

Window – Place

Интерактивная среда разработки многооконных (многозадачных) приложений в контек-

стно-зависимой трехмерной графике OpenGL с поддержкой стековых наложений графи-

ческих фрагментов и возможностью задействования виртуальных управляющих проце-
дур C++.

Window:Place – пакет базовых определений операций
1
 в контекстной среде про-

граммирования С++ для трехмерной научной графики на основе OpenGL. Объектно-

ориентированный комплекс создает интерфейс между программой, операционной систе-

мой и внешними устройствами: компьютерными часами и интервальным таймером;

внутренними растровыми и системными векторными шрифтами; графическим термина-
лом; клавиатурой и указателем «мышь»; другими внешними устройствами (измеритель-

ной телеметрией). Производный класс Window:Place управляет одним из активных окон

с собственным контекстом OpenGL и доступом к таймеру и клавиатуре. Базовый класс
Place и варианты дополнительных объектов на его основе формируют стековые наложе-

ния графических площадок/фрагментов на поверхности окна Window, для которых раз-

дельно устанавливаются режимы отображения с контролем исполнения трехмерной гра-

фики с автоматическими перерисовками для плоских картинок, текстовых отчѐтов, меню
и справок. Курсор (мышь) передаѐт координаты своего местоположения на верх-

нюю/видимую площадку Place. Полиморфизм производных классов для прикладных вы-

числительных объектов, допускает подмену базовых виртуальных функций, что может
быть полезным для сквозной перенастройки графических изображений или ускорения

вычислений.

Ключ #define GLFW переключает прямое обращение к процессам Windows-WGL
на независимую от операционной системы графическую среду GLFW-OpenGL.

Window – Place ... 0

Список основных процедур с указанием параметров Window::Place – OpenGL .. 1
О транзакциях на прерываниях от исполнительной среды Windows .. 4
Внешнее обрамление типовых операций Window-Place (окружение Type.h и View.h) 5
Предварительные краткие наставления ... 7
Контекстная систематизация графических операций ... 8

Производный класс Window на базе Place .. 9
Оконный интерфейс Window для OpenGL в среде Microsoft Windows. .. 9
Подборка основных процедур для работы с клавиатурой .. 10
Комплекс процедур интервального таймера .. 10

Базовый класс: Place – контекстная графическая и текстовая среда наложенных страниц 12
Наложение графических фрагментов Place по поверхности окна Window ... 12
Управление контекстной графической средой Place ... 13
Связывание наложенной графики Place с окном Window ... 14
Транзакции обработки прерываний от указателя «мышь» ... 15
Подборка растровых и TrueType шрифтов .. 15

Варианты наложения текстовых меню и подсказок .. 18
Операции С++ .. 19

1 «Контекстная графика» (Контекстно-зависимая среда построения трехмерной графики OpenGL с исполь-
зованием виртуальных процедур C++ и многооконного интерфейса Windows со стековым наложением графи-
ческих и текстовых фрагментов). ©Храмушин В. Н., Сахалинский государственный университет. Роспа-
тент: Свидетельство о государственной регистрации № 2010615850, 2010.09.08. Заявка 2010614191, 2010.07.13.

« 1 »

Список основных процедур с указанием параметров Window::Place – OpenGL

Window:: //! блок управления графическим окном

Window(Title, X,Y, Width,Height) // заголовок и местоположение окна

 Xpm(X), Ypm(Y) // макросы размерения активного экрана в процентах

Window& Locate(X,Y, Width,Height) // позиционирование окна по экрану

virtual bool KeyBoard(byte key) // транзакция по запросу Key, с возвратом

Window& KeyBoard(bool(*inKey)(byte)) // установка внешней обработки

byte GetKey(),ScanKey() // выборка символа и опрос готовности без остановки

byte ScanStatus() // контроль сопутствующих кодов от управляющих клавиш

byte WaitKey() // запрос с ожиданием ввода символа от клавиатуры

virtual Window& Timer() // виртуальная процедура для прерываний таймера

Window& SetTimer(mSec, bool(*inTime)()=null) // время и транзакция

Window& KillTimer() // сброс таймера

int isTimer // уровень рекурсии транзакций по таймеру для данного графического окна

Window& Refresh() // последовательная перерисовка всех графических площадок по

 // признакам PlaceAbove с использованием ранее распределенной памяти Img

Window& Above() // перемещение окна Window на верхний видимый уровень экрана

void Help(Title,Cmd,Adj, x=–1,y=1) // три блока текстовых подсказок

 // Title – заголовок; Cmd – список команд; Adj – дополнения подсказок

:: //! управление единым таймером вне окна и без задержки текущих вычислений

DWORD WaitTime(DWORD Wait, // интервал задержки текущего потока вычислений

 bool(*Stay)()=null, // внешний вычислительный эксперимент

 DWORD Work=0) // время на исполнение иных рабочих циклов

 GetTime() // текущее компьютерное время в миллисекундах

 ElapsedTime() // время от момента запуска программы (~49,7 суток)

 StartTime // отсчет времени по запуску исполнения активной программы

 RealTime // практическое время исполнения процесса (inStay) внутри WaitTime

Place:: //! основные графические операции на рабочей площадке OpenGL

Place(Window*,mode) // конструктор создания и привязки площадки к Window

 mode=PlaceOrtho // масштаб с единичными кубом [-1:1], либо растр {w,h}

 mode=PlaceAbove // стековое наложение площадок над изображением, иначе

 // сохранение графики при каждом проявлении буфера через Show

Place& Area(X,Y, Width,Height) // определение размерений площадки

 // X,Y > 0 – отсчеты от левого верхнего угла, <=0 – от правого нижнего

 // Width, Height > 0 – отсчеты в символах, если =0 – до границы окна,

 // если < 0 – в пикселях и естественных отсчетах Y – снизу вверх

« 2 »

Place& Activate(bool Act=false) // активизация графического контекста

Act=true // PlaceOrtho ? {w,h}:[-1:1] c запросом выбранного масштабирования

virtual Place& Mouse(x,y) // движение в поле графической площадки

virtual Place& Mouse(state, x,y) // реакция нажатия клавиши бышки

virtual Place& Draw() // виртуальная процедура обновления изображения

Place& Mouse(bool(*inPass)(int,int)) // внешняя обработка

Place& Mouse(bool(*inPush)(int,int,int)) // прерываний от мышки

Place& Draw(bool(*inDraw)()) // отсылка к внешнему процессу отрисовки

Place& Clear(bool=true) // очистка фоновым/true или текущим/false цветом

Place& Show() // копирование графического фрагмента из активного буфера, с его

 // пересохранением в связной памяти при наличии признака PlaceAbove

Place& Save() // безусловное сохранение текущего фрагмента изображения в связной

 // памяти, вне зависимости от (не)установки признака PlaceAbove

Place& Rest() // восстановление фрагмента из связного списка в оперативной

 // памяти в буфер OpenGL без проявления изображения на экране

Place& Refresh() // перерисовка всех наложенных площадок фонового окна Window

Place& Alfabet(h=0,Fnt="Courier New", weight=FW_NORMAL, italic=false)

Place& AlfaBit(Fnt=_8x08|_8x14|_8x16) // растровый шрифт из эпохи СССР

Place& AlfaVector(Real H=15, T=0) // векторный шрифт от Borland.chr

SIZE AlfaRect(char *Text) // размерения текстовой строчки в пикселях

Place& Print(x,y, Fmt, ...) // лист сверху/слева, y/x<=0 – снизу/справа

Place& Print(Fmt, ...) // контекстная печать по поверхности окна

Place& Text(Course,X,Y,Z, Fmt,...) // текст в графическом контексте

Place& Text(Course, const Real *P, Fmt, ...) // активных координат

extern byte _8x08[],_8x14[],_8x16[] // ссылки на растровые шрифты

:: //! контроль и предустановка контекста для прорисовки графики и текста

Window* Place::Ready() // запрос активности или текущего адреса для связного окна

bool WinReady(Window*=null) // такой же запрос по окну или всей среде Window

bool glAct(Window*) // явная привязка окна к графического контексту Window

class glContext(Window*) // временное сохранение среды Window-OpenGL

 // constructor ≈ (пролог) контекстного графического конвейера

 // destrucor ≈ (эпилог) – восстановление былого 3D-контекста

class RasterSector(X,Y,W,H) // сектор растровых манипуляций под glViewPort

class TextContext(false) // пролог текстовых записей, true – плюс базисы в стек

« 3 »

Window:: //! окошко для кратких подсказок с управляющими кодами программы

void Help(char *Name[],char *Text[],char *Plus[],X=-1,Y=1);

 Name[0] = подзаголовок – название набора инструкций для всего Window

 Name[1-3] – три строки расширенного названия (–и признак движения)

 Text – парное описание команд и операций с кратким предназначением

 Plus – то же для блока дополнительных инструкций и подсказок

 ++ завершение каждого блока со строчками заканчивается нулевым адресом

:: //! текстовое меню перенастройки и управления вычислительным экспериментом

struct Mlist{ short skip,lf; const char *Msg; void *dat; };

 skip – пропуск строк при построении меню запросов,

 lf – длина поля текстового и числового запроса, или длина строчки-команды

 Msg – сообщение с форматом запроса: % °|:, [l]defg, s  концевой символ

 dat – адрес числовых или текстовых данных для изменения.

class TextMenu(Mlist,L,Window*,x=1,y=1) // текстовое меню команд и запросов

 Пакет диалога с терминалом с помощью меню текстовых таблиц запросов

 Mlist – список параметров для запросов на терминал

 Num – количество записей с запросами в списке Mlist

 Y, X – координаты левого верхнего угла для окна запросов

 return – номер последнего активного запроса

void Break(char Msg[],...) // для завершения, и если *Msg=’~’ – информация

 ©75 Калининград–Сахалин– יְרוּשָׁליִַם‏

« 4 »

О транзакциях на прерываниях от исполнительной среды Windows

Как для виртуальных, так и для всех свободных транзакций, в момент прерывания

происходит связывание окна Window с контекстной графической средой OpenGL с по-
мощью Place::Activate(), затем (частично) запоминается текущее состояние и перена-

страивается новая исполнительная среда для исполнения свободной транзакции. По вы-

ходу из прерывания средствами Window::Place происходит автоматическое восстановле-
ние исходной исполнительной среды, и продолжаются прерванные вычислительные и

графические процессы.

Если процедура обработки прерываний возвращает false, то в Window::Place ни-
каких дополнительных действий по визуализации не производится, что важно для орга-

низации эффективных параллельных (реентерабельных) математических вычислений в

режиме прерываний, что частично снимает особые сложности в поддержании единого

контекстного потока графического конвейера.

Place:: // виртуальные и свободные транзакции, связанные с площадкой Place

bool(*extDraw)() // синхронная отрисовка картинки, при true – визуализация

bool(*extPass)(int X,int Y) // две свободные процедуры обработки

bool(*extPush)(int State,int X,int Y) // прерываний курсора мыши

Draw()true – виртуальная транзакция прерывания WM_PAINT реагирует выво-

дом стека изображений Refresh(). В других случаях Draw() может вызываться только

явно. В базовой Draw() может исполняться extDraw()true, с реакцией в Window::

через Save().Refresh(), и на площадке Place:: только Show().

Аналогичная реакция виртуальных Mouse(x.y) и Mouse(b,x,y), в которых связь с

верхней по стеку площадкой Place:: реально отслеживается.

Window:: // прерывания таймера и отклики на клавиатуру основного окна OpenGL

bool(*extKey)(byte); // процедура обработки прерываний от клавиатуры

bool(*extTime)() // свободная транзакция прерываний от таймера Window

bool(*extFree)() // и процедура в исполнительном цикле таймера программы

KeyBoard(key) и extKey(key)  true – если key принят, и false – от-

вергнут. Не принятые в прерываниях символы обслуживаются в очереди ожидания

WaitKey() или в циклах опросов: GetKey(), ScanKey() и ScanStatus().

Timer() и extTime()  true работают в предустановленной среде OpenGL, и

положительно реагируют сохранением и визуализацией всего стека окна Window:: c по-

мощью Save().Refresh().

Независимый таймер DWORD WaitTime(Wait,inFree(),Work) по аналогии с вы-

зовом Sleep(mSec) приостанавливает исполнение текущего потока на время Wait [мСек],

но при этом сохраняется активность всех других процессов и прерываний в вызывающей

программе Windows.
Вторым параметром указывается ссылка на свободную процедуру

bool extFree()  true, которая циклически исполняется внутри WaitTime в течение

указанного третьим параметром интервала времени Work [мСек], после чего заново при-
останавливается всех процессов по кванту времени Wait – в течение которого возможно

проведение служебных операций и прерываний от OS-Windows, необходимых для визуа-

лизации результатов и интерактивного управления вычислительными процессами.

Независимый вычислительный процесс может быть прерван при возврате свобод-

ной функцией extFree()  false. На выходе WaitTime(Wait,inFree(),Work) предос-

тавляет практическое время, потраченное транзакцией extFree().

« 5 »

Внешнее обрамление типовых операций Window-Place (окружение Type.h и View.h)

Два файла описаний сосредотачивают множество привычных констант, базовых

функций и файловых операций ввода-вывода в программировании для ОС-Windows на

чистом С++ в подборке «Type.h», и дополнительно для примитивов Window-OpenGL в

файле исходных описаний «View.h», отчасти покрывающих базовые графические про-

цедуры и виртуальные запросы в реализациях прямых вычислительных экспериментов.

Type.h // часто используемые общепрограммные константы и операции
 a 6 378 245 м Сфероид Красовского для морских карт России

 b 6 356 863,0188 SN\θ — эллипсоид Красовского
 c 6 399 698,9018 EW/λ (b+c)/2 = 6 367 554.0094 ε≈298.3

 м 1 855,35626248109543 м — сфероидальная миля

 ρ ≈ 1,025 кг/дм³ ↙ 25‰ — плотность морской воды (‰ – промили)

 c ≈ 299 792 458 ±1,2 м·сˉ¹ — скорость света в задачах электродинамики

_Mile=1 852,24637937659918 — морская(равнообъѐмная) миля – 1' меридиана

 // радиус эквивалентной сферы в отношении к равнообъѐмному единичному кубу
EqSphere=0.62035049089940001666800681204778 — r = ³√(3 / 4 / π)
—————=1.24070098179880003333601362409556 — D = ³√ (6 / π)
 _Pi=3.14159265358979323846264338327950288 — π
 _Pd=6.28318530717958647692528676655900576 — π × 2
 _Ph=1.57079632679489661923132169163975144 — π / 2
 _iP=0.31830988618379067153776752674503 — 1 / π
 _Rd=57.295779513082320876798154814105 — 180 / π °\ rad
 _dR=0.01745329251994329576923690768489 — π / 180 rad \°
 _e = 2.71828182845904523536028747135266249

 _g ≈ 9,8106 м/с² ≈ 9.780318·(1+0.005302·sin²φ-0.000006·sin²2φ)-0.000003086·h
 φ ≈ 1.61803398874989484820458683436563811 = 1/φ+1=(√5+1)/2
enum Course

{ _North_West=3, _North=1,_North_East=9, _Home=3, _Up =1, _PgUp=9,

 _West=2, _Zenith=0, _East=8, _Left=2,_Center=0,_Right=8,

 _South_West=6, _South=4,_South_East=12,_End =6, _Down =4,_PgDn=12,

 _Enter=13,_BkSp,_F1,_F2,_F3,_F4,_F5,_F6,_F7,_F8,_F9,_F10,_F11,_F12,

 _Esc=27,_Ins,_Del,_Tab,_Blank=32 }; // +5,+7,+10,+31 — в запасе

enum{ _MouseMove,_MouseLeft,_MouseRight,_MouseMiddle=4,_MouseWheel=8 }

enum{ RIGHT=1,LEFT,SHIFT,LCTRL,RCTRL=8,CTRL=12,L_ALT=16,R_ALT=32,ALT=48}

struct Event{ long D; Real T; // Юлианская дата и время суток в часах

 Event& Now(); Event& UnPack(&m,&d,&y); long Pack(m,d,y); } // перерасчѐты времени

class string{ char *str; int len; // текстовая строчка неограниченной длины

 char& operator[](int); } // управляется оператором выборки символа

char* fname(const char* FileName); // выборка собственно самого имени файла и

char* sname(char* ShortFileName); // тоже имя, но с отсечѐнным расширением,

char* fext (char*, const char* Ext=0); //или c принудительной заменой FileName.ext

FILE *FileOpen(char *fn, const char *tp, const char *ex, const char *ch, const char *tl);

char *getString(FILE *F); // чтение строки на едином статическом адресе

char *getString(FILE *F,int tab); // с неограниченной длиной; без(-)табуляторов

void *Allocate(size_t Sz, void *A=NULL); // Линейный массив в байтах

void **Allocate(size_t Ny,size_t Sz,void A* =NULL); // Количество и длина строк

size_t isAlloc(void* A); // ?оперативный объѐм или количество строк в матрице

« 6 »

View.h // подборка основных констант и операций контекстной графики

void View_initial() // ! начальная инициализация графической среды OpenGL

const char // словесные прописи имѐн месяцев года и дней недели

*_Mnt[]={"январь","февраль","март","апрель","май","июнь","июль","август","сентябрь",

*_Day[]={"понедельник","вторник","среда","четверг","пятница","суббота","воскресенье"};
enum colors{ white,silver,lightgray,gray,dimgray,darkgray ,freeboard,
yellow,green,lime,olive,lightgreen,navy,blue,lightblue,cyan,aqua,

lightcyan,maroon,red,lightred,orange,pink,purple,magenta,fuchsia,

lightmagenta,black,empty = –1 +SeaColor(256) } // != 28\{29}

color(colors clr) // выбор одного цвета, дополняемого палитрой SeaColor+256

color(colors clr, // … подстройка с относительной подсветкой / затенением

 bright, // … от белого <= +1,0 # –1,0 => до чѐрного …

 alfa=1) // прозрачность \ смешивание – 1 => 0 – выцветание

#define aR const Real* // доступ к вектору(Vector) и точке(Point) по ссылке

aR dot (aR a){ glVertex3dv(a); return a; } // контекстная точка так, как есть

aR dot (aR,colors) // та же точка с предустановкой цвета

aR spot(aR,Size,colors=empty) // рисунок • точек с размером и цветом

aR line(aR,aR) // завершѐнный отрезок — прямой линии

aR line(aR,aR,colors) // та же линия с предустановкой цвета

void liney(aR,aR,colors=empty) // та же линия с дублем по ординате y

void rectangle(aR LD, aR RU, bool=true) // прямоугольник плоскости {x-y}

aR circle(aR center, radius, bool=true) // круг или окружность на {x-y}

aR arrow(aR a,aR b,ab=0.06,colors=empty) // линия со стрелкой ab на конце

 // разметка координатных осей с чуть затемнѐнными надписями xyz

void axis(Place&, X,Y,Z, «ось X»,«ось Y»,«ось Z», colors=cyan)

View:Window: //! фоновые виртуальные операции с графическим окном в OpenGL

View(Title,X,Y,W,H, Size=1) // новое окно Window и начальные предустановки

virtual bool Draw() // перестраивается графическая сцена или новое изображение

virtual bool Mouse(x,y) // отслеживаются текущие координаты мыши

virtual bool Mouse(state,x,y) // здесь сдвиги и повороты графической сцены

virtual bool Keyboard(key) // те же сдвиги-повороты в окне с клавиатуры

В алгоритмах виртуальных процедур View:Window включается интерактивный

пролог воздействия на графическое изображением, с последующим наследованием:

Draw – настраивает графическую сцену в перспективной проекции по дистанции

и ориентации, с последующей подстройкой направления еѐ внешнего обзора.

Mouse – с нажатой левой кнопкой выполняется вращение сцены относительно еѐ

действующего центра; с правой кнопкой происходит простое смещение сцены; вращени-

ем колѐсика изображение удаляется или приближается. Если задействуется клавиша

<Ctrl>, то левая кнопка мыши будет наклонять изображение при движении вправо-влево,
и работать вместо колесика для изменения дистанции при движении вверх и вниз.

Keyboard – <Home> - приводит изображение к изначальному состоянию; стрел-

ки <◄▲▼►> – вращают сцену подобно мышке, или смещают еѐ в аккорде с клавишей
<Shift>; и с <Ctrl> – аналогично наклоняют и меняют дистанцию до графической сцены.

« 7 »

Window – Place

Обобщенные структуры объектов и операций трѐхмерной графики

OpenGL с контекстным интерфейсом виртуальных функций в С++

Предварительные краткие наставления

Объявление базового или производного объекта Window создает на графическом

экране новое окно с полноразмерной фоновой площадкой Place, что задействует основ-

ные операции OpenGL и периферию компьютера. В конструкторе Window заголовок

Title, местоположение X,Y и размеры окна W,H в пикселях экрана: (+) от левого верхнего

и (–) – от правого нижнего угла. Без заголовка – окно фиксированного размера без рамок

(перемещается мышкой с клавишей <Alt>). Положение и размеры окна можно изменять

процедурой Window::Locate(X,Y,W,H), где параметры могут задаваться в процентах от

экрана с помощью макросов Xpm(X) и Ypm(Y).

Графическая площадка Place объявляется со ссылкой на активное окно Window,

вторым параметром конструктора признаки: Signs=PlaceAbove для наложения площад-

ки с контролем фонового изображения, и PlaceOrtho – размечает масштаб на вмеще-

ние куба с размерностями [–1 : 1], при отсутствии – размерности в пикселях [0’w, 0’h, –

1’1]. Местоположение и размеры площадки внутри окна определяются процедурой

Place::Area(x,y, w,h), где положительные величины задают количество символов и строк

сверху-слева; отрицательные – в точках растра для отстояния от границ. Выполнение

Place::Activate(act) активирует операции OpenGL на заданный фрагмент, где пара-

метр act=true – означает предустановку масштабирования по условию PlaceAbove.

В OpenGL изображение формируется в буфере, и Place::Show() делает его види-

мым. Без признака PlaceAbove не тратятся ресурсы на частый сброс графики в связную

оперативную память, полагая возможность принудительного сохранения с помощью

Place::Save() после формирования изображения. Возврат графики из связной памяти в

активный буфер изображения выполняет Place::Rest(). Полное обновление окна с после-

довательным переналожением всех площадок: Window::Refresh().

Доступны растровые: AlfaBit({_8x08,_8x14,_8x16}) и TrueType шрифты Win-

dows: Alfabet(y=0, "Courier New", weight=FW_NORMAL, italic=false). Процедуры:

Place& Print(

fmt,

…

) + Print(

x,y,

fmt,

…

) – построчная печать текста как по листу, и

Text(Dir,x,y,z, fmt,...) – простые надписи с пространственной 3D привязкой.

Четыре функции опроса клавиатуры: Window::WaitKey() + GetKey() + Scan-

Key() + ScanStatus(), с ожиданием, считыванием и запросом наличия символа или

управляющего кода: Alt, Ctrl, Shift.

Запрос адреса активного окна Window* Place::Ready() приводит к ожиданию ис-

полнения всех операций в очередях Windows, а аналогичная функция

bool WinReady(Window*=null) также проверяет активность заданного Window, либо

наличия первого в списке существующих в программе окон.

Построение вычислительных процессов регулируется независимой процедурой

WaitTime(Wait, bool(*inFree)()=0, Work=0), ожидающей Wait [мСек] исполнения внут-

ренних циклов системы, или организующей вызов внешней транзакции extFree() с цик-

лически ограничиваемым по времени Work [мСек] ресурсом.

Включены в работу виртуальные транзакции с передачей управления по наследо-

ванию: Place::Draw() + Mouse(x, y) + Mouse(b, x, y); и Window::KeyBoard(key) +

Timer(); и они же свободные: Draw(bool(*inDraw)()) + Mouse(bool(*)(x,y)) +

Mouse(bool(*)(b, x, y)); KeyBoard(bool(*)(key)) и SetTimer(mSec, bool(*)()=0).

« 8 »

Контекстная систематизация графических операций

Графическая среда OpenGL изначально построена на контекстно-зависимых опе-

рациях, что обусловливалось относительно медленным однопоточным каналом связи ме-

жду собственно вычислительным ядром и независимой графической станцией. Контекст-
ная зависимость графических операций затрудняет параллельное исполнение реентера-

бельных (повторновходимых) процедур, и, как следствие, не допускает многопроцессор-

ного распараллеливания, с требованием особого визуального контроля реакций на пре-

рывания незавершенных последовательностей графического конвейера OpenGL.
С учѐтом построения графической среды разделяются процедуры Window::Place:

– по исполнению в контекстной привязке к активному графическому окну;

– процедуры с выбором и переназначением графического контекста;
– особые транзакции для исполнения прерываний с предустановкой и быстрым

восстановлением графической среды незавершенных алгоритмов.

1) операции с фиксацией контекста OpenGL в окне Window формально служат ба-

зисом для последовательностей контекстно зависимых графических операций:

– Window и Place конструкторы всегда оставляют связь с контекстом OpenGL.

– bool::glAct(Window*) – явная привязка окна к графического контексту;

– Place::Activate(mode=false) – предустановка Place в связанном окне Window с

графическим контекстом OpenGL, где mode=true к выбору масштаба по при-

знаку PlaceOrtho – единичного куба, либо – растрового листа { w,h }.

– Window::Locate(x,y, w,h) – изменение размеров активного окна Window;

2) подборка процедур для изображений с привязкой к любому окну Window при
сохранении текущей активности графического контекста OpenGL:

– Place::Area(x,y, w,h) – назначение места и размерений графической площадки;

– Place::Alfabet и AlfaBit – установка шрифта для графического фрагмента;

– Place::AlfaRect, String, Text, Print – формирование и пропись текстов;

– Place::Clear, Save, Rest, Show – операции с видимым изображением;

– class RasterSector(x,y,w,h) и TextContent(Space) – пролог с последую-

щим эпилогом подстройки контекста для растровых и текстовых фрагментов;

– все процедуры пакета View: virtual Draw, Mouse, Keyboard, и независимые:

View_initial, axis, arrow, point, line, color и др. …

– class RasterSector(x,y,w,h) и TextContent(Space) – пролог с последую-

щим эпилогом подстройки контекста для растровых и текстовых фрагментов;

– все запросы к клавиатуре WaitKey, GetKey, ScanKey и ScanStaus, также

как и к таймеру WaitTime, SetTimer и KillTimer связаны только с оче-

редями и прерываниями окна Window, и при этом не выполняется ассоцииро-

вание с графическим контекстом OpenGL.

– Window::Ready и WinReady(Window*) – среды OpenGL никак не касаются.

3) процедуры с временным задействованием графического контекста OpenGL

предназначены, в первую очередь, для корректной работы в условиях прерываний:

– class glContext(Window*) – конструктор как пролог, деструктор – эпилог.

– Window::Refresh – обновление всех площадок не фиксирует связь с OpenGL.

– Все виртуальные транзакции и аналогичные процедуры обработки прерываний на
входе получают предустановленным графический интерфейс в OpenGL, ко-

торый неявно возвращается к исходному по завершению прерывания.

Это те же: virtual Draw, Timer, KeyBoard и Mouse и свободные аналоги.

« 9 »

Производный класс Window на базе Place

Оконный интерфейс Window для OpenGL в среде Microsoft Windows.

class Window: Place // стандартное окно Windows для OpenGL

Производный класс Window открыто наследует элементы базового класса – ис-
ходной графической площадки Place, и замыкает на себя комплекс операций для доступа

к внешней периферии: графическому экрану и клавиатуре, с поддержкой операций для

проведения вычислительных экспериментов и и визуализации результатов под управле-
нием интервального таймера.

Конструктор Window создает элемент списка графических окон с опорным стати-

ческим адресом Window* First. Завершающий элемент списка имеет нулевую ссылку

Window*Next, как бы для отсутствующего окна.

В каждом окне фиксируется нижний элемент стека налагаемых площадок в базо-

вом классе: Window*Place::Site = Window::this. Активность Window поверяется процеду-
рами Window::Ready и WinReady(Win), в которых сначала исполняется внутренняя оче-

редь операций Windows, затем сверятся наличие адреса Site, который может быть обну-

лѐн деструктором базовой площадки.

Информацию о размерностях графического экрана на момент создания нового ок-
на Windows хранится во внутренних константах структуры Window:

int ScreenWidth, ScreenHeight // полные размеры экрана ЭВМ

Для позиционирования относительно этих размеров в процентах (%%) от всего

активного графического экрана, предусмотрены макросы с обращениями к функциям
Win32:

#define Xpm(X) (GetSystemMetrics(SM_CXSCREEN) * Real(X)/100.0) // %%X

#define Ypm(Y) (GetSystemMetrics(SM_CYSCREEN) * Real(Y)/100.0) // %%Y

В неявном конструкторе класса Window использованы следующие значения по
умолчанию:
Window::Window(char* Title=NULL,

int X=0,int Y=0, int Width=0,int Height=0)

что определяет простое окно без рамки с графическим полем 800x600;

Если указан заголовок Title, то создается стандартное окно Windows с активной
рамкой с верхним заголовком и управляющими кнопками.

Если заголовка нет (Title=null), то создается простое окно заданного размера без

активной рамки. Размеры такого окна невозможно изменить извне, что не снимает необ-
ходимости контроля и перерисовки изображения по внешним прерываниям.

Числовые параметры X, Y, Width и Height определят местоположение и размеры

полного графического поля внутри Window.

X, Y – положительные величины определяют местоположение левого верхнего
угла { 1,1 } нового окна Window, отрицательные величины – задают соответствующие

отступы от правой и нижней границы графического экрана ЭВМ. Нулевые значения X, Y

– ставят окно на четверть отступа сверху и треть – справа.
Width и Height – ширина и высота выделяемого окна Windows. Нулевые значения

заменяются величинами 800x600 – соответственно; отрицательные или слишком большие

значения приводят к установке максимальных размерностей окна в пределах всего гра-
фического экрана ЭВМ. Обрамляющие рамки Windows добавляются к исходным разме-

рам Width и Height.

« 10 »

Для динамического изменения размеров и местоположения окна Window предна-

значена процедура Locate, числовые параметры X, Y, Width и Height интерпретируют-

ся также, как и в вышеописанном конструкторе:

void Window::Locate(int X, int Y, int Width, int Height);

Отсчеты местоположения и размеров окна могут быть заданы в процентах отно-

сительно экрана ЭВМ с помощью функций – макросов: Xpm(X) и Ypm(Y). При опреде-

лении реальных параметров окна, по необходимости смещаются контрольные отсчеты

местоположения – X, Y в пользу поддержания максимально допустимых величин –

Width и Height.

Подборка основных процедур для работы с клавиатурой

Шесть процедур для получения данных в программе с помощью клавиатуры все-

гда связаны с конкретным окном Window, и все посылки с клавиатуры сохраняются в его
кольцевом буфере до момента выборки внутри в программы:

byte WaitKey() // остановка и ожидание нового символа с клавиатуры

byte GetKey() // запрос и выборка символа без остановки программы

byte ScanKey() // опрос символа без остановки и без выборки из очереди

byte ScanStatus() // получение из буфера кода для сопутствующих клавиш

virtual bool KeyBoard(byte) // виртуальная процедура по умолчанию вызывает

Window& KeyBoard(bool(*inKey)(byte)) // регистрация свободного модуля

// обработки прерываний для реагирования на ввод команд и данных с клавиатуры

WaitKey и GetKey выбирают по одному символу из буфера, ScanKey показы-

вает его поступление в буфер. Если окно Window закрывается извне, например <alt-F4>,

то возвращается 0, и также обнуляются Window* Site и запрос к Place::Ready().

Функция ScanStatus считывает признаки сопутствующих <Shift>, <Alt> и

<Ctrl> клавиш, нажатых сейчас или ранее в момент успешного ввода символа в буфер

клавиатуры, и могут принимать следующие значения/маски:

 RIGHT=1, LEFT=2, SHIFT=3, // 0x03

 LCTRL=4, RCTRL=8, CTRL=12, // 0x0C

 L_ALT=16, R_ALT=32, ALT=48. // 0x30

<Ctrl+C> – нормальное завершение с исполнением всех деструкторов;
<Alt+LeftMouse-move> перемещение окна по экрану ЭВМ.

Виртуальная KeyBoard(key) и свободная extKey(key) получают один символ с

клавиатуры, и возвращают true для продвижения к следующей ячейке указателя клавиа-
турного буфера из 64 позиций. Если символ не принят в работу, функции обработки пре-

рываний возвращают false – создавая, тем самым, опасность блокировки ввода с клавиа-

туры.

При остановке программы по WaitKey() происходит отключение обработчиков

прерываний от клавиатуры, что требуется для временного захвата клавиатуры, например

для ввода текстовых или числовых данных, или для позиционирования курсора в строч-
ках текстового меню

Комплекс процедур интервального таймера

Предусматривается один интервальный таймер для программы в целом, и с каж-

дым окном Window может быть связан собственный виртуальный таймер, которые полу-

« 11 »

чают управление по заданному интервалу времени в последовательности выборки преры-

ваний на исполнение внутренних очередей программы в Windows.

Общий таймер для управления вычислительным экспериментом:

DWORD WaitTime(DWORD Wait, // активная задержка для независимых операций

 bool(*inFree)()=0, // свободная функция цикла вычислительного эксперимента

 DWORD Work=0); // контрольное время на исполнение цикла вычислений [мСек]

По умолчанию данный таймер вводит программу в цикл исполнения операций из

внутренней очереди Windows с опросами WaitMessage на время Wait [мСек], что обеспе-
чивает корректную работу с внешними устройствами и графическим экраном. Если ука-

зывается ссылка на свободную вычислительную процедуру bool extFree(), то внутри

WaitTime организуется непрерывный цикл на время Work, для управляющих запросов и

графического представления результатов в течение Wait.

Для выхода из цикла, процедура extFree() должна вернуть значение false. Можно

прекратить внутренний цикл повторным обращением WaitTime(0), если такое возмож-

но в свободном от управляющих связей вычислительном модуле extFree(). WaitTime –

возвращает чистое суммарное время, потраченное на вычислительный эксперимент в

цикле исполнения модуля extFree().
С окном Window связаны три программы для работы с таймером, включая вирту-

альную процедуру Timer, для которой производится фоновая предустановка, настройка

и масштабирование контекстной среды OpenGL.

Window& SetTimer(DWORD mSec, bool(*inTime)()) // интервал и свободная процедура

virtual bool Timer() // виртуальный модуль обработки прерываний таймера

Window& KillTimer() // сброс таймера — установка нулевого интервала

Если виртуальная процедура не перекрывается в производных классах, то с базо-

выми предустановками может быть вызывана свободная транзакция bool extTime(), зада-

ваемая вторым параметром в Window::SetTimer(mSec, bool(*inTime)()).

Если заданный интервал mSec меньше реального времени исполнения процедуры

обработки прерывания, то последующие виртуальные Timer или свободные extTime

транзакции будут игнорироваться до завершения уже работающей.

Если обработчики прерываний Timer или extTime возвращают false, то каких-

либо действий по визуализации результатов не требуется. В случае true – контекстная

графика переносится сначала в связанный буфер c помощью Save(), с последующим

восстановлением и визуализацией итогового изображения по Refresh().

Следующие глобальные переменные и функции дают доступ к использованию

компьютерных часов:

DWORD StartTime, // время запуска исполнения программы от начала работы Windows

 RealTime; // время исполнения параллельной процедуры внутри WaitTime

DWORD GetTime(), // текущее время в миллисекундах = timeGetTime = GetTickCount

 ElapsedTime(); //! время работы программы, опрокидывание через ~49,7 суток

Скрытые (private:) внутренние ссылки на процедуры обработки прерываний в

контексте окна Window:

bool (*extKey)(byte); // свободная процедура обработки прерываний клавиатуры и

bool (*extTime)(); // внешняя процедура для отработки срабатывания таймеров,

// на выходах запросы на обновление изображении всего окна

« 12 »

Базовый класс: Place – контекстная графическая
и текстовая среда наложенных страниц

Наложение графических фрагментов Place по поверхности окна Window

class Place // графическая площадка/страница на поверхности окна Window

Основной графический объект, обеспечивающий контекстную графику и стан-

дартные текстовые запросы средствами OpenGL на специально выделенных фрагментах

в поле Window, размечаемых наложенными поверх прямоугольными площадками как:
class Place. Одновременно Place является базовым классом для всего окна Window, что

требуется как в качестве шаблона для всех наложенных фрагментов, а также в случае во-

влечения всего графического окна в качестве простейшего или единственного графиче-
ского интерфейса Window::Place.

С базовым классом связываются все контекстные операции OpenGL, а также сис-

темно-зависимые утилиты для позиционирования и сохранения растровых полей; выбора
шрифтов и представления текстовых строк в графическом и страничном форматах; обра-

ботки прерываний от указателя «мышь» и др.

Place::Place(byte Signs = PlaceOrtho | PlaceAbove) // конструктор

struct Window; // родительский класс определяет рабочее окно Windows

struct Place // базовый класс графической площадки/текстового листа

{ Window *Site; // опорный (для Place) контекст окна Window в Windows

 byte Signs; // особые режимы/признаки управления страницей Place

 Place *Up; // адрес в последовательном списке наложений Window

 int *Img; // временное хранилище фонового графического образа

 int pX,pY,Width,Height; // положение и размеры на родительском окне Window

 struct hFont; // шрифт сохранятся подключенным к hDC Windows

 { byte *Bit; // временная установка старого растра из DispCCCP

 HFONT hF; // шрифт сохраняется для внутрисистемной метрики

 int Base,W,H; // индекс ТrueТype-OpenGL, ширина и высота символа

 } *Fnt; // ссылка на новый шрифт или базовый шрифт Window

 friend class Window; // взаимный доступ к элементам связных объектов

 bool(*extPass)(int X, int Y); // три адреса внешних независимых процедур

 bool(*extPush)(int State, int X, int Y); // обработки прерываний от мышки

 bool(*extDraw)(); // Рисование по стандартному полю графического фрагмента (окна)

}
Конструктор новой площадки Place создает чистую заготовку, предварительно

связанную с исходным контекстом структуры Window::First, что необходимо для досту-
па к контексту внутренних или исходных настроек графической площадки. В качестве

обязательного параметра при конструкторе указывается маска битов для установки ре-

жимов использования новой наложенной площадки:

Enum Place_Signs

 { PlaceAbove=0x80, // сохранение-восстановление изображения

 PlaceOrtho=0x40 } // масштаб на трѐхмерное ортогональное пространство

Бит PlaceAbove = 0x80 указывает на необходимость включения алгоритмов

автоматического контроля и восстановления изображения графического фрагмента Place

при обращении к визуализации Place::Show(). Аналогичное восстановление изображения

будет выполняться принудительно после вызова операции Place::Save(), однако в этом

случае режим автоматического обновления задействоваться не будет.

« 13 »

Бит PlaceOrtho = 0x40 включает представление пространственного куба с гра-

ничными размерами: X[-1:1]; Y[-1:1]; Z[-1:1]. Если бит PlaceOrtho отключѐн, то

в качестве физических границ размечается поверхность в плоскости { X, Y} с растровыми

размерениями [0, 0, Width, Height], где отсчеты координат ведутся из левого–нижнего

угла. Такой естественный режим масштабирования удобен для работы с текстами, для
которых известны растровые размеры шрифтов (Fnt.Width, Fnt.Height), или вычисляются

размерения печатаемых строк по SIZE AlfaRect(str ,bool=ANSI): { long cx,cy }.

Выбранное масштабирование задействуется в случае указания значения true в па-

раметре процедуры Place::Activате(bool=true), иначе, при указании значения false,

выполняется только привязка исполнительной среды OpenGL и предустановка прямо-

угольного фрагмента glViewport(pX,pY,Width,Height), где координаты pX, pY – задают

местоположение внутри окна Window.

Управление контекстной графической средой Place

Наложенные графические площадки Place обеспечивают полный и независимый
интерфейс для управления фрагментами растрового поля, обеспечивающие привычную

среду представления контекстной графики для OpenGL. То есть, виртуальная работа с

графическим операциями в непосредственной связке с ОС-Windows может выполняться
без уточнения принадлежности к окну Window, как бы с отсрочкой до выдачи специаль-

ных команд визуализации результатов.

С каждым фрагментом Place предопределяется конкретный растровый

AlfaBit или стандартный Alfabet-(truetype) шрифт. Если привязка конкретного

шрифта отсутствует, то тип шрифта будет выбираться из базового окна Window: Place,

где по умолчанию предустанавливается немного утолщенный моношириннный шрифт

«Courier».

По размерам активированного шрифта выполняется позиционирование и опреде-

ление размеров наложенной площадки в Area(pX,pY,Width,Height) в отсчетах количе-

ства символов по Alfabet() или AlfaBit(), иначе такие размерения будут отсчиты-

ваться в точках графического растра.

void Place::Area(pX,pY,Width,Height) // местоположение и размерности

Установка местоположения и размеров наложенного в окне Window графическо-

го фрагмента. В процедуре Area не выполняются привязки контекста OpenGL к кон-
кретному окну Window, что иногда полезно для прорисовки или копирования схожих

графических площадок в разных окнах OS-Windows. С этой целью предусматривается

установка размерений либо в абсолютных величинах, либо в отступах относительно гра-
ниц окна, с указанием числовых размерений либо количеством текстовых символов, либо

числами пикселей графического экрана.

Так, если pX, pY > 0 – отсчеты местоположения выполняются от левого и верхнего
угла Window, иначе – для нулевых отрицательных значений pX, pY > 0 от правого и ниж-

него, соответственно.

Width, Height > 0 – размеры площадки устанавливаются в количестве символов

предустановленного шрифта от левой и верхней границ окна Window. Если Width = 0 или
Height = 0 то границы площадки вытягиваются до противоположной границы окна, в

предположении что величина pY теперь отмеряется от нижнего края в сторону верхнего.

Если Width, Height < 0 – размеры площадки определяются только в растровых от-
счѐтах, с установкой правой системы геометрических координат, ось Y – снизу вверх.

« 14 »

Если шрифт предварительно не устанавливался, то размеры площадки

Area(x,y,w,h) определятся по аналогичному алгоритму, как бы с размерами шрифта – в

одну точку [1х1].

Если площадка создавалась с указанием режима PlaceAbove, то в процедуре

Area выполняется пр200

 едварительное сохранение фонового изображения, для поддержания возможно-

сти его быстрого растрового восстановления без запросов перерисовки по транзакции

Draw().

Связывание наложенной графики Place с окном Window

Активность площадки Place и существование опорного Window проверяется

вызовом функции Window* Place::Ready(), которая возвращает адрес окна или

NULL, если работа с запрашиваемым окном прекращена. Эта чисто информационная

функция не влияет на состояние исполнительной среды OpenGL, и для еѐ практического

ассоциирования с Window может применяться простейшая и быстрая операция

bool glAct(Window*), с подтверждением true при успешном подключении.

Для работа с контекстными операциями OpenGL необходжимо предварительно

исполнить процедуру Place::Activате(bool=false), в которой выполняется предус-

тановка геометрического масштабирования будущих графических примитивов и опера-

ций с ними.

Вызов Activate(false) не сопровождается предварительным масштабированием
фрагмента Place, а только активирует привязку Window к контекстной графике OpenGL

и выставляет размерения границ прямоугольной площадки как:

glViewport(pX,pY,Width,Height);
В случае вызова Activate(true) выполняется масштабирование активизируемого

графического объекта и его привязка к окну Window. Указание ортогональных коорди-

нат: PlaceOrtho = x40 предусматривает установку внутри графического фрагмента еди-

ничного куба: X[-1:1]; Y[-1:1]; Z[-1:1]. Ось X направлена слева-направо, Y – снизу-

вверх, Z – из экрана на наблюдателя. Это нейтральная разметка для единичной матрицы,

к которой применимо простое и вполне адекватное перемасштабирование. Так вызов

glOrtho(0,1, 0,1,-1,1) переключит масштаб на вмещение куба: X[0:1]; Y[0:1]; Z[-

1:1]. Без бита PlaceOrtho масштабирование сводится к плоским растровым или буквен-

ным размерениями с границами из параметров процедуры Area(pX,pY, Width,Height):

X[0:Width]; Y[0:Height]; Z[-1:1] (ось Y направлена снизу-вверх), что удобно для

работы с растровыми изображениями и текстами.
Управление графическими результатами с переносами в оператитвную память, в

графические буфера и на экран с текущим изображением в окне Window-OpenGL:

Place& Clear(true) // исходная расчистка ограниченной графической площадки

Place& Save() // сохранение текущего изображения в оперативной памяти

Place& Rest() // восстановление фрагмента экрана из памяти

Place& Show() // проявление на экране фрагмента из графического буфера

Window& Refresh() // обновление Window с переналожением площадок Place

(+++) Временно закрытые процедуры управления графическими фрагментами

 (как пока не востребованными в настоящей практике):

Place& Dive() // стековое погружение вглубь с перестроением наслоений

Place& Rise(int) // подъем из стека с возвратом на указанное число площадок

Place& Free() // принудительное освобождение площадки от окна процедуры

« 15 »

Транзакции обработки прерываний от указателя «мышь»

Два варианта прерываний от указателя «мышь» предусматривают передачу

управления при свободном движении над конкретной площадкой, либо при движении с

нажатыми кнопками (простое реагирование на нажатие кнопок мыши пока не встроено):

virtual void Place::MouseMove(int X, int Y) // свободное движение или с

virtual void Place::MousePress(int But, int X,int Y)// нажатой кнопкой Button

Обе процедуры включаются в работу только при условии предварительного под-
ключения внешних процедур обработки прерываний:

void Place::MouseMove (void(*inPass)(int X, int Y))

void Place::MousePress(void(*inPush)(int But, int X, int Y))

При вызове внешних независимых процедур обработки прерываний от указателя

мышь: inPass и inPush, происходит предварительное переключение окна Window, сохра-

нение текущего графического контекста OpenGL, а ссылке Place::Act передается адрес
контекста площадки под указателем «мышь». Собственно вызов утилиты масштабирова-

ния: Active() не выполняется. По завершении прерывания восстанавливается фокус ак-

тивности первоначального окна Window с собственным графическим интерфейсом
OpenGL, что, как правило, достаточно для безаварийного продолжения работы прерван-

ных операций.

Подборка растровых и векторных шрифтов

Ввиду несовместимости стандартных шрифтов Windows с иными операционными
системами, при неразрешимости странных проблем в OpneGL-1.1 на компьютерах с про-

цессорами AMD, в последних версиях графической среды Windoe:Place проприетарные

шрифты True-Type заменены подборкой простых русских векторных шрифтов, аналогич-

ных по формату с Воrland.chr и DesignCAD.vct.
Формально, независимые векторные и растровые шрифты необходимы для обес-

печения совместимости программ на уровне исходных кодов в различных операционных

системах с графической средой OpenGL. Как вариант, интерфейс Windows может заме-
няться ОС-совместимыми надстройками, что также успешно отработано c использовани-

ем известной оболочки GLFW.

Для совместимости с иными операционными системами, как Linux\Unix; Andoid,
OS-MESA и др., с состав среды программирования добавлена возможность замены пря-

мого обращения к msWindows-WGL на GLFW-OpenGL. Переносимость текстовых шриф-

тов обеспечивается полностью автономным набором растров на Русском и Английском

языках, а также комплектом векторных шрифтов со сдвоенными начертаниями контуров
букв на Русском, Английском, Греческом и Иврите, с полным набором графических сим-

волов из старых ОЕМ и ANSI кодировок.

Place& AlfaBit(DispCCCP) // привязка растрового шрифта на 256 символов

 unsigned char _8x08[],_8x14[],_8x16[]; // просто русские растровые шрифты

В современных версиях Windows пропорции шрифтов выставляются настройками

графических экранов, что вновь позволяет пользоваться старинными растровыми шриф-

тами AlfaBit с условно малыми размерами, так как приемлемые к прочтению размеры

символов растеризуются автоматически (особенности текстов в окнах Windows).

В работу включены «старинные» шрифты из коллекции DispCCCP в трех вариан-

тах: _8x08; _8x14; _8x16 (размерения в точках экрана), где русские буквы в исходной

« 16 »

OEM-кодировке прорисованы тонкими линиями, а латинские — жирными. В текущей

версии Window:Place повсеместно задействуется расширенная кодировка UTF-8, что по-

зволяет дополнить растровые матрицы буквами ё и Ё, и символами русских угловых ка-

вычек: « и ».

SIZE& Place::Alfabet(int=16, const char*="Courier", // установка ТТ-шрифта

 byte weight=FW_DONTCARE, byte italic=false)// Windows

Place& AlfaVector(Real H=15, T=0) // векторный шрифт типа «Complex»

Текущий вариант графической прорисовки рабочих шрифтов показывается ри-

сунком, схваченным захваченным с растрового экрана компьютера.

Две нижние выделенные фиолетовым фоном строки в рабочей версии обычно исключа-
ется, что экономит чуть более четырех килобайт в исполняемом коде программ. Для вы-

борки. Исходный текстовый вариант шрифта приводится ниже, он может использоваться

для копирования и вставки необходимых символов в код разрабатываемых программ:
↟ˉ◚◛◡◢◠◟●◘○◙◞◝◣◤◜►◄↕‼¶§⇇↖↑↓→←↗↔▲▼
↟!\"#$%&'()*+,-./0123456789:;<=≠>?©…
↟@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

↟`abcdefghijklmnopqrstuvwxyz{|}~↚
↟¡£¦§«±²þ·Øøæ»µ´‚ƒ∝∞↘↙≥≤↜↝∂∑∫∮ý‡≈∙∇√ⁿ⇎↑→←↓¬↛↟↞↪↩
↟ЄАБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ
↟абвгдеѐжзийклмнопрстуфхцчшщъыьэюя
↟ΑΒΓΓΔΕΖΘΗΚΛΜΝΞΟΠΡ΢ΣΤΦΥΦΧ
↟ίαβγδεδεκλμνξοππζηυθχψωϑϕ

 אבגדהוזחטיךכלםמןנסעףפץצקרשת↟
↟₧↥↺↻↯↮↼↰↶↵↴↡↢↧↦↤↨↷↸↳↭⇂↿↹⇅⇀⇁↽↾↲↱↫↬⇄⇃↣↠⇈⇇⇉⇊⇆⇋⇌⇍
↟΄΅ΎΏΐµ¿��Æ�����ß����åçèéêëíìîïðòñóôùúûüÿ�
Прямая прорисовка векторных шрифтов под контролем AlfaVector снимает

ограничения по подборке символов из таблиц фиксированных размеров. Здесь вполне

« 17 »

уместно динамически размечать текстовые надписи, например в пропорциях от размере-

ний графической площадки или изображаемого объекта, для чего все размерения шриф-

тов определяются числами в плавающем формате.

SIZE Place::AlfaRect(char*) // растровые размерения надписи

Процедура AlfaRect выдает размеры растрового представления строки, что мо-

жет быт использовано, например, для предварительной расчистки.

void Print(int X, int Y, const char *_fmt, ...) // лист y/x<=0 — снизу/справа

void Print(const char *_fmt, ...) // контекстная печать

Две процедуры позволяют печатать тестовые строки на графической площадке,

как по писчему листу, с отсчетом первой позиции печатаемой строки от верхнего-левого
угла при положительных X,Y, и от правого-нижнего при отрицательных X,Y, соответст-

венно. В процедурах Print допускается многократное использование символа '\n' для

перехода на новую строку.

int Text (Course Dir, Real X, Real Y, Real Z, const char* _fmt, ...) // подписи в 3D

int Text (Course Dir, const Real *A, const char* _fmt, ...) // координатах

Текст печатается на графическом поле, при этом выбор Course показывает отступ

текста от контрольной точки X,Y,Z на поверхности рабочей площадки:

Center – указанные координаты приходятся на центр надписи;
North – со смещением вверх; South – вниз;

West – влево, East – вправо.

Для справки приводятся числовые коды некоторых символов, которые нередко
срабатываю на клавиатуре при нажатии клавиши <flt>.

1. ◚

2. ◛

3. ◡

4. ◢

5. ◠

6. ◟

7. ¥

8. ◘

9. ○

10 ◙

11 ◞

12 ◝

13 ◣

14 ◤

15 ◜

16 ►

17 ◄

18 ↕

19 ‼

20 ¦

21 ¤

22 ▬

23 ↖

24 ↑

25 ↓

26 →

27 ←

28 ↗

29 ↔

30 ▲

31 ▼

0145 ‗

0146 ‘

0147 ―

0148 ‖

0149 ¥

0151 —

0152 ˜
0153 ª

0155 ›

0157 ‌
0160

0161 ¡

0162 ¢

0163 £

0164 ¤

0165 ¥

0166 ¦
0167 ¤

0168 ¬

0169 ©

0170 ª

0171 «

0172 ¬

0173

0174 ¨

0175 ¯

0176 °

0177 ±

0178 ²

0179 ³

0180 «

0181 µ

0182 ¦

0183 ·

0184 ¸

0185 ¹

0186 º

0187 »

0188 µ

0189 ´

0190 ¶

0191 ¿

0215 ×

0216 Ø

0223 §

0230 æ

0247 ’

0248 ø

В стандартной русской кодировке Windows-1251 имеются специальные символы,

которые со временем планируются к включению в расширенную матрицу DispCCCP:
‘°’ – B0 ‘Ё’ – A8 ‘©’ – A9 ‘§’ – A7

‘±’ – B1 ‘ё’ – B8 ‘®’ – AE ‘«’ - AB

‘­’ – 87 ‘№’ – B9 ‘™’ – 99 ‘»’ – BB … 86
Последняя кодовая строка из альтернативной (OEM-866) кодировки в DOS, перенесена в
позицию 0x80 и содержит следующие символы: ‘±≥≤‚·n²⇎’, устанавливае-
мые функцией для старого русского растра AlfaBit(_8x08 | _8x14 | _8x16)<=Win1251.

« 18 »

Две процедуры для наложения текстовых меню и подсказок

 //! Неlp – текстовое окошко для кратких подсказок с управляющими кодами программы
 // N[0] – подзаголовок – краткое обозначение набора инструкций для Window
 // N[1-3] – три строки расширенного названия окна подсказок (и признак движения)
 // Сmd – парное описание команд или операций с кратким предназначением
 // Plus – то же для блока дополнительных инструкций и подсказок
 // ++ определение каждого блока текстовых строк заканчивается нулевым адресом

void Window::Help

(const char *Heading[], // [0,1÷3] заголовок и строки расширенного названия
 const char *Commands[], // парное описание основных команд и действий
 const char *Comments[], // + всякие дополнительные парные примечания
 int X=-1, int Y=1 // = местоположение в окне { -1–справа 1–вверху }
);

struct Mlist{ short skip,lf; const char *Msg; void *dat; };

#define Mlist(L) L,(sizeof(L)/sizeof(Mlist)) // строка и ее длина

// Mlist – список параметров для одного запроса текстового меню на терминал
// skip : пропуск строк ––> номер сроки
// lf : 0 – запрос не производится ––> длина входного сообщения
// Msg : NULL – чистое входное поле ––> выходной формат –
// dat : NULL & lf<>0 – меню-запрос ––> адрес изменяемого объекта

int TMenu(Mlist *M, int Nm, int x=1, int y=1, int ans=0);

class TextMenu: Place // запрос текстового меню с отсрочкой полного завершения
{ int Y,X,Lx,Ly, // местоположение на экране (++/слева-сверху, --/снизу-справа)
 K, // номер редактируемого поля / последнего обращения
 Num; // количество строк меню
 Mlist *M; // собственно список меню Mlist/mlist
// void(*)(int); // прерывание/подсказка при переходе на новый запрос из меню
 bool Up; // признак установки меню на экране
public:

 TextMenu(Mlist*,int, int=1,int=1); ~TextMenu();

 void Active(); // локальная активизация графического контекста новой площадки
 int Answer(int=-1); void Back(){ Up=false; Free(); }

};

« 19 »

Операции С++

По порядку слева → направо, или налево ← справа,

с приоритетом от 17 до 1 по старшинству операций.

Первичные и постфиксные
:: →17 разрешение области видимости

[] →16 индексация массива

() →16 вызов функции

. →16 элемент структуры

-> →16 элемент указателя

++ →15 постфиксный инкремент

-- →15 постфиксный декремент

Одноместные операции
++ ←14 префиксный инкремент

-- ←14 префиксный декремент

~ ←14 поразрядное NOT

! ←14 логическое NOT

- ←14 унарный минус

& ←14 взятие адреса

* ←14 разыменование указателя

::* ←14 указатель на член класса

.* ←14 доступ к члену класса

->* ←14 доступ по ссылке ––//––

(тип) ←14 приведение типа

sizeof ←14 размер в байтах

Мультипликативные
* →13 умножение

/ →13 деление

% →13 взятие по модулю

Аддитивные
+ →12 сложение

- →12 вычитание

Поразрядного сдвига
<< →11 сдвиг влево

>> →11 сдвиг вправо

Отношения
< →10 меньше

<= →10 меньше или равно

> →10 больше

>= →10 больше или равно

== → 9 равно

!= → 9 не равно

Поразрядные
& → 8 поразрядное AND

^ → 7 поразрядное XOR

| → 6 поразрядное OR

Логические
&& → 5 логическое AND

|| → 4 логическое OR

Условные
? : ← 3 условная операция

Присваивания
= ← 2 присваивание

*= ← 2 присвоение произведения

/= ← 2 присвоение частного

%= ← 2 присвоение модуля

+= ← 2 присвоение суммы

-= ← 2 присвоение разности

<<= ← 2 присвоение левого сдвига

>>= ← 2 присвоение правого сдвига

&= ← 2 присвоение AND

^= ← 2 присвоение XOR

|= ← 2 присвоение OR

throw ← 2 исключение

 , → 1 запятая

Вычислительная гидромеханика и морские исследования

Сахалинский государственный университет
©2010 В.Храмушин ~ לַיִם 2025-01-20 יְרוּשָׁ

	Window – Place
	Список основных процедур с указанием параметров Window::Place – OpenGL
	О транзакциях на прерываниях от исполнительной среды Windows
	Внешнее обрамление типовых операций Window-Place (окружение Type.h и View.h)
	Предварительные краткие наставления
	Контекстная систематизация графических операций

	Производный класс Window на базе Place
	Оконный интерфейс Window для OpenGL в среде Microsoft Windows.
	Подборка основных процедур для работы с клавиатурой
	Комплекс процедур интервального таймера

	Базовый класс: Place – контекстная графическая и текстовая среда наложенных страниц
	Наложение графических фрагментов Place по поверхности окна Window
	Управление контекстной графической средой Place
	Связывание наложенной графики Place с окном Window
	Транзакции обработки прерываний от указателя «мышь»
	Подборка растровых и векторных шрифтов

	Две процедуры для наложения текстовых меню и подсказок
	Операции С++

