
A2UI blog post

Introduction
A2UI (Agent-to-UI) is a protocol designed by Google to standardize how AI agents

communicate with user interfaces. Instead of tightly coupling agents to specific

frontends, A2UI defines a clear contract for intent, state, and actions - making it

easier to build interactive, agent-driven experiences that are portable,

composable, and UI-agnostic. As AI systems move from passive responses to

active collaboration, A2UI provides the missing layer between intelligence and

interaction.

In simple words is - instead of always receiving text responses, using A2UI you

can have an interactive UI rendered across devices, allowing the users, for

example, to tap on buttons to perform actions, instead of typing.

The specification for this protocol is still not final, but sure enough, at Stream we

already have an integration with our Chat SDK.

In this post, we will see how we can integrate the Stream SwiftUI SDK with an

A2UI compatible rendering SDK called GenUI. The code in this article was written

with the 0.8 version of the specification.

What are we building?
We are going to take our AI assistant iOS implementation and extend it to support

a custom attachment that will render responses compatible with A2UI.

The A2UI responses would be about listing top 5 restaurants, and making a (fake)

reservation to one of those. It’s the same Restaurant Finder demo which can be

found in the official a2ui repo, but optimized for our chat integration.

You can find a video of how the end result will look like here:

attachment:653b4f8b-8834-4a61-b664-2923c7a18fb1:demo-stream.mov

A2UI blog post 1

https://a2ui.org/
https://getstream.io/blog/ios-assistant/
https://github.com/google/A2UI/tree/main/samples/agent/adk/restaurant_finder
https://www.notion.so/signed/attachment%3A653b4f8b-8834-4a61-b664-2923c7a18fb1%3Ademo-stream.mov?table=block&id=2eb6a5d7-f9f6-80a6-8d46-fb711a3e981f&spaceId=eadf664a-4346-4f42-84bc-741fd336fc09&userId=717b7966-4d1e-4648-b66d-68a82f0b0ec6&cache=v2

As you will see, adding support for A2UI in existing products is possible, and it can

work well with the rest of your product.

You can find a working version of this project, on iOS and NodeJS.

A2UI 101
The A2UI v0.8 specification defines a streaming, JSONL-based protocol that

enables AI agents to declaratively describe user interfaces as a sequence of

abstract UI messages. It was designed for progressive rendering and LLM

friendliness: components are represented in a flat list with string IDs, and

messages like surfaceUpdate , dataModelUpdate , and beginRendering allow a client to

render and update UI incrementally without waiting for a complete payload.

Interaction in v0.8 flows through defined message types and a shared component

catalog: the agent streams component definitions and data model changes over

Server-Sent Events (or equivalent transport), and the client maps abstract

component types (e.g., Button , TextField , Row) from its catalog to native views.

The UI’s reactive behavior is driven by separate client-to-server event

messages when users interact with the interface; these events feed back into the

agent’s logic and may result in further UI messages.

In contrast, v0.9 (draft) represents a philosophical and architectural shift toward a

prompt-first design. Rather than optimizing solely for structured output (like strict

JSONL that LLMs emit via function calling), v0.9 embeds JSON schemas directly

into the model’s system prompt so that the model generates UI messages in

context.

Now that we know the basics of A2UI, let’s see how we can support it, both

server-side and on a mobile app.

Server-side integration
We will take an existing server-side SDK (Stream Chat AI SDK), that integrates

Stream Chat with Vercel’s AI SDK. This integration allows us to easily switch

between LLMs, while keeping a unified Stream Chat interface.

As an addition, we want UI interactions (button clicks, form submits, etc.) to drive

the assistant

A2UI blog post 2

https://github.com/GetStream/chat-ai-samples/tree/a2ui-example/ios
https://github.com/GetStream/chat-ai-samples/tree/a2ui-example/ai-sdk-sample
https://github.com/GetStream/stream-chat-js-ai-sdk

the same way typed text does. That means we would need to:

1. Detect the A2UI payload on incoming messages.

2. Convert that payload into a prompt the model can understand.

3. Allow integrators to attach structured A2UI response data to the outgoing

Stream Chat message without rewriting agent logic.

Step 1: Add hooks for input and output customizations
We’re introducing two optional hooks:

userMessageHandler : lets you intercept an incoming message. If you return true ,

the agent stops and you handle the message yourself.

finalMessageAugmentor : lets you add structured fields to the final message update

that is sent to Stream Chat.

Below is an example of how you can pass these hooks when you create an

AgentManager (available in the Stream Chat AI SDK):

const agentManager = new AgentManager({

 serverToolsFactory: () => createDefaultTools(),

 agentIdResolver: buildAgentUserId,

 finalMessageAugmentor: restaurantA2uiAugmentor,

 userMessageHandler: createA2uiInteractionHandler(),

});

Step 2: Convert an A2UI interaction into a prompt
Incoming messages can include an a2ui_interaction payload. When we see one,

we:

1. Read a2ui_interaction from message.extraData (or top-level fields).

2. Parse it as JSON.

3. Extract userAction and its context .

4. Produce a natural-language description, for example:

A2UI blog post 3

USER_WANTS_TO_BOOK: {restaurant}

User submitted a booking for {restaurant} ...

5. Replace the raw text with this description before sending it to the model.

This makes A2UI events feel like typed input, so the model can reason about them

without special casing.

const base = (message as { extraData?: Record<string, unknown

> }).extraData;

const raw =

 (base?.a2ui_interaction ??

 (message as unknown as Record<string, unknown>)['a2ui_int

eraction']) as

 | string

 | undefined;

const payload = raw ? (JSON.parse(raw) as InteractionPayload)

: undefined;

const actionName = payload?.userAction?.name;

switch (interaction.actionName) {

 case 'book_restaurant':

 await channel.sendMessage({ text: '', ai_generated: true,

a2ui: payload } as any);

 return true;

 case 'submit_booking':

 await channel.sendMessage({ text: '', ai_generated: true,

a2ui: payload } as any);

 return true;

 default:

 return false;

}

Step 3: Convert the model output into an A2UI
response

A2UI blog post 4

When the model finishes, we send a final message update to Stream Chat. This is

the

place to attach structured A2UI response data.

Here is the flow:

1. The response handler builds the final set payload that will be sent to

partialUpdateMessage .

2. If finalMessageAugmentor is provided, it receives the final text, the message,

the channel, and the full model message list.

3. The augmentor returns an object with extra fields (for example, an A2UI

response

payload).

4. Those fields are merged into the final set payload and sent to Stream Chat.

In practice, this means your augmentor can return something like:

a2ui_response : the structured response you want the client to render.

Any other metadata your UI needs.

The agent keeps the standard text update, and the A2UI response is also available

in the same Stream Chat message update.

const payload = buildRestaurantPayload(restaurants, resolvedT

itle, userInput);

return {

 a2ui: payload,

};

await channel.sendMessage({

 text: '',

 ai_generated: true,

 a2ui: payload,

} as any);

A2UI blog post 5

iOS integration
Next, let’s see how we can add support for the A2UI protocol in an existing app

that integrates Stream Chat.

The support for custom attachments in Stream Chat helps us implement this in a

simple way.

At a high level, the flow looks like this:

The server sends a message with an a2ui payload.

The iOS app renders the payload as a GenUI surface.

The user taps or submits a form on that surface.

The iOS app sends a new Stream Chat message with a2ui_interaction

metadata.

Step 1: Add the GenUI package
First, you need to add this unofficial A2UI package that implements the A2UI

protocol on iOS and SwiftUI.

The package can be added via Swift Package Manager, which is the standard way

of adding dependencies on iOS.

Step 2: Handle the a2ui payload
Incoming Stream Chat messages can now optionally include an a2ui payload. The

sample parses it from the message’s extraData into a strongly typed model for

rendering, so downstream code can work with a real surface id and message

array.

This is the bridge between raw JSON in Stream Chat and a renderer-friendly

model. Once this is in place, the rest of the UI code can work with A2uiPayload

instead of loosely typed dictionaries.

struct A2uiPayload {

 let surfaceId: String

 let messages: [A2uiMessage]

A2UI blog post 6

https://github.com/martinmitrevski/GenUI.git

 init?(rawJSON: RawJSON?) {

 guard let rawJSON, case let .dictionary(dictionary) =

rawJSON else { return nil }

 guard let surfaceId = dictionary["surfaceId"]?.string

Value ??

 dictionary["surface_id"]?.stringValue else { re

turn nil }

 guard let rawMessages = dictionary["messages"]?.array

Value else { return nil }

 let parsed = rawMessages.compactMap { rawMessage -> A

2uiMessage? in

 guard let json = rawMessage.jsonMap else { return

nil }

 return try? A2uiMessageFactory.fromJson(json)

 }

 guard !parsed.isEmpty else { return nil }

 self.surfaceId = surfaceId

 self.messages = parsed

 }

}

Step 3: Render A2UI messages in the message list
In Stream Chat’s SwiftUI SDK, the view customizations are done by implementing

a ViewFactory protocol, which exposes slots that you can use to provide your own

implementation of certain components.

One of those slots is for custom attachments.

 @ViewBuilder

 func makeCustomAttachmentViewType(

 for message: ChatMessage,

 isFirst: Bool,

 availableWidth: CGFloat,

A2UI blog post 7

https://getstream.io/chat/docs/sdk/ios/swiftui/getting-started/

 scrolledId: Binding<String?>

) -> some View {

 if let payload = A2uiPayload(rawJSON: message.extraDa

ta["a2ui"]) {

 GenUIView(payload: payload, message: message, cha

tClient: chatClient)

 } else {

 let isGenerating = message.extraData["generatin

g"]?.boolValue == true

 let displayText = message.extraData["a2ui_display

_text"]?.stringValue ?? message.text

 StreamingMessageView(

 content: displayText,

 isGenerating: isGenerating

)

 .padding()

 }

 }

The view factory switches between normal streaming text and A2UI rendering

based

on the presence of an a2ui payload.

This keeps the app behaving regularly when there is no A2UI data, and it unlocks

rich UI when there is. The fallback text also means you can still show a readable

summary even if a surface fails to render.

This keeps A2UI responses as UI surfaces while normal responses still render as

streaming text. The optional a2ui_display_text keeps the fallback text aligned with

the action context.

Step 4: Host GenUI surfaces and forward interactions
When a surface is on screen, we spin up a renderer with A2uiMessageProcessor ,

then listen for user actions and forward them to Stream Chat.

This is the "bridge" between the UI surface and the chat backend. The processor

tracks the A2UI surface state, and the onSubmit hook is where we turn button

A2UI blog post 8

presses or form submissions into Stream Chat messages.

struct GenUIView: View {

 @StateObject private var renderer: A2uiSurfaceRenderer

 init(payload: A2uiPayload, message: ChatMessage, chatClie

nt: ChatClient) {

 _renderer = StateObject(

 wrappedValue: A2uiSurfaceRenderer(

 payload: payload,

 message: message,

 chatClient: chatClient

)

)

 }

 var body: some View {

 GenUiSurface(host: renderer.processor, surfaceId: ren

derer.surfaceId)

 .padding(16)

 .onDisappear { renderer.dispose() }

 }

}

GenUI needs a message processor to manage the surface, and this hook is where

we

intercept button clicks or form submissions.

Step 5: Send A2UI interactions back to the channel
User actions are converted into a new message with extra data so the server-side

agent can react. The interaction forwarder preserves the raw a2ui_interaction

JSON and adds helpful fields for the SDK to interpret.

In the sample, A2uiSurfaceRenderer wires this up for you. It creates an

A2uiInteractionForwarder , subscribes to processor.onSubmit , and calls

forwardInteraction whenever a user taps a button or submits a form.

A2UI blog post 9

processor.onSubmit

 .sink { [weak interactionForwarder] interaction in

 interactionForwarder?.forwardInteraction(interaction)

 }

 .store(in: &cancellables)

The forwarder connects to Stream Chat by creating a ChannelController from the

ChatClient and calling createNewMessage . This sends a regular chat message with

the action metadata attached in extraData , so the server-side agent sees it like

any other user input.

let controller = chatClient.channelController(for: channelId)

controller.createNewMessage(text: messageText, extraData: ext

raData)

By sending a plain chat message with rich metadata, we keep the transport simple

and the server-side logic consistent. The SDK can extract and transform the

action data without requiring any client-specific protocol.

Here is the wiring from the sample so you can see how the forwarder is used:

final class A2uiSurfaceRenderer: ObservableObject {

 let processor: A2uiMessageProcessor

 private var cancellables: Set<AnyCancellable> = []

 private let interactionForwarder: A2uiInteractionForwarde

r?

 init(payload: A2uiPayload, message: ChatMessage, chatClie

nt: ChatClient) {

 let catalog = CoreCatalogItems.asCatalog()

 let processor = A2uiMessageProcessor(catalogs: [catal

og])

 payload.messages.forEach { processor.handleMessage

($0) }

 self.processor = processor

A2UI blog post 10

 self.interactionForwarder = A2uiInteractionForwarder(

 chatClient: chatClient,

 channelId: message.cid,

 sourceMessageId: message.id,

 surfaceId: payload.surfaceId

)

 processor.onSubmit

 .receive(on: DispatchQueue.main)

 .sink { [weak interactionForwarder] interaction i

n

 interactionForwarder?.forwardInteraction(inte

raction)

 }

 .store(in: &cancellables)

 }

}

UserUiInteractionMessage is emitted by the GenUI SDK when a user action occurs on

the

surface. In other words, the interaction you receive in processor.onSubmit

is created by GenUI based on the button action or form submission data defined

in the A2UI payload.

let metadata = A2uiActionMetadata(from: interaction.text)

let messageText = metadata.query ?? metadata.description

var extraData: [String: RawJSON] = [

 "a2ui_interaction": .string(interaction.text),

 "a2ui_surface_id": .string(surfaceId),

 "a2ui_display_text": .string(metadata.description)

]

if let actionName = metadata.actionName {

 extraData["a2ui_action_name"] = .string(actionName)

}

A2UI blog post 11

if let label = metadata.label, !label.isEmpty {

 extraData["a2ui_action_label"] = .string(label)

}

if let query = metadata.query {

 extraData["a2ui_query_text"] = .string(query)

}

if let rawContext = metadata.rawContext {

 extraData["a2ui_action_context"] = rawContext

}

controller.createNewMessage(text: messageText, extraData: ext

raData)

The SDK extracts a2ui_interaction from extra data and turns it into a model

prompt.

Conclusion
In this sample, we have seen how to support the A2UI protocol in an existing app

powered by Stream Chat.

We have seen what changes we need to do server-side, to both enrich the

message responses with A2UI-compatible payload, as well as how to handle user-

triggered requests from the generated UI.

On the iOS side, we have seen how to extend Stream Chat’s SwiftUI SDK to

support generating the A2UI-driven UI.

This integration shows that we can add rich, interactive experiences without

breaking the chat model or building a separate protocol. Everything stays in the

Stream Chat message flow, which keeps the system flexible, testable, and easy to

extend.

A2UI blog post 12

