A2Ul blog post

Introduction

A2UI (Agent-to-Ul) is a protocol designed by Google to standardize how Al agents
communicate with user interfaces. Instead of tightly coupling agents to specific
frontends, A2UI defines a clear contract for intent, state, and actions - making it
easier to build interactive, agent-driven experiences that are portable,
composable, and Ul-agnostic. As Al systems move from passive responses to
active collaboration, A2UI provides the missing layer between intelligence and
interaction.

In simple words is - instead of always receiving text responses, using A2Ul you
can have an interactive Ul rendered across devices, allowing the users, for
example, to tap on buttons to perform actions, instead of typing.

The specification for this protocol is still not final, but sure enough, at Stream we
already have an integration with our Chat SDK.

In this post, we will see how we can integrate the Stream SwiftUl SDK with an
A2Ul compatible rendering SDK called GenUI. The code in this article was written
with the 0.8 version of the specification.

What are we building?

We are going to take our Al assistant iOS implementation and extend it to support
a custom attachment that will render responses compatible with A2UI.

The A2UI responses would be about listing top 5 restaurants, and making a (fake)
reservation to one of those. It's the same Restaurant Finder demo which can be
found in the official a2ui repo, but optimized for our chat integration.

You can find a video of how the end result will look like here:

attachment:653b4f8b-8834-4a61-b664-2923c7al18fbl:demo-stream.mov

A2Ul blog post


https://a2ui.org/
https://getstream.io/blog/ios-assistant/
https://github.com/google/A2UI/tree/main/samples/agent/adk/restaurant_finder
https://www.notion.so/signed/attachment%3A653b4f8b-8834-4a61-b664-2923c7a18fb1%3Ademo-stream.mov?table=block&id=2eb6a5d7-f9f6-80a6-8d46-fb711a3e981f&spaceId=eadf664a-4346-4f42-84bc-741fd336fc09&userId=717b7966-4d1e-4648-b66d-68a82f0b0ec6&cache=v2

As you will see, adding support for A2UIl in existing products is possible, and it can
work well with the rest of your product.

You can find a working version of this project, on iOS and NodeJS.

A2U1 101

The A2UI v0.8 specification defines a streaming, JSONL-based protocol that
enables Al agents to declaratively describe user interfaces as a sequence of
abstract Ul messages. It was designed for progressive rendering and LLM
friendliness: components are represented in a flat list with string IDs, and
messages like surfacelpdate , dataModelUpdate , @Nd beginRendering allow a client to
render and update Ul incrementally without waiting for a complete payload.

Interaction in v0.8 flows through defined message types and a shared component
catalog: the agent streams component definitions and data model changes over
Server-Sent Events (or equivalent transport), and the client maps abstract
component types (e.g., Button, TextField, Row ) from its catalog to native views.
The Ul's reactive behavior is driven by separate client-to-server event

messages when users interact with the interface; these events feed back into the
agent’s logic and may result in further Ul messages.

In contrast, v0.9 (draft) represents a philosophical and architectural shift toward a
prompt-first design. Rather than optimizing solely for structured output (like strict
JSONL that LLMs emit via function calling), v0.9 embeds JSON schemas directly
into the model's system prompt so that the model generates Ul messages in
context.

Now that we know the basics of A2UI, let's see how we can support it, both
server-side and on a mobile app.

Server-side integration

We will take an existing server-side SDK (Stream Chat Al SDK), that integrates
Stream Chat with Vercel's Al SDK. This integration allows us to easily switch
between LLMs, while keeping a unified Stream Chat interface.

As an addition, we want Ul interactions (button clicks, form submits, etc.) to drive
the assistant

A2Ul blog post


https://github.com/GetStream/chat-ai-samples/tree/a2ui-example/ios
https://github.com/GetStream/chat-ai-samples/tree/a2ui-example/ai-sdk-sample
https://github.com/GetStream/stream-chat-js-ai-sdk

the same way typed text does. That means we would need to:
1. Detect the A2UI payload on incoming messages.
2. Convert that payload into a prompt the model can understand.

3. Allow integrators to attach structured A2UI response data to the outgoing
Stream Chat message without rewriting agent logic.

Step 1: Add hooks for input and output customizations

We're introducing two optional hooks:

e userMessageHandler : lets you intercept an incoming message. If you return true,
the agent stops and you handle the message yourself.

e finalMessageAugmentor : lets you add structured fields to the final message update
that is sent to Stream Chat.

Below is an example of how you can pass these hooks when you create an
rgentiManager (available in the Stream Chat Al SDK):

const agentManager = new AgentManager({
serverToolsFactory: () => createDefaultTools(),
agentIdResolver: buildAgentUserId,
finalMessageAugmentor: restaurantA2uiAugmentor,
userMessageHandler: createA2uilnteractionHandler(),

1)

Step 2: Convert an A2Ul interaction into a prompt

Incoming messages can include an a2ui interaction payload. When we see one,
we:

1. Read a2ui interaction from message.extraData (or top—IeveI fle|dS)
2. Parse it as JSON.
3. Extract useraction and its context .

4. Produce a natural-language description, for example:

A2Ul blog post

w



® USER WANTS TO BOOK: {restaurant}
e User submitted a booking for {restaurant} ...
5. Replace the raw text with this description before sending it to the model.

This makes A2Ul events feel like typed input, so the model can reason about them
without special casing.

const base = (message as { extraData?: Record<string, unknown
> }).extraData;
const raw =
(base?.a2ui interaction 77
(message as unknown as Record<string, unknown>)['a2ui int
eraction']) as
| string
| undefined;
const payload = raw ? (JSON.parse(raw) as InteractionPayload)
undefined;
const actionName = payload?.userAction?.name;

switch (interaction.actionName) {
case 'book restaurant':
await channel.sendMessage({ text: '', ai generated: true,
a2ui: payload } as any);
return true;
case 'submit booking':
await channel.sendMessage({ text: '', ai generated: true,
a2ui: payload } as any);
return true;
default:
return false;

Step 3: Convert the model output into an A2UI
response

A2Ul blog post



When the model finishes, we send a final message update to Stream Chat. This is
the
place to attach structured A2Ul response data.

Here is the flow:

1. The response handler builds the final set payload that will be sent to

partialUpdateMessage .

2. If finalMessagerugmentor iS provided, it receives the final text, the message,
the channel, and the full model message list.

3. The augmentor returns an object with extra fields (for example, an A2UI
response
payload).

4. Those fields are merged into the final set payload and sent to Stream Chat.
In practice, this means your augmentor can return something like:

e a2ui response : the structured response you want the client to render.

* Any other metadata your Ul needs.

The agent keeps the standard text update, and the A2UI response is also available
in the same Stream Chat message update.

const payload = buildRestaurantPayload(restaurants, resolvedT
itle, userlnput);
return {
a2ui: payload,
}i

await channel.sendMessage({
text: '',
al generated: true,
a2ui: payload,

} as any);

A2Ul blog post



iOS integration

Next, let's see how we can add support for the A2UI protocol in an existing app
that integrates Stream Chat.

The support for custom attachments in Stream Chat helps us implement this in a
simple way.

At a high level, the flow looks like this:
e The server sends a message with an z2ui payload.
e The iOS app renders the payload as a GenUl surface.
e The user taps or submits a form on that surface.

e The iOS app sends a new Stream Chat message with z2ui interaction
metadata.

Step 1: Add the GenUl package

First, you need to add this unofficial A2UIl package that implements the A2UI
protocol on iOS and SwiftUl.

The package can be added via Swift Package Manager, which is the standard way
of adding dependencies on iOS.

Step 2: Handle the a2ui payload

Incoming Stream Chat messages can now optionally include an z2ui payload. The
sample parses it from the message's extranata into a strongly typed model for
rendering, so downstream code can work with a real surface id and message
array.

This is the bridge between raw JSON in Stream Chat and a renderer-friendly
model. Once this is in place, the rest of the Ul code can work with A2uirayioad
instead of loosely typed dictionaries.

struct A2uiPayload {
let surfaceld: String
let messages: [A2uiMessage]

A2Ul blog post


https://github.com/martinmitrevski/GenUI.git

init?(rawJSON: RawJSON?) {
guard let rawJSON, case let .dictionary(dictionary) =

rawlJSON else { return nil }
guard let surfaceld = dictionary["surfaceld"]?.string
Value ?77?
dictionary["surface id"]?.stringValue else { re

turn nil }
guard let rawMessages = dictionary["messages"]?.array
Value else { return nil }

let parsed = rawMessages.compactMap { rawMessage -> A
2uiMessage? in
guard let json = rawMessage.jsonMap else { return

nil }
return try? A2uiMessageFactory.fromJson(json)
}
guard !parsed.isEmpty else { return nil }
self.surfaceld = surfaceld
self.messages = parsed
}
}

Step 3: Render A2UI messages in the message list

In Stream Chat's SwiftUl SDK, the view customizations are done by implementing
a viewractory protocol, which exposes slots that you can use to provide your own
implementation of certain components.

One of those slots is for custom attachments.

@ViewBuilder

func makeCustomAttachmentViewType
for message: ChatMessage
isFirst: Bool
availablewWidth: CGFloat

A2Ul blog post


https://getstream.io/chat/docs/sdk/ios/swiftui/getting-started/

scrolledId: Binding<String?=>
-> some View
if let payload = A2uiPayload(rawJSON: message.extraDa
ta["a2ui"
GenUIView(payload: payload, message: message, cha
tClient: chatClient

else
let isGenerating = message.extraDatal"generatin
0"]7.boolValue == true

let displayText = message.extraDatal"a2ui display
~text"]?.stringValue 7?7 message.text
StreamingMessageView
content: displayText
isGenerating: isGenerating

padding

The view factory switches between normal streaming text and A2UI rendering
based
on the presence of an a2ui payload.

This keeps the app behaving regularly when there is no A2UI data, and it unlocks
rich Ul when there is. The fallback text also means you can still show a readable
summary even if a surface fails to render.

This keeps A2Ul responses as Ul surfaces while normal responses still render as
streaming text. The optional a2ui display text keeps the fallback text aligned with
the action context.

Step 4: Host GenUI surfaces and forward interactions

When a surface is on screen, we spin up a renderer with aA2uivessageProcessor ,
then listen for user actions and forward them to Stream Chat.

This is the "bridge" between the Ul surface and the chat backend. The processor
tracks the A2UI surface state, and the onsubnit hook is where we turn button

A2Ul blog post



presses or form submissions into Stream Chat messages.

struct GenUIView: View {
@StateObject private var renderer: A2uiSurfaceRenderer

init(payload: A2uiPayload, message: ChatMessage, chatClie
nt: ChatClient) {
_renderer = StateObject(
wrappedValue: A2uiSurfaceRenderer (
payload: payload,
message: message,
chatClient: chatClient

var body: some View {
GenUiSurface(host: renderer.processor, surfaceld: ren
derer.surfaceld)
.padding(16)
.onDisappear { renderer.dispose() }

GenUIl needs a message processor to manage the surface, and this hook is where
we
intercept button clicks or form submissions.

Step 5: Send A2Ul interactions back to the channel

User actions are converted into a new message with extra data so the server-side
agent can react. The interaction forwarder preserves the raw a2ui interaction
JSON and adds helpful fields for the SDK to interpret.

In the sample, r2uisurfacerenderer Wires this up for you. It creates an
A2uiInteractionForwarder , subscribes to processor.onSubmit , and calls
forwardinteraction Whenever a user taps a button or submits a form.

A2Ul blog post



processor.onSubmit
.sink { [weak interactionForwarder] interaction in
interactionForwarder?.forwardInteraction(interaction)

}

.store(in: &cancellables)

The forwarder connects to Stream Chat by creating a channeicontrolier from the
chatclient and calling createNewdessage . This sends a regular chat message with
the action metadata attached in extranata , SO the server-side agent sees it like
any other user input.

let controller = chatClient.channelController(for: channelld)
controller.createNewMessage(text: messageText, extraData: ext
raData)

By sending a plain chat message with rich metadata, we keep the transport simple
and the server-side logic consistent. The SDK can extract and transform the
action data without requiring any client-specific protocol.

Here is the wiring from the sample so you can see how the forwarder is used:

final class A2uiSurfaceRenderer: ObservableObject {
let processor: A2uiMessageProcessor
private var cancellables: Set<AnyCancellable> = []

private let interactionForwarder: A2uilnteractionForwarde
r?

init(payload: A2uiPayload, message: ChatMessage, chatClie
nt: ChatClient) {
let catalog = CoreCatalogItems.asCatalog()
let processor = A2uiMessageProcessor(catalogs: [catal

payload.messages.forEach { processor.handleMessage

self.processor = processor

A2Ul blog post



self.interactionForwarder = A2uilnteractionForwarder (
chatClient: chatClient,
channelld: message.cid,
sourceMessageld: message.id,
surfaceld: payload.surfaceld

processor.onSubmit
.receive(on: DispatchQueue.main)
.sink { [weak interactionForwarder] interaction i

n
interactionForwarder?.forwardInteraction(inte
raction)
}
.store(in: &cancellables)
}
}

UserUiTnteractionMessage IS emitted by the GenUlI SDK when a user action occurs on
the

surface. In other words, the interaction YOU receive in processor.onSubmit

is created by GenUl based on the button action or form submission data defined
in the A2UI payload.

let metadata = A2uiActionMetadata(from: interaction.text)
let messageText = metadata.query ?? metadata.description

var extraData: [String: RawJSON] = [

"a2ui interaction": .string(interaction.text),
"a2ui surface id": .string(surfaceld),
"a2ui display text": .string(metadata.description)

if let actionName = metadata.actionName {
extraData["a2ui action name"] = .string(actionName)

A2Ul blog post

11



if let label = metadata.label, !label.isEmpty {
extraData["a2ui action label"] = .string(label)

if let query = metadata.query {
extraData["a2ui query text"] = .string(query)

if let rawContext = metadata.rawContext {
extraData["a2ui _action_context"] = rawContext

controller.createNewMessage(text: messageText, extraData: ext
raData)

The SDK extracts a2ui interaction from extra data and turns it into a model
prompt.

Conclusion

In this sample, we have seen how to support the A2UI protocol in an existing app
powered by Stream Chat.

We have seen what changes we need to do server-side, to both enrich the
message responses with A2Ul-compatible payload, as well as how to handle user-
triggered requests from the generated Ul.

On the iOS side, we have seen how to extend Stream Chat's SwiftUl SDK to
support generating the A2UI-driven Ul.

This integration shows that we can add rich, interactive experiences without
breaking the chat model or building a separate protocol. Everything stays in the
Stream Chat message flow, which keeps the system flexible, testable, and easy to
extend.

A2Ul blog post

12



