
NAME
node- server-side JavaScript runtime

SYNOPSIS
node[options] [v8 options] [<program-entry-point>| -estring | --] [arguments ...]

node inspect,[<program-entry-point>| -estring | <host>:<port>] ...

node[--v8-options]

DESCRIPTION
Node.js is a set of libraries for JavaScript which allows it to be used outside of the browser. It is

primarily focused on creating simple, easy-to-build network clients and servers.

Executenodewithout arguments to start a REPL.

OPTIONS
- Alias for stdin. Analogous to the use of- in other command-line utilities, meaning that the

script is read from stdin, and the rest of the options are passed to that script.

-- Indicate the end of node options. Pass the rest of the arguments to the script. If no script

filename or eval/print script is supplied prior to this, then the next argument is used as a script

filename.

--abort-on-uncaught-exception
Aborting instead of exiting causes a core file to be generated for post-mortem analysis using a

debugger (such aslldb, gdb, andmdb). If this flag is passed, the behavior can still be set to not

abort throughprocess.setUncaughtExceptionCaptureCallback()(and through usage of the

node:domainmodule that uses it).

--allow-addons
When using the Permission Model, the process will not be able to use native addons by default.

Attempts to do so will throw anERR_DLOPEN_DISABLED unless the user explicitly passes

the--allow-addonsflag when starting Node.js. Example:

// Attempt to require an native addon

require(’nodejs-addon-example’);

$ node --permission --allow-fs-read=* index.js

node:internal/modules/cjs/loader:1319

return process.dlopen(module, path.toNamespacedPath(filename));

^

NODE(1) General Commands Manual NODE(1)

January 26, 2026

Error: Cannot load native addon because loading addons is disabled.

at Module._extensions..node (node:internal/modules/cjs/loader:1319:18)

at Module.load (node:internal/modules/cjs/loader:1091:32)

at Module._load (node:internal/modules/cjs/loader:938:12)

at Module.require (node:internal/modules/cjs/loader:1115:19)

at require (node:internal/modules/helpers:130:18)

at Object.<anonymous> (/home/index.js:1:15)

at Module._compile (node:internal/modules/cjs/loader:1233:14)

at Module._extensions..js (node:internal/modules/cjs/loader:1287:10)

at Module.load (node:internal/modules/cjs/loader:1091:32)

at Module._load (node:internal/modules/cjs/loader:938:12) {

code: ’ERR_DLOPEN_DISABLED’

}

--allow-child-process
When using the Permission Model, the process will not be able to spawn any child process by

default. Attempts to do so will throw anERR_ACCESS_DENIEDunless the user explicitly

passes the--allow-child-processflag when starting Node.js. Example:

const childProcess = require(’node:child_process’);

// Attempt to bypass the permission

childProcess.spawn(’node’, [’-e’, ’require("fs").writeFileSync("/new-file", "example")’]);

$ node --permission --allow-fs-read=* index.js

node:internal/child_process:388

const err = this._handle.spawn(options);

^

Error: Access to this API has been restricted

at ChildProcess.spawn (node:internal/child_process:388:28)

at node:internal/main/run_main_module:17:47 {

code: ’ERR_ACCESS_DENIED’,

permission: ’ChildProcess’

}

Thechild_process.fork()API inherits the execution arguments from the parent process. This

means that if Node.js is started with the Permission Model enabled and the--allow-child-
processflag is set, any child process created usingchild_process.fork()will automatically

receive all relevant Permission Model flags. This behavior also applies to

child_process.spawn(), but in that case, the flags are propagated via theNODE_OPTIONS
environment variable rather than directly through the process arguments.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

--allow-fs-read
This flag configures file system read permissions using the Permission Model. The valid

arguments for the--allow-fs-read flag are:

+o * - To allow allFileSystemReadoperations.

+o Multiple paths can be allowed using multiple--allow-fs-read flags. Example--allow-fs-
read=/folder1/ --allow-fs-read=/folder1/

Examples can be found in the File System Permissions documentation. The initializer module

and custom--require modules has a implicit read permission.

$ node --permission -r custom-require.js -r custom-require-2.js index.js

+o Thecustom-require.js,custom-require-2.js, andindex.js will be by default in the allowed

read list.

process.has(’fs.read’, ’index.js’); // true

process.has(’fs.read’, ’custom-require.js’); // true

process.has(’fs.read’, ’custom-require-2.js’); // true

--allow-fs-write
This flag configures file system write permissions using the Permission Model. The valid

arguments for the--allow-fs-write flag are:

+o * - To allow allFileSystemWriteoperations.

+o Multiple paths can be allowed using multiple--allow-fs-write flags. Example--allow-fs-
write=/folder1/ --allow-fs-write=/folder1/

Paths delimited by comma (,) are no longer allowed. When passing a single flag with a comma

a warning will be displayed. Examples can be found in the File System Permissions

documentation.

--allow-inspector
When using the Permission Model, the process will not be able to connect through inspector

protocol. Attempts to do so will throw anERR_ACCESS_DENIEDunless the user explicitly

passes the--allow-inspector flag when starting Node.js. Example:

const { Session } = require(’node:inspector/promises’);

const session = new Session();

NODE(1) General Commands Manual NODE(1)

January 26, 2026

session.connect();

$ node --permission index.js

Error: connect ERR_ACCESS_DENIED Access to this API has been restricted. Use --allow-inspector to manage permissions.

code: ’ERR_ACCESS_DENIED’,

}

--allow-net
When using the Permission Model, the process will not be able to access network by default.

Attempts to do so will throw anERR_ACCESS_DENIEDunless the user explicitly passes the

--allow-net flag when starting Node.js. Example:

const http = require(’node:http’);

// Attempt to bypass the permission

const req = http.get(’http://example.com’, () => {});

req.on(’error’, (err) => {

console.log(’err’, err);

});

$ node --permission index.js

Error: connect ERR_ACCESS_DENIED Access to this API has been restricted. Use --allow-net to manage permissions.

code: ’ERR_ACCESS_DENIED’,

}

--allow-wasi
When using the Permission Model, the process will not be capable of creating any WASI

instances by default. For security reasons, the call will throw anERR_ACCESS_DENIED
unless the user explicitly passes the flag--allow-wasi in the main Node.js process. Example:

const { WASI } = require(’node:wasi’);

// Attempt to bypass the permission

new WASI({

version: ’preview1’,

// Attempt to mount the whole filesystem

preopens: {

’/’: ’/’,

},

});

NODE(1) General Commands Manual NODE(1)

January 26, 2026

$ node --permission --allow-fs-read=* index.js

Error: Access to this API has been restricted

at node:internal/main/run_main_module:30:49 {

code: ’ERR_ACCESS_DENIED’,

permission: ’WASI’,

}

--allow-worker
When using the Permission Model, the process will not be able to create any worker threads by

default. For security reasons, the call will throw anERR_ACCESS_DENIEDunless the user

explicitly pass the flag--allow-worker in the main Node.js process. Example:

const { Worker } = require(’node:worker_threads’);

// Attempt to bypass the permission

new Worker(__filename);

$ node --permission --allow-fs-read=* index.js

Error: Access to this API has been restricted

at node:internal/main/run_main_module:17:47 {

code: ’ERR_ACCESS_DENIED’,

permission: ’WorkerThreads’

}

--build-sea=config

Generates a single executable application from a JSON configuration file. The argument must

be a path to the configuration file. If the path is not absolute, it is resolved relative to the current

working directory. For configuration fields, cross-platform notes, and asset APIs, see the single

executable application documentation.

--build-snapshot
Generates a snapshot blob when the process exits and writes it to disk, which can be loaded

later with--snapshot-blob. When building the snapshot, if--snapshot-blobis not specified, the

generated blob will be written, by default, tosnapshot.blobin the current working directory.

Otherwise it will be written to the path specified by--snapshot-blob.

$ echo "globalThis.foo = ’I am from the snapshot’" > snapshot.js

Run snapshot.js to initialize the application and snapshot the

NODE(1) General Commands Manual NODE(1)

January 26, 2026

state of it into snapshot.blob.

$ node --snapshot-blob snapshot.blob --build-snapshot snapshot.js

$ echo "console.log(globalThis.foo)" > index.js

Load the generated snapshot and start the application from index.js.

$ node --snapshot-blob snapshot.blob index.js

I am from the snapshot

Thev8.startupSnapshotAPI can be used to specify an entry point at snapshot building time,

thus avoiding the need of an additional entry script at deserialization time:

$ echo "require(’v8’).startupSnapshot.setDeserializeMainFunction(() => console.log(’I am from the snapshot’))" > snapshot.js

$ node --snapshot-blob snapshot.blob --build-snapshot snapshot.js

$ node --snapshot-blob snapshot.blob

I am from the snapshot

For more information, check out thev8.startupSnapshotAPI documentation. The snapshot

currently only supports loding a single entrypoint during the snapshot building process, which

can load built-in modules, but not additional user-land modules. Users can bundle their

applications into a single script with their bundler of choice before building a snapshot. As it’s

complicated to ensure the serializablility of all built-in modules, which are also growing over

time, only a subset of the built-in modules are well tested to be serializable during the snapshot

building process. The Node.js core test suite checks that a few fairly complex applications can

be snapshotted. The list of built-in modules being captured by the built-in snapshot of Node.js is

considered supported. When the snapshot builder encounters a built-in module that cannot be

serialized, it may crash the snapshot building process. In that case a typical workaround would

be to delay loading that module until runtime, using either

v8.startupSnapshot.setDeserializeMainFunction()or

v8.startupSnapshot.addDeserializeCallback(). If serialization for an additional module during

the snapshot building process is needed, please file a request in the Node.js issue tracker and

link to it in the tracking issue for user-land snapshots.

--build-snapshot-config
Specifies the path to a JSON configuration file which configures snapshot creation behavior.

The following options are currently supported:

+o builder <string> Required. Provides the name to the script that is executed before building

the snapshot, as if--build-snapshothad been passed withbuilder as the main script name.

+o withoutCodeCache <boolean>Optional. Including the code cache reduces the time spent on

compiling functions included in the snapshot at the expense of a bigger snapshot size and

NODE(1) General Commands Manual NODE(1)

January 26, 2026

potentially breaking portability of the snapshot.

When using this flag, additional script files provided on the command line will not be executed

and instead be interpreted as regular command line arguments.

-c, --check
Syntax check the script without executing.

--completion-bash
Print source-able bash completion script for Node.js.

node --completion-bash > node_bash_completion

source node_bash_completion

-C condition,--conditions=condition

Provide custom conditional exports resolution conditions. Any number of custom string

condition names are permitted. The default Node.js conditions of"node", "default", "import",
and"require" will always apply as defined. For example, to run a module with "development"

resolutions:

node -C development app.js

--cpu-prof
Starts the V8 CPU profiler on start up, and writes the CPU profile to disk before exit. If--cpu-
prof-dir is not specified, the generated profile is placed in the current working directory. If

--cpu-prof-name is not specified, the generated profile is named

CPU.${yyyymmdd}.${hhmmss}.${pid}.${tid}.${seq}.cpuprofile.

$ node --cpu-prof index.js

$ ls *.cpuprofile

CPU.20190409.202950.15293.0.0.cpuprofile

If --cpu-prof-name is specified, the provided value is used as a template for the file name. The

following placeholder is supported and will be substituted at runtime:

+o ${pid} -- the current process ID

$ node --cpu-prof --cpu-prof-name ’CPU.${pid}.cpuprofile’ index.js

$ ls *.cpuprofile

CPU.15293.cpuprofile

--cpu-prof-dir

NODE(1) General Commands Manual NODE(1)

January 26, 2026

Specify the directory where the CPU profiles generated by--cpu-prof will be placed. The

default value is controlled by the--diagnostic-dir command-line option.

--cpu-prof-interval
Specify the sampling interval in microseconds for the CPU profiles generated by--cpu-prof.
The default is 1000 microseconds.

--cpu-prof-name
Specify the file name of the CPU profile generated by--cpu-prof.

--diagnostic-dir=directory

Set the directory to which all diagnostic output files are written. Defaults to current working

directory. Affects the default output directory of:

+o --cpu-prof-dir

+o --heap-prof-dir

+o --redirect-warnings

--disable-proto=mode

Disable theObject.prototype.__proto__property. Ifmode is delete, the property is removed

entirely. If mode is throw, accesses to the property throw an exception with the code

ERR_PROTO_ACCESS.

--disable-sigusr1
Disable the ability of starting a debugging session by sending aSIGUSR1signal to the process.

--disable-warning=code-or-type

Disable specific process warnings bycodeor type. Warnings emitted from

process.emitWarning()may contain acodeand atype. This option will not-emit warnings that

have a matchingcodeor type. List of deprecation warnings. The Node.js core warning types

are:DeprecationWarning andExperimentalWarning For example, the following script will not

emit DEP0025require(’node:sys’) when executed withnode --disable-warning=DEP0025:

import sys from ’node:sys’;

const sys = require(’node:sys’);

For example, the following script will emit the DEP0025require(’node:sys’), but not any

Experimental Warnings (such as ExperimentalWarning:vm.measureMemoryis an

NODE(1) General Commands Manual NODE(1)

January 26, 2026

experimental feature in <=v21) when executed withnode --disable-
warning=ExperimentalWarning:

import sys from ’node:sys’;

import vm from ’node:vm’;

vm.measureMemory();

const sys = require(’node:sys’);

const vm = require(’node:vm’);

vm.measureMemory();

--disable-wasm-trap-handler
By default, Node.js enables trap-handler-based WebAssembly bound checks. As a result, V8

does not need to insert inline bound checks int the code compiled from WebAssembly which

may speedup WebAssembly execution significantly, but this optimization requires allocating a

big virtual memory cage (currently 10GB). If the Node.js process does not have access to a

large enough virtual memory address space due to system configurations or hardware

limitations, users won’t be able to run any WebAssembly that involves allocation in this virtual

memory cage and will see an out-of-memory error.

$ ulimit -v 5000000

$ node -p "new WebAssembly.Memory({ initial: 10, maximum: 100 });"

[eval]:1

new WebAssembly.Memory({ initial: 10, maximum: 100 });

^

RangeError: WebAssembly.Memory(): could not allocate memory

at [eval]:1:1

at runScriptInThisContext (node:internal/vm:209:10)

at node:internal/process/execution:118:14

at [eval]-wrapper:6:24

at runScript (node:internal/process/execution:101:62)

at evalScript (node:internal/process/execution:136:3)

at node:internal/main/eval_string:49:3

--disable-wasm-trap-handlerdisables this optimization so that users can at least run

WebAssembly (with less optimal performance) when the virtual memory address space

available to their Node.js process is lower than what the V8 WebAssembly memory cage needs.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

--disallow-code-generation-from-strings
Make built-in language features likeevalandnew Function that generate code from strings

throw an exception instead. This does not affect the Node.jsnode:vmmodule.

--dns-result-order=order

Set the default value oforder in dns.lookup()anddnsPromises.lookup(). The value could be:

+o ipv4first: sets defaultorder to ipv4first.

+o ipv6first: sets defaultorder to ipv6first.

+o verbatim: sets defaultorder to verbatim.

The default isverbatim anddns.setDefaultResultOrder()have higher priority than--dns-result-
order.

--enable-fips
Enable FIPS-compliant crypto at startup. (Requires Node.js to be built against FIPS-compatible

OpenSSL.)

--enable-network-family-autoselection
Enables the family autoselection algorithm unless connection options explicitly disables it.

--enable-source-maps
Enable Source Map support for stack traces. When using a transpiler, such as TypeScript, stack

traces thrown by an application reference the transpiled code, not the original source position.

--enable-source-mapsenables caching of Source Maps and makes a best effort to report stack

traces relative to the original source file. OverridingError.prepareStackTrace may prevent

--enable-source-mapsfrom modifying the stack trace. Call and return the results of the original

Error.prepareStackTrace in the overriding function to modify the stack trace with source maps.

const originalPrepareStackTrace = Error.prepareStackTrace;

Error.prepareStackTrace = (error, trace) => {

// Modify error and trace and format stack trace with

// original Error.prepareStackTrace.

return originalPrepareStackTrace(error, trace);

};

Note, enabling source maps can introduce latency to your application whenError.stack is

accessed. If you accessError.stack frequently in your application, take into account the

performance implications of--enable-source-maps.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

--entry-url
When present, Node.js will interpret the entry point as a URL, rather than a path. Follows

ECMAScript module resolution rules. Any query parameter or hash in the URL will be

accessible viaimport.meta.url.

node --entry-url ’file:///path/to/file.js?queryparams=work#and-hashes-too’

node --entry-url ’file.ts?query#hash’

node --entry-url ’data:text/javascript,console.log("Hello")’

--env-file-if-exists=file

Behavior is the same as--env-file, but an error is not thrown if the file does not exist.

--env-file=file

Loads environment variables from a file relative to the current directory, making them available

to applications onprocess.env. The environment variables which configure Node.js, such as

NODE_OPTIONS, are parsed and applied. If the same variable is defined in the environment

and in the file, the value from the environment takes precedence. You can pass multiple--env-
file arguments. Subsequent files override pre-existing variables defined in previous files. An

error is thrown if the file does not exist.

node --env-file=.env --env-file=.development.env index.js

The format of the file should be one line per key-value pair of environment variable name and

value separated by=:

PORT=3000

Any text after a# is treated as a comment:

This is a comment

PORT=3000 # This is also a comment

Values can start and end with the following quotes:‘, " or ’. They are omitted from the values.

USERNAME="nodejs" # will result in ‘nodejs‘ as the value.

Multi-line values are supported:

MULTI_LINE="THIS IS

A MULTILINE"

will result in ‘THIS IS\nA MULTILINE‘ as the value.

Export keyword before a key is ignored:

export USERNAME="nodejs" # will result in ‘nodejs‘ as the value.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

If you want to load environment variables from a file that may not exist, you can use the--env-
file-if-exists flag instead.

-e, --evalscript

Evaluate the following argument as JavaScript. The modules which are predefined in the REPL

can also be used inscript. On Windows, usingcmd.exea single quote will not work correctly

because it only recognizes double" for quoting. In Powershell or Git bash, both’ and" are

usable. It is possible to run code containing inline types unless the--no-strip-types flag is

provided.

--experimental-addon-modules
Enable experimental import support for.nodeaddons.

--experimental-config-file=config

If present, Node.js will look for a configuration file at the specified path. Node.js will read the

configuration file and apply the settings. The configuration file should be a JSON file with the

following structure.vX.Y.Z in the$schemamust be replaced with the version of Node.js you

are using.

{

"$schema": "https://nodejs.org/dist/vX.Y.Z/docs/node-config-schema.json",

"nodeOptions": {

"import": [

"amaro/strip"

],

"watch-path": "src",

"watch-preserve-output": true

},

"test": {

"test-isolation": "process"

},

"watch": {

"watch-preserve-output": true

}

}

The configuration file supports namespace-specific options:

+o ThenodeOptionsfield contains CLI flags that are allowed inNODE_OPTIONS.

+o Namespace fields liketest,watch, andpermissioncontain configuration specific to that

NODE(1) General Commands Manual NODE(1)

January 26, 2026

subsystem.

When a namespace is present in the configuration file, Node.js automatically enables the

corresponding flag (e.g.,--test, --watch, --permission). This allows you to configure subsystem-

specific options without explicitly passing the flag on the command line. For example:

{

"test": {

"test-isolation": "process"

}

}

is equivalent to:

node --test --test-isolation=process

To disable the automatic flag while still using namespace options, you can explicitly set the flag

to falsewithin the namespace:

{

"test": {

"test": false,

"test-isolation": "process"

}

}

No-op flags are not supported. Not all V8 flags are currently supported. It is possible to use the

official JSON schema to validate the configuration file, which may vary depending on the

Node.js version. Each key in the configuration file corresponds to a flag that can be passed as a

command-line argument. The value of the key is the value that would be passed to the flag. For

example, the configuration file above is equivalent to the following command-line arguments:

node --import amaro/strip --watch-path=src --watch-preserve-output --test-isolation=process

The priority in configuration is as follows:

+o NODE_OPTIONS and command-line options

+o Configuration file

+o Dotenv NODE_OPTIONS

Values in the configuration file will not override the values in the environment variables and

command-line options, but will override the values in theNODE_OPTIONS env file parsed by

the--env-file flag. Keys cannot be duplicated within the same or different namespaces. The

configuration parser will throw an error if the configuration file contains unknown keys or keys

NODE(1) General Commands Manual NODE(1)

January 26, 2026

that cannot be used in a namespace. Node.js will not sanitize or perform validation on the user-

provided configuration, soNEVER use untrusted configuration files.

--experimental-default-config-file
If the --experimental-default-config-file flag is present, Node.js will look for anode.config.json
file in the current working directory and load it as a as configuration file.

--experimental-eventsource
Enable exposition of EventSource Web API on the global scope.

--experimental-import-meta-resolve
Enable experimentalimport.meta.resolve()parent URL support, which allows passing a second

parentURL argument for contextual resolution. Previously gated the entireimport.meta.resolve
feature.

--experimental-inspector-network-resource
Enable experimental support for inspector network resources.

--experimental-loader=module

Specify themodulecontaining exported asynchronous module customization hooks.module
may be any string accepted as animport specifier. This feature requires--allow-worker if used

with the Permission Model.

--experimental-network-inspection
Enable experimental support for the network inspection with Chrome DevTools.

--experimental-print-required-tla
If the ES module beingrequire()’d contains top-levelawait, this flag allows Node.js to evaluate

the module, try to locate the top-level awaits, and print their location to help users find them.

--experimental-quic
Enable experimental support for the QUIC protocol.

--experimental-sea-config
Use this flag to generate a blob that can be injected into the Node.js binary to produce a single

executable application. See the documentation about this configuration for details.

--experimental-shadow-realm
Use this flag to enable ShadowRealm support.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

--experimental-storage-inspection
Enable experimental support for storage inspection

--experimental-test-coverage
When used in conjunction with thenode:testmodule, a code coverage report is generated as

part of the test runner output. If no tests are run, a coverage report is not generated. See the

documentation on collecting code coverage from tests for more details.

--experimental-test-module-mocks
Enable module mocking in the test runner. This feature requires--allow-worker if used with

the Permission Model.

--experimental-transform-types
Enables the transformation of TypeScript-only syntax into JavaScript code. Implies--enable-
source-maps.

--experimental-vm-modules
Enable experimental ES Module support in thenode:vmmodule.

--experimental-wasi-unstable-preview1
Enable experimental WebAssembly System Interface (WASI) support.

--experimental-worker-inspection
Enable experimental support for the worker inspection with Chrome DevTools.

--expose-gc
This flag will expose the gc extension from V8.

if (globalThis.gc) {

globalThis.gc();

}

--force-context-aware
Disable loading native addons that are not context-aware.

--force-fips
Force FIPS-compliant crypto on startup. (Cannot be disabled from script code.) (Same

requirements as--enable-fips.)

--force-node-api-uncaught-exceptions-policy

NODE(1) General Commands Manual NODE(1)

January 26, 2026

EnforcesuncaughtExceptionevent on Node-API asynchronous callbacks. To prevent from an

existing add-on from crashing the process, this flag is not enabled by default. In the future, this

flag will be enabled by default to enforce the correct behavior.

--frozen-intrinsics
Enable experimental frozen intrinsics likeArray andObject. Only the root context is

supported. There is no guarantee thatglobalThis.Array is indeed the default intrinsic reference.

Code may break under this flag. To allow polyfills to be added,--require and--import both run

before freezing intrinsics.

--heap-prof
Starts the V8 heap profiler on start up, and writes the heap profile to disk before exit. If--heap-
prof-dir is not specified, the generated profile is placed in the current working directory. If

--heap-prof-nameis not specified, the generated profile is named

Heap.${yyyymmdd}.${hhmmss}.${pid}.${tid}.${seq}.heapprofile.

$ node --heap-prof index.js

$ ls *.heapprofile

Heap.20190409.202950.15293.0.001.heapprofile

--heap-prof-dir
Specify the directory where the heap profiles generated by--heap-prof will be placed. The

default value is controlled by the--diagnostic-dir command-line option.

--heap-prof-interval
Specify the average sampling interval in bytes for the heap profiles generated by--heap-prof.
The default is 512 * 1024 bytes.

--heap-prof-name
Specify the file name of the heap profile generated by--heap-prof.

--heapsnapshot-near-heap-limit=max_count

Writes a V8 heap snapshot to disk when the V8 heap usage is approaching the heap limit.count
should be a non-negative integer (in which case Node.js will write no more thanmax_count
snapshots to disk). When generating snapshots, garbage collection may be triggered and bring

the heap usage down. Therefore multiple snapshots may be written to disk before the Node.js

instance finally runs out of memory. These heap snapshots can be compared to determine what

objects are being allocated during the time consecutive snapshots are taken. It’s not guaranteed

that Node.js will write exactlymax_countsnapshots to disk, but it will try its best to generate at

least one and up tomax_countsnapshots before the Node.js instance runs out of memory when

NODE(1) General Commands Manual NODE(1)

January 26, 2026

max_count is greater than0. Generating V8 snapshots takes time and memory (both memory

managed by the V8 heap and native memory outside the V8 heap). The bigger the heap is, the

more resources it needs. Node.js will adjust the V8 heap to accommodate the additional V8

heap memory overhead, and try its best to avoid using up all the memory available to the

process. When the process uses more memory than the system deems appropriate, the process

may be terminated abruptly by the system, depending on the system configuration.

$ node --max-old-space-size=100 --heapsnapshot-near-heap-limit=3 index.js

Wrote snapshot to Heap.20200430.100036.49580.0.001.heapsnapshot

Wrote snapshot to Heap.20200430.100037.49580.0.002.heapsnapshot

Wrote snapshot to Heap.20200430.100038.49580.0.003.heapsnapshot

<--- Last few GCs --->

[49580:0x110000000] 4826 ms: Mark-sweep 130.6 (147.8) -> 130.5 (147.8) MB, 27.4 / 0.0 ms (average mu = 0.126, current mu = 0.034) allocation failure scavenge might not succeed

[49580:0x110000000] 4845 ms: Mark-sweep 130.6 (147.8) -> 130.6 (147.8) MB, 18.8 / 0.0 ms (average mu = 0.088, current mu = 0.031) allocation failure scavenge might not succeed

<--- JS stacktrace --->

FATAL ERROR: Ineffective mark-compacts near heap limit Allocation failed - JavaScript heap out of memory

--heapsnapshot-signal=signal

Enables a signal handler that causes the Node.js process to write a heap dump when the

specified signal is received.signalmust be a valid signal name. Disabled by default.

$ node --heapsnapshot-signal=SIGUSR2 index.js &

$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

node 1 5.5 6.1 787252 247004 ? Ssl 16:43 0:02 node --heapsnapshot-signal=SIGUSR2 index.js

$ kill -USR2 1

$ ls

Heap.20190718.133405.15554.0.001.heapsnapshot

-h, --help
Print node command-line options. The output of this option is less detailed than this document.

--icu-data-dir=file

Specify ICU data load path. (OverridesNODE_ICU_DATA.)

NODE(1) General Commands Manual NODE(1)

January 26, 2026

--import=module

Preload the specified module at startup. If the flag is provided several times, each module will

be executed sequentially in the order they appear, starting with the ones provided in

NODE_OPTIONS. Follows ECMAScript module resolution rules. Use--require to load a

CommonJS module. Modules preloaded with--require will run before modules preloaded with

--import. Modules are preloaded into the main thread as well as any worker threads, forked

processes, or clustered processes.

--input-type=type

This configures Node.js to interpret--evalor STDIN input as CommonJS or as an ES module.

Valid values are"commonjs", "module", "module-typescript" and"commonjs-typescript". The

"-typescript" values are not available with the flag--no-strip-types. The default is no value, or

"commonjs" if --no-experimental-detect-moduleis passed. If--input-type is not provided,

Node.js will try to detect the syntax with the following steps:

+o Run the input as CommonJS.

+o If step 1 fails, run the input as an ES module.

+o If step 2 fails with a SyntaxError, strip the types.

+o If step 3 fails with an error codeERR_UNSUPPORTED_TYPESCRIPT_SYNTAXor

ERR_INVALID_TYPESCRIPT_SYNTAX, throw the error from step 2, including the

TypeScript error in the message, else run as CommonJS.

+o If step 4 fails, run the input as an ES module.

To avoid the delay of multiple syntax detection passes, the--input-type=type flag can be used to

specify how the--eval input should be interpreted. The REPL does not support this option.

Usage of--input-type=module with --print will throw an error, as--print does not support ES

module syntax.

--insecure-http-parser
Enable leniency flags on the HTTP parser. This may allow interoperability with non-

conformant HTTP implementations. When enabled, the parser will accept the following:

+o Invalid HTTP headers values.

+o Invalid HTTP versions.

+o Allow message containing bothTransfer-Encoding andContent-Length headers.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

+o Allow extra data after message whenConnection: closeis present.

+o Allow extra transfer encodings afterchunkedhas been provided.

+o Allow \n to be used as token separator instead of\r\n.

+o Allow \r\n not to be provided after a chunk.

+o Allow spaces to be present after a chunk size and before\r\n.

All the above will expose your application to request smuggling or poisoning attack. Avoid

using this option.

--inspect-brk=[[host:]port]

Activate inspector onhost:port and break at start of user script. Defaulthost:port is

127.0.0.1:9229. If port0 is specified, a random available port will be used. See V8 Inspector

integration for Node.js for further explanation on Node.js debugger.

--inspect-port=[host:]port

Set thehost:port to be used when the inspector is activated. Useful when activating the

inspector by sending theSIGUSR1signal. Except when--disable-sigusr1is passed. Default

host is127.0.0.1. If port0 is specified, a random available port will be used. See the security

warning below regarding thehostparameter usage.

--inspect-publish-uid=stderr,http

Specify ways of the inspector web socket url exposure. By default inspector websocket url is

available in stderr and under/json/list endpoint onhttp://host:port/json/list.

--inspect-wait=[[host:]port]

Activate inspector onhost:port and wait for debugger to be attached. Defaulthost:port is

127.0.0.1:9229. If port0 is specified, a random available port will be used. See V8 Inspector

integration for Node.js for further explanation on Node.js debugger.

--inspect=[[host:]port]

Activate inspector onhost:port. Default is127.0.0.1:9229. If port0 is specified, a random

available port will be used. V8 inspector integration allows tools such as Chrome DevTools

and IDEs to debug and profile Node.js instances. The tools attach to Node.js instances via a tcp

port and communicate using the Chrome DevTools Protocol. See V8 Inspector integration for

Node.js for further explanation on Node.js debugger.

-i, --interactive

NODE(1) General Commands Manual NODE(1)

January 26, 2026

Opens the REPL even if stdin does not appear to be a terminal.

--jitless Disable runtime allocation of executable memory. This may be required on some platforms for

security reasons. It can also reduce attack surface on other platforms, but the performance

impact may be severe.

--localstorage-file=file

The file used to storelocalStoragedata. If the file does not exist, it is created the first time

localStorageis accessed. The same file may be shared between multiple Node.js processes

concurrently.

--max-http-header-size=size

Specify the maximum size, in bytes, of HTTP headers. Defaults to 16 KiB.

--max-old-space-size-percentage=percentage

Sets the maximum memory size of V8’s old memory section as a percentage of available

system memory. This flag takes precedence over--max-old-space-sizewhen both are specified.

Thepercentageparameter must be a number greater than 0 and up to 100, representing the

percentage of available system memory to allocate to the V8 heap.Note: This flag utilizes

--max-old-space-size, which may be unreliable on 32-bit platforms due to integer overflow

issues.

Using 50% of available system memory

node --max-old-space-size-percentage=50 index.js

Using 75% of available system memory

node --max-old-space-size-percentage=75 index.js

--napi-modules
This option is a no-op. It is kept for compatibility.

--network-family-autoselection-attempt-timeout
Sets the default value for the network family autoselection attempt timeout. For more

information, seenet.getDefaultAutoSelectFamilyAttemptTimeout().

--no-addons
Disable thenode-addonsexports condition as well as disable loading native addons. When--no-
addonsis specified, callingprocess.dlopenor requiring a native C++ addon will fail and throw

an exception.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

--no-async-context-frame
Disables the use ofAsyncLocalStoragebacked byAsyncContextFrameand uses the prior

implementation which relied on async_hooks. The previous model is retained for compatibility

with Electron and for cases where the context flow may differ. However, if a difference in flow

is found please report it.

--no-deprecation
Silence deprecation warnings.

--no-experimental-detect-module
Disable using syntax detection to determine module type.

--no-experimental-global-navigator
Disable exposition of Navigator API on the global scope.

--no-experimental-repl-await
Use this flag to disable top-level await in REPL.

--no-experimental-require-module
Legacy alias for--no-require-module.

--no-experimental-sqlite
Disable the experimentalnode:sqlitemodule.

--no-experimental-websocket
Disable exposition of<WebSocket>on the global scope.

--no-experimental-webstorage
DisableWeb Storagesupport.

--no-extra-info-on-fatal-exception
Hide extra information on fatal exception that causes exit.

--no-force-async-hooks-checks
Disables runtime checks forasync_hooks. These will still be enabled dynamically when

async_hooksis enabled.

--no-global-search-paths
Do not search modules from global paths like$HOME/.node_modulesand$NODE_PATH.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

--no-network-family-autoselection
Disables the family autoselection algorithm unless connection options explicitly enables it.

--no-require-module
Disable support for loading a synchronous ES module graph inrequire(). See Loading

ECMAScript modules usingrequire().

--no-strip-types
Disable type-stripping for TypeScript files. For more information, see the TypeScript type-

stripping documentation.

--no-warnings
Silence all process warnings (including deprecations).

--node-memory-debug
Enable extra debug checks for memory leaks in Node.js internals. This is usually only useful for

developers debugging Node.js itself.

--openssl-config=file

Load an OpenSSL configuration file on startup. Among other uses, this can be used to enable

FIPS-compliant crypto if Node.js is built against FIPS-enabled OpenSSL.

--openssl-legacy-provider
Enable OpenSSL 3.0 legacy provider. For more information please see OSSL_PROVIDER-

legacy.

--openssl-shared-config
Enable OpenSSL default configuration section,openssl_confto be read from the OpenSSL

configuration file. The default configuration file is namedopenssl.cnfbut this can be changed

using the environment variableOPENSSL_CONF, or by using the command line option

--openssl-config. The location of the default OpenSSL configuration file depends on how

OpenSSL is being linked to Node.js. Sharing the OpenSSL configuration may have unwanted

implications and it is recommended to use a configuration section specific to Node.js which is

nodejs_confand is default when this option is not used.

--pending-deprecation
Emit pending deprecation warnings. Pending deprecations are generally identical to a runtime

deprecation with the notable exception that they are turnedoff by default and will not be

emitted unless either the--pending-deprecationcommand-line flag, or the

NODE_PENDING_DEPRECATION=1 environment variable, is set. Pending deprecations are

NODE(1) General Commands Manual NODE(1)

January 26, 2026

used to provide a kind of selective "early warning" mechanism that developers may leverage to

detect deprecated API usage.

--permission
Enable the Permission Model for current process. When enabled, the following permissions are

restricted:

+o File System - manageable through--allow-fs-read, --allow-fs-write flags

+o Network - manageable through--allow-net flag

+o Child Process - manageable through--allow-child-processflag

+o Worker Threads - manageable through--allow-worker flag

+o WASI - manageable through--allow-wasi flag

+o Addons - manageable through--allow-addonsflag

--preserve-symlinks
Instructs the module loader to preserve symbolic links when resolving and caching modules.

By default, when Node.js loads a module from a path that is symbolically linked to a different

on-disk location, Node.js will dereference the link and use the actual on-disk "real path" of the

module as both an identifier and as a root path to locate other dependency modules. In most

cases, this default behavior is acceptable. However, when using symbolically linked peer

dependencies, as illustrated in the example below, the default behavior causes an exception to

be thrown ifmoduleA attempts to requiremoduleBas a peer dependency:

{appDir}

<?><?><?> app

| <?><?><?> index.js

| <?><?><?> node_modules

| <?><?><?> moduleA -> {appDir}/moduleA

| <?><?><?> moduleB

| <?><?><?> index.js

| <?><?><?> package.json

<?><?><?> moduleA

<?><?><?> index.js

<?><?><?> package.json

The--preserve-symlinkscommand-line flag instructs Node.js to use the symlink path for

NODE(1) General Commands Manual NODE(1)

January 26, 2026

modules as opposed to the real path, allowing symbolically linked peer dependencies to be

found. Note, however, that using--preserve-symlinkscan have other side effects. Specifically,

symbolically linkednativemodules can fail to load if those are linked from more than one

location in the dependency tree (Node.js would see those as two separate modules and would

attempt to load the module multiple times, causing an exception to be thrown). The--preserve-
symlinks flag does not apply to the main module, which allowsnode --preserve-symlinks
node_module/.bin/<foo>to work. To apply the same behavior for the main module, also use

--preserve-symlinks-main.

--preserve-symlinks-main
Instructs the module loader to preserve symbolic links when resolving and caching the main

module (require.main). This flag exists so that the main module can be opted-in to the same

behavior that--preserve-symlinksgives to all other imports; they are separate flags, however,

for backward compatibility with older Node.js versions.--preserve-symlinks-maindoes not

imply --preserve-symlinks; use--preserve-symlinks-mainin addition to--preserve-symlinks
when it is not desirable to follow symlinks before resolving relative paths. See--preserve-
symlinks for more information.

-p, --print script

Identical to-ebut prints the result.

--prof Generate V8 profiler output.

--prof-process
Process V8 profiler output generated using the V8 option--prof.

--redirect-warnings=file

Write process warnings to the given file instead of printing to stderr. The file will be created if

it does not exist, and will be appended to if it does. If an error occurs while attempting to write

the warning to the file, the warning will be written to stderr instead. Thefile name may be an

absolute path. If it is not, the default directory it will be written to is controlled by the

--diagnostic-dir command-line option.

--report-compact
Write reports in a compact format, single-line JSON, more easily consumable by log processing

systems than the default multi-line format designed for human consumption.

--report-dir=directory, -eport-directory=directory

Location at which the report will be generated.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

--report-exclude-env
When--report-exclude-envis passed the diagnostic report generated will not contain the

environmentVariablesdata.

--report-exclude-network
Excludeheader.networkInterfacesfrom the diagnostic report. By default this is not set and the

network interfaces are included.

--report-filename=filename

Name of the file to which the report will be written. If the filename is set to’stdout’ or ’stderr’,
the report is written to the stdout or stderr of the process respectively.

--report-on-fatalerror
Enables the report to be triggered on fatal errors (internal errors within the Node.js runtime such

as out of memory) that lead to termination of the application. Useful to inspect various

diagnostic data elements such as heap, stack, event loop state, resource consumption etc. to

reason about the fatal error.

--report-on-signal
Enables report to be generated upon receiving the specified (or predefined) signal to the running

Node.js process. The signal to trigger the report is specified through--report-signal.

--report-signal=signal

Sets or resets the signal for report generation (not supported on Windows). Default signal is

SIGUSR2.

--report-uncaught-exception
Enables report to be generated when the process exits due to an uncaught exception. Useful

when inspecting the JavaScript stack in conjunction with native stack and other runtime

environment data.

-r, --require module

Preload the specified module at startup. Followsrequire()’s module resolution rules.module
may be either a path to a file, or a node module name. Modules preloaded with--require will

run before modules preloaded with--import. Modules are preloaded into the main thread as

well as any worker threads, forked processes, or clustered processes.

--run This runs a specified command from a package.json’s"scripts" object. If a missing"command"
is provided, it will list the available scripts.--run will traverse up to the root directory and finds

apackage.jsonfile to run the command from.--run prepends./node_modules/.binfor each

NODE(1) General Commands Manual NODE(1)

January 26, 2026

ancestor of the current directory, to thePATH in order to execute the binaries from different

folders where multiplenode_modulesdirectories are present, ifancestor-
folder/node_modules/.binis a directory.--run executes the command in the directory

containing the relatedpackage.json. For example, the following command will run thetest
script of thepackage.jsonin the current folder:

$ node --run test

You can also pass arguments to the command. Any argument after-- will be appended to the

script:

$ node --run test -- --verbose

--secure-heap-min=n

When using--secure-heap, the--secure-heap-minflag specifies the minimum allocation from

the secure heap. The minimum value is2. The maximum value is the lesser of--secure-heapor

2147483647. The value given must be a power of two.

--secure-heap=n

Initializes an OpenSSL secure heap ofn bytes. When initialized, the secure heap is used for

selected types of allocations within OpenSSL during key generation and other operations. This

is useful, for instance, to prevent sensitive information from leaking due to pointer overruns or

underruns. The secure heap is a fixed size and cannot be resized at runtime so, if used, it is

important to select a large enough heap to cover all application uses. The heap size given must

be a power of two. Any value less than 2 will disable the secure heap. The secure heap is

disabled by default. The secure heap is not available on Windows. See

CRYPTO_secure_malloc_initfor more details.

--snapshot-blob=path

When used with--build-snapshot,--snapshot-blobspecifies the path where the generated

snapshot blob is written to. If not specified, the generated blob is written tosnapshot.blobin the

current working directory. When used without--build-snapshot,--snapshot-blobspecifies the

path to the blob that is used to restore the application state. When loading a snapshot, Node.js

checks that:

+o The version, architecture, and platform of the running Node.js binary are exactly the same

as that of the binary that generates the snapshot.

+o The V8 flags and CPU features are compatible with that of the binary that generates the

snapshot.

If they don’t match, Node.js refuses to load the snapshot and exits with status code 1.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

--test Starts the Node.js command line test runner. This flag cannot be combined with--watch-path,

--check,--eval, --interactive, or the inspector. See the documentation on running tests from the

command line for more details.

--test-concurrency
The maximum number of test files that the test runner CLI will execute concurrently. If--test-
isolation is set to’none’, this flag is ignored and concurrency is one. Otherwise, concurrency

defaults toos.availableParallelism() - 1.

--test-coverage-branches=threshold

Require a minimum percent of covered branches. If code coverage does not reach the threshold

specified, the process will exit with code1.

--test-coverage-exclude
Excludes specific files from code coverage using a glob pattern, which can match both absolute

and relative file paths. This option may be specified multiple times to exclude multiple glob

patterns. If both--test-coverage-excludeand--test-coverage-includeare provided, files must

meetboth criteria to be included in the coverage report. By default all the matching test files

are excluded from the coverage report. Specifying this option will override the default

behavior.

--test-coverage-functions=threshold

Require a minimum percent of covered functions. If code coverage does not reach the threshold

specified, the process will exit with code1.

--test-coverage-include
Includes specific files in code coverage using a glob pattern, which can match both absolute and

relative file paths. This option may be specified multiple times to include multiple glob

patterns. If both--test-coverage-excludeand--test-coverage-includeare provided, files must

meetboth criteria to be included in the coverage report.

--test-coverage-lines=threshold

Require a minimum percent of covered lines. If code coverage does not reach the threshold

specified, the process will exit with code1.

--test-force-exit
Configures the test runner to exit the process once all known tests have finished executing even

if the event loop would otherwise remain active.

--test-global-setup=module

NODE(1) General Commands Manual NODE(1)

January 26, 2026

Specify a module that will be evaluated before all tests are executed and can be used to setup

global state or fixtures for tests. See the documentation on global setup and teardown for more

details.

--test-isolation=mode

Configures the type of test isolation used in the test runner. Whenmode is ’process’, each test

file is run in a separate child process. Whenmode is ’none’, all test files run in the same process

as the test runner. The default isolation mode is’process’. This flag is ignored if the--test flag

is not present. See the test runner execution model section for more information.

--test-name-pattern
A regular expression that configures the test runner to only execute tests whose name matches

the provided pattern. See the documentation on filtering tests by name for more details. If both

--test-name-patternand--test-skip-pattern are supplied, tests must satisfyboth requirements in

order to be executed.

--test-only
Configures the test runner to only execute top level tests that have theonly option set. This flag

is not necessary when test isolation is disabled.

--test-reporter
A test reporter to use when running tests. See the documentation on test reporters for more

details.

--test-reporter-destination
The destination for the corresponding test reporter. See the documentation on test reporters for

more details.

--test-rerun-failures
A path to a file allowing the test runner to persist the state of the test suite between runs. The

test runner will use this file to determine which tests have already succeeded or failed, allowing

for re-running of failed tests without having to re-run the entire test suite. The test runner will

create this file if it does not exist. See the documentation on test reruns for more details.

--test-shard
Test suite shard to execute in a format of<index>/<total>, where

+o index is a positive integer, index of divided parts.

+o total is a positive integer, total of divided part.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

This command will divide all tests files intototal equal parts, and will run only those that

happen to be in anindex part. For example, to split your tests suite into three parts, use this:

node --test --test-shard=1/3

node --test --test-shard=2/3

node --test --test-shard=3/3

--test-skip-pattern
A regular expression that configures the test runner to skip tests whose name matches the

provided pattern. See the documentation on filtering tests by name for more details. If both

--test-name-patternand--test-skip-pattern are supplied, tests must satisfyboth requirements in

order to be executed.

--test-timeout
A number of milliseconds the test execution will fail after. If unspecified, subtests inherit this

value from their parent. The default value isInfinity.

--test-update-snapshots
Regenerates the snapshot files used by the test runner for snapshot testing.

--throw-deprecation
Throw errors for deprecations.

--title=title

Setprocess.titleon startup.

--tls-cipher-list=list

Specify an alternative default TLS cipher list. Requires Node.js to be built with crypto support

(default).

--tls-keylog=file

Log TLS key material to a file. The key material is in NSSSSLKEYLOGFILE format and can

be used by software (such as Wireshark) to decrypt the TLS traffic.

--tls-max-v1.2
Settls.DEFAULT_MAX_VERSION to ’TLSv1.2’. Use to disable support for TLSv1.3.

--tls-max-v1.3
Set defaulttls.DEFAULT_MAX_VERSION to ’TLSv1.3’. Use to enable support for TLSv1.3.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

--tls-min-v1.0
Set defaulttls.DEFAULT_MIN_VERSION to ’TLSv1’. Use for compatibility with old TLS

clients or servers.

--tls-min-v1.1
Set defaulttls.DEFAULT_MIN_VERSION to ’TLSv1.1’. Use for compatibility with old TLS

clients or servers.

--tls-min-v1.2
Set defaulttls.DEFAULT_MIN_VERSION to ’TLSv1.2’. This is the default for 12.x and later,

but the option is supported for compatibility with older Node.js versions.

--tls-min-v1.3
Set defaulttls.DEFAULT_MIN_VERSION to ’TLSv1.3’. Use to disable support for TLSv1.2,

which is not as secure as TLSv1.3.

--trace-deprecation
Print stack traces for deprecations.

--trace-env
Print information about any access to environment variables done in the current Node.js

instance to stderr, including:

+o The environment variable reads that Node.js does internally.

+o Writes in the form ofprocess.env.KEY = "SOME VALUE".

+o Reads in the form ofprocess.env.KEY.

+o Definitions in the form ofObject.defineProperty(process.env, ’KEY’, {...}).

+o Queries in the form ofObject.hasOwn(process.env, ’KEY’),
process.env.hasOwnProperty(’KEY’)or ’KEY’ in process.env.

+o Deletions in the form ofdelete process.env.KEY.

+o Enumerations inf the form of...process.envor Object.keys(process.env).
Only the names of the environment variables being accessed are printed. The values are not

printed. To print the stack trace of the access, use--trace-env-js-stackand/or--trace-env-
native-stack.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

--trace-env-js-stack
In addition to what--trace-envdoes, this prints the JavaScript stack trace of the access.

--trace-env-native-stack
In addition to what--trace-envdoes, this prints the native stack trace of the access.

--trace-event-categories
A comma separated list of categories that should be traced when trace event tracing is enabled

using--trace-events-enabled.

--trace-event-file-pattern
Template string specifying the filepath for the trace event data, it supports${rotation} and

${pid}.

--trace-events-enabled
Enables the collection of trace event tracing information.

--trace-exit
Prints a stack trace whenever an environment is exited proactively, i.e. invokingprocess.exit().

--trace-require-module=mode

Prints information about usage of Loading ECMAScript modules usingrequire(). Whenmode
is all, all usage is printed. Whenmode is no-node-modules, usage from thenode_modules
folder is excluded.

--trace-sigint
Prints a stack trace on SIGINT.

--trace-sync-io
Prints a stack trace whenever synchronous I/O is detected after the first turn of the event loop.

--trace-tls
Prints TLS packet trace information tostderr. This can be used to debug TLS connection

problems.

--trace-uncaught
Print stack traces for uncaught exceptions; usually, the stack trace associated with the creation

of anError is printed, whereas this makes Node.js also print the stack trace associated with

throwing the value (which does not need to be anError instance). Enabling this option may

affect garbage collection behavior negatively.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

--trace-warnings
Print stack traces for process warnings (including deprecations).

--track-heap-objects
Track heap object allocations for heap snapshots.

--unhandled-rejections=mode

Using this flag allows to change what should happen when an unhandled rejection occurs. One

of the following modes can be chosen:

+o throw: Emit unhandledRejection. If this hook is not set, raise the unhandled rejection as an

uncaught exception. This is the default.

+o strict: Raise the unhandled rejection as an uncaught exception. If the exception is handled,

unhandledRejectionis emitted.

+o warn: Always trigger a warning, no matter if theunhandledRejectionhook is set or not but

do not print the deprecation warning.

+o warn-with-error-code: Emit unhandledRejection. If this hook is not set, trigger a warning,

and set the process exit code to 1.

+o none: Silence all warnings.

If a rejection happens during the command line entry point’s ES module static loading phase, it

will always raise it as an uncaught exception.

--use-bundled-ca,--use-openssl-ca
Use bundled Mozilla CA store as supplied by current Node.js version or use OpenSSL’s default

CA store. The default store is selectable at build-time. The bundled CA store, as supplied by

Node.js, is a snapshot of Mozilla CA store that is fixed at release time. It is identical on all

supported platforms. Using OpenSSL store allows for external modifications of the store. For

most Linux and BSD distributions, this store is maintained by the distribution maintainers and

system administrators. OpenSSL CA store location is dependent on configuration of the

OpenSSL library but this can be altered at runtime using environment variables. See

SSL_CERT_DIR andSSL_CERT_FILE.

--use-env-proxy
When enabled, Node.js parses theHTTP_PROXY, HTTPS_PROXY andNO_PROXY
environment variables during startup, and tunnels requests over the specified proxy. This is

equivalent to setting theNODE_USE_ENV_PROXY=1environment variable. When both are

NODE(1) General Commands Manual NODE(1)

January 26, 2026

set,--use-env-proxytakes precedence.

--use-largepages=mode

Re-map the Node.js static code to large memory pages at startup. If supported on the target

system, this will cause the Node.js static code to be moved onto 2 MiB pages instead of 4 KiB

pages. The following values are valid formode:

+o off: No mapping will be attempted. This is the default.

+o on: If supported by the OS, mapping will be attempted. Failure to map will be ignored and a

message will be printed to standard error.

+o silent: If supported by the OS, mapping will be attempted. Failure to map will be ignored

and will not be reported.

--use-system-ca
Node.js uses the trusted CA certificates present in the system store along with the--use-
bundled-caoption and theNODE_EXTRA_CA_CERTS environment variable. On platforms

other than Windows and macOS, this loads certificates from the directory and file trusted by

OpenSSL, similar to--use-openssl-ca, with the difference being that it caches the certificates

after first load. On Windows and macOS, the certificate trust policy is similar to Chromium’s

policy for locally trusted certificates, but with some differences: On macOS, the following

settings are respected:

+o Default and System Keychains.Bl -bullet

+o Trust:.Bl -bullet

+o Any certificate where the "When using this certificate" flag is set to "Always Trust" or

+o Any certificate where the "Secure Sockets Layer (SSL)" flag is set to "Always Trust".

The certificate must also be valid, with "X.509 Basic Policy" set to "Always Trust".

On Windows, the following settings are respected:

+o Local Machine (accessed viacertlm.msc).Bl -bullet

+o Trust:.Bl -bullet

+o Trusted Root Certification Authorities

NODE(1) General Commands Manual NODE(1)

January 26, 2026

+o Trusted People

+o Enterprise Trust -> Enterprise -> Trusted Root Certification Authorities

+o Enterprise Trust -> Enterprise -> Trusted People

+o Enterprise Trust -> Group Policy -> Trusted Root Certification Authorities

+o Enterprise Trust -> Group Policy -> Trusted People

Current User (accessed viacertmgr.msc).Bl -bullet

Trust:.Bl -bullet

Trusted Root Certification Authorities

Enterprise Trust -> Group Policy -> Trusted Root Certification Authorities On Windows and macOS,

Node.js would check that the user settings for the trusted certificates do not forbid them for TLS server

authentication before using them. Node.js currently does not support distrust/revocation of certificates

from another source based on system settings. On other systems, Node.js loads certificates from the

default certificate file (typically/etc/ssl/cert.pem) and default certificate directory (typically

/etc/ssl/certs) that the version of OpenSSL that Node.js links to respects. This typically works with the

convention on major Linux distributions and other Unix-like systems. If the overriding OpenSSL

environment variables (typicallySSL_CERT_FILE andSSL_CERT_DIR, depending on the

configuration of the OpenSSL that Node.js links to) are set, the specified paths will be used to load

certificates instead. These environment variables can be used as workarounds if the conventional paths

used by the version of OpenSSL Node.js links to are not consistent with the system configuration that

the users have for some reason.

Print V8 command-line options.

Set V8’s thread pool size which will be used to allocate background jobs. If set to0 then Node.js will

choose an appropriate size of the thread pool based on an estimate of the amount of parallelism. The

amount of parallelism refers to the number of computations that can be carried out simultaneously in a

given machine. In general, it’s the same as the amount of CPUs, but it may diverge in environments such

as VMs or containers.

Print node’s version.

Starts Node.js in watch mode. When in watch mode, changes in the watched files cause the Node.js

process to restart. By default, watch mode will watch the entry point and any required or imported

module. Use--watch-path to specify what paths to watch. This flag cannot be combined with--check,

--eval, --interactive, or the REPL. Note: The--watch flag requires a file path as an argument and is

incompatible with--run or inline script input, as--run takes precedence and ignores watch mode. If no

file is provided, Node.js will exit with status code9.

node --watch index.js

Customizes the signal sent to the process on watch mode restarts.

NODE(1) General Commands Manual NODE(1)

January 26, 2026

node --watch --watch-kill-signal SIGINT test.js

Starts Node.js in watch mode and specifies what paths to watch. When in watch mode, changes in the

watched paths cause the Node.js process to restart. This will turn off watching of required or imported

modules, even when used in combination with--watch. This flag cannot be combined with--check,

--eval, --interactive, --test, or the REPL. Note: Using--watch-path implicitly enables--watch, which

requires a file path and is incompatible with--run, as --run takes precedence and ignores watch mode.

node --watch-path=./src --watch-path=./tests index.js

This option is only supported on macOS and Windows. An

ERR_FEATURE_UNAVAILABLE_ON_PLATFORM exception will be thrown when the option is

used on a platform that does not support it.

Disable the clearing of the console when watch mode restarts the process.

node --watch --watch-preserve-output test.js

Automatically zero-fills all newly allocatedBuffer instances.

ENVIRONMENT
FORCE_COLOR[1, 2, 3]

TheFORCE_COLOR environment variable is used to enable ANSI colorized output. The value

may be:

+o 1, true, or the empty string’’ indicate 16-color support,

+o 2 to indicate 256-color support, or

+o 3 to indicate 16 million-color support.

WhenFORCE_COLOR is used and set to a supported value, both theNO_COLOR, and

NODE_DISABLE_COLORS environment variables are ignored. Any other value will result in

colorized output being disabled.

NODE_COMPILE_CACHEdir

Enable the module compile cache for the Node.js instance. See the documentation of module

compile cache for details.

NODE_COMPILE_CACHE_PORTABLE1

When set to 1, the module compile cache can be reused across different directory locations as

long as the module layout relative to the cache directory remains the same.

NODE_DEBUGmodule[,<?>]

NODE(1) General Commands Manual NODE(1)

January 26, 2026

’,’-separated list of core modules that should print debug information.

NODE_DEBUG_NATIVEmodule[,<?>]

’,’-separated list of core C++ modules that should print debug information.

NODE_DISABLE_COLORS1

When set, colors will not be used in the REPL.

NODE_DISABLE_COMPILE_CACHE1

Disable the module compile cache for the Node.js instance. See the documentation of module

compile cache for details.

NODE_EXTRA_CA_CERTSfile

When set, the well known "root" CAs (like VeriSign) will be extended with the extra

certificates infile. The file should consist of one or more trusted certificates in PEM format. A

message will be emitted (once) withprocess.emitWarning()if the file is missing or malformed,

but any errors are otherwise ignored. Neither the well known nor extra certificates are used

when thecaoptions property is explicitly specified for a TLS or HTTPS client or server. This

environment variable is ignored whennoderuns as setuid root or has Linux file capabilities set.

TheNODE_EXTRA_CA_CERTS environment variable is only read when the Node.js process

is first launched. Changing the value at runtime using

process.env.NODE_EXTRA_CA_CERTShas no effect on the current process.

NODE_ICU_DATA file

Data path for ICU (Intlobject) data. Will extend linked-in data when compiled with small-icu

support.

NODE_NO_WARNINGS1

When set to1, process warnings are silenced.

NODE_OPTIONSoptions...

A space-separated list of command-line options.options...are interpreted before command-line

options, so command-line options will override or compound after anything inoptions....
Node.js will exit with an error if an option that is not allowed in the environment is used, such

as-p or a script file. If an option value contains a space, it can be escaped using double quotes:

NODE_OPTIONS=’--require "./my path/file.js"’

A singleton flag passed as a command-line option will override the same flag passed into

NODE_OPTIONS:

NODE(1) General Commands Manual NODE(1)

January 26, 2026

The inspector will be available on port 5555

NODE_OPTIONS=’--inspect=localhost:4444’ node --inspect=localhost:5555

A flag that can be passed multiple times will be treated as if itsNODE_OPTIONS instances

were passed first, and then its command-line instances afterwards:

NODE_OPTIONS=’--require "./a.js"’ node --require "./b.js"

is equivalent to:

node --require "./a.js" --require "./b.js"

Node.js options that are allowed are in the following list. If an option supports both --XX and

--no-XX variants, they are both supported but only one is included in the list below.

+o --allow-addons

+o --allow-child-process

+o --allow-fs-read

+o --allow-fs-write

+o --allow-inspector

+o --allow-net

+o --allow-wasi

+o --allow-worker

+o --conditions,-C

+o --cpu-prof-dir

+o --cpu-prof-interval

+o --cpu-prof-name

+o --cpu-prof

+o --diagnostic-dir

+o --disable-proto

NODE(1) General Commands Manual NODE(1)

January 26, 2026

+o --disable-sigusr1

+o --disable-warning

+o --disable-wasm-trap-handler

+o --dns-result-order

+o --enable-fips

+o --enable-network-family-autoselection

+o --enable-source-maps

+o --entry-url

+o --experimental-abortcontroller

+o --experimental-addon-modules

+o --experimental-detect-module

+o --experimental-eventsource

+o --experimental-import-meta-resolve

+o --experimental-json-modules

+o --experimental-loader

+o --experimental-modules

+o --experimental-print-required-tla

+o --experimental-quic

+o --experimental-require-module

+o --experimental-shadow-realm

NODE(1) General Commands Manual NODE(1)

January 26, 2026

+o --experimental-specifier-resolution

+o --experimental-test-isolation

+o --experimental-top-level-await

+o --experimental-transform-types

+o --experimental-vm-modules

+o --experimental-wasi-unstable-preview1

+o --force-context-aware

+o --force-fips

+o --force-node-api-uncaught-exceptions-policy

+o --frozen-intrinsics

+o --heap-prof-dir

+o --heap-prof-interval

+o --heap-prof-name

+o --heap-prof

+o --heapsnapshot-near-heap-limit

+o --heapsnapshot-signal

+o --http-parser

+o --icu-data-dir

+o --import

+o --input-type

NODE(1) General Commands Manual NODE(1)

January 26, 2026

+o --insecure-http-parser

+o --inspect-brk

+o --inspect-port,--debug-port

+o --inspect-publish-uid

+o --inspect-wait

+o --inspect

+o --localstorage-file

+o --max-http-header-size

+o --max-old-space-size-percentage

+o --napi-modules

+o --network-family-autoselection-attempt-timeout

+o --no-addons

+o --no-async-context-frame

+o --no-deprecation

+o --no-experimental-global-navigator

+o --no-experimental-repl-await

+o --no-experimental-sqlite

+o --no-experimental-strip-types

+o --no-experimental-websocket

+o --no-experimental-webstorage

NODE(1) General Commands Manual NODE(1)

January 26, 2026

+o --no-extra-info-on-fatal-exception

+o --no-force-async-hooks-checks

+o --no-global-search-paths

+o --no-network-family-autoselection

+o --no-strip-types

+o --no-warnings

+o --no-webstorage

+o --node-memory-debug

+o --openssl-config

+o --openssl-legacy-provider

+o --openssl-shared-config

+o --pending-deprecation

+o --permission

+o --preserve-symlinks-main

+o --preserve-symlinks

+o --prof-process

+o --redirect-warnings

+o --report-compact

+o --report-dir, --report-directory

+o --report-exclude-env

NODE(1) General Commands Manual NODE(1)

January 26, 2026

+o --report-exclude-network

+o --report-filename

+o --report-on-fatalerror

+o --report-on-signal

+o --report-signal

+o --report-uncaught-exception

+o --require-module

+o --require, -r

+o --secure-heap-min

+o --secure-heap

+o --snapshot-blob

+o --test-coverage-branches

+o --test-coverage-exclude

+o --test-coverage-functions

+o --test-coverage-include

+o --test-coverage-lines

+o --test-global-setup

+o --test-isolation

+o --test-name-pattern

+o --test-only

NODE(1) General Commands Manual NODE(1)

January 26, 2026

+o --test-reporter-destination

+o --test-reporter

+o --test-rerun-failures

+o --test-shard

+o --test-skip-pattern

+o --throw-deprecation

+o --title

+o --tls-cipher-list

+o --tls-keylog

+o --tls-max-v1.2

+o --tls-max-v1.3

+o --tls-min-v1.0

+o --tls-min-v1.1

+o --tls-min-v1.2

+o --tls-min-v1.3

+o --trace-deprecation

+o --trace-env-js-stack

+o --trace-env-native-stack

+o --trace-env

+o --trace-event-categories

NODE(1) General Commands Manual NODE(1)

January 26, 2026

+o --trace-event-file-pattern

+o --trace-events-enabled

+o --trace-exit

+o --trace-require-module

+o --trace-sigint

+o --trace-sync-io

+o --trace-tls

+o --trace-uncaught

+o --trace-warnings

+o --track-heap-objects

+o --unhandled-rejections

+o --use-bundled-ca

+o --use-env-proxy

+o --use-largepages

+o --use-openssl-ca

+o --use-system-ca

+o --v8-pool-size

+o --watch-kill-signal

+o --watch-path

+o --watch-preserve-output

NODE(1) General Commands Manual NODE(1)

January 26, 2026

+o --watch

+o --zero-fill-buffers
V8 options that are allowed are:

+o --abort-on-uncaught-exception

+o --disallow-code-generation-from-strings

+o --enable-etw-stack-walking

+o --expose-gc

+o --interpreted-frames-native-stack

+o --jitless

+o --max-old-space-size

+o --max-semi-space-size

+o --perf-basic-prof-only-functions

+o --perf-basic-prof

+o --perf-prof-unwinding-info

+o --perf-prof

+o --stack-trace-limit
--perf-basic-prof-only-functions, --perf-basic-prof, --perf-prof-unwinding-info, and --perf-prof
are only available on Linux.--enable-etw-stack-walkingis only available on Windows.

NODE_PATHpath[:<?>]

’:’-separated list of directories prefixed to the module search path. On Windows, this is a

’;’-separated list instead.

NODE_PENDING_DEPRECATION1

When set to1, emit pending deprecation warnings. Pending deprecations are generally

identical to a runtime deprecation with the notable exception that they are turnedoff by default

NODE(1) General Commands Manual NODE(1)

January 26, 2026

and will not be emitted unless either the--pending-deprecationcommand-line flag, or the

NODE_PENDING_DEPRECATION=1 environment variable, is set. Pending deprecations are

used to provide a kind of selective "early warning" mechanism that developers may leverage to

detect deprecated API usage.

NODE_PENDING_PIPE_INSTANCESinstances

Set the number of pending pipe instance handles when the pipe server is waiting for

connections. This setting applies to Windows only.

NODE_PRESERVE_SYMLINKS1

When set to1, instructs the module loader to preserve symbolic links when resolving and

caching modules.

NODE_REDIRECT_WARNINGSfile

When set, process warnings will be emitted to the given file instead of printing to stderr. The

file will be created if it does not exist, and will be appended to if it does. If an error occurs

while attempting to write the warning to the file, the warning will be written to stderr instead.

This is equivalent to using the--redirect-warnings=file command-line flag.

NODE_REPL_EXTERNAL_MODULEfile

Path to a Node.js module which will be loaded in place of the built-in REPL. Overriding this

value to an empty string (’’) will use the built-in REPL.

NODE_REPL_HISTORYfile

Path to the file used to store the persistent REPL history. The default path is

~/.node_repl_history, which is overridden by this variable. Setting the value to an empty string

(’’ or ’ ’) disables persistent REPL history.

NODE_SKIP_PLATFORM_CHECKvalue

If valueequals’1’, the check for a supported platform is skipped during Node.js startup.

Node.js might not execute correctly. Any issues encountered on unsupported platforms will not

be fixed.

NODE_TEST_CONTEXTvalue

If valueequals’child’, test reporter options will be overridden and test output will be sent to

stdout in the TAP format. If any other value is provided, Node.js makes no guarantees about the

reporter format used or its stability.

NODE_TLS_REJECT_UNAUTHORIZEDvalue

If valueequals’0’, certificate validation is disabled for TLS connections. This makes TLS, and

NODE(1) General Commands Manual NODE(1)

January 26, 2026

HTTPS by extension, insecure. The use of this environment variable is strongly discouraged.

NODE_USE_ENV_PROXY1

When enabled, Node.js parses theHTTP_PROXY, HTTPS_PROXY andNO_PROXY
environment variables during startup, and tunnels requests over the specified proxy. This can

also be enabled using the--use-env-proxycommand-line flag. When both are set,--use-env-
proxy takes precedence.

NODE_USE_SYSTEM_CA1

Node.js uses the trusted CA certificates present in the system store along with the--use-
bundled-caoption and theNODE_EXTRA_CA_CERTS environment variable. This can also

be enabled using the--use-system-cacommand-line flag. When both are set,--use-system-ca
takes precedence.

NODE_V8_COVERAGEdir

When set, Node.js will begin outputting V8 JavaScript code coverage and Source Map data to

the directory provided as an argument (coverage information is written as JSON to files with a

coverageprefix). NODE_V8_COVERAGE will automatically propagate to subprocesses,

making it easier to instrument applications that call thechild_process.spawn()family of

functions.NODE_V8_COVERAGE can be set to an empty string, to prevent propagation.

NO_COLOR<any>

NO_COLOR is an alias forNODE_DISABLE_COLORS. The value of the environment

variable is arbitrary.

OPENSSL_CONFfile

Load an OpenSSL configuration file on startup. Among other uses, this can be used to enable

FIPS-compliant crypto if Node.js is built with./configure --openssl-fips. If the--openssl-config
command-line option is used, the environment variable is ignored.

SSL_CERT_DIRdir

If --use-openssl-cais enabled, or if--use-system-cais enabled on platforms other than macOS

and Windows, this overrides and sets OpenSSL’s directory containing trusted certificates. Be

aware that unless the child environment is explicitly set, this environment variable will be

inherited by any child processes, and if they use OpenSSL, it may cause them to trust the same

CAs as node.

SSL_CERT_FILEfile

If --use-openssl-cais enabled, or if--use-system-cais enabled on platforms other than macOS

NODE(1) General Commands Manual NODE(1)

January 26, 2026

and Windows, this overrides and sets OpenSSL’s file containing trusted certificates. Be aware

that unless the child environment is explicitly set, this environment variable will be inherited by

any child processes, and if they use OpenSSL, it may cause them to trust the same CAs as node.

TZ TheTZ environment variable is used to specify the timezone configuration. While Node.js

does not support all of the various ways thatTZ is handled in other environments, it does

support basic timezone IDs (such as’Etc/UTC’, ’Europe/Paris’, or ’America/New_York’). It

may support a few other abbreviations or aliases, but these are strongly discouraged and not

guaranteed.

$ TZ=Europe/Dublin node -pe "new Date().toString()"

Wed May 12 2021 20:30:48 GMT+0100 (Irish Standard Time)

UV_THREADPOOL_SIZEsize

Set the number of threads used in libuv’s threadpool tosizethreads. Asynchronous system

APIs are used by Node.js whenever possible, but where they do not exist, libuv’s threadpool is

used to create asynchronous node APIs based on synchronous system APIs. Node.js APIs that

use the threadpool are:

+o all fs APIs, other than the file watcher APIs and those that are explicitly synchronous

+o asynchronous crypto APIs such ascrypto.pbkdf2(), crypto.scrypt(), crypto.randomBytes(),
crypto.randomFill(), crypto.generateKeyPair()

+o dns.lookup()

+o all zlib APIs, other than those that are explicitly synchronous

Because libuv’s threadpool has a fixed size, it means that if for whatever reason any of these

APIs takes a long time, other (seemingly unrelated) APIs that run in libuv’s threadpool will

experience degraded performance. In order to mitigate this issue, one potential solution is to

increase the size of libuv’s threadpool by setting the’UV_THREADPOOL_SIZE’ environment

variable to a value greater than4 (its current default value). However, setting this from inside

the process usingprocess.env.UV_THREADPOOL_SIZE=sizeis not guranteed to work as the

threadpool would have been created as part of the runtime initialisation much before user code

is run. For more information, see the libuv threadpool documentation.

BUGS
Bugs are tracked in GitHub Issues:https://github.com/nodejs/node/issues

NODE(1) General Commands Manual NODE(1)

January 26, 2026

COPYRIGHT
Copyright Node.js contributors. Node.js is available under the MIT license.

Node.js also includes external libraries that are available under a variety of licenses. See

https://github.com/nodejs/node/blob/HEAD/LICENSE for the full license text.

SEE ALSO
Website:https://nodejs.org/

Documentation:https://nodejs.org/api/

GitHub repository and issue tracker:https://github.com/nodejs/node

NODE(1) General Commands Manual NODE(1)

January 26, 2026

