorem 5.1.2 stated that f is continuous at ¢ if and only if for every e-neighborhood
V_(f(c)) of f(c) there exists a §-neighborhood V;(¢) of ¢ such that ifx e Vi) A, then
fx) € V. (f{c)). We wish 1o restate this condition for continuity at a point in terms of
general neighborhoods. (Recall from 11.1.1 that a neighborhood of a point ¢ 15 any set U
_ that contains an e-ncighborhood of ¢ for some ¢ > ().}
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11.3.1 I.emmma A function f : A — K is contipuous af the point ¢ in A if and only if for
cvery neighborhood U of f(c), there exists a neighborhood V of ¢ suchthatifx e VN A
then f(x) e IJ.

Proof. Suppose [ satisfies the stated condition. Then given & > 0, welet 7 = V. ( 7 (¢))
and then obtainancighborhood V forwhichx € V M Aimplics f(x) € U. X{wechoose §
O such that V;(c) € V, then x € V,(c) N A imphes f(x) € U;therefore £ is continuous a
¢ according to Theorem 5.1.2.

Conversely. 1f f is continuous at ¢ in the sense of Theorem 5.1.2, then since anv
neighborhood U of f(¢) contains an e-neighborhood V_{f(c)), it follows that taking th::
d-neighborhood V = V,(c) of c of Theorem 5.1.2 satisfies the condition of the lemma.

QED.

We note that the statcment that x € VN A implhies f(x) € {J 1s cquivalent to the
statement that f{V N A) € U/, that s, that the direct image of ¥V M A is contained in [/,
Also from the definjtion of inverse image, this is the samc as V 1A C© F (1), (See
Definition 1.1.7 for the definitions of direct and inverse images.) Using this observation,
we now obtain a condition for a function to be continuous on its domain in terms of open
sets. In morc advanced courses in topology, part (b) of the next result 1s often taken as the
definition of {global) continuity.

11.3.2 Global Continuity Theorem et A TR andlet £ A - IR be a function with
domain A. Then the following are equivalent:

(a8} f 1s continuous at every point of A,
(by Forevervopensct G in R, therecxistsanopenset Hin R suchthat HN A = f“] (€7).

Proof. (a) = (b). Assumc that f is continuous at every point of A, and let G be a
given open set in R. If ¢ belongs to £ ~H(G). then f(c) € G, and since G 1s open, G 1s a
neighborbood of f(c). Therefore, by the preceding lemma, it follows from the continuity
of f that there is an open sct V{c) such that x € V (¢} implics that f(x) € G; thatis, V (¢}
is contained in the inversc image f*’ (). Select V{¢) {oreach ¢ in f" (G), and tet H be
the union of all these sets V(c). By the Open Set Properties 11.1.4, the set #/ 1s open, and
wehave H MA = f"I (G). Hence (a) implics (). _

(b) => (a). Let ¢ be any point 4, and let & be an open neighborhood of f(c). Then
condition (b} imphes that there exists an open set H 1in R such that F M A = f_](G)-
Since f(c) € G, it follows that ¢ € A, s0 H is a neighborhood of ¢. If x € H N A, then
fiey € G, and therefore f is continuous at ¢. Thus (b) implics (a). QED.

Ir the case that A = R, the preceding result simplifies to some extent.

11.3.3 Corollary A funcuon f R — R 18 continuous if and only jff‘! (GG) is open In
T’ whenever G Is open. -

It must be emphasized that the Global Continuity Theorem 11.3.2 docs not say that if
f is acontinuous function, then the direct image f(() of an open sct is necessarily opern. In
general, a continuous function will not send open sets to open sets. For example, consider
the continuous function f : R — X defined by

flx) =x?+41 for ¥ eR.
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If G is the open set G o= (=], 1), then the direct image under f is f(G) = (1, 2), which
1s not open in R. See the exercises for additional examples,

Preservation of Compactness

In Section 5.3 we proved that a conttnuous function takes a closed, bounded interval [a, b]
onto a closed, bounded interval [m, M1, where m and M are the minimum and maximum
vatues of f on[a, b], respectively. By the Heinc-Borel Theorem, these are compact subsets
of I, so that Theorem 5.3.8 1s a special case of the following theorem.

11.3.4 Preservation of Compactness [f X is a compactsubsetof R andif f 1 K 5 R
1s contiuous on K, then f(K) is compact.

Proof. LetG = [G,} bean open cover of the set f(K). We must show that & has a finite
subcover. Since f(K) €1 JG,. it follows that ¥ < (J f~'(G,). By Theorem 11.3.2, for
each G, therc is an open set H, such that H N K = f7NG,). Then the collection {H,}
is an open cover of the set X. Since K is compact, this open cover of X contains a finite
subcover {HM' H‘*z' e H }. Then we have

Of“((;;\)zoh’k Nk 2K
=1 l =1 '

From this it follows that [ j G, 2 f(K). Hencc we have found a finite subcover of G.
=1 :

Since & was an arbitrary open cover of f(K), we conclude that f{K) is compact, Q.ED.

11.3.5 Some Applications Wc will now show how to apply the notion of compactness
(and the Heinc-Bore! Theorem) to obtamn altemnative proofs of some important results that
we have proved earlier by using the Bolzano-Weterstrass Theorem. In fact, these theorems
remarn true if the intervals are replaced by arbitrary nonempty compact sets in K.

(1) The Boundedness Theorem 5.3.2 15 an ummediate consequence of Theorem 11.3.4
and the Heinc-Borel Theorem 11.2.5. Indeed, if & € R is compact and if /2 K -» R 13
continuous on K, then f(K') is compact and hence bounded.

(2) The Maximum-Minimum Theorem 5.3.4 2lsg is an easy conscquence of Theorem
11.3.4 and the Heine-Borel Theorem. As before, we find that f (X'} is compact and hence
bounded in R, so that §° 1= sup f(X) exists. If f{K) is a finite set, then §° € f(K). If
F(K) is an infinitc sct, then s* is a cluster point of f(K) [sec Exercise 11.2.6]. Since
F(K) is a closed set, by the Heine-Borel Theorem, it follows from Theorem 11.1.8 that
s* € f(K) Weconclude that s™ = f{x™) forsome x™ € K.

{3} Wc can also give a proof of the Uniform Continutty Theorem 5.4.3 based on the noten
of compactness. To do so, let X' € R be compact and let f : K — R be continuous on K.
Then given € > Oand u € K, therc is a number 8, ;= 8 {3&, u) > Osuch thatif x € K and

lx —u| <&, then | f(x) — flu)] < :]-28. Forcachu € K, Iet G, 1= {u — '58“‘ u+ %Su) S0

that G, ts open; we consider the collection § = {G, 1 u € K}. Sinceu € G, foru € K,
it is trivial that K € [J G, Since K 1s compact, therc are a finite pumber of sets, say
uck

G, . Gu,,,, whosc union contains X. We now define

§ey := Swf{§, .8, |,

] U



so that 4(¢) > 0. Now if x,u ¢ K and |x — u| < (&), then there ¢xists some e, with
k=1, --,Msuchthat x € G ; therefore ‘x - u,(‘ < %é‘u . Since we have 8(¢g) < s
k ! £ - ! U,
it follows that
u—uk‘ <lu—x|l+ x—u <5

by

Butsince §, — &(3¢.u,) it follows that hoth
k

|f(x} - f(uk)l L %E and j(u) — f[:ukj}‘ - %g_

Therefore we have | f{x) — f{u)| < ¢.

We have shown that 1f £ > 0, then there exists (£} > 0 such thatif x, u arc any points
in K with [x — u] < §(e), then | f{x) — fiu}| < & Sincee > 0is arbitrary, this shows that
S 1s uniformly continuous on X', as asserted. -

[S—

We conclude this section by extending the Continuous Inverse Theorem 5.6.5 to func-
tions whose domains arc compact subscts of R, rather than intervals in 2.

11.3.6 Thecrem If K 154 compact subsetof R and f @ K — & 1s injective and contin-
uous, thén f ' is continuous on f(K).

Proaf. Since K is compact, then Theorem 11.3.4 implies that the image f{X) 1s compact.
Since f is injective by hypothesis, the inverse function 7' is d=fined on f(K ) to K Let
(y,) bc any convergent sequence 1n f(K'}, and let vy = lim(y ). To establish the continuity
of £7! we will show that the sequence (f! (¥.)) converges 1o ! (¥g)-

Letx — f_l (y,) and, by way of contradiction, assume that (x ) does not converge to
xo o= f l(."’n)- Then there exists an & > 0 and a subsequence (x;) such that x;, — x,| > &
forall k. Since K 15 compact, we conclude from Theorem 11.2.6 that there 15 a subsequence
(x;) of the sequence (x;) that converges 1o a point x* of K. Since x* — x| > ¢, we
have x* # x,. Now since f is continuous, we have lim{ f(x))) = f(x"). Also, since the
suhsequence (y:;] of (¥, that corresponds to the subsequence (xy of {x,) must converge
to the same limit as (y, ) docs, we have

Nm(f(x)) = im(y)) = y, = f(xy)-

Therefore we conclude that f{x*) = f{x,). However, since f is injective, this implies that
x" = x4, which is a contradiction. Thus we conclude that f~' takes convergent sequences
in f(K) to convergent scquences in K, and hence f" 18 CONtLNUOUS. QED.

Exercises for Section 11.3

1. Let f  E — Rbedefned by f(x) = x? forx € B.
(a) Show that the inverse image £~ (7 of an open interval / 1= (2. b) is cither an open interval.
the union of two open intervals, or empty, depending on a and 6.
(b} Show tharif 7 is an open interval containing 0, then the direct image £ (/) is not apen.

2. Let fi R - Rbedefinedby f(x) = /(1 +x7} forx € K.
fu) Find an open mnterval {a, 5y whose direct image under £ is ot open.
{by Show that the duect image of the closed interval [(), oo) is not closed.

3 let7 =[.oc)andlet f(x) = +/x — 1 forx € /. For each £-neighhorhood G = (—z2. =—¢) of
0, exhibit an open set I/ suchthat HN T = f1(G).
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4. Leth: 2 — Rbedefinedby h{x) := 1if0 < x <1, h(r) := O otherwise. Find an open set G
such that #76) is nol opan, and a closed set F such that P {F)is not closed.

5. Show thatif £ B — X is continuous. then the set {x € R : f{¥) < «} is open in K for cach
o X

6. Show thatif ;R — R is continuous, then the set {x € 2 f{x) < a) is closed in R for cach

o e R

7. Show thatif /2 — R is continuous, tnen the set {x € 2 : f(x) — k} is closed in = for each
ke

8. Give anexample of a function 7 : R — = such that the set {x € R : f({x) = 1] is neither open

nor closed in 2.

2. Provethar f R — Ris continuous if and only if for each closed set F in K, the inverse image
() i3 closed.

10. let? =[ag. Blandlet f:7 — ZRand g : f — K be continucus functions on /. Show that the
set{x &/ f(x)=pg(x)}isclosed in R

Section 11.4 Metric Spaces

This book has heen devoted to a careful studv of the real number system and a number of
different limiting processes that can be defined for functions of a real variable. A central
topic was thz study of continuous functions. At this point, with a strong understanding of
analysis on the real line, the study of more gencral spaces and the rclated limit concepts
can begin. It is possible to generalize the fundamental concepts of real analysis in several
differcnt ways, bul one of the most fruitful 18 30 the context of metric spaces, where a metnic
1s an abstraction of a distance function.

In this section, we will introduce the idea of metric space and then {ndicate how certain
areas of the theory developed 1n this hook can he extended to this new setiing. We will
discuss the concepts of neighhorhood of a point, open and closed sets, convergence of
sequences, and continuily of functions defined on metric spaces. Our purpose in this brnef
discussion 1s not to develop the theory of metric spaces to any great extent, but to reveal how
the key 1deas and techniques of real analysis can be put into a more abstract and general
framework. The readcr should note how the basic results of analysis on the real line serve
to motivate and guide the study of analysis in more general contexts.

Generalization can serve two important purposes. One purpose is that theorems denved
in genzral settings can often be applied 1n many particular cases without the nced of a
separate proof for each special case. A second purpose is that by removing the nonessential
{and sometimes distracting) features of special situations, ir is often possible to understand
the real significance of a concept or thecorem.

Metrics

On the real ling, basic limit concepts were defined in terms of the distance jx — y| between
two points x, ¥ in X, and many theorems were proved using the absoluie value functon.
Actually, a careful study reveals that only a few key propertics of the absolute value were
required to prove many fundamental results, and it bappens that these propertics can he
extracted and used to define more peneral distance functions called “metrics”.
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11.4.1 Definition A mefric on a set § 15 a function 4 : § x § — R that satisfics the
following propcrties:

(a) d(x,y) = 0forall x y € § (positviry),

(b) d(x.y)=0ifand only if x = y (definiteness);

(e) dix. y)y=d(y, x)forallx, y € § (symmerry);

(d) dix. y) <d{x,z)+d(z, v)forall x, y, z € S (triangle inequality).

A metric space (§, d) 1s a set S together with a metric  on §.
We consider several examples of metnc spaces.

11.4.2 Examples (a) The famiitar metric on K 15 defined by
dix,y) = |x — y| for x,.ye R

Property 11.4.1(d) for 4 follows from the Triangie lnequality for absolute value because
we have
dx. y)=Ix —yl=1x —2) + (z— )l -
Sl —zd4iz—yl=dx, 2 +d(z y).
forall x, y, z € R.

{b) The distance function in the planc obtained from the Pythagorcan Theorem provides
one example of a metric In R*. That is, we define the metric d on R? as follows: if
Poi=(x,,y) and P, = (x,, y,) are points in [[Ez, then LA

d(P,, P =[x, — )" + (3, — 3)?

(¢) It is possible to define several different metrics on the same sct. On R?, we can also
define the metric d, as follows:

di(P. P = x, = x|+ |y, = v,
Still another metric on R? is d__ defined by
d. (P, £y) = sup {‘xt x| |y = |

The verifications that 4, and 4, satisfy the properties of a metric are left as exercises.

(d) Let C|0, 1] denote the set of all continuous functions on the interval [0, 1] to R. For
f,ginC[0 1], we define

d,(f. &) =sup{lf(x) — gl x € [0, 1}

Then 1t can be venhed that ¢ 1s a metnic on C[0. 1]. This metrc is the unifosm norm of
f —goni0 1]asdefined in Section 8 1; thatis, d_(f, g) = [| f — gll, where || fi| denotes
the uniform norr of £ on the set [0, 1]

(e) We again consider C{0, 1], but we now define a different metric 4, by

czfl(f.g):;]n f —gl for f geCl0 1]

The properties of the integral can be used to show that this is indeed a metric on C[0, 1]
The detatls are left as an exercise.
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(f) Let S be any nonempty set. For s, ¢ € S, we define

) 0 i s =1,
ds.1) = {1 st

[t 15 an exercise 1o show that d 1s a metrc on S. This metric is called the discrete metric
on the set §. 0

We note that if (S, 4} is a metric space, and if T € S, then ¢’ defined hy dfx, y) =
d(x, y) for all x. y € T gives a metric on 7, which we generally denote by 4. With this
understanding, we say that (7, d) is also a metnic space. For example, the metric 4 on R
defired by the absolute value is a metric on the set Q) of rational numbers, and thus (@, d)
is also a metric space.

Negiorhuns and Comrgs —

The basic notion needed for the introduction of himit concepts is that of neighborhood, and
this is defined in metric spaces as follows.

11.4.3 Definition Let (S, &) be a metric space. Then for £ = 0, the s-neighborhood of
apoint x, in S 15 the set

Vo(xg) =[x € §:dix, x) < €}

A neighborhood of x, 15 any set U that contains an e-neighborhood of x, for some £ > 0.

Any notion defined in terms of neighborhoods can now be defined and discussed 1n
the context of metnc spaces by modifying the language appropnately. We first consider the
convergence of sequences.

A sequence in a metric space (S, &) 1sa function X : N — S with domain N and range
in §, and the nsual notations for sequence are used; we wnte X = (xn), but now x, €35 for
all n € N. When we replace the absolute value by a metrc in the definition of sequential
convergence, we get the notion of convergence in a metric space.

11.4.4 Definition Let (x ) be asequence in the metric space (S, 4). The sequence (x )
15 said to converge o x in S if for any £ > O there exists K € Nsuch thatx, € V_(x) for
alln > K.

Note that since x, € V (x}1ifand only if d(x_, x) < &, a sequence (x ) converges to x
if and only if for any £ > 0 therc exists X such that d{x,.x) < ¢ forall n > K. In other
words, a scquence (x,) in (5, 4) converges to x if and only if the sequence of real numbers
(d(x_.x)} converges to 0.

11.4.5 Examples (a) Consider ®? with the metric 4 defined in Example 11.4.2(b). If
P =(x,.y)€ &2 for each n € N, then we claim that the scquence (P ) converges to
P = (x, y) with respect to this metric if and only if the sequences of real numbers (x, ) and
(y,) converge to x and y, respectively.

First, we note that the inequality x, — x| < d(P_, P) implies that if (P ) converges
to £ with respect to the metric 4, then the sequence (x| ) converges to x; the convergence
of (y,) follows in a similar way. The converse follows from the inequality d(P , P) <

|x, — x| + |y, — y|. which is readily verificd. The details are left to the reader.
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(b) Letd_ bethe metne on €0, 1] defined in Example 11.4.2(d). Then a sequence (f.)
in €0, 1] comcracﬂ to f with respect to this metric if and only if (f) converges to 1
uniformly on the set [0, 1]. This is established in Lemma 8.1.8 in the discussion of the
uniform norm. 7

Cauchy Sequences

The notion of Cauchy scquence i1s a significant concept 1n metric spaces. The definition is
formulated as expected, with the metnc replacing the absolute value.

11.4.6 Definition Let (S, 4) be a metric space. A sequence (x_) in § is said (0 he a
Cauchy sequence if for each £ > 0, therc exists A € N such that d(x,, x_} < ¢ for all
n,m > .

The Cauchy Convergence Theorem 3.5.5 for scquences in R states that a sequence in
R 1s a Cauchy sequence if and only if it converges to a point of R, This theorem is not true
for metnc spaces 1n general, as the examples that follow will reveal. Those metric spaces
for which Cauchy sequences arc convergent have special importance.

11.4.7 Definition A metric space (S, 4) 18 said to be complete if each Cauchy sequence
in § converges to a point of S.

In Section 2.3 the Comnpleteness Property of R 1s stated in terms of the order properties
by requiring that every nonempty subset of [ that is bounded above has a supremumin .
The convergence of Cauchy sequences 18 deduced as a theorem. In fact, it 18 possible to
reverse the roles of these fundamental properties of R: the Completeness Property of R
can be stated in terms of Cauchy sequences as in 11.4.7, and the Supremum Property can
then be deduced as a theorem. Since many metric spaces do not have an appropnate order
structure, a concept of completeness must be described in terms of the metric, and Cauchy
sequences provide the natural vehicle for this,

11.4.8 Examples (a) The metric space (Q, &) of rational numbers with the metric
defincd by the absoiute value function is not complete.

For example, if (x ) i3 a sequence of rational numbers that converges 1o V2, then it is
Cauchy in . but it docs not converge to a point of §. Therefore (, &) is not a complete
melric space.

(b) The spacc C[0, 1] with the metric 4 defined 1o 11.4.2(d) is complete.
To prove this, supposc that {f ) is a Cauchy sequence in C[0. 1] with respect to the
metric a’m_ Then, given £ > 0, there exists A such that

(1) £ )= f (0 <e

forall x € 10, 11 and all n, m = /1. Thus for each x, the scquence (f (x)) is Cauchy in R,
and therefore converges in R. We define f to be the pointwise limit of the sequence; that is,
f(x) = lIm(f, (x))foreach x € |0, 1]. It follows from (1) that for each x € [0, 1] and each
n > H,wehave ‘f”(x) — f(x)‘ < ¢. Consequently the sequence () converges uniformly
to f an{0, 1] Since the uniform limit of continuous functions is also continuous (by 8.2.2),
the function f isin C[0, 1]. Thercfore the metric space (C[0, 11, 4_) is complete.

(¢} Ifd, is the mewic on C{0. 1] defined in 11.4.2(e), then the metrc space (C[0, 1], 4,)
18 not complete.
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To prove this statement, it suffices to exhibit a Cauchy sequence that does not have a
Jimat 10 the space. We define the sequence (f) for n > 3 as follows (see Figure 11.4.1):

1 for 0<x <1/2,
Fx):=1314+n/2 -nx for 1/2<x=1/2+4 1/n,
0 for 1/2+1/n <x <1,

Note that the sequence ( f,) converges pointwise to the discontinuous function f(x) 1= 1
for0 < x < 1/2and f(x) =0for /2 <x < 1. Hence f ¢ C[0, 1], in fact, there is no
function g € C{0, 1] such thatd,(f , g) — C J

1,
2 n

rofa— -

Figure 11.4.1  The scquence ()

Open Sets and Continuity _

With the notion of neighbarhood defined, the definitions of open sct and closed set read the
samc as for sets in R.

11.4.9 Definition Let (S, &) be a metric space. A subset G of S is said to be an open sct
in § if for every point x € § there is a neighborhood U/ of x such that I/ € G. A subsct F
of §is said to be a closed sct in § if the complement S\ F is an open setin §.

Theorems 11.1.4 and 11.1.5 conceming the unions and intersections of open sets
and closed sets can be extended to metnic spaces without difficulty. In fact, the proofs
of those theorems carty over to metric spaces with very little change: sumply replace the
e-neighborhoods (x — €, x + ¢) in R by e-neighborhoods V_{(x) in §.

We now can exarmnc the concept of continuity for functions that map onc metric space
(§,.4d)) into another metric space (§,, d,). Note that we modify the property in 5.1.2 of
continuity for functions on R by replacing ncighborhoods in ® by neighborhoods in the
MELric Spaces.

11.4.10 Definition Lect (S, 4,) and (S,, d,) be metric spaces, and let f : §) — S,bca
function from §, to S,. The function f s said to he continuous at the point ¢ in §, if for
every ¢-neighborhood V,(f(¢)) of f{(c) there exists a §-neighborhood V. {c} of ¢ such that
if x € Vy(c), then f(x) € V (f{¢)).

The ¢-§ formulation of continuity can be stated as follows: f : S5, -» §, is continuous
at ¢ if and only if for each & > 0 there exists & > 0 such that 4 (x, c) <« 4 implies that

4(f(). f(©) <&



11.4.11 Global Continuity Theorem If (S, 4)) and (S,, d,} are metnic Spaces, wen a
function f S, — S, is continuous on S, if and only if £7(G)Y is open in S whenever G
1s openin S,

The i ;
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proof of 1].3.4, we obtain the following result,

11.4.12 Preservation of Compactness 1 (5, d) is 2 compact metric space and if the
function f : § — R is continuous, then f(§) is compact in R.

The important properties of continuous functions given in 11.3.5 then follow imme-
diately. The Boundedness Theotem, the Maximum-Minumnum Theorem, and the Umiform
Continuity Theorem for real-valued continuous functions on a compact metnc space are
all established by aporopunately modifyving the language of the proofs given1n 11.3.5.

Semimetrics B

11.4.13 Dehinition A semimetric on a set §1s a function & : § x § — = that satisfies
all of the conditions in Definttion 11.4.1, except that condition (b) 1s replaced by the weaker
condition

(b dix.y) =0 if x=y.

A semimetric space (5. ) 1s a set § together with a semumetne 4 on S.
Thus cvery melric 1s & Semunetric, and every mclric space 1s a Serimelric spacc.

However, the converse is not true. For example, it P, '= (x|, y,) and P, 1= (x,. y,) arc
points in the space R?, the function d, defined by

d (P, P)i=lx, —x

2 *

15 eastly scen to be a semumetric, but it 1s not a metric since any two points with the same
first coordinate have “d, ~distance” equal 10 0.

Saomewhat more mlereslmglv if £, g are any functions in Lfa. »]. we¢ have defined (1n
Dehnition 10.2.9) the distance function:

b
dist( £, g) f:f lf—g.

Here it is clear that any two functions that arc equal except at a countable set of points will
have distance cqual to O from each other (in fact, this is also true whep the functions are
cqual almost everywhere).

The reader can retrace the discussion in the present section and sec that most of what
we have done remains true for semimetrics and semimetric spaces. The main difference
is that a sequence in a semimeinc space does not necessarily converge to a wnigue lLimit.
While this seems to be rather unusual, it is actually not a very serious problem and one
can leara to adjust to this situation. The other alternative is to “identify” points that have
distance O from cach other. This identification procedure 18 often 1invoked, but 1t mecans one
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is dealing with “equivalence classes” rather than individual points, Often this cure 1s worse
than the malady.

Exercises for Section 11.4

o M

N

1a.

12.

Show that the functions 4, and d_ defined in 11.4.2(c} are metrics on 22,

Show that the functions d,, and 4 defined in 11.4.2(d, &) arc metrics on C[0, 1].

Verify that the discrete metric on a set S as defined in 11.4.2{f) is a metric.

UP =i(x,y)E R®? and d., 1s the metric in 11,4,2(c), show that (P ) convergesto P = (x, y)
with respect to this metnc if and only if (x ) and (¥,) converge (o x and y, tespecuvely.

Venty the conclusion of Exercise 4 if d_ is replaced by 4.

Leat § be a nonempty set and let & be the discrete metric defined in 11.4.2(f). Show that in the
metnc spacc {5, d), 4 sequence (xﬁ) in § converges to x if and only f there 1s 2 K € N such that
x =xforalinz K.

Show that if 4 1s the discrete metric on a set §, then every subset of § is both open and closed
in (5, 47

et Pi=(x y)and O = (0,0} in R?. Draw the following sets in the plane:
(a) {PeR :4(0,P) <1}

® {PeR?. d_(0,P)<l)

Prove that in any metric space, an £-neighbothood of a point is an open set.
Prove Theorem 11.4. 11,

Prove Theorem 11.4.12.

If (S, d) 18 a metnic space, a subset A C § is said to be bounded if there exists x, € § and a
number B = Osuchthat A C [x € §: d(x, x,) = B} Show that if A is a compact subset of S,
then 4 is closed and bounded.



APPENDIX A

LOGIC AND PROOFS

Natural science 1s concerned with collecting facts and orgamzing thesc facts into a coherent
body of knowledge so that one can understand nature. Originally much of science was
concerned with obhservation, the collection of information, and its classification, This ¢las-
sification gradually led to the formation of various “theories™ that helped the investigators
to remember the individual facts and to be able to explain and sometimes predict narural
phenomena. The ultimate aim of most scientists is to be ahle to organize their science into
a coherent collection of generai prninciples and theories so that these principles will enabie
them both to understand nature and to make predictions of the outcome of future expern-
ments. Thus they want to be able to develop a sysiem of general principies (or axioms) for
their science that will enable them to deduce the individual facts and conscquences {rom
these gencral laws.

Mathematics 1s different from the other sclences: by 1ts very nature, it 18 a deductive
science. That 1s not to say that math=maticians do not collect facts and make observations
concerning their investigations. In fact, many mathematicians spend a large amount of time
performing calcularions of special instances of the phenomena they are studying in the
hopes that they will discover “unifying principles”. (The great Gauss did a vast amount of
calculation and studied much numerical data before he was able to formulate a conjecture
concerning the distribution of prime numbers ) However, even after these pnnciples and
conjecrures arc formulated, the work is far from over, for mathematicians are not satisfied
untii conjectures have been denved (i.e., proved) from the axioms of mathematics, from the
definitions of the terms, and from results {or theorems) that have previously been proved.
Thus, a mathematical sratement 1s not a theorem until it has been carefully denved from
axioms, definitions, and previously proved theorems.

A few words about the axioms (i.e., posiulates, assumptions, ctc.) of mathematics are
in order. There are a fcw axioms that apply to all of mathematics—the “axioms of set
theory”—and there are specific axioms within different areas of mathematcs. Sometimes
these axioms are stated formally, and sometimes they are built into definitions. For example,
we list properties in Chapier 2 that we assume the real number system possesses; they are
really a set of axioms. As another examnpie, the definition of a “group” in abstract algchra
is basically a set of axioms that we assume a sct of elements to possess, and the study of
group theory is an investigation of the consequences of these axioms.

Students studying real analysis for the first time usually do not have much cxpericnce
in understanding (not fo mention constricting) proofs. In fact, one of the main purposes
of this course (and this book) is to help the reader gain experience in the type of critical
thought that is used in this deductive process. The purpose of this appendix is to help the
reader gain insight about the techniques of proof.

Statements and Their Combinations _ Lo

All mathematjcal proofs and argurments arc bascd on statements, which are declarative
sentences or meaningful stings of symbols that can be classified as being true or false. Ttis

334
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not necessary that we know whether a given statement is actually true or false, but it must
be ene or the other, and it ¢annot be both. (This 1s the Principle of the Excluded Middle.)
For cxample, the sentence “Chickens are pretty” is a matter of opinion and not a stateiment
in the sense of logic. Consider the following sentences:

« Ttrained in Kuala Lumpur on June 2, 1988.
Thomas Jefferson was shorter than John Adams.

+ There are jufinitely many twin pnimes.

= This sentence 18 false.

The first three arc statemnents: the first is true, the second 1s false, and the third is either true
or false, but we are not sure which at this time. The fourth sentence is not a statement; it
can be netther frue nor false since 1t Jeads to contradictory conclusions.

Some statements (Such as 1 4 1 = 2"} are always true; they arc called tautologies.
Some statements (such as “2 = 37) are always false; they are called contradictions or
falsities. Some statements (such as “x? = 1) are somctimes true and sometimes false
(c.g., true when x = | and false when x = 3). Or course, for the statement to be completely
clear, it 1§ necessary that the proper context has been established and the meaning of the
symbols has been properly defined (e.g., we need to know that we are referring to integer
anithmelic in the preceding cxamples).

Twao staternents P and 0 are said to be logically equivalent if P is true exactly when
(2 15 truce (and hence P is false cxactly when @ is false). In this case we often write P == (.
For example, we write

(x is Abraham Lincoln) = (x is the 16th president of the United States).

There are several different ways of forming new statements from given ones by using
logical connectives.
[f P 1s a statement, then 1ts negation 1s the statement denoted by

not *

which 1s true when P 15 false, and 1s falsc when £ is uve. {A common notation for the
negation of P 18 =P ) A httle thought shows that

P = not{not P).

This 1s the Principle of Double Negation.
If P and @ are statements, then their conjunction is the statement denoted by

£ and QO

which is true when both P and @ are true, and 1s false otherwise, (A standard notation for
the canjunction of £ and @ 15 P A @) It is evident that

(P and Q) == (Q and P).
Similarly, the disjunction of P and Q is the statement denoted by
FPorQ

which 1s true when at Jeast one of P and @ 1s true, and false only when they are hoth false.
In legal documents “or'”" is often denoted by “and/or” to make it clear that this disjunction
1s also true when both ' and Q are trie. (A standard notation for the disjunction of P and
Qis P v (2)It1s also evident that

(PorQ)=(0 or P).
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To contrast disjunctive and conjunctive statements, note that the statement “2 « /2 ang
V2 < 3" is false, but the statement 2 < /2 or /2 < 3" is true (since 2 1s approximatcly
cqual to 1.4142...),

Some thought shows that negation, canjunction, and disjunction are related by DeMor-
gan's Laws.

not (P and &) = (not P} or (not (),
not (P or &) = (not P} and (not Q).

The first of these equivalencies can be illustrated by considering the statements
P x =2 O ye A

The statement (P and Q) 1s true when both (x = 2) and (y € A) are true, and it 15 falge
when at lcast ane of {(x = 2) and (y € A) 1s false, that 15, the statement not(P and Q) is
true when at lcast one of the statements (x 3% 2) and (y ¢ A) holds.

Implications

A very important way of forming a new statement from given oncs 15 the implication (or
conditional) statement, denoted hy

(P = 0}, {1f P then Q), or (P implies ).

Here P is called the hypothesis, and Q 15 called the conclusion of the iraplication. To help
understand the truth vaiues of the implication, consider the statement

If I win the lottery today, then I'll buy Sam a car.

Clearly this statement 15 falsc if [ win the lottery and don't buy Sam a car. What if [ don't
win the lottery today? Under this circumstance, [ haven't made any promise about buying
anyone a car, and since the condition of winning the lottery did not matenalize, my failing
to buy Sam a car should not be considered as breaking a promuse. Thus the implication 18
regarded as true when the hypothesis 15 not satisfied.

In mathematical arguments, we are very much interested in implications when the
hypothesis is truc, but not much interested in them when the hypothesis 1s false. The
accepted procedure 18 to take the staternent P =»> (2 to be false only when P is true and (2
is false; in all other cases the statement P = (0 is true. (Consequently, if P is false, then
we agree o take the statement 2 = Q 1o be true whether or not Q is true or falsc. That
may secm Strange to the reader, but it turns out to be convenient in practice and consistent
with the other rules of logc))

We observe that the definition of P = Q is logically equivalent to

not (P and (not Q)).

hecause this statement 1s falze only when P 1s true and ( is false, and it is frue in all other
cases. [t also follows from the first DeMorgan Law and the Principle of Double Negation
that ' = (218 logically equivalent to the statement

(not P)or 3,

since this statement 1 true unless both (not PY and Q are falsc; that is, unless P is true and
( is false.
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Contrapositive and Converse

As an exercise, the reader should show that the implication 2 => Q is logically cquivalent
to the implication

{not 0) = (not P),

which is called the contrapositive of the implication P = . For example, if P > Q is
the implication

If I am in Chicago, then I am in Illinois,
then the contrapositive (not Q) = (not ) is the implication
If I am not in Nllinois, then I am not in Chicago.

The equivalence of these two statements is apparent after a bit of thought. In attempting
to establish an implication, 1t is sometimes easier to establish the contrapositive, which is
logically cquivalent to it. {(This will be discussed in more detatl later.)

If an impilication P = 0 15 given, then one can also form the statement

Q=P

which 1s called the converse of P » @ The reader must guard against confusing the
converse of an tmplication with its contrapositive, since they are quite different statements.
While the contrapositive is lagically equivalent to the given implication, the converse 1s
not. For example, the converse of the statcment

If 1 am in Chicago, then I am in Illinois,
15 the statement
If T am in Illinois, then I arn in Chicago.

Since jt is possible to be in Illinois but not in Chicago, these two statements are evidently
not logically equivalent.

There 15 one final way of formung statements that we will mentton. It i1s the double
implication {or the hiconditional) statement, which is denoted by

P 0 or Pifandonlyif @,
and which is defined by
(P = ()and .(Q = P).
It is a straightforward ¢xercise to show that P <> () is true precisely when P and Q are

both true, or both {alse.

Context and Quantifiers

In any form of communication, it is important that the individuals have an appropriate
coniext in mind. Statements such as ‘I saw Mary today” may not be particularly informative
if the hearer knows several persons named Mary. Sirmlarly, 1f one goes into the muddle of
a mathernatical lecture and sezs the equation x? = 1 on the blackboard, it is uscful for the
viewer to know what the writer means by the letter x and the symbol 1. Is x an integer? A
function? A matrix? A subgroup of a given group? Does 1 denote a natural number? The
identity function? The 1dentity matrix? The trivial subgroup of a group?

Often the context is well understood by the conversants, but it is always a good idea o
establish it at the start of a discussion, For example, many mathematical statements involve
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one or mokc variables whose values usually affect the truth or the falsity of the statemen;
so wc should always make clear what the passible values of the variables are.
Verv often mathematical statements involve expressions such as “for all”, “for every”

LTI

“for some”, “there exasts”, “there are”, and so on. For example, we may have the statemnengs
For any integer x, =1
and
There exists an integer x such that x* = 1.

Clearly the first stalerment 15 false, as is seen by taking x = 3; however, the second statement
1s true since we can take eitherx = lorx = —1.

If the context has been established that we are taiking about 1integers, then the above
staternents can safely be abbreviated as

For any x. x° = |
and
There cxists an x such that x% = 1.

The first statement involves the universal quantifier “for every”, and is making a statement
(here false) about all integers. The second staternent involves the existential quantifier
“there exists”, and is making a statement (here true) about ar leasr one :nteger.,

These two quantifiers occur so often that mathematicians often usc the symbol ¥ to
stand for the universal quantifier, and the symbol 3 to stand for the existenual quantifier.
That is,

V¥ denoles forevery”,
3 denotes  “there exists™.
While we do not use these symbols in this book, it is important for the reader to know how
to read formulas in which they appear. For example, the statement
ey (V) Ayix +y = 0)
(understood for intcgers) can be read

For every tnteger x, there exists
an integer y such that x 4+ v = Q.

Similarly the statement
(i) @Ay)(Vx)(x +y =0}
can be read

Therc exists an integer y, such that
for every integer x, thenx + y = 0.

These two statements are very different; for example, the first one is true and the second one
is falsc. The moral is that the order of the appearance of the two different types of quantifiers
is very important. It must also be stressed that 1f scveral vanables appear inam athematical
expression with quantifiers, the values of the later vanables should be assumed (o depend on
all of the values of the variables that are mentioned earlier. Thus in the (rue) statement (1)
above, the value of y depends on that of x; here if x = 2, then y = —2, while if x = 3, then
y = —3.
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It is important that the rcader understand how to negate a statement that involves
quantificrs. In principle, the method is simple.

(a) To show that it is false that cvery clement x in some sct possesses a certain property
P, it is enough to produce a single counter-example (that is, a particular clement n
the set that does not possess this property); and

(b) To show that it is false that there exists an clement v In some sct that satisfies a certain
property P, we need to show that cvery element y in the sct fails to have that property.

Therefare, in the process of forming a negation,
not (¥x)P becomes (I x)not P
and simuilarly
not (3y)P becomes (Yy)not P

When scveral quantifiers are involved, these changes are repeatedly used. Thus the negation
of the (Lrue) statement (1) given previously becomes tn succession

not (Yx) 3y)(x +y =0,
(Fx)not(dy)(x +y =0
(3x)(Vy)not (x +y =0},
CEx) (V) x +yF0).

The last statement can be rendered 1in words as:

There exists an integer x, such that
for every integer y, then x + y # 0.
(This statement is, of course, false.)

Similarly, the negation of the (false) statement (i1) given previously becomes in suc-
Cess1on

not (3 y) (Vx)(x 4 y = 0),
(Vy) not (Vx) (x +y = 0),
(Vy)3x)not (x +y =0).
(¥yY(3x) x+y #£0).

The last statement 18 rendered in words as

For every inleger y. there exists
an integer x such that x 4+ vy # Q.

Notc that this statement is true, and that the value (or values) of x that make x + y #0
depends on y, in general.
Similarly, the statement

For every é > 0, the interval (-6, §)
contains a point belonging to the set A

can he seen to have the negation

There exists § > 0 such that the interval
(-3, 4) does not contain any pointin A.
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The first statcment can be symbolized
(V6 >0)(3y € A)(y € (—4,8)),
and 1ts negation can be symbolized by
(35> 0) (Vy € A) (¥ ¢ (—5.4))
ar by
(A6 > 0)Yy(AN(=4,56) =)

It 1s the strong opinion of the authors that, while the usc of this type of symbolism
is often convenicnt, it is nof a substitute for thought. Indeed, the readers should ordinarily
reason for themselves what the negation of a statement is and not rely slavishly on symbol-
ism. Whilc good notation and symbolism can often be a useful aid to thought, it can never
be an adequate replacement for thought and understanding,

Direct Proofs

[.et P and ( be statements. The assertion that the hypothesis P of (he implication P = O
implies the conclusion @ (or that 2 = @ is a theorem) is the assertion that whencver the
hypothesis P 1s true, then @ is true.

The construction of a direct proof of P = @ invalves the construction of a stnng of
statcments R], Rz, Rn gsuch that

P= R, R =R, --. R =0

(The Law of the Syllogism states that if R, = R, and R, = R, arc trug, then R, = R,
is true ) This construction i1s usually not an easy task; it may take insight, intuition, and
considerable cffort. Often it also requires experience and luck.

In constnucting a direct proof, one often works forward from P and backward from Q.
We arc interested 1n logical consequences of P; that is, statements @, - -+, @, such that
£ = @, And we might also examine statements Py, ---, P such that P.= 0. If we
can work forward from P and backward from Q so the string “connccts” somewhere in
the middle, then we have a proof. Often in the process of trying to establish P = ¢ one
finds that ane must strengihen the hypothesis (i.¢., add assumptions to P) or weaken the
conclusion (that 1s, replace O by a nonecquivalent conscquence of Q).

Most students are familiar with “direct’’ proofs of the typc described above, but we
will give one elementary example here. Let us prove the following theorem.

Theorem 1 The squarce of an odd integer is also an odd integer.

If we let » stand for an integer, then the hypothesis is:
F 1 n1s an odd integer.
The conclusion of the theorcm is:
O n?isan odd integer.
We necd the definition of odd integer, so we introduce the statcment

R, 'n = 2k —~ I for some integer &
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Then we have P = R,. We want to deduce the statement n* = 2m — | for some integer
m, since this would imply (. We can obtain this statement by using algebra:

R, n*=(2k— 1 =4ak* — sk + 1,
Ry:n* = (4k* — 4k +2) — 1,
Ry n? =202k =2k + 1) — 1.

If we letm = 2k% — 2k + 1, then m is an integer (Why?), and we have deduced the statement

R. . n’=2m—1.

3

Thus we have P = R, = R, = R, = R, = R, = (, and the thcorem is proved.

Of course, this is a clumsy way to present a proof. Normally, the formal logic is
suppressed and the argumnent 18 given in a more conversational style with complete English
sentences. We can rewrite the preceding proof as follows.

Proof of Theorem I.  1f n is an odd mteger, then n = 2% — | for some nteger &, Then
the squarc of n 15 given by nt =4k — 4k +1 =202k =2k + 1) - 1. If we let m=
2k? —2k + 1, then m is an integer (why?) and n® = 2m — |. Therefore, n* is an odd
mnteger. QED

At this stage, we see that we may want to make a preliminary argument to prove that
2k* — 2k 4+ 1 is an integer whenever k is an integer. In this case, we could state and prove
this fact as a I.emma, which is ordinarily a preliminary result that is needed to prove a
thcorsm, but has little interest by itself.

Incidentally, the letters Q.E.D. stand for quod erar demonstrandum, which 13 Latin for
“which was to be demonstrated”.

Indirect Proofs

There are basically two types of indirect proofs: (1) contrapositive proofs, and (i1} proafs by
contradiction, Both types start with the asswnption that the conclusion @ is false, in other
words, that the statement ''not @ 1s true.

(i) Contrapositive proofs. Instead of proving P = (0, we may prove its logically equiv-
alent contrapositive: not ¢ = not P.

Consider the following thearcm.

Theorem 2 [fn is an intcger and n?is even, then n is cven.

The negation of “( * n 18 even” is the statement “not @ @ » is odd”. The hypothesis
“P 1 n? is even” has a similar negation, so that the contrapositive js the implication: If » is
odd, then n? is 0dd. But this is exactly Theorem 1, which was proved above. Therefore this
provides a proof of Theorem 2.

The contrapositive proof 1s often convenient when the umuversal guantifier 18 involved,
for the contrapositive form will then involve the existential quantifier, The following theo-
rem 18 an example of this situation.

Theorem 3 Leta > 0 be a2 real number. If, for every ¢ = 0, we have 0 < a < ¢, then
g =0.



Proof. If a = 0)sfalse, then since @ > (, we must have a > 0. In thus case, if we choose
I i ,

€= 74, then we have g, > 0 and g, < a, so that the hypothesis O<a<seforalle = 0

1s false. QED.

Here is onc more cxample of a contrapositive proof.

Theorem 4 If m n arc natural numbers such that m +n > 20, then cither m > 10 or
n = 10.

Proof. 1If the conclusion is false, then we have both m < 10 and n < 10. (Recall De-
Morgan’s [.aw.) Then addition gives us m + n < 10 4 10 = 20, so that the hypothesis is
fﬁJSC. Q-E.D.

(i) Proof by contradiction. This method of proof employs the fact that if C 15 a contra-
diction (i.c., a statement that is always false, such as "1 = 0"), then the two statements

(P and (not 03) = C, P=Q

are logically equivalent. Thus we establish P = by showing that the stalement
(P and (not )} implies a contradiction.

Theorem S Leta > O be a real number. Ifa > 0, then 1/a > Q.

Proof. Wc suppose that the statementa > (is true and that the statement 1 /a > O1s false.
Thercfore, 1/a < 0. But since a > 0 1s trug, it follows from the order properties of X that
a(l/a) < 0.8wnce | = a(l/a), we deduce that 1 < 0. However, this conclusion contradicts
the known result that 1 > 0. QED.

There are several classic proofs by contradiction (also known as reductio ad absurdum)
in the mathematical hterature. One is the proof that therc is no rational rumber r that
satisfics 72 = 2. (This is Theorem 2.1.4 in the text.) Anather is the proof of the infinitude
of pomes, found in Buclid’s Elements. Recall that a natural number p is prime if its only
integer divisors arc 1 and p itsclf. We will assume the basic results that each prime number
is greater than 1 and each natural number greater than 1 is either prime or divisible by a
prime.

Theorem 6 (Euchd's Elements, Book 1X, Proposition 20.) There are infinitely many
prime numbers.

Proof. 1f we suppose by way of contradiction that there are finitely many prnime numbers,
then we may assume that § = {p|, -, p_} is the set of ail prime numbers. We let m =
Py - P, the product of all the primes, and we let ¢ =m + 1. Since ¢ > p, forall :, we
see that ¢ is not in 5, and therefore ¢ 1s not prime. Then there exists a prime p that1s a
divisor of 4. Since p is prime, then p = p; for some j, so that p is a divisor of m. Butif p
divides both m and g = m + 1, then p divides the difference g — m = 1. However, this I
impossiblic, so we have obtained a contradiction. Q.E.D.
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FINITE AND COUNTABLE SETS

We will establish the results that were stated in Section 1.3 without proof. The reader should
refer to that section for the definitions.

The first result is sometimes called the “Pigecnhoele Principle™. Tt may be interpreted as
saying that if m pigeons arc put into » pigeonholes and if m = n, then at least two pigeons
must sharc onc of the pigeonholes. This 1s a frequently-uscd result in combinatorial analysis.
[t yiclds many useful conscquences.

B.1 Theorem Letm,n € N withm > n. Then there does not exist an injection from N_
mto N, .

Proof. We will prove this by induction on n. ‘
Ifn=1andif gisany mapof N_(m > 1) into N, then it is clear that g(1) = - .- =
g{m) = 1, so that g is not injective.
Assume that k > 1 is such that if » > k, there is no injection from N_ into N,. We

will show that1if m > k + 1, there is no function A : N — N, | that is an injection.

Case 1: Iftherange /(N ) C N, C N, ,, then the induction hypothesis implies that & 1s
not an injection of N into N, and thereforc into N, _,.

Case 2:  Supposc that A(N ) is not contained in N . If more than one clement in N_
is mapped into & + 1, then A is not an injection. Therefore, we may assume that a single
peN_ismapped intok + 1by A Wenow definch, - N__, — N, by

h(q) ifq:—_]‘---,p—].
hig+ ) ifg=p, - m—1

Since the induction hypothesis implies that &, is not an injection into N, it is easily seen
that % is not an injection into N, . QE.D.

h(g) =

We now show that a finitc set determines a unique number in N.

1.3.2 Uniqueness Theorem If § is a finitc set, then the numbcr of clements in § is a
unigue number in N,

Proof. 1f the set § has m elements, there exists a bijection f, of N onto §. If § also
has » clements, there exists a bijection £, of N_onto §. If m = n, then (by Exercise 19
of Sccuon 1.1) f;l o f, is a bijection of N, onto N_, which contradicts Thcorem B.1.

If n > m, then fl“‘ o f, 15 a biection of N onto N, which contradicts Theorem B
Therefore we have m = n. QED.

B.2 Theorem Ifn € N, there does not exist an injection from N into N .

Proof. Assumcthat f: N — N_isaninjection, and letm := n + 1. Then the restriction
of ftoN_ ¢ Nisalsoininjectioninto N . But this contradicts Theorem B.1. QED.

343
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1.3.3 Theorem The set N of natural numbers is an infinite sct.

Proof. TIf Nis a finite set, there exists some n € N and a bijection f of N_onto N. In thig
case the inverse function f~' is a bijection (and hence an injection) of N onto N . But thig
contradicts Theorem B.2. QED.

We will next establish Theorem [.3.8 by defining a bijection of N x N onto &, We
will obtain an explicit formula for the counting procedurc of N x N that 1s displayed in
Figurc 1.3.1; the recader should refer to that figure during the ensuing discussion. The set
N % N 15 viewed as a collection of diagonals; the first diagonal has 1 point, the secong
has 2 points, - - -, and the kih diagonal has & points. In view of Example 1.2.4(a), the (otal
number of points 10 diagonals 1 through k 1s therefore given by

kY i=1+2+4 . +k=sk(k+1)
The fact that v is strictly increasing follows from Mathematical Induction and
() ik | D) =gk~ (k+ 1) for & e V.

The point (m, r) iIn N x N lies in the kth diagonal whenk = m 4+ n — |, and it is the
mth point in that diagonal as we move downward from left to nght. (For example, the point
(3, 2) lies 1n the 4th diagonal (since 3 + 2 — 1 = 4) and is the 3rd point in that diagonal.)
Therefore, in the counting scheme shown in Figure 1.3.1, we count the point (7, n) by first
counting the points in the fitst & — | = m + n — 2 diagonals and then adding m. According
to this analysis, our counting function 2 : N x N — N 1s given by

(2) him n) =dim+n—2)+m for (m,n) e N xN,

(Focexample, the point (3, 2) iscounted asnumber A(3, 2) = (5 - 2 +3=v3)+3 =
6+ 3 =9, as in Figure 1.3.1. Also, the point (17, 25) 1s counted as number k{17, 25) =
W (40) + 17 = 837.) While this gcometric argument has heen suggestive and has led to the
counting formula (2), we must now prove that /1 is in fact 2 bijection of N x I onto N.

1.3.8 Theorem The sctN x N s denuvmerable.

Progf. Wec will show that the function A defined 1n (2) 1s a bijection,

(a) We first show that k 1s injective. I (m, n) & (m', ), then elther (i) m+n #
m +n or(im+n=m+n"andm #m'

In case (i), we may suppose mt + n < m’ + ', Then, using formula (1), the fact that ¥
is increasing, and m’ > 0, we have

himny=Y{m+n—-"2+m<ym+n-2)+(m+n—1)
=ym+nrn-—D<ym +n =2
<y{m +n =2y+m =h(m',nY),
Incase {uy 2 fm +n =n'+r andm ;ﬁm;, then
hmony—m=v(m+n—-2y=yim +n —2)=hm'. n") —m',

whence A(m, 1) # h(m', n').

(b) Next we show that A 18 surjective.

Cleatty (1, 1) = 1. If p € N with p = 2, we will find a pair (m , n ) € N x Iy with
him,. n,) = p. Since p < ¢(p), then the set F, ={keN:p=<y(k)} is noncmpty.
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Using the Well-Ordering Property 1.2.1, we let Icp > 1 be the least element in £ . (This
means that p lies in the thh diagonal.) Since p = 2, it follows from equation (1) tEat

ik, =) < p < ylk) =gk, —1)+k,

Let m = p — yi’f(kp — 1) so that 1 < m, <k ,andletn =k, —m, +1so0 that 1 <
n, < fcp and m,+n, - | = k_. Therefore,

Rim,n)=(m, +n, =2 +m, =vk, - )+m, =p.
Thus h 1s a bijection and N x N is denumerable, QED.

The next result is crucial in proving Theorems 1.3.9 and 1.3.10.

B.3 Theorem [f A C N and A Is infinite, therc cxists a function ¢ : N —> A such that
e(n + 1) > p{n) > n foralln € N. Morcover, ¢ Is a bijection of N onto A.

Proof Simce A isinfinite, it 18 not empty. We will use the Well-Ordering Property 1.2.1
of N to give a recursive definition of ¢.

Since A # @, there 1s a least clement of A. which we define to be @(1); therefore,
ey = L.

Since A 15 infimute, the set A, 1= A\{w(1)} s not empty, and we define @(2) to be least
element of A, Therefare ¢(2) > (1) = |, so that p(2) > 2.

Supposc that ¢ has been defincd to satisfy p(n + 1) = ¢(r) = nforn=1,- - k — 1,
whenee (k) > @k — 1) = k — 1 sothat (&) > k. Since the sct A is infinite, the set

A= AeD), - e k)

ls not empty and we define ¢(k + 1) to be the least element in A,. Therefore gk + 1) >
¢ k), and since (kY = &, we also have g(k = 1) > &k + 1 Therefore, ¢ is defined on all
of M.

We claim that ¢ 1s an injection. If m > n, then m =n —r for some r e N. [f
r =1, then g(m) = @(n + 1) > ¢(r). Supposc that ¢(n + &) > @(n), we will show that
@(n - (k+ 1)) > p(n). Indced, this follows from the fact that ¢(n + (K + 1)) = o((n +
k) + 1) » @(n + &) > @(n). Since @g(m) > ¢(n) whenever m > n, it follows that @ 1s an

injection. )
We claim that ¢ 1s a sugection of N onto A. If not, the set A := A\ (N} is not empty,
and we let p be the least clementin A. We claim that p belongs to the set {g(1), -+, ¢(P)}.

Indecd, if this 1s not truc, then

p e AN {wll), - plp)) = A

so that ¢(p + 1), being the least element in A, must satisfy (p + 1) < p. But this

contradicts the fact that ¢ (p + 1} > @(p) = p. Therefore A is empty and ¢ 18 2 surjection
onto A. QED.

B.4 Theoremx IfA C N, then A is countable,

Proof. 1f Aisfinite, then it 1s countable, so it suffices to consider the case that A is infinite.
In this case, Theorem B.3 implies that there exists a bijection ¢ of N onto A4, so that A s
denumerable and, therefore, countable. Q.ED.
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1.3.9 Theorem Supposcthat§ and T arc sets and that T C §.

(a) If 8 is a countable set, then T is a countable ser.

(b) If T is an uncountable set, then S is an uncountable set.

Proof. (a) 1If § is a findte set, it follows from Thecrem 1.3.5(a) that T is finite, and
therefore countable. If § 1s denumerable, then there exists a bijection  of § onto N. Since
w(S) € N, Theorem B.4 implies that 4 (S) is countable. Since the restaction of ¥ to T is
a bijection onto ¥{X') and ¥ {7) € N is countable, it follows that 7" 1s also countable.

(b) This assertion is the contrapositive of the assertion in (a). QED,



APPENDIX C

THE RIEMANN AND
[ EBESGUE CRITERIA

We will give here proofs of the Riemann and Lebesgue Cntena for a function to be Riemann
intcgrable. First we will give the Riemann Criterion, which 15 interesting in itself, and also
leads to the more incisive Lebesgue Criterion.

C.1 Riemanu Integrability Criterion Let f : {a, b] — R be bounded. Then the follow-
ing asscrtions are eguivalent:

(a) f e Ria bl o

(b) Forcverye > O there exists a partition P such that if P, P, are any tagged partitions
having the same subintervals as P, then

(1) SR =SBl <e

(¢) For every & > 0 there exssts a partition P = {7}, = ([x, ,, x,1}]_, such that if
m, =inf{f(x):x € [ }and M, :=sup{f(x):x €[} then

(2) Z (M. -m)(x; —x,_) < 2e
i=|

Proof. (a) = (b) Givene > 0, let n, > 0 be as in the Cauchy Criterion 7.2.1, and let
P be apy partition with [|[P}] < n, . Then it P, 7, are any tagged partitions with the sarne
subtntervals as P, then [P || < », and Bl < n, and so (1) holds.

(b) = (c) Givene > 0,1et B, = {I}. | be a partition as in (b) and lct m | and M, be
as in the statement of (¢). Since m; is an infimum and M, is a supremum, there exist points
u, and v, in {; with

£ £

f{uj.) <m,— ﬂ_— {;)_ and MI - m < _f(b‘l.);

so that we have

M, —m < f(v)— f(u)+

(6 —a)

1f we multiply these inequalitics by (x; — x,_,) and sum, we obtain
Z(J’Vf{ _mi)(x| _xa—l) < Z(fn(uj) - f(u,))(x,' _X,'_1)+8-
i=1 i—=1

We let Q1 = (I, u)}_, and Qz = {(J,, v)}]|. so thal these tagged partitions have the
same subintervals as P, does. Also, the sum on the right side equals S(f; @,) — S(f; @)).
Hence it follows from (1} that inequality (2) holds.

347
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(c) — (a) Define the step functions ¢, and w_ on [a, b} by

, (x) :=m and w, (x) =M, for x e (x,_,.x.).

and e (2= fx) = w(x) for i =0,1,---,n; then a,(x) < f(x) 2w (x) forx e
[@. b}. Since @, and w, are step functions, they are Ricmann integrable and

2] o h n
/ &, — Z m(x; —x, ) and [ w, = Z M (x - x _)

I'=1 ]':1

Therefore it follows that

b "
(w, —o ) = Z (M, —m)(x, —x, ).

=1

If we apply (2), we have that

n b
] (w, —a,) < 28

Since ¢ > 0 is arbitrary, the Squeeze Theorem implies that f € Rla, b]. Q.ED.

We have already seen that every continuous function on [«, »] is Riemanrn 1ntegrable.
We also saw 1n Example 7.1.6 that Thomae's function is Riemann integrable. Since
Thomae's function has a countable sct of points of discontinuity, it is cvident that con-
tinuity is not a necessary condition for Riemann integrability, Indeed, 1t 1s reasonable to
ask “how discontinuous™ a function may be, yet still be Riemann integrable. The Riemann
Criterion throws some light on that question in shawing that sums of the form (2) must be
arbitrarily small. Since the terms (M, —m ){x, — x._,) in this sumn are all > 0, tt follows
that each of these terms mwust be small. Such a term wiil be small if (i) the difference
M. — m, is small {which will be the case if the function 15 continuous on the interval
[x._,.x;]), orif (ii) an interval where the difference M, — m, is not small has small length.

The Lebesgue Criterion, which we will discuss next, makes these ideas morc precise.
But first it is convenient to have the notion of the oscillation of a function.

C.2 Definition [ct f: A — R be a bounded function. If § € A € R, we define the
oscillation of f on S to be

(3) W(f:8) =sup{lf(x) — f(3») 1 x.y€ S}
It is easily seen that we can also write

W(f. S)=sup{f(x)— f(y):x,y €S}
=sup{f(x): x € S} —inf{f(x): x € S}

Itis also trivial that if § € T € A, then
O0<W(f: ) =W, TY=<2 sup{]f(x)]:x € A).
If r > 0, we rceall that the r-neighborhood of ¢ € A is the set

Viey:={x€A |x —c <r}

C.3 Definition If c € A, we define the oscillation of f at ¢ by
(4) w(fs €)== inf(W(f1 V() i r > 0F = lim W(f: V()
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Since r — W(f; ‘V;(c)) 15 an increasing function forr » 0, this night-hand limit exists and
cquals the indicated infimum.

C4 Lemma If f: A — Risbkounded and ¢ € A, then f is continuous at ¢ if and only
if the ascillation w{ f; c) = (.

Proof. (=) If fiscontinuousatc, givene > Othereexists § » O suchthatifx ¢ V (e},
then [ f(x) — f{c}| < €/2 Therefore,if x, y € V (c), we have | f(x) ~ f(¥)| < ¢, whence
O <w(f,cy < W(f, V.(c)) <& Since & > 0 is arbitrary, this implies that w(f; c) = 0.
(<) U w(fic)=0and¢ >0, therc exists § > 0 with W(f; V.(¢)) < &. Thus, if
|lx —¢c] « sthen | f(x) — f(c)] < g, and [ is continuous at c. QED.

We will now give the details of the proof of the Lebesgue Integrability Cntenon. Furst
we recall the statement of the theorem.

Lebesgue’s Integrability Criterion A bounded function f:[a, b] - R 15 Riemann
integrable if and only if 11 15 continuous almost everywhere on [a, b}.

Proof. (=) Lete > 0begivenand, forcachk € N, let H, := {x ¢ [a, b] : w(f; x) >
1/2%}. We will show that H, is contained in the union of a finite number of intervals having
total length < £/2%,

By the Riemann Criterion, there 18 a partition P, = {[xf_] , _rf‘]}:f]l'J such that if m:-’
(tespectively, M} is the infimum (resp., supremum) of £ on the interval (x|, x¥], then

nlk)

> (ME (- xk ) < g/4k

i=1

Ifx e H N (xf_l,xf), there exists 7 > 0 such that V (x) C (xf i xf‘), whence

128 < w(fix) = W(F Vi(x) < Mf —mk)

If we denote a summation over those { with H, N (xf_l , x!‘) # U by Z’, then

(k)

(1/29 3 = xi )y < ST (MF —mhaf -2k ) < g4,

whence it follows that
Z’(xf‘ —x* Y=g/t

Since H, differs from the union of sets H, N (.rf" — xf‘_lj by at most a {iniie number of
the partition points, we conclude that /1, is contained in the union of a finite number of
intervals with total length < £/2%.

Finally, since D : = {x € [a,b)  w(f;x) > 0] = Ufc_] f,, it follows that the set D
of points of discontinuity of f € R[a, 5] is a null set.

(<) Let|f(x)| =M for x € [a, b} and suppose that the set D of points of discon-
tinuity of f is a null set. Then, given £ > 0 there exists a countable set (J,}2, of open
intervals with D € | )Y, 7, and 3700, I(J,) < &/2M. Following R. A. Gordon, we will
define a gauge on [a, b] that will be uscful.
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(1) Ifz ¢ D, then f i1s continuous at ¢ and there exists §(r) > O such thatif x = 1,{3(”({)
then | f(x) — f()] < £/2, whence
O=<M, —m =sop{flx): xeV, O—id{flx):xel,(0) =<
(i) If+ e D, wechoose 8(r) > 0 such that V| (1) € J, for some k. For these values of
t,wehave 0 < M —m < 2M.
Thus we have dcfined a gauge 8 on [z, b). If P = (I, 21 )Y, is a 6-fine

partition of [a, b], we divide the indices i into two disjoint scts

S =1l t ¢ D} and S,:={i:t €D}

[

If P is &-fine, we have [x, ,.x,]C d(r)(!) whence it follows that M, —m < M —
m, . Consequently, if £ € §, then M, —m_ <&, whileif i € S, we have M, —m_ < 2M

I—lowcvcn the collecuipn of mtcrval: [. LS ).f.] witht € §, are cnntamcd 1n th-: uruon of the
intervals {J, } whose total length is < £/2M. Therefore

Z (M —m)(x —x; )
i=1

=) M —m)(x = x ) F Y (M, —m ) (x, — X))

f'(‘..Tt, J'GSG
= Z elx, —x, )+ E 2M(x, —x, )
fes, |'GSd

<gb—a)+2M (£/2M) <e(b~a+ ).

Since € > 01s arbitrary, we conclude that f € Rla, b). Q.E.D.
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APPROXIMATE INTEGRATION

we will supply here the proofs of Theorems 7.4.3, 7.4.6 and 7.4.8. We will not repeat the
staterment of these results, and we will use the notations introduced in Section 7.4 and refer
to numbered equations there. It will be seen that some important results froam Chapters S
and 6 are used in these proofs.

Proof of Theorem 7.4.3. 1tk =12, - . n/letg :=a+ (k— Dhandletg, - [0, A] -
R he defined by

P, (1) = 31 [f(a,-()+f(ak+r)J—fk f(x)dx

K

fort € {0, k]. Note that ¢, (0} = 0 and that (by Theorem 7.3 .6)
0 () = 51 S @)+ fla, + D)+ 30"y~ 1) — fla, +1)

=:[fla) — Fla, v O]+ 3t/ (a, +0).

Consequently ¢, (0y — 0 and
¢/ () =5 flay+ 1)+ 3 e, +0) +1tf (a, +10)
=11f"(a, +1).
Now let A, B be defined by
A =1nfl f'(x) x € {a, bl}, B i=sup{f(x):x € la bl}

so that we have %Ar <, (1) <iBrfort € [0, h), k= 1,2, - n Imegrating and apply-
ing Theorem 7.3.1, we obtain (since (,o,.\;'([)) = 0) that %Ar2 < g, (1) < ;:Bri for ¢t € [0, k],
k=12 -, n Integrating again and taking + = 4, we obtain (since ¢, (() = 0) that

LA = g (h) < 5 BR

fork =12, - n If we add these tequalities and note that
n b
> =705~ | soods,
k=1 a4

we conclude that —l%Ah?n <7T(f)y— jf flx)dx = [1-2-8}13?1. Since h = (b — a)/n, we
have

; - ? 2

LA —a)ht < T (f) - / f(xydx = L B(b—a)h®.
Since f" 13 continuous on [a. #], it follows from the defimtions of A and 8 and Bolzano’s
Interruediate Value Theorem 5.3.7 that therc exists a point ¢ in [a, b] such that equation (4)

in Section 7.4 holds. Q.ED.
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ProofofTheorem7.4.6. 1[k=12 .. nletc, :=a+ (k- )h and ¥, : [0, h] - R
be defincd by

ck+f
¥, () :f fxydx — fc)u
ck—:
for r € [0, 1h]. Note that v, (0) = 0 and that since
wk(t)::fk. f(x)dx_/k f(x)d:c—f(ck)Zr_

k

we have

Vi) = flo, +0 = fleg - (=1 =21(c)
= [fle, =0+ flc, — 0] =27,

Consequently v, (0) = 0 and

vy = flle, 0+ [l - n(=1)
= file,+1) = fllc,—1).

By the Mcan Value Theorem 6.2.4, there exists a point ¢, | with fc, — ¢, | < such that
Wi (ty=2tf"(c, ). If we let A and B be as in the proof of Theorem 7.4.3, we have
20A < /(Y <2tBforr e [0, h/2], k=12, - n I follows as before that

3AL <y (1) < {8

forallz € [0, Al k =1,2,-- - n.Mfweputr = 3h we get

1
o2 A s () =

If we add these incqualities and note that

7 b
>y, (3h) =f flxydx — M (),
k=] a
we conclude that

— Ah‘n <f flxydx —M (f) < Eam

If we use the fact that h = (b — a)/n and apply Bolzano’s Intermediate Value Theorem
5.3.7 to f" on [a, b] we conclude that there exists a point y € [a, #] such that (7) in
Section 7.4 holds. QED.

Proof of Theorem 7.48. It x=0,1,2---, %n — 1, let ¢, ;= a + {2k + )4, and et
@, 1[0, h] - Rbe defincd by

[ 2
@, (8) [f(r — D+ 4f(c) + fle, +1)] - /k flx)dx

Evidently ¢, (0) = 0 and
o) =3[~ f e, =0+ filo+n] = | fle, =0 =2 fle) + flg + 1],
so that ¢, (0) = 0 and
o/ =5t [l =0+ [l =] =5 [-f =D = e + 0],



so that ¢, (0) = 0 and
o) =3t [/ £ - fie - 1)
Hence it follows from the Mean Value Theorem 6.2 4 that therc is a v, , with ¢, — Vk.;| <7
such that ¢, (1) = %tzfm (¥ ). If we let A and B be defined by
A:=inf{ fP(x): x €la, b)) and B =sup{ fHx) . x € {a, b)),
then we have
%Azz < @"(0) < 1B
fort e [0, k], k=0,1, -, %n — 1. After three integrations, this inequality becomes
1
90
forallt € [0, Al k=0,1, -, n~ . If wepnts = h, we get

AP <o (1) < L g
-7 a0

1 1
AR < @, (b)Y < —BR®
gp M =l = o5

fork=01. -, -;-n — 1. It we add these Ii” inequalities and note that

{[n—l

3 f.okth>=s;<f)—/ £y dx,
k=0 a

wce conclude that

lAth<5(f) /hf )d<lBh5n

_— - — X X _— -

a0 2= " . ( 20 2

Since h = (b — a)/n, it follows from Bolzano's Intermediate Value Theorem 5.3.7 (applied

to f(‘”) that there exists a point ¢ € [a, &) such that the relation (10) in Scction 7.4 holds.
Q.ED.
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TWO EXAMPLES

In this appendix we will give an example of a continuous function that has a derivative at
no point and of a continuous curve in R> whose range contains the entire unit square of R2.
Both proofs use the Weierstrass M -Test 9.4.6.

A Continuous Nowhere Differentiable Function

The example we will give is a modification of onc due to B. 1.. van der Waerden in 1930.
Let f,: R — R be defined by f,(x) :=dist(x, Z) = mf{|x — k| k € Z}, so that fjisa
continuous ‘'sawtooth” function whose graph consists of lines with slope 1 on the intervals
[£/2, (k + 1)/2), k € Z. Foreach m € N, let f_(x) = (1/47) f,(4"x}, so that f_ is also
a continuous sawtooth function whose graph consists of lines with slope &1 and with
0 < f (x)=<1/(2-47) (SeeFigure E.1))

0 1 ) 1
16 a 2

Fignre E.1  Graphs of f;, f,,and f,.

Wenowdefineg : R — Rbygx) =37 J..(x). The Weierstrass M-Test imphics
that the senes s uniformly convergent on [£; hence g 18 continuous on R. We will now
show that g 18 not differentiable at any point of R.

Fix x € R. Forcachn € N, leth, = :th”‘l, with the sign chosen so that both 47x
and 4" (x — h_) le in the same intesval [k/2, (k + 1}/2]. Since Jo has slope £1 on this
interval, then

L LR — A @ dR) - A
mo h - 4" h o

n n

L1.

In fact if m < n, then the graph of f, also has slope £1 on the interval between x and
x +h_andso

. fm(x+hn)_fm(x) \
£, ‘= . =1

na

for m < n.
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On the other hand, if m > n, then 4" (x + 2 ) —4"x = 447 " ' is an integer, and since
fy has period equal to 1, it follows that

falx -t h)— f (x)=0.

Conscquently, we have

gx +h,)—glx) ~ f (xth )= f (x) -
R e

A n m=0

whence the difference quotient (g(x — A ) — g(x))/ 4 is an odd integer if » 1s even, and
an even integer if 2 1s odd. Therefore, the limit
. glx+h)—glx)

lim
h—s 0 h

does not exist, so g is not differentiable at the arbitrary point x € &.

A Space-Filling Curve

We will now give an example of a space-filling curve that was constructed by 1. J. Schoenberg
in 1936. Let ¢ : R — = be the continuous, even function with period 2 given by

0 for 0<1r<1/3,
@(t) == {3 — | for 1/3 <t <2/3,
1 for 2/3 <1< 1.

(Sce Figure E.2) For ¢ € {0, 1], we define the functions

Al

e al 3..];{) o0 32.&'—-4:
firy:= Z (p;k-T] : and g(t) = Z vl — )

Since 0 < ¢(x) < 1 and ss continuous, the Weierstrass A -Test implies that f and g are
continuous on [0, 1]; moreover, 0 < f(r) < f and0 < ¢(1) = 1. We will now show that an
arbitrary point (x,, ¥,) 1n [0, 1] % {0, 1]1s the image under ( f, g} of some paint £, € {0, 1].
Indeed, let x, and y, have the binary (= basc 2) expansions:

a a a, a a a
x0=—ﬂ+—2+—4+--- and yﬂ=—]-+—.'3 2—;
where cach 4, equals 0 or 1. It will be shown that xy = flty) and ¥y = g(1,), where 1, has

2 223 2 2 b
the ternary (— base 3) expansion

- . ST S
o k+1 = 2 3 4
—~ 3 33 3 3
| i i | !
S
3 3 3 3

Figure E.2  Graph of ¢,
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First, we note that the above formula docs yield a number in [0, 1]. We also note that
if a; = 0, then 0 <1y < 1/3 so that @{¢;) =0, and if ¢y = 1, then 2/3 <, < | so that
@(ty) = 1, therefore, inbathcases play) = a,. Similarly, itis scen that for eachn € N there
cxasis m € N such that

2a 2a
3, =2m, +—3—"+ 3“2“ 4.

whence it follows from the fact that p has period 2 that ¢(3"¢)) = a,. Finally, we conclude
that

= 3%y & a,

f) =Z ?10— :Z 2{:1 = Xp

k=0 pyy
and
o0 Zk-ll oc
@(3 Qagrt
S(fn)zz —Ic-H__Z k1T
k=0 2 = 2

Therefore x, = f(t,) and y, = g(f,) as claimed.



REFERENCES

Apostol, T. M., Marhematical Analysis, Sccond Edition, Addison-Wesley, Reading, MA,
1974,

Bartle, R. G., The Elements of Real Analvsis, Sccond Edition, referred to as [ERA], John
Wiley & Sons, New York, 1976.

__ . The Elements of Integration and Lebesgue Measure, Wilcy Classics Edition, fohn
Wilcy & Sons, New York, 1995,

_ ., Return to the Riemann Integral, Amer, Math, Monihly, 103 (1996), 625-632.

__ A Modern Theory of Integration, referred 1o 28 [MTIL, Grad. Studies in Math., Amer.
Math. Society, Providence, RI, 2000.

Bartle, R. G. and D. R, Sherbert, Introduction to Real Analysis, Second Edition, John
Wiley & Sons, New York, 1992,

Barwise, J. and J. Etchemendy, The Language of First Order Logic, Univ. of Chicago
Press, Chicago, 1990,

Bukhoff, G. and §. MacLane, A Survey of Modern Algebra, Fourth Edition. Macmuillan
Publishing Co., New York, 1977,

Boas, R. P, It., A Primer of Real Functions, Fourth Edition, Carus Monograph Nao. 13,
Math. Assn. Amer., Washington, D.C. 1996

DcPree, J. D and C. W. Swartz, Introduction to Real Analysis, John Wiley & Sons, New
York, 1988,

Gelbaum, B. R. and J. M. H. Olmsted, Counterexamples in Analysis, Holden-Day, San
Francisco, 1964,

Gordon, R. A, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Grad. Studies in
Math., vol. 4, Amer. Math. Soc., Providence, 1994,

_, The Use of Tagged Partitions in Elementary Real Analysis, Amer. Math. Maonthly,
105 (1998), 105-117 and Bg6.

Hawkins, T.. Lebesgue's Theory of Integration. Its Qrigins and Developments, Untv, of
Wisconsin Press, Madison, W1, 1970 Reprint, Amer. Math, Soc., Chelsea Seres,
1998.

Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford Univ. Press,
New York, 1972

McLeod, R. M., The Generalized Riemann Integral, Carus Monograph, No. 20, Math.
Assn. Amer., Washington, D.C., 1980.

Wilder, R. L., The Foundations of Mathematics, Second Edition, John Wiley & Sons, INew
York, 1963.

357



PHOTO CREDITS

Chapter 3

Page 74: Courtesy The New York Public Library. Page 93: Corbis-Bettmann.
Chapter 4

Page 7. Courtesy David Eugene Smith Collection, Columbia University.
Chapter 3

Page 119: Courtesy The New York Public Library.

Chapter 6

Page 157: Courtesy National Portrait Gallery, London.

Chapter 7

Page 193: Baldwin Ward/Corbis-Bettmann.

Chapter 10

Page 275: Courtesy Patrick Muldowney, University of Ulster.

358



HINTS FOR SELECTED EXERCISES

Reader; Do not look at these hints unless you are stymied, However, after putling a consid-
erable amount of thought into a problem, sometimes just a little hint is all that 1s needed.
Many of the exercises call for proofs, and there is usually no single approach that is correct,
so even if you have a totally different argument, yours may be correct. Very few of the
following hints give ruch detail, and some may seem downright cryptic at first. Somewhat
more detail is presented for the carlier material.

Section 1.1

1. Showthatif A< B then A = AN 5. Nextshowthatif A = AN B, then A C 5.

2. Show thatif x € A\ (BNC), then x € (A B)U(A\ C). Next show that it y € (4 B) U
(A\C) then y € AN\ (BNC). Since the sets AL (BN C)and A\ (B N C) cantain the same
elements, they are equal.

5. @ A, NA,=({612,1824, - ) = {6k ke N} = A,
by JA —Ny{i)Jand A, =8

7. No. For example, both {0, 1) and (0, —1) belong 1o €.

9. (a) f(EY=1[2,3).50h(E) = g(f(E)) = g([2,3]) = {4, 9].

(b)Y g "(G)=1-22ls0k '(G)=[-4,0),

13. T xe f7UGYN f "4, then x e f7NG) and x e f "(£), so that f{x}e G and
F{xye H. Then F(x)c GO H, and hence x € f_](GﬁH), Thus shows that f"(G)n
fFUUh c PG HY.

15, One possibility is f(x) = (x — a)/(b — a).

19, If g(f(x)) = g(f(xy)), then f(x,) = f(x,), so that x, = x,, which implies that g o f is
injective. If w € C, there exists y € B such that g{y) = w, and there exists x € A such that
F(x) = y. Then g(f(x)) = w, sothat g o f is sutjective. Thus g » f is a bijection.

20. (a) If f(x,) = f(x)), then g(f{x}) = g(f(x,)), whichimplies x, = x,, since g & f1sinjec-
tive. Thus f isinjective.

Section 1.2

L. Notetnat1/(1-2) = /(1 + 1) 8lso k/tk = 1) + 1/[(k 4 Dk + )] = (k+ 17tk + 2),
20 ikl + D) - e+ 1D =k Dtk + 2

40 LA k) (k- 1T = G - R DL

6 (k+ 1Y 4+5k+1) = +5k—3k(k+ 1)+ 6and k(X + 1) is always even

8, ' 4k +1)—1=5-5-dk -5=(5% -4k — 1) + 4" = D).
13, Ik <2 thenk+1 <28 +1 <28 27 =202 =281,
16 Ttistmeforn = landr = §, but false forn — 2,3, 4.

18. Jk+1/Jk+t=0hkJE+1+D/Vhk+1>Gh+10//Er1=VE+1
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HINTS FOR SELECTED EXERCISES

Section 1.3

I.
2.

Use Txercise 1.1.19 (= Exercise 19 of Section 1.1).

Part (b) Let f be a bijection of N onto A and et € = { f(k]} for some &£ € N_. Define g on
¥ by g{i} := f(tdfor: =1 - - k—1 and g(i) = fi+ D fori =k, -+ m=1 Thay

VT
gisabljectionof ¥ onte A\ C.

-1

(a} Thercare b =73-2- i different injections of S mte 7.

(b} There are 3 surjections that map a into 1, and there are 3 other surjections that map a
into 2.

It 7, 1s denumerable, take 7, = . If £ is a bijection of 7, onto 7., and 1f g is a hijection of 7T,
onto XN, then (by Kxercise 1.1.19) g ¢ f is a hijection of 7| onto N, so that 7 1s denumerable. )
IWSNT =@and f: ¥ — §, ¢ : N — T are bijections onto § and 7, respectively, let h(n) 1=
flin - /21 nsodd and A(r) := g{n/2y if n is even.

(@) P1.2)) = {0.{1}.{2}. {1. 2]} has 2* = 4 elemenis,

() P{l.2 3 4}) bhas 2% = 16 clements.

Let§ ., i={x,. . x.x, =5 Ulx ,}haver -+ |l elements. Then a subsetof §, | either

(1) contains X, _.0r (ii) does not contaiq X, Thereisatotalof 2" — 27 = 2 -2 = 2" Pl quhsets
of §

For each m 2 i, the collection of ail subsets of Nn__ is finate. Note that 77 (N) = |7, P ).

n’

a+1"

=1

Section 2.1

1.

24,

(@) Jusufythestepsinh=0~b=(-a+a)tb= al(at b= a-0=—ua
(c) Apply@dtotheequatione | { Du=a(l+{~1=c-0=20

(@ —-w+H=—Natbhy=(-Da+ (b= a)+( k).
{c} Nole that (—a)(—(1/a); = a(l/a) = 1.

{a) 3/2 by 0.2
(c) 2 -2 oy 1,-=2

Note that if g ¢ 7 and if 3¢° is even, then ¢° is even, so that ¢ is even.

If p ¢ N rthen there are three possibilities: for somme m € N J {0}, (i} p = 3m,
() p=73m~+Lor(ii)p=3m+2.

(a) Ife =d then 2.1 7byunpliesa+c < b4+ 4 lfc <cd thena+c < b4+ acb—+d.
If @ # ¢, then 2.1.8(a) implies that 2° = 0: since b* = 0, it follows thata’ — b > 0.

(a) If0 <a<b, then 2.1.7(c) implies that 0 < a’ < ab < b*. Then by Example 2.1.13(a),
we infer thata = Va® < Jab <« Vb = b.

{(al {v.x=>dor x <« —11. (h)y {x:l=wx«<«lor —2<x«<—1).
ey {x:—-1l<x~<0o0f x =1} (dy {x:x <Dor x> 1%L

The inequality 1s equivalent to 0 < a> 2ab+ b = {a — b)z.
(a) Use2.1.7(c).

(ay TetS:={nelN:0<n < l}.If §is not empty. the Well-Ordering Propenty of N implics
there is a least element m in §. However, 0 < m < 1 implies that 0 < m~ < m, and since
m’ is also in S, this is a contradiction of the fact that mt is the least element of S.

(ay Letx :=c—1 = 0and apply Bernoulli's Inequality 2.1.13(c}.

(@ Ifm »n.thenk:=m—ne N andc* > ¢ > | which implies that ¢™ > ¢*. Conversely,

the hypaotheses that ¢™ = " and m < »n lead 10 2 contradiction.
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Let b := ¢'/™ and show that b > 1. Exercise 24(a) implies that ¢7/7 = p™ = " = /" if and
only if m > n.

Fix m € N and use Mathematical Induction {6 prove that ™" = 2™a” and (™) = a™" for all
n € N. Then, for a given n € N, prove that the equalities are valid for all m € N,

Section 2.2

1.

10
11
12.

1.

16,
17.

(a) Ifa> 0, thenfel =a =va;ifa <0 then |ay = —g = /.
(b) Tt suffices to show that [1/6] = 1716 for b £ 0 (why?). Consider the cases £ > 0 and
b <0

fx<y<zthen|x—yl+|y -z =(y—x)+{z—y) —z—x = |z— x|. To establish the
converse, show that y < x and y > zare impossible. For example, if ¥y < x < 2,1t follows from
what we have shown and the given relationship that |x — y| = 0, so that y = x, a contradiction.

(a) —2=xx9/2 by —2<x=<2.
r=4dorx = -3
{(a) x <0 M =372 «<x < 1/2

{x =3 <x <520 3/2<x <2}
{x:1 <x <4},
(@) {(x.¥):¥y= £x} (c) Thehyperbnlas y = 2Z/xandy = —2/x.

(a) If y =0 then —y < x < y and we get the region in the upper half-plane on or berween
the lines y = x and y = —x.

(1) Supposethata < b.

If a < & =<, then mid{a, b, ¢} = b = mun{h, ¢, ¢} = nun{max{a, b}, max{é, ¢}, maxie, a}}.
The other cases are simular,

Section 2.3

1.

oo W

11.

Since 0 < x forall x € §,, then u = Q15 a lower bound of §,. If v > 0, then v Is not a lower
hound of §, because v/2 € §, and v/2 < v. Therefore inf § = 0.

Since I/n < }foralln € N, then 1 1is an upper hound for §,.
supS, — 2andnf §, = 1/2.
Letu € Sbeanupper bound of $.If v is another upper hound of §, thenw < v. Hence w = sup S. .

Letw :—=supA, v:=sup 8 and w := sup(u, v}. Then w is an upper bound of A L B, because
frxeA theny <u <w, and if x € B, then x < v < w If 715 any upper hound of AU E,
then z is an upper bound of A and of B, so that « < z and v < z Hence w = 2z Therefore,
w = sup(4 U B).

Consider two cases: 4 > s and u < s5*.

Section 2.4

Since ! — 1/m < 1 forall » € N, 1 15 an upper bound. To show that | is the supremum, it must
be shown that for each £ = 0 there exastan € Nsuchthat | — 1/n » 1 — £, whuch 1g equivalent
W 1/n < & Apply the Archimedean Property 2.4.3 or 2.4.5.

infS§=—-landsupS =1

(3) Letw:=supSanda > 0. Thenx <u forallx € §,whenceax < guforall x € §, whence
it foliows that au is an upper bound of a§. If v is another upper bound of &, then ax < v
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forall x € § whence x < v/g forall x € §, showing that v/a is an upper hound for § 5o
that & = u/e, from which we conclude that au < v. Therefore au = sup(aS).

5. Letw:=sup f(X). Then f(x) <u forall x € X, sothat a4+ f(x) <a+u forall x € X,
whence sup{a + f(x)  x € X] =a+u I w <a+u then w —a < u, so that there exists
x e X withw—a< f(xm), whence w < a + f(xw), and thus w is not an upper hound for
o — Ff(x):x e X}.

7. Ifu :=sup f{X)andv = supg(X?y, then f{x) < wand g(x) < vforallx € X, whence f(x) +
gix) cu+vicralx e X.
8 (@ flxy=1forx e X. (by gly)=0foryec¥.

1. Let S:={h{x,y):xe X ye¥} We have afx, yy = F{x) for all x € X,y €Y so that
sup § < sup{Ff(x) :x € X}. L w < sup{F(x):x € X}, then there exists x; ¢ X with w <
F(x,) = sup{h(x,, ¥) : y € Y}, whence there exists y, € ¥ with w < h(xy, y). Thus w is not
an upper hound of §, and s¢ w < sup §. Since this is true for any w such that w < sup{ F(x)
x € X}, we conclude that sup{~{x) : x € X} < sup §.

13, Notethatn « 2" (whence 1/27 < 1 /n)forany n ¢ M.

14, Let S;:={seR:0<y, s? < 3). Show that §, is nonempty and bounded by 3 and let y :=
sup 5. Ify: < 3and 1/n < (3 —yz)/(Zy-{ 1) showthaty i 1/n € §;. If y? > 3and I/m <
(y* —3)/2yshowthaty — 1/m € §,. Therefore yi =13

17 Ifx <0 < y,thenwecantaker = 0. If x <« y < 0. we apply 2.4.8 10 obtain 2 rattonal number
between —y and —x.

Scction 2.5

2. 8§ has an upper bound & and a lower bound « if and only if § 1s contained (n the interval [a, b).

4. Because z1s neither a lower bound nor an upper bound of S.

5 Ifze R, then z 1s not a lower hound of § so there exists x, € § such that x, < z. Simutarly,
there exists y, € §suchthatz < y,.

8 Ifx >0 thenthereexistsn € Nwithl/n < x,sothatx ¢ J . I[fy <0, theny ¢ J).

10. letn =inf{b :n e N} weclaim thata < 5 for all n. Fix n € N; we will show thata, is a
lowerbound for the set {b, © k € N}. We consider two cases. () Ifn < &, thensince I 2 1, we
havea <a <b. () IHk <n theasince/ 37 wehavea < b, <b, Thereforea <b,
forall4 € N, sothat 2 1salowerbound for {», : k € N} andsoa, < v. In particular, this shows
thatp € [u b )foralln,sathatn e[}/ .

12. % = (011000 -, = (01011 - ), % = (0111000~ ), = (0110111 - -),.

13. (@) 1= (0101, (b) 1= (010101 ), theblock OF repeats.

16. 1/7 = 142857 - -, the block repeats. 2/19 = (105 263 157 894 736 842 - . -, the block repeats.

17. 125137 --137.-- = 31253/24975, 3514653 653 - = 3311139,/99900.

Section 3.1

1,
3
3

(a) 0,2,0.2,0 ) 1/2,176,1/12.1;20,1/30
(a) 1.4.13.40 121 () 1.2.3,5.4

(a) Wehavc 0 <« n/(n2 + 1) < n/nz = 1/n. Givenr = 0, let K(s) > 1/¢.
{(c) We have [BQn+ b/(2n+5)—3/2! =13/(4n +10) < 13/4n. Given &= 10, let
K(g) = 13/4e.

@ 1/Jn+7<lji/n (h) [2nf(n+2)—=2/=4/(n+2) < 4/n
() Jrjin+1) <1/Jn @ [=1"n/(n* + 1) < 1/n.
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Oaan'qe ‘= O{xn < 5L
lWn—1jn+Dl=1/aln—1) < 1/n" < 1/n

Let b= 1/(1 4 a) where @ > 0. Since (1 +@)" = In(n — 1)a’, we have that
0« nd™ < 11/[%n(n - l)al] < 2/[(n — l)u“]. Thus hitn(nk") = 0.

Ifn >3 then0 <n’/nl < nfin—2)(n— 1) < 1/(n —3).

Section 3.2

L] ] o L

11
13.
15.
18.
20.
21,
22
23

(a) lm{x ]=1 (€) x, = n/2, sothe sequence diverges.

Y=(x+°Y)y-X.
a) 4 {(b) O {(c) 1 (d) 0.
In (3) the exponent k is fixed, but in {1 + 1/n)" the exponent varies.

lim(y,) = 0 and Lim(/ny ) = ..

b

(0) 1 (by 1.

(3) L=ua by L=>b/2 )y L—1/b (@) L=8/9.
(a) Convergesto 0 {c) Couvergesto 0.

{(a) (1) (o) (n).

Yes, (Whyh

From Exercise 2.2.16.u, = 1(x, —~ y, + Ix, — y_{).

Use Exercises 2.2.16(b). 2.2.17. and the preceding exercise.

Section 3.3

1.

13.
14,
15.
16.
17

O Mo

(x,) 15 2 bounded decreasing sequence. The Jimut 15 4.

The lmitis 1. 3. Thelimitis 2. 4. The limit is 2.
(y ) is increasing. The limitis y = }(1 + T+ 4p).

(x,) is increasing.

(5,)1s decreasing and (1) is increasing. Alsot, < x <5 forn € N

363

Note y, = /n+ D+ 1/m+2)+ - +1/2n < Jn+ D+ /(4 1)~ = 1/(n=1)

=nfin: 1)<l

(@) e (h) & (c) e (dy 1/e.
Note thatif n > 2, then 0 < 5, - V22—

Note that 0 < s, ~ /3 < (s = 5)/v/5 < (s7 — $)/2

e, =225, e, =2441406, e, = 2565785, e, = 2.637928.

o

£, = 2691588, e, —27048l4, e, — 2716924

Section 3.4

1.

3
7.

Forexample x, =21 — land x, = 1/2n.
L1+ V5).
(@) e by e'* (cy &’ (d) &%

I =
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(a) 1 (b)) e’
Choosen, > 1 sothat [x | > |, thenchoosen, > n, sothat [x | > 2, and, in general, choose

n,>n,_

(x,;‘.u--lj ={-1, —1/3,—]/5|...}_

Choose n. > 1 so that x, >s—l thenchonsen, > n sothatx, =>5— 1/2, and, in general,
- 1 B 2

choosen, = n,  sothatx = 35— 1/k.
4 e—1 ",

| sothat x| > &
a

Section 3.5

1. Forexample, ((—1)7).
3. (1) Nowthat (=17 —~ (=1)"! =2foralln e N.
{c) Takem =2n sox — X =X, —x = In2n --Inn = In2 for all n.
5. lm{vn+1—/n) =0.But, if m = 4n, then v/4n — /n = J/n forall n.
8 Tetw:=suplx, :nc N} Ife>0 let H besuchthat v — 2 < X, Su If m=>n=FH, then
u-&<x, <x <wsothat|x, - x| <e¢
10 lim(x, ) = (1/3)x, = (2/3)x,- 12, The timitis /2 - 1.
13. Thelimitis 1 + V2.
14.  Fourirerations give r = (0.201 64 to S places,
Section 3.6
1. Il {x, .7 e N}is not bounded above, choose nt, | > n, such that X = kfork e .
3 Notethat x 0 < rifandonlyf L/x > 1/c.
4. {a) [Jn>el &= [n>a’] €y vn—1> /njZwhenn=>2
B, (a) n < (n 207
(¢) Sincen < (n?+ D' thenn'? « (0 + 1)"":2/91”2_
9. (a) Sincex [y — ~o thereexists K suchthatifn > X thenx >y . Now apply Theorem

3.6.4(a).

Section 3.7

P

o W

12.

14.

The partial sums of 3 b are a subsequence of the partial sums of 3« .
(a) Since l/(n+1Dn+2) =1/n-t-1)- 1/(n F 2), the series 15 lelcscoping.

(a) The sequence {cosn) does not converge to 0.
(h} Sincel(cos n)jnz| < 1/n?, theconvergence of 3 (cos n)/n* follows from Example 3.7.6(c)
and Theorem 3.7.7.

The “ever” seguence (s, ) 1s decreasing, the “odd" seguence (5., 15 increasing, and —1 <
q P £, g 1 2 =

s, <0 AlsoD <s, —s, , =1/VIn+1

5" 1/n7 is convergent, but 3 1/7 is not.

Show that b, > a, /k fork € N, whence b +- - +b >a (14 -~ 1/n)

Evidently 2a2(4) < a(3) 4+ a(4) andZ:"a(S) =a®)+ - F+a®,cc. Alsoa(2) + a(3) < 2a(2)
and a(4) + - — a(7) < 22a(2%}, etc. The stated inequality follows by addition. Now apply the

Companson Test 3.7.7.

(a) The terms are decreasing and 27/2" In(2") == 1/(nIn2). Since Y L/n diverges, so does

S 1/(nlnn).



15

HINTS FOR SELECTED EXERCISES 365

(a) The terms are decreasing and 27/2%(In2%) = (1/n%) - (1/1n2)°. Now use the fact that
3 (1/n) converges when ¢ > 1.

Section 4.1

1.

9.

11
13

14.

16.

{a-c) If|x— 1| < 1 then|x =1 < 3sothat|x’ =1 < 3|x — I|. Thus, |x — }| < %/6 assures
that x?— 1, < 1/2. etc.
(d) I|r—1] <L, then|x' 1] <7x - 1.

(a) Since Jx 2| = |x =4 /. /x+2) < %|x — 4, then x — 4| = 1 impiies that we have

|\/;—2| < %
M) Iflx —4 <2 x 107 = 02 then |/ — 2| < .01,
Hl«<x <a, then < x+¢c <a+c¢ < 2q, so that |x2—c)L= x+cllx —e¢ < 2alx -l

Given s > (0, take § 1= ¢/2qa.

If ¢ 5% 0, show that lJ/x - STl < (1/./0))x — |, so we can take & ‘= £./c. If ¢ = 0, we can

take 4§ := £°.

(a) I|x—=2] < 1/2showthat [1/(1 —x) + i] = [(x — 23/{x - 1)] = 2|x — 2|. Thus we can
take & 1= 1nf{1/2.s/2}.

() Ifx#0 then|x*/|x] — 0| = |x  Take § = s. B

(@ If ix- 2] <1, then |x24+4x —12] = lx +6||x — 2| <9|x —2]. We may take § .=
inf{l, &£/9}.

(o) If[x +1f < 1/4. then (x +5)/CBx+2)—4| = 7jx +1|/|2x -3 < 14|x+ 1, and we
may take & 1= inf{1/4, £/14}.

(a) Tetx :=1/n. () Tetx = 1/nandy = -1/n

(b) If f(x):=sgn(x), then Ii_"n(f(x])2 = 1, bul im f£{x) does not exist.

x—=i} —s
(ay Since |f(x}— 00 < |x|, we have 1'1rré flxy=0
(b) 1f c # 01s rational, lef (x ) be a -scqu(:ncc of irational numbers that converges to «; then
floy = ¢ #0=lim(f(x, )y Whatif ¢ is irational?

The restriction of sgn to [0, 1] has a hmatac Q.

Section 4.2

(s WM

11.

a) 10 ) —3 © 1712 (dy 172,
(a) 1 (b) 4 © 2 (dy 1/2.
Multiply the numerator and denominator by /1 + 2x + /1 F 3x.
Consider x_ = 1/27n and cos(d/x ) = 1. Use the Squeeze Theorem 4.2.7.

7 oo k2 2

If|x| =1 &k € N, then |x"‘| . |xlk =<1, whence —x° < x < x°.

(a) Nohmut h 0 (c) MNolnui {y 0

Section 4.3

noow

Let f{x) = sin(l/x)forx < Qand f(x) :=0forx = 0.
Givenea » 0,if 0 < x < 1/a* then /% < 1/, and so [(x) = a.

(a) Mfa>land !l < x < af{fa—1) thena < x/(x — 1), hence we have
hm x/(x — 1} =

= |+

() Since (x + 2)//x > 2//x, the limit is 50.
(&) Ifx = 0 then !/ x < (/x + 1)/x, sa the right-hand limit is oo,
(g 1 (hy —1.
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R Notethat |[f(x) — L]l <eforx > Kifandonlyif | f{1/7) -] <efor) <z« /K.
9. There exists ¢ > O such that |xf(x) — L| < | whenever x > &. Hence | f(x}] < ([L] + D) /x

forx » a.
12, No. Tf hix) = f(x)— glx), then lim h(x) = { and we have
SOjgix) =1+ h{x)/p(x) » 1.

13. Supposethati f(x) — L| < eforx » K, and that g(y) » K fory > H. Then
Jeginn—Ll<efory= H.

Section 5.1

4. {a) Conrinuousif x 5= 0,

=1, =2,-- {b) Continuousifx # £1, =
(c} Contiguous if sinx £ 0. ]

2
(&) Continuous if x £0, =1, £1/2,---

7. Lete = f(c)/2, and let § = 0 be such that if |x —¢] < &, then | f{x) — (¢} < &, which
implies that f(x) > f{c)—¢ = f(c)/2 = 0.

8. Since f is conbinuous at x, we have f(x) = lim(f{(x )) =0 Thusx € §.
10, Note that |1x] — ¢l < }x — |,

13, Since Jg(x) — 6 =sup{ 2x — 6|, |t — 3|} = 2|x — 3|, g is continuous at r = 3. If & 3, let
(x ) be a sequence of rauonal numbers converging (o ¢ and let (y,) be a sequence of irrational
numbers converging to o Then him{g(x 1) £ lim{g{y,))

Section 5.2

1. (a) Continuous on R (c) Continuous for x 7 0.
2. Use 5.2.1(a) and lnducuon; or, use 5.2.8 with g(x) := x".

4. Cantinuous at every noninteger.

7. Let f(x):= 11 x srauonal, and f(x) := —1:f x 15 urational.
12

First show that f(0) =0 and f(-x) = - f(x) for all x € K; then note thar f(x — x;) =
flxy — f(xy). Consequently f is continuous at the point x,, if and only if it is continuous at 0.
Thus, 1f f s continuous at Xy then it 1s continuous at 0, and hence evervwhere.

13 Firstshow that f(0) = 0and (by Induction) that f(x) = rx forx € I, and hence alsoforx € 7.
Next show that f(x) = cx forx € . Finally,ifx ¢ Q, letx = lim(r ) for some sequence in Q.

15, If f{x) = g{x}, then both expressions give h(x) = f(x);andif f(x) = g(x). then h(x) = g(x)
11 both cases.

Section 5.3

1. Apply either the Boundedness Theorem 5.3.2 to 1/f, or the Maximum-Minimum Theorem
5.3 4 to conclude that wnf (/) > 0.

3. Choose a sequence (v ) such that f(x_ )i = %If(,tn)l < (%)" f{x,)]. Apply the Bolzano-
Weicrstrass Theorem to oblain 2 convergent subseguence.

4 Suppose that p has odd degree n and thar the coefficient a_ of «" is pnsiuve. By 4.3.16,
lim p(x) =ocand lim p(x) = —oc.

A= — -

5. Inthe intervals [1.035, 1.040] and | -7.026, —7.025].
7. Inthe mterval (0.7390, 0.7391).
& Intheinterval [1 4687 1.4765].
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(a) |1 (b) 6.
1/2% < 107% implics thatn > (SIn 10)/1n2 & 16.61. Taken = 7.

If f(w) < 0, then it follows from Theorem 4.2.9 that there exists a §-ncighborhood VY, (w) such
that f(x) < Oforall x € V,(w).

Apply Theorem 4290 8 — f(x).

If0 <a<hb<oo then f{{a, b)) = (@’ b2);if —n0 < a < b < 0, then f((a, b)) = (b*, a?).
If a < O < b, then f((a, H)) is not an open intcrval, but equals [0, ¢) where ¢ := sup{a:", bl].
Images of closed intervals are treated similarly.

For example, if @ < 0 < b and ¢ := inf{1/(a* + 1), 1/(b* + 1)}, then g({a, b)) = (c. 1] If
0 <a<bh, then gl{a, b)) =(1/(6°+ 1), 1/(a> 4+ 1)). Also g({~1,1]) = [1/2,1. 1fa < b,
then h{(a, b)) = (2. &%) and h((a, b)) = (2. bM).

Yes. Use the Density Theorem 2.4.8.
Consider g(x) 1= l/x forx e J:= (0, 1).

Section 5.4

L.
3

14.

Since 1/x — 1/u = {(u — x)/xu, it follows that |1/x — 1/u’! < (lja?')|x —u|forx, u C [a. o0).

(a) Lelx =n+1/n u =n

(b) Letx, = 1/2n7, u_ = 1/(2nx ~ 1/2).
It M 1s 2 bound for both f and g on A, show that | f{xdg(x) — flu)g(u), < M| f{x)—
F] + Mlgix) —glu¥forallx, uc A

Given £ > (Othereexists §, > Osuchthatiy —v| < 5; implies f(¥) — f(v) < &. Nowchoose
é? = Osothat |[x —ul < 8, implies lgx) —gl) <3,

Mlgx) — g <= K x —0Olforallx € [0, 1], then /x < Kx forx € [0, 1]. Butifx := 1/n,
then X roust satisfy n < K for all n € N, which is impossible.

Since f is bounded on [0, g], 1t follows that it is hounded on R. Since f is contnuous on
J:=1[=1.p+ 1], it is uniformly continuous on J. Now show that this implies that f 18
uniformly continuous on E.

Section 5.5

1.

S

(8) The 8-antervals are [ - ;. 31, (3. 3], and [3,
(hy The third -interval does not contain [;, 1

ol
[a—

(ay Yes. (h) Yes.

No. The first 8,-interval ig {—m. 10]

and does not contain [0, §1.
M) Mre(d Dthenlr =8, e +80)] =[5+ 356 5+ H1C(1. 1)

We could have two subintervals having ¢ as a tag with one of them not contained in the §-interval
around c.

UP = {la, x ) - (x,_, cl) e x, )t ) (I, bt} is 8 -fine, then P =
{(la. ;1. 4, - -, (lx;_ |, €], 2,0} is a §'-fine panition of [a, ¢] and P’ = (e xy Lty
([x,.h], £} is a 8”-fine partition of (¢, b].

The hypothesis that f is locally bounded presents us with a gauge §. If {{([x, .. x,].¢)}; 152
8-fine partstion of [a, b] and M, 1sabound for| £ on (x_,.xletM = sup{M‘. f=1,..n}h
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Section 5.6

1.
4
6.

1.
14,

15.

Tfx € [a, b], then f{a) < fx).
If0 < fx) < flx,) and 0 < g(x)) < glx,), then f(x)elx,) < flx)elx,) = flx)g(x,),

If f is continuous at ¢, then Lim{f{(x )) = f(c), since = lim(x,). Conversely. since
0 < j. (o) < flx,) = fix,, ) itfollows that j.(c) = 0,0 f is continuous at ¢.

Apply Exercises 2.4.4, 245 and the Prinaiple of the Jterated Infima (analogous to the result in
Exercise 2.4,11).

Let x; € ] he such that y = f(x) and x, € { be such that y = g(x;). If x, < x|, then y =
2(y,) < fix,) < f(x,) =y, 2 contradiction.

Note that f ~! is continuous at every point of its domain {0, 11U (2, 31

! g . - i Iy
Lety = x"andz = x"¥gsothat y" = x = 79, whence (by Exercise 2. 1 26) ™ = x# = 297,
Since np = mgq. show that (x 7")Y" = (x9)7, or x™" = x/7_ Now consider the case where
P
m, ped

Use the preceding exercise and Exercise 2.1.26.

Section 6.1

1.

11

14
16.

(a) F'(x)= lim| (x +h) =2/ h = ;ir%(lr? 4+ 3xh + k%) = 3x%,

Jrx+h— - 1 1

—_— =11 _— =
=0 = h+ Jx  2Jx

¢y K = lim
© Ko =i

Note that fix)/x; < |x|forx € R

@ f=0-x)/1+x") () g0 =(x  1)/VS— 20+’
(¢) h'(x) =mkx* V(cos x*)(sinxF)""! (d) k'(x) = 2xsec’(x?).

‘The function f'is continuous for n > 2 and is differentiable forn = 3.

(@) fvy=2forx =0 fx)=0Tor—]1 «x <0, and f'(x)y = -2forx < -1,
(¢) A'(x)=12|x| forallx € R,

1f x # 0, then g'(x) = 2xsin(1/x%) = (2/x) cos(1/x*). Moreover,

&0y = lim & sin(1/h%) = 0. Consider x_:= 1//2nx.

(a) f(x)=2/(2x 1 3) (B) g'(x) =6(L(x")*/x
(€) hix)y=1/x (d) K(x)=1/(xL{x).
1/h'(0) = 172, 1700y = 175, and 1/ k' (—1) = 1/5.

DlArctan y) = 1/Dltan x] = 1/sec’ x = 1/(1 + ¥,

Section 6.2

1.

(a) Jncreasing on [3/2, oo), decreasing on (—o20, 3/2],
fc) Increasing on (—o¢. —1]and [1, o0)

fa) Relative minimum at x = 1, relative maximum at x = —1,
{c) Relative maxunuin at x = 2/3.

{a) Relative minima at x = =+ |; relative maximaatx =0, £ 4,
{c) Relative minima at x = —2, 3; relative maximum at x = 2,

If x < y there exists ¢ in (x, ¥} such that | sinx — siny| = |coscl|y — x|,

Fx) = x"2 +sinf1/x)) > 0 for x $£ 0, s0 f has an absolute minimum at x = 0. Show that
F(/2nay «Uforn = 2and f(2/(4n 4+ 1)) > Oforn = 1.
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2'(0) = .}il:r}}(l +2xsin(l/x)) =1~0=1, and 1f x £0, then g'(x) =1 ¢ dxsin(l/x) —
2cos(1/x). Now show that g'(1/2nm) « 0 and that we have g'(2/(drn + 1)) > Oforn e B
Apply Darboux’s Theorem 6.2.12.

Apply the Mean Value Theorem to the function g — f on [0, x].

(2, h) Apply the Mean Value Theorem.
(¢y Apply Darboux’s Theorem 1o the resulis of (a) and {b).

Section 6.3

1.

O 0 ®

A= B(}irg flx)/glxy =0.

Note that f'(0) = 0, but that f'{x) does not exust if x + 0.

(ay 1 (o) 1 (c) O () 1/3.
(@) 1 (b) oo {cy 0 (dy 0.
(& 0 (&) 0 (¢) O (d) 0
(@ 1, (b) 1 (©) e (@ 0.
(a) 1 (by 1 {c) 1 G

Section 6.4

bRy = (— 1) sinax and £ (x) = (—1¥"a”" cosax forn € N
4. Apply Taylor's Thearem to f(x) = +/1 + x at x; :— O and note that R {x) < 0and R,(x) = 0
for ¢ > Q.
5 1095 </12<1land1375 < V2 <15
6. R,(0.2) < 0.0005 and R, (1) < 0.0625.
1. Withr=4.In15 =040, withr =7.In1.5 = 0.405.
17, Apply Taylor's Theorem to f atx, = « to show that f(x) > f{c)+ fic)(x —¢c).
19, Since f(2) « Oand f(2.2) = O,theretsazeroof fin[2.0, 2.2]. The value of x| 15 approxumately
2.094 55] 5,
20, r = 1.45262688and r, & 176403514 21 » 2132471796
22, r, = 0.158594 34 and r, == 3,146 193 22. 23, r, »0.52and r, & 0.80901699.
24 r= 073908513,
Section 7.1
L@ Pl=2 B Pl =2 @ IPji=14 @ Pl=2
2. (@ 00 1+17142°2=0+1+8=9
() 37 fcy 13 (dy 33
5. @ fwuelx_,.x] thehx | <uso L}?at <t £x <x_ 1Pl whence o, - IIE"'?H <
X, fuw Alsouw < x sothatx — Pl <x,_| <t ¢, whenceu <x, <c, +[Pl.
10. g is not bounded. Take rational tags.
12, Let P, be the partition of [0, 1] 1o 7 equal parts. If ?"n is this partition with rational taps, then
S(fP) =1 while if Qn is this partition with irrational tags, then S(f; @ ) =0
13, Argue as in Example 7.1.3(d).



370

HINTS FOR SELECTED EXERCISES

15. If |P < 4, 1= ¢/4a, then the union of the subintervals 1n P with tags i [c, d] containg
the interval fc +4_,d — 3 ] and is contained in [¢c — 5, d + &) Therefore arf{d — ¢ — 28 ) <
Sle: Py < wf{d —c +24,) whence [S(p, P) —a(d — c)] < 2ub, < &

16. (b) In fact, {.tf +xx._,+ ):,-2 Do x, —x, ) = x? — xf_l.

{¢} Thetermsin S{Q: 8)) telescope.

18 LetP = {(ix,_,.x1.1)] _, beatagged partition of [a, b] and let
Q= [([Jrl_.l +c.x, +clt —l—c)]:__] <o that @ is a tagged partition of [@ + . 6 + ] and
HQH = 1P Moreover, S(g; ©) = S(7: P)sotnat|S(g: @ — [V F1 =S/ Py — [ fl <
when [| Q. < 4§ .

Section 7.2

2. Ifthetags are all rational, then §(h, P) > 1, while if the tags are all irrational, then S(h; P)y=0

3. let ?'3‘“ be the partition of [0, 1] 1nto n equal subintervals with r, — 1/n and Qn be the same
subintervals tagged by irrational points.

5. Ife, oo oc are the distinet values iaken by ¢, then (p“(nj) is the union of 2 finitc collection
{(J,.- . 1, }otdisjoint subintervals of [a. b]. We can write g = 7| ):; 1 C9,

6. Not necessanly,

8. If f(c) > O for some ¢ € (a, b), there exists § > 0 such that f(x) > 3 f(c) for |x - ¢| <&
Then j: f=> j:f; | (ié}é_{(c) = 0.If ¢ 15 an endpoint, a simitar argument applics.

100, Use Bolzano's Theorem 5.3.7.

12. Indeed, |g(x)| < 1 and is continuous on every interval [, 1] where 0 < ¢ < 1. The preceding
exercise appies.

13, Let fixy:=1/xforx g (0. 1]end F(0):=0.

16, Tetm :=iaf f{x)and M = sup f. By Theorem 7.} 4(c), we have
mib—a) = ff f < M(h—a). By Bo'zano's Theoremn 5.3.7, there exists ¢ € |a, #] such that
Fler=r Hie-a.

19. (a) Let '}"'-’n be a sequence of tagged partitions of [0, @] with II’JL'""RH — (0 and let TD: ve the

corresponding “symmetric” partition of [—a, a]. Show that §(f; P:) =25(f; '.lf’”) —
2 f -
21. Note that 1 = f{x?) is an even continuous function.
22, Letx, :=i{z/2)fori =0.1,--- n Then we have that

(rr/2n) X’_J fleosy ) = (m/2n) 3 0, flsinx,).

Section 7.3

1.

Suppose that E:={a=¢, <¢, < - <¢, =b] contains the points in [a,b] where the
derivative F'(x) cither does not exist, or does not equal f{x). Then f € Rlc,_,.¢,] and
Jiv f = Fl(c)— Fle, ) Excrcise 7.2.14 and Corollary 7.2.10 imply that f € R[a, b] and

that {7 f = 57 (Fle) = Fle, D)) = F(b) — Fla)
£ =0 1 Let E-={—1,1}.1fx ¢ £, G'(x) = g(x).
Indeed, B(x) = || for all x. 6. F=F —f'Ff

Let & be Thomae's function. There is no function F/ [0, 1) —+ R such that H'(x) = A(x)
for x 1n some nondegenerate open irnterval; otherwise Darboux’s Theorem 6.2.12 would be
contradicted an this interval.
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(a) Gi{x)= F{x)— F(e), (b) H(x)= F(b)— F(x), (©) S(x)= F(sanx)— F(x)
Use Theorem 7.3.6 and the Chain Rule 6.1.6.

(8) F'(x)=2x(1 4+ x5! M) Fix)y = 4+x3)" —2x(1 + xM)2
gx)=f(x+e¢)— flx —¢)

(@) Take () =1+ 1% to et %(23-’2 1).

{0y Take gty =1+ RN get j

() Takeg(r) = 1+ /7 toger §(37* — 257

(d) Take ¢(#) = ¢"/* to ge1 2(sin2 —sin 1).

{a) Takex = ¢{t) = /2, S0 1 = wi(x) = xto get 4(l — In{5/3)).

() Takex =¢() = (t+ 1) sor = Y(x) =x*— 1iogetIn(3 +2v2) —ln 3.

(c) Takex = (1) = t"/? 10 get 2(3;2 + In3/2).
(d) Takex = @(t) = "7 to get Arctan | — Arctan(1/2).

In {a)—(c) ¢’ (0) does not exist. For {a), integrate over [c, 4] and let ¢ = 0+, For (c), the
integrand 15 even so the inregral equals 2 fol' (1402 4ds.
(b) LJ, Z, is contained in _}_, J;' and the sum of the lengths of these intervals is
<3y g/ =¢
(2) The Product Theorem 7.3,16 applies.
(b) Wehave 2t [7 fa <2 f2 f2 4 [P gt
fc) Lett - ooin(b).

@ U 0e = ([Pg% 1Y) in.

Note that sgno k 1s Dinchlet's function, which is not Ricmnann integrable,

Section 7.4

A

12

13.

14.
16.
18.
20.

Use (M withn =4, a=1b=2h=1/4Here 1/4 < f*(c) <2, 50T, = 0.69702
T, 2= 078279.

The index n must satisfy 2/12n2 < 10 % hence n = 1000/ /6 = 408.25.

5, = 0785 39.

The index n must satisfy 96/1 80n* < 107%: hence n = 28

The integral is equal to the arca of one quarter of the unit cirele. The derivatives of h are
unbounded on [0, 1]. Sinee h”(x) < 0, the inequality is T (h) < /4 < M (h). See Exercise &

Tnterpret K as an area. Show that " (x) = — (1 — x%)*? and that

R xy = =301 + 4x5(1 — x)777% To eight decimal places, m = 3.141 592 65.
Approximately 3.653 484 49, 15 Approximately 4821 1539 32.
Approximately 0).835 648 85. 17.  Approximately 1,851 937 03.

1. 19, Approximalely 1.198 14023,
Approximately 0.904 524 24,

Section 8.1

N e W

Note that 0 < f (x) < x/n — Dasn — 0.
Ifx >0 then |f (x) =1, < I/{(nx}.
Ifx > @ then | f, (x)] < 1/(nx) > 0.

x>0then) <™ <1
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9. Ifx=>0thenD < x%e " = x¥¢ ™) > 0, since 0 < ¢ * < 1.
10. If x € Z, the limit equals 1. Jf x ¢ Z, the limit equals 0.
1. Ifx € [0.a], then | f, (x)| = a/n. However, f(n)=1/2
14, Ifx c [0 b}, then | £, (x)] < B". However, f, (2 /") = 1/3.
15. If x € [a, o), then | £ (x)! < 1/({na), However, £ (1/n) = 1sinl > 0,
18. The maximum of f, on [0, 00} isatx = 1/n, so ”fn”[u.ao) = 1/{ne).
20. Ifns sufficiently large, || £, 1!, . = n’a’/e™. However, || £, |l ., = 4/€?.
23. Let M be a bound for (£ (x)) and (g (¥)) on A, whence also | f({x)| £ M. The Triangle
Inequality gives | f, (x)g,(x) — f(x)g(x)l = M(If,(x) —~ f()| +1g,(x) —g(x)) forx C A
Section 8.2
1. Thelimit function is f(x):=0for0 < x < 1, f(1) :=1/2,and f(x) :=1for]l <x <2
4. Ifz > Oisgiven, let K besuchthatifn > K then | f — fll, < /2 Then |f {(x)) — f{x))| <
£, ()= fed b flx ) fx)] =e/2+ | f(x,) - flx)i Since f is continuous (by The-
orem822)andx, — x,, then|f(x) — f(x)| < ¢/2forn = K’ sothat|f (x,) — f(x)] <&
for n > max{K, K'}.
6. Here f(0) =1 and f(x) =0forx & (0, 1]. The convergenee is not uniform on [0, 1.
7. Given g :— 1, there exists K > Osuch thatif n > K and x € A, then | f {x) — f(x)] < 1,50
that | f, (x)| =1 f, ()| + 1forall x € A Let M = max{|| fi| .-, [ fo_ I, I fell, + 11
8. £,0/vm) = Ju/2
10. Here (g} converges uniform)y to the zero function. The sequence (g.) does not Converge
uniformly.
11, Use the Fundamnental Theorem 7.3.1 and Theorem 8.2 4.
13. Ifa = 0, then IIfn;i,g__ﬂ < !/(na) and Theorem 8.2.4 applies.
15. Here /g " MER for all n. Now apply Theorem 8 2.5,
20. Tet f (x}:=x"on[0, 1)

Section 8.3

1.

il.
12.
15.

Let A :=x > 0 and let m -»> oc in (5). For the upper estimate on e, take x = 1 and n = 3 10
ohtain | — 23] < 1/12, 50 ¢ <22,

Note that if n > 9, then 2/(n + 13! < 6 x 1077 < 5 x 107% Hence ¢ = 2.71828.

Evideatly E, (x) <e” for x > 0. To obtain the other incquality, apply Taylor's Theorem 6.4.1
ta [0. a].

Note that0 < " /(1 + 1) < " fort € [0, x].
Inl.1 200953 and In } 4 = 0.3365. Take n = 10,999,
In2 = 0.6931,

Ly = HmlL(1 + 1/n) — L(U)/(L/n) = tim (1 + 1/m)") = Lalim(] + 1/n)") =
Liey = 1.

(©) (xy)" = E(al(xy)) = ElaL(x)+al(y)) = E(@Ll(x)) - E(@l(y}) =x" y*
() &™) = E(BLG™) = E(SeL(x)) = x**, and similarly for (x#)".
Use 8.3.14 and 8.3 9(vii).
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Indezd, we have log x = (Inx)/(lna) = [(Inx)/(Ink)] - [(Ind)/(Ina)) ifa £ 1. b # 1. Now
takea = 10, b = e.

Section 8.4

1.

If n > 2[x] then Jeosx — C (x)| = (16/15)1x|* /(2n)!, so cos(0.2) = 0.980067, cos | ~
0.549 302, Similarly, sin{0.2) & 0. 198 665 and sin | A3 0. 841471

We ntzgrate 8 4.8(x) twice on [0, x]. Note that the polynomial on the left has a zero in the
interval [1.56, 1.57],50 1.56 < 7 /2.

Exercise 8.4.4 shows that C, (x) < cosx < Cy(x) forallx € R Inteprating several imes. we pet
S(x) <sinx < S (x)forallx > 0. Show that §,(3.05) > Oand 5,(3.15) <« 0. (This procedure
can he sharpened.)

If |x| < A and m > n > 24, then |¢,_(x) — ¢, (x)] < (16/15)A% }(2n)!, whence the conver-
gence of (¢ ) to ¢ is uniform on each interval [— A, A).

JD[’({:(J:))2 — (s(x)N*) = 0 forall x € k. For uniqueness, argue as in 8.4 4.

Let gtx) = f{O)e(x) + F(Oys(x) for x € R, so that g”(x) = g(x), g(0) = f(0) and g'(0) =
F(0). Therefore h(x) := f(x) — g(x) has the property that h”(x) = h{x) for all x € K and
h(0)y =0, h'(0) = 0. Thus g(x) = f(x) forall x € &, sothat f(x) = fF(De(x) + F(0)s(x).
If ¢(x) = c(—x), show that ¢"(x) = ¢{x) and ¢(0) = |, ¢ (0) — 0, so that ¢g(x) = c(x) for
all x € K, Therefore ¢ is evern.

Section 9.1

1.

11
13.

14,

Let 5, be the nth parijal sum of 3~ a . let:, be the ath partial sum of 507 ja ., and suppose
that ¢ > O for n > P. If i >0 > P show thatt -1 =35 —s . Now apply the Cauchy
Criterion.

Take positve terms until the parfial sumn exceeds 1, then take negative termsy until the partial
sum 1s less than ], then takc positive terms until the partial sum exceeds 2, etc.

Yes.
Ifr>2thens = —In2 —Ina + In(n — |). Yes.

We haves, —s, = na, = %(2”“2,.)~ and L %(’Zn - L)azw.‘. Conscquently
lim[nan] —= 0.

Indeed, if nzan < Mioralln, then @ | = M/nl.

{a) Rationalize to obtain §_ x, where x = [/n(v/n = [+ /m]”) and notethatx, =y, =
1/(2r). Now apply the Limit Comparison Test 3.7.8.
{b) Rationahize and compare with ¥ 1/n77.

If ) a_is absolutely convergent, the partial sums of } " |a_| are bounded, say by M. Evidently
the absolute value of the partial sums of any subseries of 2, are also bounded by M.

Conversely, if every subseries of 3 a_ is convergent, then the subseries consisting of the
strictly positive (and strictly negative) terms are absolutely convergent, whence 1t follows that
Y_a, is abhsolutely convergent.

Section 9.2

1.
2.

3

(a) Convergent; compare with > 1/n°. (¢) Divergent, note that 27" — |,

(a) Divergent: apply 8.2.1 with b= 1/n.
(c)y Convergent; use 9.2.4 and note that (n/(n + 1" = l/e < L.

(2) (Inn)? < n forlarge 1, by [ Hospital's Rule,
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na

(¢) Convergent: note that (Inn)"" = n” for larpe n.
{(e) Divergent; apply 9.2.6 or Excreise 3.7.12.

(a) Convergent (b} Divergent (¢) Davergent

(d) Convergent; note that ('nn) exp(—n'"?) < nexp(—n'*) < 1/n* forlarge n, by I Tospital’s
Rule.

(ey Divergent (f) Divergent.

Apply the Tntegral Test ©.2.6.
{a,b) Convergent (c) Divergent (d) Convergent.

Ifm>n>K, thenl|s_ —s|<|x + x| < " /(1= 7). Now et m — oc.

w1

(a) A crude cstimatc of the remainder is given by 5 — s, fﬁ ~2dx = 1/5. Similarly
s—&,<l/llands 5. < 1/(n-~ 1), snthat999 tcrmss.ufﬁcetogcts S50 < 1/1000.

{(d) It n >4, then x . /x =5/& so (by Exercisec 10} |5 —s,] = 5/12. If n > 10, then
x, o /x, £ 11/20s0that s — 5,0 < (1072'9(11/9) < 0.012. 1 n = 14, then s — 5,1 <
0.000 95.

() Here 5.0, < J} “dx =2/, 5o |s — S0l < 0633 and s — 5| < 0.001 when
n>dx 0%

() Ifn >4 then's —5 | < (0.694)x sothat|s- 5,1 <0.065 1fn > 10, then
s — 5, =< (O.628)x” 50 that ¢ — Sph < 0.0000723.

Noce that (53”) i3 not bounded.

Note that, for an integer with # digits, there are 9 ways of picking the first digit and 10 ways of
picking each of the other n — 1 digits. There is onc value of m, from | to G, there is one value
from 10 to 19, one from 20 to 29, c1c.

Here m(n(l — x| /x )} = {(c —a — ») + 1, so the series is convergent if ¢ > a +-b and 18
divergent if c < a + b.

Section 9.3

1.

15

(a) Absolutely convergent (b} Conditionally convergent

(c) Divergent {d) Conditionally convergent.

Show by induction that v, < 5, < 5, < - < 5. < 5y < §,. Hence the limit Lics between s, and
s,.,sothats -5 | < |S -sl=2z ..

n-+i Al

Use Dinchlet's Test with (y ) := (+1, -1, =1, +1, +1, =1, =1, - - -}. Or, group the tcrms in
pairs (after the first) and use the Alternating Senes Test.

If f{x) = (Inx)¥/x¥ then f'(x) < O for x sufficiently larpz. L'Hospital's Rule shows that the
terms 1n the alltemaring series approach 0.

(a) Convergent (b} Divergent (c) Divergent {d) Divergent.

Dintchlet’s Test does not apply (directly, at least), since the partial sums of the sernies gencrated
by (1. — 1, =11, 1.1, ) are not bounded.
(a) Use Abel's Test with x_ = 1/n.
{b) Usc the Cauchy Inequahty withx = /a .y = 1/n toget
Y'a /n< (a0 1/n )”', establishing convergence.
(d) leta, = [n (lnn):]" . which converges by the Integral Test. However, b, = [T inn)
which diverges.

Section 9.4

I.

(a) Take M = l/n2 in the Weserstrass M -Test.
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{c) Since siny| < |y], the series converges for all x. But it is not uniformly convergent on 2.
If a = D, the senies 15 uniformly convergent for [x < a.

(dy X0 < x < |, thesenesisdivergent. If 1 < x < ¢, the series is convergent. It is uniformly
comnwvergent on a, o) fora = 1. However, 1115 not uniformly convergent on (1, 00).

If p = oc, tnen the sequence (}anl“”) is not bounded. Henee if |x,] > O, then there arc infinitely
many k € N with [a,| > i/[x; so that |akxé! > 1. Thus the senes 15 not convergent when
Xy F 0,

Suppose that L = Jun( a,1/-a,_ ]) exists and that 0 < I < oo. Tt follows from the Ratio Test
that Zanx” converges for |x < L and diverges for |x| > L. The Cauchy-Hadamard Theorem
mmplies that L = X.

{a) R=o00 {(hy R=n0 {fc) R=1/e
() 1 © R=4 ) R=1

Use lim(n"'™) = L.

By the Uniqueness Theorem 9.4.13, 2 = (=1)"a, foralin.
If n ¢ N, there exists a polynomial P such that Fiay = et P (1/x)forx # 0.

Let g(x) :=0forx > Oand g(x) := e~ for x < 0 Show that 2U0) = 0 for all .
Substitute —y for x in Exercise 15 and integrate from y =0 to y = x for |x| < 1, which is
justified by Theorem 9.4.11.

JleTdr =0~ nk2n 4+ 1) for x € R.

135 2n=1)

s . T
Apply Lxercise 14 and {7 (sinx)"dx = — - o
pply Lxercisc an f_ (sinx) "dx > 3.4.6-.-2n

Section 10.1

1.

{(a) Sincer —48{t)<x, andx <1 +&(r)then0 <x —x . <2()
(b} Apply (a) to each subinterval.

(b} Consider the tagped partition {([0, 11. 1), ([1. 2], 1y, ({2. 3], 3). ([3, 4], B}

{a) P = ffx . xl, :)7 ., and if Y is arag for both subintervals {x, ,x Jand [x,.x |1
we must have r, = x, We replace these two subintervals by the subinterval [x, |, x, ]
with the tag ¢, . keeping the 4-fincaess property.

(hy Wo.

ey Ift, € (x,_, x,) theawereplace [x,_ |, x,] by the twointervals [x,_,. /] and [¢,, x,] both
tugged by ¢, keeping the é-fincness property.

Ttx, , <1 <x, endily isthe tag for [x,

3t,) = ;(rk + 1) > 1. Similarly, we cannot have 1, < 1,since thenr, + 8() = i_,(r‘.C ~l <1

Therefore r, = 1.

. x, ], then we cannot have o> 1 since then f =

(8) Letd(t) = iminflt—1 .|t =2 [r=3)}ifr 1.2 3axd3(t) =1forr =123
(b) Let 8 (r) := min{&(r), 5, (£)}, where 4 is as in part (a).

(@) F(x) =/ 20,

(h)  Fy(x} = (/31 = x)** =201 = x)''*,

(¢) Fy(x) = (2/3)x**{Inx —~ 2/3) for x € (0, 1] and F£,(0) := 0,
(d) F,(x):=2x"*(Inx — 2) for x € {0, 1) and F,(0) =0,

(e} Flx) = — 1 %%y Arcsinx.

D Fx) = Arcsin{x — 1),

The tagged partition ?Z nced not be 4.-fine, since the value &, (z) may be much smalicr than
& (x).
e
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If £ werc nteprable, then fj' f > f; 5= 124134+ + 1/ (n+ 1)

We enumerate the nonzero rational numbersasr, = m, /n, anddefined (m, /n,) = &/(n, 251
and 55(1) .= 1 otherwisc.

The funcuon A 1s not continuous on [—2, 21
L, is continuous and 1.} (x) = I, (x) for x 3 0. so Theorem 10.1.9 applies.

We have C)(x) = (3/2)x'?cos(1/x) + x " sin(1/x) for x > 0. Since the first ierm in €| has
a continuous extension to [0, 1], it 1s intggrable.

We have Cy(x) =cos(l/x) + (1/x)sin(l/x) for x > 0. By the analogne of Exercise 7.2.12,
the first term belongs to R[0, 1].

(a) Take (t) :=1¢* -+t —2s0 E, = ¥ toget 6.

(b) Take (1) := /7 s0 E¢ ={0}taget 2(7 } In3).

() Take ¢{r) 1= /1 — 1 50 Ew:{l}m get 2 Arctan 2.

(d) Take p(r) 1= Arcsint so E..,— = {1} 1o get %'r

(a) Infact f(x):= F'{x) =cos{m/x) -+ (7/x) sin{m/x) for x = 0. We set £(0) :=0,
F'{) .= 0. Note that § is cnnlu'nuou!: on (0, 1.

(b} Fla,} = 0and F(b)) = (= 1Y /4. Apply Theorcm 10.1.9.

() I1f1e R0, then Y7 1/k = 5oy i 1f = J3 Iflforalln e N

Indeed, sgnl f{x)) = (— 1* = m(x) on (2, b,] so m(x)- Flx) = p(x) S {x) for x € [0, 1].
Since the restrictions of m and |m]| to every interval [c, 1] for 0 < ¢ < | are step fune-
tions, they belong to Refe, 1], By Exercisc 7.2.11, m and {m: belong to R([0, 1] and f(; o=
Yoo 0 DY k(2k - Dand [ mo= T 1/k(2k + 1)

Indecd. ¢(x) = &'(x) = |cos(m/x) + (7/x)sin(;r/x) sgn(cos(x/x)) for x & £ by Exam-
ple 6.1.7(c). Fvidently  is not bounded near 0. If x & (a,. b,], then @{x) = jcos(x/x)| —

(/x)| sin(m/x)} so that If" .= ®(b) — Pa,) = 1/k, whenee [¢ ¢ RTI0, 1]

Here Wix) = W(x) — 2x|cos(m/x)' — wsin(w/x) - sgnicos(m/x)) for x ¢ (O} L E. by Ex-
ample 6.1.7{h). Since v is bounded, Exercise 7.2.11 applies. We cannol apply Theorem 7.3.}
to evaluate foh Y since £ is not Ainte, hut ‘Theorem 10.1.9 applies and v+ € R[{}, i]. Corollary
7.3.15 implies that [} € [0, 1].

Ifp=0thenmp < fp < Mp, where moand M denote the infimun and the supremum of f
on [u, b), so that m fj p < f: fpsM f: p. 1f f: p =0, the result is trivial; otherwise, the
conclusion follows from Bolzane's Intermediate Value Theorem 5.3.7.

By the Multiplication Theorem 10.1.14, fg € R*[a, #]. If g isincreasing, then g{a) f < fg <

g(b)f sothatg(a) [T < [T fg < o) [T f. Let K(x) = gla) [¥ [ +g(b) [T f sothat K
is continuous and takes all values between K (A) and K (a).

Section 10.2

2

@ FG(x) =3 forx ¢ [0, 1] then J g = G(1) — G() > G(1) =3,
{h) Wt have ff.'(]fx}d_r = Inr, which does not have a hmut in R as ¢ — 0.

112

Here fy (1 —x) ¥¥dx =2 2(1 - )7 -5 2asc— 1—,

Because of continuity. g, € R¥|e. 1] for all ¢ € (0. 1) ¥ w(x) = ¢~ then [g,(x)] = wix)

for all x € [0, 1]. The “left version” of the preceding exercise implies that g, € R7{0, 1] and

the above incquality and the Comparison Test 10.2.4 imply that g € L{0, 1].

(a) The function is bouzded on [0, 1] (use 1'Hospital) and contnuous sn (O, 1).

) If x ¢ (D, %] the integrand is dominated by [{In$)Inx.. If x € {3, 1} the intcgrand is
dominated by [(In $) (1 — x)|.

{a) Convergent (b.c) Drivergent (d, ) Canvergent (f) Divergent.
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By the Multiplication Theorem 10.1.4, fg € R*[a, b). Since | f(x)g{x), < B|/(x)|.then fg €
Lla,bland || fgll = Bl fIl.

(a)  Let f{x) = (—1)*2*/kforx e (c,_, ¢,y and fF{1}:= 0, where the ¢, are as in Example
10.2.2{a). Then f' = max{f. 0} ¢ R"[0.1].

(b) lise the first formula in the proof of Theorem 10.2.7.

() I f(x) = g{x) forall x € [a, b}, thea dist(f. g) = [7|f — gl = 0.

(i distf. ) = 215 gl= /"1~ fl = disg, ).

(jky distfhy = {71 —h < [P1f — gl + [ g — il = dist(f. g) +dist(g. h),

If (f) converges to f in Lfa, b). given £ > 0 there exists X (g/2) such thatif m, n = K(£/2)

then (| f, — f| < &/2and || f — fll < &/2 Therefore " f — fIl < If, ~ fFl+f—fI<
£/2 4+ g/2 = £ Thus we may take F7(g) := K(c/2).

Hm>nthenllg, - g, <1/n+ 1/m — 0 Onc can take g .= sgn.
No.

We can take k to be the O-function.

Section 10.3

1.

12.

Letb > maxfa. 1/8{oa)} If P is a &-fine partition of (@, #], show that T is as-fine subpartition
of [a. o).

If f e Lla, s0), apply the preceding cxercise to | f{. Conversely, 1f _[: fl<eforg>p>
Ky then | [ f = f7f < [71f1 < e soboth lim /7 f aod lim, 7| f] exist: therefore
f. f e Ra.oc0)and so f g L[a, oo).

If f.g€ £la oc,then f. f|, g and lg| belong to R¥[a, 20), so Txample 10.3.3(2) imples that
f~—gand |fl t ig| belong to R™{a, >} and that j:“( fl+1g) = J'TC i fl+ J':C lg' Since
|f + gl < |fi+ g itfollows that {7 | f +gl < J7[f1 - [ gl < £ F1= 7 gl whence
If+gI <A+ Jgh-

Indeed, flr(l/x) dx — Iny, which docs not have a limit as y — o<, Or, usc Exercise 2 and the
fact that {*(1/x)dx =102 > Oferall p = L.

If v = 0, then j:)y cosx dx = sin y, which does not have a imitas y — oo,

(@) Wehave [J e Fdx = (1/8)() —e ) = /s,
(b) Let Gi{x) = —={1/5)*" forx € [0, =}, s0 & 15 continuous on [0, oo) and G(x) — D as
x — oo. By the Fundamental Theorem 10.3.5, we have {° g = - G(0) = 1/s.

{a) Hx>e then{lnx)/x > 1/x.
(bY Integratc by panis on {1, ¥} and then let y — oo,

fa)  sinx| > 1/v2> 1/2and 1/x > 1/(n + D forx € (nw + 7/4, n7 -~ 37/4).
(b) Uy = (n- 1ym, then Jo‘) (D= 1/ 14+ 1/2 1 - =1/n+ 1))

Letu = g(x} = x*. Now apply Exercise 14.

(a) Convergent (b, c} Drvergent (d) Convergent {e) Diverpent
(fi Convergent.

(ay If f,(x):=sinx, then f, ¢ R*[0,0c). In Exercise 14, take f,(x) :=x 'Zginx and
g0 = 1/0x
(¢) Take f(x):==x “%sinxand px) =+ 1)/x.

(a) f{x) :=sinxisin R7[0. y], and F(x) = J; sintdt = 1 — cosx is bounded on (0, 20),
and ¢ {x) := 1/x decreascs monotonely to D,

¢y Fix) .= jn' cosrds = sinx is hounded on {0, 00) and @(x) ;= x~ !/ decreases mono-
toncly to 0.
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10, Tatw = g{x) = x".

20, (@) I y >0, then [fe “dx=1-¢""—>1 s0 ¢ " cR[0,00). Similarly e % =
et ¢ R (—oc, 0.
? b
() O=ze™ <e "for'x|>1,s0e¢ " & R0, o). Simularly on (—o¢, 0]

Section 10.4

1. {(a) ConvergestoOatx =0, to 1 on {0, 1}. Notuniform. Bounded by 1. Tnereasing. Lirmut = L.

(c) Convergesto lon [0, 1), to { at x = [. Notuniform. Bounded by 1. Increasing. Limit = [,

2. {a) Converges to 4/x on [0, 1]. Uniform. Boundad by 1. Increasing. Limit = 2/3.
(¢) Convergesto 3 at x = 1, to 0on (1, 2]. Not uniform. Bounded by 1. Decreasing.
T.imit = 0.

3 {a) Convergestolatx =0.to0on (0, 1]. Not uniform. Bounded by }. Decrcasing.
Limit = 0.
(c) Converges ta 0. Not uruiorm. Bounded by 1/¢. Not monotope. Limit = 0,
(¢) Converges to (. Not uniform. Rounded hy !/+/2e. Not monatone. Limit = 0.

4. (@) The Dominated Convergence Theorem applies.
(by f(x} — 0 for x ¢ [0, 1), but (£,(1}) is not bounded. No obvious dominating function.
{ntagrate by parts and use (a). The result shows that the Dominated Convergence Theorem
does not apply.

6. Suppose that { f, (¢)) converges for some ¢ € [a, £]. By the Fundanental Theorem, f, (x) —
fey = {7 f, By the Dominated Convergence Theorem, f_{_r fi— f; g, whence ( f, (x}) con-

verges for all x € fa. &) Note that if f (¥} := (= 1)*, then (f,{x)) docs not converge for any
x & fa, bl

7. Indeed. g(x) ;- sup{ f(x) - k € Njequals t/kon{h -1 &l sothat fg=1+ 45— --+1.
Hence g ¢ R*[0, ox).

10. (a) Ifa =0 then|(e "sinx)/x| e ™ forre ] '=(a, 20).Ift €] andt, — 1€ J,

then the argument in 10.4.6(d) shows that £ 15 continuous at r,. Also, 1f £ > ], then
|(e ‘" sinx)/x| < ¢~ ard the Dominated Convergence Theorem implies that £{¢,) — 0.
Thus (1) — Das: » x.

(b) Tt follows as in 10.4.6(¢) that F'(t)) = — fow e 2V sinxdx = — 1/(:5 + 1).

(c) By 1019, Fis)—E(1) = f: F{tydt = —f:(r2 b )7 'dr = Arctanr — Arclans  for
s.t >0 But £(s} = Dand Arctans -»> /2 ass — o0,

(d)y Wc do not know that I 15 continuous as + — 0+.

12. Fix x e /. As in 10.4.6(¢), if 1,1, € [a. b]. there exists f between ¢, 1, such that Jfu,x)—

fltg, x)y =t = 1) % (e x). Therefore alx) < [f{t,x) - fl1, )/t — 1) < w{x) when
t # 1,. Now argue as before and usc the Dominated Convergence Theorem 10.4.5.

13 (a) If (5,) is a sequence of step functions converging o f ae., and {1} 1s a scquence of
step functions converging to g a.e., Theorem 10.4.9(2) and Exercise 2.2.16 imply that
(max{s,, £,}) is a sequence of step funcrions that converges to max({ f, g} a.e. Sumilarly,
for min{ f g}

14. (a) Since f, € Mla, b] is bounded, it helongs © R[4, b]. The Dominated Convergence

Theorem implies that f ¢ R*[a, #]. The Measurabiliry Theorem 10.4.11 now implies that
f e Mla, b)

(n) Since ¢+ > Arctant s continuous, Theorem 10.4.9(b) implics that f, = Arclanog, &
Mla. b]. Further, | f, (x)! < im forx € [a. b},

(c) Ifg, — gac,itfollows from the continuity of Arctan that f, — f a.c. Paris (a,b) imply
that f & Ma, ) and Theorem 10.4.9(b) applied to ¢ = tan implies that g =1ancf ¢
Mla, bl
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(a) Since 1, is bounded, itis in TR*[a, ] if and only 1f it 15 1in M]a, b].

(&) 1.=1-1_

(dy 1. ,(x) — max{I.(x).1.{x)} and Lo -(x) =min{l,(x), 1-(x)}. Further, £\ F =
F nF.

(e I (£,) s an increasing sequence n K [a, b), then (1. ) 18 an increasing sequence in
Mla. b] with 1.(x) = hm 1, (x), and we can apply Théorem 10.4. B{c). Similarly, (1
1$ a decrzasing sequence in \/?[a bland 1, (x) = lim 1F {x).

(H LetA, :=Ji_, E..sothat (4,)is ao increasing sequence in B{a, b with | 2, A, = E.
so (c) applies. Similarly, if B :={ Y;_, £, then (B ) is a decreasing sequence in u‘ﬂ[(} bl
with (.2, B, = I

(ay m(d) = ja O=0and ) < 1, =] imphes ) <= m(E) = _f:’J.E <bh—u.

{(by Since 1[“,] is a step function, then m{[c, d]) = d — ¢.

(c) Sincel, =1—1., wehave m(E)= f"(1 —1,) = (b—a) - m(E).

() Notethatl, . +1, . =1,+1,.

(G If (£,) 15 increasing in Mla, b] o E, then (1z) 1s increasing in AMia, B] 1o 1. The
Morotone Convergence Theorem 10 4.4 applies.

(g) Tf(C,)is pairwise disjoiut and E = | J;_, C, forn € N, then m(E ) = m{C ) +
m(C ). Since | o, C, = ;= £, and (E ) is increasing, (f) implies that m(_J;~, C,) =
lim, m(E_) — hm Z”=1 m(C,) = Z:C ym{C,).

Section 11,1

L

~1

19.

21

24.

Tle—ul <inf{x,] xlthenu<cx{ (Il =x)=landu >x—x=0,s0that0 < u <« 1.

Since the vmion of two open iets 1s open, then Gl U ug L G.'<+' =G, U JGIL G'«+‘
is open.

Tre complement of N s the unmion (—oc, 1) J (1. 2) U - - - of open intervals.
Corotlary 2.4.9 implies that every neighborhood of x in { contalns a point not 1n €.

x 15 a boundary peint of A <= every neighborhood V of x contains points in A and points in
Cla) == x 5 aboundary point of Cia).

The sets £ and C(F) have the same boundary poants. Therefore F contains all of its houndary
poirts +—= C(F) does not contain any of its houndary points &= C(F) isopen.

x © A < xkhelongstoanopenset V € 4 &= x1sannteror point of A,

Since A a8 the intersection of all closed scis contaiaing A, then by 11.1.5{a) it is a closed
set contalung A. Since C{A ) s open, then z € C{A™) ¢ =z has a neighbothood V, (2} in
C(A ) &= 71s netther an interior point nor a houndary point of A.

If G 7 ©1s open and x € G, then there exists € > 0 such that V (x) € G, whence it follows
thata == x — g5 A .

Ifa <y < x then since a_:=inf A there exists @’ € A_such that a, < a’ < y. Therefore
(v.*]CT{a x]C Gand y e G.

If x € “and n e N, the interval / 1n F, containing x has length 1,37, Let y_ be an endpoint of
I withy #x Theny €F(whylandy — x.

Asan the preceding exercise. take 2 to be the midpoint of /. Then z, & F (why?)jand 7z — x.

Section 11.2

L
3

Let & i=(11 I/n, B forn e M.
Let G = (1/2n,2)forn ¢ .
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If &, is an open cover of K| and G, is an open cover of K, then & UG, is an open cover of
K LK,

Let Kﬂ = [0. n] forn e M.

Since K # Bisbounded, itfollows that inf X existsin B. HK :={ke K hk=<({nfK)—1/n),
then K _ 15 closed and bounded, hence compact. By the preseding cxercise () K, # @, but if

x, € (VK . then x, € K and it is readily seen that x, = inf K. [Alternatively, use Theorem
11.2.6.)

Let¥i 3¢ K € Rbecompactand let c € R. 1f n & [, there exisis x, € K such that
sup{le — x|t x e K} - 1/n < |c = x_!. Now apply the Bolzano-Weiersirass Theorem,

LetFlo={n neMand F,:={n{ l/n:neXN nz>12}

Section 11.3

1.

e

(a) Ha<b=0then fTHI) =B Tia <0 <b then (N =( Vb Vb.1f0<a <,
ten f (1) = (—vb, —/a) J (Ja, V).

FUGY = 0 ey =1L L+ ey = (0.1 - N,
Tat G = (172, 3/2). Lat F:=[—1/2.1,2].
Let f be the Dirichlet Riscontinuous Function.

First note that if A © 2 andx € R, thenwe have x € 7@V A) = fl e RV A =
fFX)EA &> xgf (A) e xR\ f (A); thecfore, fTUR Y A) =3\ F (A).
Now use the (act that a set F € R 15 closed if and ouly if B\ F 15 open, together with
Corollary 11.3.3,

Section 11.4

1

11,

(P =x.,y)fori — 1.2 3 thend (P P} < (e, —x 0+ [xy D=y — ¥y ¥y
¥y ) — d (P Py v d (P, Py). Thus @) satishes the Triangle Incquality.

Since f(x) —g(x) < £ (x) = h(x)] + 'h(x) — g(x)] < d_(f. 1) +d_(h. g)forallx & [0, 1].
itfollows thatd (7. g}y <d_(f ) +d_(h g)andd__ satisfies the Triangle Inequality.

We haves # tifandonlvf dis, 1) = L. Jfs ¢, the value of & (s, u) = d(w, r)1seither lor 2
depending on whether u cquals s or ¢ or neither.

Since 4 (P Py=supljx, — xi{, |y, — y|}. f d_(P,, P) = 0 then it follows that hoth
|x, - x| == 0 and |y, —y| - 0, whenee x, » x and y, > y. Conversely, if x, » x and
y, r»y.then|x —x|-— 0and|y -yl - O, whenced (P, P) >0

If a sequence (x,)in § converges to x relative 1o the discrete metric 4, then d(x, x) — 0 waich
implies that x, = x for a]l sufficiently large n. The converse is trivial.

Show that a set consisting of a single point is open. Then it follows that every set is an open sel,
so that every set is also a closed set. (Why?)

Let G © 8, be open in (S,.4,) and let x € FTHG)Y so that f{(x) € G. Then there exists an
e-neighborhood V (f(x}) € G. Since £ 1s contmuous at x, there cxists a §-neighborhood Vo (x)
such that f(V,(x)) € V.(f(x)). Since x & f‘l(G] 15 arbitrary. we conclude that f"((}) is
openin (S, d,). The proof of the converse is similar.

Let G = {G_} be a cover of f(5) C R by open sets in K. It follows from 11.4.11 that each
set f"'(Ga) is open in (S, d). Therefore, the ecollection {f”'((?aj} i3 an open cover of §.
Since (S, d) is compact, a fulte subcollcction { £~ (G, -, _f'l (Gaq]} covers &, whence it
follows that the sats {Gﬁ'i e G“N} must form a finite subcover of G for f(8). Since & was an
arbitrary open cover of f(§), we conclude that f(S) is compact.
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‘Fundamental Theorems of Calculus.

210 ff., 281 f{.. 297 .

G
Gallus gallus, 335
Gauoge, 145 {f,, 238, 275 ff., 350
Generalized Riemann 1ntegral, 274 £
Geometnc Mean, 28, 246
series, 90
Global Continuity Theorem, 324, 332
Giraph, 5
Greatest integer function, 124, 217
lower bound (= infimum), 36

H
Hadamard-Cauchy Theorem, 269

383
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Flake’s Theorem, 288, 295 (1.
Half-closed 1interval, 44
Half-open interval, 44
Harmonic seres, 70, 91, 253
Heine-Borel Theorem, 321
Henstock, Ralph, 275
Higher order denvatives, 184
Honzontal Line Tests, 8
Hyperbolic functions, 252
Hypergeometric series, 263
IIypothesis, 336

induchon, 13

I

Image. 6, 7

Implication, 336

Improper integrals, 259, 274, 287 ff.
Increasing function, 149, 170

sequence, 69
Indefinite integral, 212, 217, 283
Indeterminate fogms, 176 {1
Indirect proofs, 341
Induction, Mathemartical, 12 ff.
Tnequality:

Anthmenc-Geometric, 28, 246

Berpoulty, 28, 173

Schwarz, 219

Triangle, 31, 328
Infimum, 36
Infinye limits, 114 ff

scrics, 80 ff, 253 ff.

set, 16 {f
Injecoan, §

Injective function, 8
Integers, 2
Integral:

Dirichlet, 287, 306

elliptic, 273

Fresnel, 300

generalized Riemann, 274 ff.

improper, 259, 287 {{.

indefiniee, 212, 217, 283

Lebesgue, 193, 274, 290 ft.

Kiemann, 196 ff.

Test, for senes, 259
Integration by parts, 216, 285
Interchange Theorems:

relating to continuity, 234

relating to differentiation, 235

relating to integration, 237, 301 ff.

relating to sequences, 233 ff
relating to series, 267 ff.
Interior Extremum Thecrem, 168
of aset, 318
point. 318
Intermediate Value Theorems:
Bolzano’s, 133
Darboux’s, 174
Intersection of sets, 3, 4
Interval(s), 44 {f.
charactenization of, 45
of convergence, 269
length of 44
nested, 45 ff.
partition of, 145, 194
Preservauon of, 135
Inverse function, 8, 152 ff., 164 ff.
image, 7
Irational number, 24
Tterated sums. 256
suprema, 44

J
Tump, of a function, 150

K

K {eg)-game, 56

Kuala Lumpur, 335
Kurzweil, Jaroslav, 275, 302

L
Lagrange, I.-L., 183
form of remainder, 185
Least upper bound (= supretnum), 35
Lebesgue, Henri, 193, 214, 274, 349
Dormunated Convergence Theoremn, 304
Integrability Theorem, 215, 349
integral, 193, 274, 290 ff.
measure, 31|
Leibniz, Gotefried, 97, 157, 193
Alternating Series Test, 263
Rule, 191
Lemma, 341
Length, of an interval, 44
L'Hospital, G. F, 176
Rules, 176 ff.
Limut;
Compansaon Test, 93, 257
of a function, 98 ff,
inferior, 74



infinite, 114 ff
one-sided, 111
of a sequence, 54
of a seres, 89
superior, 74, 269
I.ine tests, 8
Lipschitz conditian, 138
Location of Roots Theorem, 132, 147
Logarithm, 243 ff.
Logical equivalence, 335
Lower bound, 35

M
W (= collaction of mcasurable sets), 311
M-Test, of Weierstrass, 268, 354 ff.
Mapping, see Function
Mathemateal Induction, 12 ff.
Maximum, absolute, 130

relative, 168
Maximum-minimum Theorem, 131, 147,

325
Mean Value Theorem:

Canchy form, 178

for derivatives, 169 {f.

for integrals, 209, 287
Measurability Theorem, 308
Measurable function, 306 ff.

se(, 311
Measure, [.ebesgue, 311

zcro, see Null set
Meat erinder, 6
Memmber of a set, |
Mesh (= normm) of a partition, 195
Metric funcrion, 32%

space, 327 ff.
Middie, excluded, 335
Midpoint Rule, 222 ft., 352
Minimum. absolute, 130

relative, 168
Manotone Convergence Theorem. 69, 304

furction, 149 ft.

sequence, 69

Subsequence Theorem, 78
Multiple of a sequence, 61
Multiplication Theorern, 283

N

M (= collection of natural numbers), 2
Natura: numbers, 2

Negation, 335

INDEX

Negative numbers, 25
Neighborhood, 33, 312, 329
Nested Intervals Property, 46, 80
Newton, [saac, 96, 157, 193
Newton-Leihniz Formula, 274
Newton's Method, 189 ff.
Nondifferentiable functions, 159, 354
Norm of a function, 230, 202

ot a partition, 195
Null set, 214
Number(s);

even, 2, 15

irrational, 24

natural, 2

rational, 2, 24

add, 2, 15

real, 2, 22 1f.

O
0dd function, 167, 208

number, 2, 25
One-one function, 8
One-sided limir, 111
Onto, 8
Open cover, 319

interval, 44

sct, 313, 331

Sct Properties, 313, 315
Order Properties of &, 25 ff.
Ordered pair, 4
Oscillation, 348 {f.

P
P (= positive class), 25
Partial sum, 89, 267
summation formula, 264
Partition, 145, 194
S-fine, 145,275
mesh of, 195
notm of, 195
lagged, 1435, 195
Peak, 78
Periodic decimat, 49
function, 144
Piecewise lincar function, 142
Pigeonhole Principle, 343
Point:
bourndary, 318
cluster, 97. 315
interior, 318

388
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Real nuinbers R, 2, 22 ff.
power of, 154, 244
Rearrangement Theorem, 255
Reciprocal, 23
Reductio ad absurdum, 342
Remainder in Tayvlor's Theorermn:
integral form, 217, 285
Lagrange form, 185
Repeating decimals, 49
Restriction, of a function, 10
Riemann, Bernhard, 193, 274
Primitive of a function, 210 Integrability Cnterion, 347
Principle of Mathematical Induction, integral, 193 ff., esp. 196
12 ff. sum, 195
Product: Riesz-Fischer Theorem, 293

Pointwise convergence, 227
Polynomial, Bemstein, 143
functions, 126
Taylor, 184
Positive class [P, 25
Power, of a real number, 154, 244
functions, 244
series, 268 ff.
Prescrvation:
of Compactness, 325, 332
of Intervals, 135

Cartesian, 4
of functions, 105
of sequences, 61
of sets, 4
Rule, 160
Theorem, 216
Proof:
by contradiction, 342
by contrapositive, 341
direct, 340
indirect, 341
Proper subsct, 1
Properly divergent sequence, 86 {1
Propeity, 2
p-series, 92

Q
{ (= collection of rational numbers), 2
Q.E.D., 341
Quantfiers, 337 ff.
QOuod eratl demonstratum, 341
Quotient:

of functions, 105

of sequences, 61

Rule, 160

R
R (= collection of rcal numbers), 2, 22 1
Raabe’s Test, 260
Radius of convergence, 269
Range, of a function, 5
Rational numbers (3, 2, 24
function, 126
power, 154
Ratio Test, 66, 258

Rolle's Theorem, 168
Root(s}:
existence of, 42, 152 ff.
functions, 10, 42
Locauon of, 132, 147
Newton's Method, 189 {1,
Test, 257

S
Schocnberg, 1. 1., 355
Schwarz inequality, 219
Second Derivative Test, 187
Semimetric, 332
Seminorm, 292
Sequence(s), 53
hounded, 60
Cauchy 81, 330
constant, 33
contractive, 84
convergent, 54
difference of, 61
divergent, 54, 86
Fihonacci, 54
of functions, 227 ff.
inducuve, 33
limut of, 54
monoetane, 69
multiple of, 61
product of, 61
properly divergent, 86
quotient of, 61
recursive, 53
shuffled, &80
suhsequence of, 75
sum of, 61



tail of, 57

term of, 53

unhounded, &0

untform convergence of, 229

Senes, 89 1f., 253 ff.

absoluwtely convergent, 253
alternating, 263

alternating harmonic, 92, 253
conditionally convergent, 253
convergent, 89

of functions, 266 ff.
geometric, 90

grouping of, 254

harmonic, 91, 253
hypergeometric, 263

power, 268 ff.

p-series, 92

recarrangements of, 255
sixless, 263

Taylor, 27) ff.

2-senes, 91

uniformly convergent, 267 ft.

Set(s):

boundary point of, 318
bounded, 35, 333
Cantor 7, 317
Cartesian product of, 4
closed, 313, 331
closure of, 319

cluster point of, 97, 315
compact, 319 ff.
complement of, 3
contains/contained in, 1
cauntable, 18, 343 ff
denumerabie, 18
disjoint, 3

empty, 3

equality of, 2

fimite, 16, 343 ff.
inclusion of, 1

infimum of, 36

infinite, 16

irterior of, 318

interier point of, 318
tntersection of, 3, 4
intervals, 44 ff,
measurable, 311

null, 214

open, 313, 331

relative complement of, 3

INDEX 387

supremum aof, 35

symunetric difference, 11

unbounded, 35

uncounlable, 18

union of, 2, 3

void, see Empty set
Shuffled sequence, 80
Siwignum function, 102, 122
Simpson's Rule, 223 ff., 352
Sine function, 249
Sixless series, 263
Space-filling curve, 355
Sqguare root of 2

calculation of, 72

existence of, 4]

irrationality of, 25
Sguare root function, 10, 42
Squaring function, 10
Squecze Theorem, 64, 108, 204, 280
Statement, 334
Step function, 141 ff., 205
Straddle Lemma, 167
Strong Induction, 15
Subcover, 319
Subsequence, 75
Subset, |
Substtution Theorems, 214, 218, 283
Subtraction in R, 24
Sum:

iterated, 256

of functions, 105

partial, §9

Riemann, 195

of sequences, 61

of a series, R9
Supremum, 35

iterated, 44

Property, 37
Surjection, 8
Surjective functiop, 8
Syllogism, Law of, 340
Symmetnc difference, 11

T
Tagged partition, 145, 195
Tail, of a sequence, 57
Tautology, 335
Taylor, Brook, 183
polynomual, 184
serices, 271 ff.
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Taylor’s Theorem, 184, 217, 285 Union of sets, 2, 3
Terminating decimal, 49 Uniqueness Theorem:
Test: for finite sets, 17, 343

first derivatve, 171 for integrals, 196, 276

{for absolute convergence, 257 ff. for power series, 271

for convergence of senies, 9iff., 257 ff. Universal quantifier ¥, 338

nth denivative, 187 Upper bound, 35

nth Term, 81
Thomac's function, 122, 200, 215, 307 \%
Translate, 202 Value, of a function, 6
Trapezoidal Rule, 221 ff., 351 van der Waerden, B. L., 354
Tnangle Inequality, 31, 328 Vertical Line Test, 5, 8
Trnichotomy Property, 25 Void set, see Empty set
Trigonometric functions, 246 ff.

W

4] Well-ordering Property of N, 12
Ultimately, 57 Weierstrass, Karl, 96, 119, 158
Uncountable, 18 Approximation Theorem, 143
Uncountability of R, 47, 50 M -lest, 268, 354 ff.
Uniform continuity, 136 f[., 148 nondifferentiable function, 159, 354
Uniform convergence:

of a sequence, 229 ff., 302 Z

of a senes, 267 ff. Z (— collection of integers), 2
Uniform differentiability, 176 Zero element, 23

Uniform norm, 230 Zero measure, see Null set



