NODE(1) General Commands Manual NODE(1)

NAME
node- server-side JavaScript runtime

SYNOPSIS
node[options] [v8 options] [<program-entry-point$-e string | --] [arguments ...]
node inspect[<program-entry-point>| -e string | <host>:<port>] ...
node[--v8-options]

DESCRIPTION
Node.js is a set of libraries for JavaScript which allows it to be used outside of the browser. ltis
primarily focused on creating simple, easy-to-build network clients and servers.

Executenodewithout arguments to start a REPL.

OPTIONS
- Alias for stdin. Analogous to the use oin other command-line utilities, meaning that the
script is read from stdin, and the rest of the options are passed to that script.

- Indicate the end of node options. Pass the rest of the arguments to the script. If no script
filename or eval/print script is supplied prior to this, then the next argument is used as a script
filename.

--abort-on-uncaught-exception
Aborting instead of exiting causes a core file to be generated for post-mortem analysis using a
debugger (such dklb, gdb, andmdb). If this flag is passed, the behavior can still be set to not
abort througiprocess.setUncaughtExceptionCaptureCallback(and through usage of the
node:domainmodule that uses it).

--allow-addons
When using the Permission Model, the process will not be able to use native addons by default.
Attempts to do so will throw aERR_DLOPEN_DISABLED unless the user explicitly passes
the--allow-addonsflag when starting Node.js. Example:

/I Attempt to require an native addon
require('nodejs-addon-example’);

$ node --permission --allow-fs-read=* index.js
node:internal/modules/cjs/loader:1319
return process.dlopen(module, path.toNamespacedPath(filename));

N

January 26, 2026

NODE(1) General Commands Manual NODE(1)

Error: Cannot load native addon because loading addons is disabled.
at Module._extensions..node (node:internal/modules/cjs/loader:1319:18)
at Module.load (node:internal/modules/cjs/loader:1091:32)
at Module._load (node:internal/modules/cjs/loader:938:12)
at Module.require (node:internal/modules/cjs/loader:1115:19)
at require (node:internal/modules/helpers:130:18)
at Object.<anonymous> (/home/index.js:1:15)
at Module._compile (node:internal/modules/cjs/loader:1233:14)
at Module._extensions..js (node:internal/modules/cjs/loader:1287:10)
at Module.load (node:internal/modules/cjs/loader:1091:32)
at Module._load (node:internal/modules/cjs/loader:938:12) {

code: 'ERR_DLOPEN_DISABLED’

}

--allow-child-process
When using the Permission Model, the process will not be able to spawn any child process by
default. Attempts to do so will throw aBRR_ACCESS_DENIEDunless the user explicitly
passes the-allow-child-processflag when starting Node.js. Example:

const childProcess = require(’node:child_process’);
/I Attempt to bypass the permission
childProcess.spawn('node’, [-e’, 'require("fs").writeFileSync("/new-file", "example™)’]);

$ node --permission --allow-fs-read=* index.js
node:internal/child_process:388
const err = this._handle.spawn(options);
N
Error: Access to this APl has been restricted
at ChildProcess.spawn (node:internal/child_process:388:28)
at node:internal/main/run_main_module:17:47 {
code: 'ERR_ACCESS_DENIED’,
permission: 'ChildProcess’
}
Thechild_process.fork()API inherits the execution arguments from the parent process. This
means that if Node.js is started with the Permission Model enabled aratlogv-child-
processflag is set, any child process created usthgd_process.fork()will automatically
receive all relevant Permission Model flags. This behavior also applies to
child_process.spawn(), but in that case, the flags are propagated vid@izE_ OPTIONS
environment variable rather than directly through the process arguments.

January 26, 2026

NODE(1) General Commands Manual NODE(1)

--allow-fs-read
This flag configures file system read permissions using the Permission Model. The valid
arguments for the-allow-fs-readflag are:

® *-To allow all FileSystemReadperations.

® Multiple paths can be allowed using multiptallow-fs-read flags. Example-allow-fs-
read=/folderl/ --allow-fs-read=/folderl/

Examples can be found in the File System Permissions documentation. The initializer module

and custom-require modules has a implicit read permission.

$ node --permission -r custom-require.js -r custom-require-2.js index.js

® Thecustom-require.js,custom-require-2.js, andndex.js will be by default in the allowed
read list.

process.has('fs.read’, 'index.js"); // true
process.has('fs.read’, 'custom-require.js’); // true
process.has(‘fs.read’, 'custom-require-2.js"); // true

--allow-fs-write
This flag configures file system write permissions using the Permission Model. The valid
arguments for the-allow-fs-write flag are:

® *-To allow all FileSystemWrite operations.

® Multiple paths can be allowed using multiplallow-fs-write flags. Example-allow-fs-
write=/folderl/ --allow-fs-write=/folderl/

Paths delimited by comma (,) are no longer allowed. When passing a single flag with a comma

a warning will be displayed. Examples can be found in the File System Permissions

documentation.

--allow-inspector
When using the Permission Model, the process will not be able to connect through inspector
protocol. Attempts to do so will throw aBRR_ACCESS_ DENIEDunless the user explicitly
passes the-allow-inspector flag when starting Node.js. Example:

const { Session } = require(’node:inspector/promises’);

const session = new Session();

January 26, 2026

NODE(1)

General Commands Manual NODE(1)

session.connect();

$ node --permission index.js
Error: connect ERR_ACCESS_DENIED Access to this API has been restricted. Use --allow-inspector
code: 'ERR_ACCESS_DENIED’,

}

--allow-net

When using the Permission Model, the process will not be able to access network by default.
Attempts to do so will throw aERR_ACCESS_DENIEDunless the user explicitly passes the
--allow-net flag when starting Node.js. Example:

const http = require('node:http’);
/I Attempt to bypass the permission
const req = http.get(http://example.com’, () => {});

req.on(’error’, (err) =>{
console.log(err’, err);

b

$ node --permission index.js
Error: connect ERR_ACCESS_DENIED Access to this APl has been restricted. Use --allow-net to mat
code: 'ERR_ACCESS_DENIED’,

}

--allow-wasi

When using the Permission Model, the process will not be capable of creating any WASI
instances by default. For security reasons, the call will throERR_ACCESS DENIED
unless the user explicitly passes the flag/low-wasiin the main Node.js process. Example:

const { WASI } = require('node:wasi’);
/I Attempt to bypass the permission
new WASI({
version: 'previewl’,
/I Attempt to mount the whole filesystem
preopens: {
Tl

D

January 26, 2026

NODE(2) General Commands Manual NODE(1)

$ node --permission --allow-fs-read=* index.js

Error: Access to this API has been restricted
at node:internal/main/run_main_module:30:49 {
code: 'ERR_ACCESS_DENIED’,
permission: 'WASI’,

}

--allow-worker
When using the Permission Model, the process will not be able to create any worker threads by
default. For security reasons, the call will throwlBRR_ACCESS_DENIEDunless the user
explicitly pass the flag-allow-worker in the main Node.js process. Example:

const { Worker } = require('node:worker_threads’);
/I Attempt to bypass the permission
new Worker(__filename);

$ node --permission --allow-fs-read=* index.js

Error: Access to this API has been restricted
at node:internal/main/run_main_module:17:47 {
code: 'ERR_ACCESS_DENIED’,
permission: 'WorkerThreads’

}

--build-sea=config
Generates a single executable application from a JSON configuration file. The argument must
be a path to the configuration file. If the path is not absolute, it is resolved relative to the current
working directory. For configuration fields, cross-platform notes, and asset APIs, see the single
executable application documentation.

--build-snapshot
Generates a snapshot blob when the process exits and writes it to disk, which can be loaded
later with--snapshot-blob. When building the snapshot;-i$napshot-blobis not specified, the
generated blob will be written, by default, sgnapshot.blobin the current working directory.
Otherwise it will be written to the path specified bygnapshot-blob.

$ echo "globalThis.foo =’I am from the snapshot™ > snapshot.js

Run snapshot.js to initialize the application and snapshot the

January 26, 2026

NODE(1) General Commands Manual NODE(1)

state of it into snapshot.blob.
$ node --snapshot-blob snapshot.blob --build-snapshot snapshot.js

$ echo "console.log(globalThis.foo)" > index.js

Load the generated snapshot and start the application from index.js.

$ node --snapshot-blob snapshot.blob index.js

I am from the snapshot

Thev8.startupSnapshotAPI can be used to specify an entry point at snapshot building time,
thus avoiding the need of an additional entry script at deserialization time:

$ echo "require('v8’).startupSnapshot.setDeserializeMainFunction(() => console.log(’l am from the sne
$ node --snapshot-blob snapshot.blob --build-snapshot snapshot.js

$ node --snapshot-blob snapshot.blob

I am from the snapshot

For more information, check out thé.startupSnapshotAPI documentation. The snhapshot
currently only supports loding a single entrypoint during the snapshot building process, which
can load built-in modules, but not additional user-land modules. Users can bundle their
applications into a single script with their bundler of choice before building a snapshot. As it's
complicated to ensure the serializablility of all built-in modules, which are also growing over
time, only a subset of the built-in modules are well tested to be serializable during the snapshot
building process. The Node.js core test suite checks that a few fairly complex applications can
be snapshotted. The list of built-in modules being captured by the built-in snapshot of Node.js is
considered supported. When the snapshot builder encounters a built-in module that cannot be
serialized, it may crash the shapshot building process. In that case a typical workaround would
be to delay loading that module until runtime, using either
v8.startupSnapshot.setDeserializeMainFunction(®r
v8.startupSnapshot.addDeserializeCallback(). If serialization for an additional module during
the snapshot building process is needed, please file a request in the Node.js issue tracker and
link to it in the tracking issue for user-land snapshots.

--build-snapshot-config
Specifies the path to a JSON configuration file which configures snapshot creation behavior.

The following options are currently supported:

® builder <string> Required. Provides the name to the script that is executed before building
the snapshot, as ifbuild-snapshothad been passed withuilder as the main script name.

® withoutCodeCache <booleanxptional. Including the code cache reduces the time spent on
compiling functions included in the snapshot at the expense of a bigger snapshot size and

January 26, 2026

NODE(1) General Commands Manual NODE(1)

potentially breaking portability of the snapshot.
When using this flag, additional script files provided on the command line will not be executed
and instead be interpreted as regular command line arguments.

-c, --check
Syntax check the script without executing.

--completion-bash
Print source-able bash completion script for Node.js.

node --completion-bash > node_bash_completion
source node_bash_completion

-C condition,--conditions=condition
Provide custom conditional exports resolution conditions. Any number of custom string
condition names are permitted. The default Node.js conditiofisarfe", "default”, "import",
and"require" will always apply as defined. For example, to run a module with "development"
resolutions:

node -C development app.js

--cpu-prof
Starts the V8 CPU profiler on start up, and writes the CPU profile to disk before exHcpld-
prof-dir is not specified, the generated profile is placed in the current working directory. If
--cpu-prof-nameis not specified, the generated profile is named
CPU.${yyyymmdd}.${hhmmss}.${pid}.${tid}.${seq}.cpuprofile.

$ node --cpu-prof index.js

$ Is *.cpuprofile

CPU.20190409.202950.15293.0.0.cpuprofile

If --cpu-prof-nameis specified, the provided value is used as a template for the file name. The
following placeholder is supported and will be substituted at runtime:

© ${pid} -- the current process ID
$ node --cpu-prof --cpu-prof-name 'CPU.${pid}.cpuprofile’ index.js
$ Is *.cpuprofile

CPU.15293.cpuprofile

--cpu-prof-dir

January 26, 2026

NODE(1) General Commands Manual NODE(1)

Specify the directory where the CPU profiles generatee-tyyu-prof will be placed. The
default value is controlled by thediagnostic-dir command-line option.

--cpu-prof-interval
Specify the sampling interval in microseconds for the CPU profiles generatedgay-prof.
The default is 1000 microseconds.

--cpu-prof-name
Specify the file name of the CPU profile generated-mpu-prof.

--diagnostic-dir=directory
Set the directory to which all diagnostic output files are written. Defaults to current working
directory. Affects the default output directory of:

® --cpu-prof-dir
® --heap-prof-dir
® --redirect-warnings

--disable-proto=mode
Disable theObject.prototype.__proto__ property. Ifmodeis delete, the property is removed
entirely. If modeis throw, accesses to the property throw an exception with the code
ERR_PROTO_ACCESS.

--disable-sigusrl
Disable the ability of starting a debugging session by sendBfz=JSR1 signal to the process.

--disable-warning=code-or-type
Disable specific process warnings tydeor type. Warnings emitted from
process.emitWarning()may contain aodeand atype. This option will not-emit warnings that
have a matchingodeor type. List of deprecation warnings. The Node.js core warning types
are:DeprecationWarning andExperimentalWarning For example, the following script will not
emit DEP0025equire('node:sys’) when executed withode --disable-warning=DEPQ0025:

import sys from 'node:sys’;
const sys = require('node:sys’);

For example, the following script will emit the DEPOOREjuire('node:sys’), but not any
Experimental Warnings (such as ExperimentalWarnimg:measureMemoryis an

January 26, 2026

NODE(1)

General Commands Manual NODE(1)

experimental feature in <=v21) when executed witlile --disable-
warning=ExperimentalWarning:

import sys from 'node:sys’;
import vm from 'node:vm’;

vm.measureMemory();

const sys = require('node:sys’);
const vm = require('node:vm’);

vm.measureMemory();

--disable-wasm-trap-handler

By default, Node.js enables trap-handler-based WebAssembly bound checks. As a result, V8
does not need to insert inline bound checks int the code compiled from WebAssembly which
may speedup WebAssembly execution significantly, but this optimization requires allocating a
big virtual memory cage (currently 10GB). If the Node.js process does not have access to a
large enough virtual memory address space due to system configurations or hardware
limitations, users won't be able to run any WebAssembly that involves allocation in this virtual
memory cage and will see an out-of-memory error.

$ ulimit -v 5000000
$ node -p "new WebAssembly.Memory({ initial: 10, maximum: 100 });"
[eval]:1

new WebAssembly.Memory({ initial: 10, maximum: 100 });
N

RangeError: WebAssembly.Memory(): could not allocate memory
at [eval]:1:1
at runScriptinThisContext (node:internal/vm:209:10)
at node:internal/process/execution:118:14
at [eval]-wrapper:6:24
at runScript (node:internal/process/execution:101:62)
at evalScript (node:internal/process/execution: 136:3)
at node:internal/main/eval_string:49:3

--disable-wasm-trap-handlerdisables this optimization so that users can at least run

WebAssembly (with less optimal performance) when the virtual memory address space
available to their Node.js process is lower than what the V8 WebAssembly memory cage needs.

January 26, 2026

NODE(1) General Commands Manual NODE(1)

--disallow-code-generation-from-strings
Make built-in language features likewval andnew Functionthat generate code from strings
throw an exception instead. This does not affect the Nodegie:vm module.

--dns-result-order=order
Set the default value arder in dns.lookup() anddnsPromises.lookup(). The value could be:

® ipvafirst: sets defaulorder to ipv4first.
® ipv6first: sets defaulbrder to ipvéfirst.

® verbatim: sets defaulorder to verbatim.
The default isserbatim anddns.setDefaultResultOrder()have higher priority thar-dns-result-
order.

--enable-fips
Enable FIPS-compliant crypto at startup. (Requires Node.js to be built against FIPS-compatible
OpenSSL.)

--enable-network-family-autoselection
Enables the family autoselection algorithm unless connection options explicitly disables it.

--enable-source-maps
Enable Source Map support for stack traces. When using a transpiler, such as TypeScript, stack
traces thrown by an application reference the transpiled code, not the original source position.
--enable-source-mapgnables caching of Source Maps and makes a best effort to report stack
traces relative to the original source file. OverridiBgor.prepareStackTrace may prevent
--enable-source-map$rom modifying the stack trace. Call and return the results of the original
Error.prepareStackTrace in the overriding function to modify the stack trace with source maps.

const originalPrepareStackTrace = Error.prepareStackTrace;
Error.prepareStackTrace = (error, trace) => {

/ Modify error and trace and format stack trace with

I original Error.prepareStackTrace.

return originalPrepareStackTrace(error, trace);
h
Note, enabling source maps can introduce latency to your application Erhenstack is
accessed. If you acceBsror.stack frequently in your application, take into account the
performance implications afenable-source-maps.

January 26, 2026

NODE(1) General Commands Manual NODE(1)

--entry-url
When present, Node.js will interpret the entry point as a URL, rather than a path. Follows
ECMAScript module resolution rules. Any query parameter or hash in the URL will be
accessible viamport.meta.url.

node --entry-url ‘file:///path/to/file.js?queryparams=work#and-hashes-too’
node --entry-url "file.ts?query#hash’
node --entry-url 'data:text/javascript,console.log("Hello")’

--env-file-if-exists=file
Behavior is the same asenv-file, but an error is not thrown if the file does not exist.

--env-file=file
Loads environment variables from a file relative to the current directory, making them available
to applications omrocess.env. The environment variables which configure Node.js, such as
NODE_OPTIONS, are parsed and applied. If the same variable is defined in the environment
and in the file, the value from the environment takes precedence. You can pass rmdtigle
file arguments. Subsequent files override pre-existing variables defined in previous files. An
error is thrown if the file does not exist.

node --env-file=.env --env-file=.development.env index.js
The format of the file should be one line per key-value pair of environment variable name and
value separated by

PORT=3000
Any text after a# is treated as a comment:

This is a comment
PORT=3000 # This is also a comment
Values can start and end with the following quote$: or’. They are omitted from the values.

USERNAME="nodejs" # will result in ‘nodejs‘ as the value.
Multi-line values are supported:

MULTI_LINE="THIS IS

A MULTILINE"

will result in ‘THIS IS\nA MULTILINE' as the value.
Export keyword before a key is ignored:

export USERNAME="nodejs" # will result in ‘nodejs* as the value.

January 26, 2026

NODE(1) General Commands Manual NODE(1)

If you want to load environment variables from a file that may not exist, you can usectine
file-if-exists flag instead.

-e,--eval script
Evaluate the following argument as JavaScript. The modules which are predefined in the REPL
can also be used script. On Windows, usingmd.exea single quote will not work correctly
because it only recognizes douBldor quoting. In Powershell or Git bash, bdtland" are
usable. Itis possible to run code containing inline types unlessniestrip-typesflag is
provided.

--experimental-addon-modules
Enable experimental import support fmodeaddons.

--experimental-config-file=config
If present, Node.js will look for a configuration file at the specified path. Node.js will read the
configuration file and apply the settings. The configuration file should be a JSON file with the
following structurevX.Y.Z in the $schemamust be replaced with the version of Node.js you
are using.

{

"$schema": "https://nodejs.org/dist/vX.Y.Z/docs/node-config-schema.json”,
"nodeOptions": {
"import": [
"amaro/strip"
1,
"watch-path": "src",
"watch-preserve-output": true

h

"test": {
"test-isolation": "process"

h

"watch": {
"watch-preserve-output": true

}

}

The configuration file supports namespace-specific options:
® ThenodeOptionsfield contains CLI flags that are allowed MODE_OPTIONS.

® Namespace fields likeest, watch, andpermissioncontain configuration specific to that

January 26, 2026

NODE(1)

General Commands Manual NODE(1)

subsystem.
When a namespace is present in the configuration file, Node.js automatically enables the
corresponding flag (e.gtest, --watch, --permission). This allows you to configure subsystem-
specific options without explicitly passing the flag on the command line. For example:

{
"test”: {
"test-isolation": "process"
}
}

is equivalent to:

node --test --test-isolation=process
To disable the automatic flag while still using namespace options, you can explicitly set the flag
to falsewithin the namespace:

{
"test": {
"test": false,
"test-isolation™: "process"

}
}

No-op flags are not supported. Not all V8 flags are currently supported. It is possible to use the
official JSON schema to validate the configuration file, which may vary depending on the
Node.js version. Each key in the configuration file corresponds to a flag that can be passed as a
command-line argument. The value of the key is the value that would be passed to the flag. For
example, the configuration file above is equivalent to the following command-line arguments:

node --import amaro/strip --watch-path=src --watch-preserve-output --test-isolation=process
The priority in configuration is as follows:

® NODE_OPTIONS and command-line options

® Configuration file

® Dotenv NODE_OPTIONS

Values in the configuration file will not override the values in the environment variables and
command-line options, but will override the values in M@DE_OPTIONS env file parsed by

the--env-file flag. Keys cannot be duplicated within the same or different namespaces. The
configuration parser will throw an error if the configuration file contains unknown keys or keys

January 26, 2026

NODE(1) General Commands Manual NODE(1)

that cannot be used in a namespace. Node.js will not sanitize or perform validation on the user-
provided configuration, sBlEVER use untrusted configuration files.

--experimental-default-config-file
If the --experimental-default-config-file flag is present, Node.js will look for aode.config.json
file in the current working directory and load it as a as configuration file.

--experimental-eventsource
Enable exposition of EventSource Web API on the global scope.

--experimental-import-meta-resolve
Enable experimentainport.meta.resolve()parent URL support, which allows passing a second
parentURL argument for contextual resolution. Previously gated the emtipert.meta.resolve
feature.

--experimental-inspector-network-resource
Enable experimental support for inspector network resources.

--experimental-loader=module
Specify themodule containing exported asynchronous module customization haokslule
may be any string accepted asiaport specifier. This feature requiresallow-worker if used
with the Permission Model.

--experimental-network-inspection
Enable experimental support for the network inspection with Chrome DevTools.

--experimental-print-required-tla
If the ES module beingequire()’d contains top-levelwait, this flag allows Node.js to evaluate
the module, try to locate the top-level awaits, and print their location to help users find them.

--experimental-quic
Enable experimental support for the QUIC protocol.

--experimental-sea-config
Use this flag to generate a blob that can be injected into the Node.js binary to produce a single

executable application. See the documentation about this configuration for details.

--experimental-shadow-realm
Use this flag to enable ShadowRealm support.

January 26, 2026

NODE(2) General Commands Manual NODE(1)

--experimental-storage-inspection
Enable experimental support for storage inspection

--experimental-test-coverage
When used in conjunction with theode:testmodule, a code coverage report is generated as
part of the test runner output. If no tests are run, a coverage report is not generated. See the
documentation on collecting code coverage from tests for more details.

--experimental-test-module-mocks
Enable module mocking in the test runner. This feature requiaisw-worker if used with
the Permission Model.

--experimental-transform-types
Enables the transformation of TypeScript-only syntax into JavaScript code. Irygiegble-
source-maps.

--experimental-vm-modules
Enable experimental ES Module support in tiegle:vm module.

--experimental-wasi-unstable-previewl
Enable experimental WebAssembly System Interface (WASI) support.

--experimental-worker-inspection
Enable experimental support for the worker inspection with Chrome DevTools.

--expose-gc
This flag will expose the gc extension from V8.

if (globalThis.gc) {
globalThis.gc();

}

--force-context-aware
Disable loading native addons that are not context-aware.

--force-fips
Force FIPS-compliant crypto on startup. (Cannot be disabled from script code.) (Same

requirements asenable-fips.)

--force-node-api-uncaught-exceptions-policy

January 26, 2026

NODE(1) General Commands Manual NODE(1)

EnforcesuncaughtExceptionevent on Node-API asynchronous callbacks. To prevent from an
existing add-on from crashing the process, this flag is not enabled by default. In the future, this
flag will be enabled by default to enforce the correct behavior.

--frozen-intrinsics
Enable experimental frozen intrinsics likgray andObject. Only the root context is
supported. There is no guarantee thlabalThis.Array is indeed the default intrinsic reference.
Code may break under this flag. To allow polyfills to be addesquire and--import both run
before freezing intrinsics.

--heap-prof
Starts the V8 heap profiler on start up, and writes the heap profile to disk before extiedip-
prof-dir is not specified, the generated profile is placed in the current working directory. If
--heap-prof-nameis not specified, the generated profile is named
Heap.${yyyymmdd}.${hhmmss}.${pid}.${tid}.${seq}.heapprofile.

$ node --heap-prof index.js
$ Is *.heapprofile
Heap.20190409.202950.15293.0.001.heapprofile

--heap-prof-dir
Specify the directory where the heap profiles generatedhmap-prof will be placed. The
default value is controlled by thediagnostic-dir command-line option.

--heap-prof-interval
Specify the average sampling interval in bytes for the heap profiles generatdtehp-prof.
The default is 512 * 1024 bytes.

--heap-prof-name
Specify the file name of the heap profile generated-bgap-prof.

--heapshapshot-near-heap-limit=max_count
Writes a V8 heap snapshot to disk when the V8 heap usage is approaching the heapuintit.
should be a non-negative integer (in which case Node.js will write no morenthancount
shapshots to disk). When generating snapshots, garbage collection may be triggered and bring
the heap usage down. Therefore multiple snapshots may be written to disk before the Node.|s
instance finally runs out of memory. These heap snapshots can be compared to determine what
objects are being allocated during the time consecutive snapshots are taken. It's not guaranteed
that Node.js will write exactlynax_countsnapshots to disk, but it will try its best to generate at
least one and up tmax_countsnapshots before the Node.js instance runs out of memory when

January 26, 2026

NODE(1)

General Commands Manual NODE(1)

max_countis greater thai®. Generating V8 snapshots takes time and memory (both memory
managed by the V8 heap and native memory outside the V8 heap). The bigger the heap is, the
more resources it needs. Node.js will adjust the V8 heap to accommodate the additional V8
heap memory overhead, and try its best to avoid using up all the memory available to the
process. When the process uses more memory than the system deems appropriate, the process
may be terminated abruptly by the system, depending on the system configuration.

$ node --max-old-space-size=100 --heapsnapshot-near-heap-limit=3 index.js

Wrote snapshot to Heap.20200430.100036.49580.0.001.heapsnapshot

Wrote snapshot to Heap.20200430.100037.49580.0.002.heapsnapshot

Wrote snapshot to Heap.20200430.100038.49580.0.003.heapsnapshot

<--- Last few GCs --->

[49580:0x110000000] 4826 ms: Mark-sweep 130.6 (147.8) -> 130.5 (147.8) MB, 27.4/0.0 ms (ave
[49580:0x110000000] 4845 ms: Mark-sweep 130.6 (147.8) -> 130.6 (147.8) MB, 18.8/0.0 ms (ave

<--- JS stacktrace --->

FATAL ERROR: Ineffective mark-compacts near heap limit Allocation failed - JavaScript heap out of ir

--heapshapshot-signal=signal

Enables a signal handler that causes the Node.js process to write a heap dump when the
specified signal is receivedignal must be a valid signal name. Disabled by default.

$ node --heapsnapshot-signal=SIGUSR2 index.js &

$ ps aux

USER PID %CPU %MEM VSZ RSSTTY STAT START TIME COMMAND

node 1 55 6.1787252 247004 ? Ssl| 16:43 0:02 node --heapsnapshot-signal=SIGUSR2 inc
$kill-USR2 1

$ls

Heap.20190718.133405.15554.0.001.heapsnapshot

-h, --help

Print node command-line options. The output of this option is less detailed than this document.

--icu-data-dir=file

Specify ICU data load path. (OverridBODE_ICU_DATA.)

January 26, 2026

NODE(2) General Commands Manual NODE(1)

--import=module
Preload the specified module at startup. If the flag is provided several times, each module will
be executed sequentially in the order they appear, starting with the ones provided in
NODE_OPTIONS. Follows ECMAScript module resolution rules. Useequire to load a
CommonJS module. Modules preloaded wittequire will run before modules preloaded with
--import. Modules are preloaded into the main thread as well as any worker threads, forked
processes, or clustered processes.

--input-type=type
This configures Node.js to interpreteval or STDIN input as CommonJS or as an ES module.
Valid values arécommonjs"”, "module”, "module-typescript" and"commonjs-typescript’. The
"-typescript" values are not available with the flagno-strip-types. The default is no value, or
"commonjs" if --no-experimental-detect-modulés passed. lf-input-type is not provided,
Node.js will try to detect the syntax with the following steps:

® Run the input as CommonJS.

® |If step 1 fails, run the input as an ES module.

® If step 2 fails with a SyntaxError, strip the types.

® If step 3 fails with an error codERR_UNSUPPORTED_TYPESCRIPT_SYNTAXor
ERR_INVALID_TYPESCRIPT_SYNTAX, throw the error from step 2, including the
TypeScript error in the message, else run as CommonJS.

® If step 4 fails, run the input as an ES module.

To avoid the delay of multiple syntax detection passes;-ihput-type=type flag can be used to

specify how the-evalinput should be interpreted. The REPL does not support this option.

Usage of-input-type=module with --print will throw an error, as-print does not support ES

module syntax.

--insecure-http-parser

Enable leniency flags on the HTTP parser. This may allow interoperability with non-

conformant HTTP implementations. When enabled, the parser will accept the following:

® Invalid HTTP headers values.

® Invalid HTTP versions.

® Allow message containing botfransfer-Encoding andContent-Length headers.

January 26, 2026

NODE(1) General Commands Manual NODE(1)

® Allow extra data after message wh€onnection: closes present.
® Allow extra transfer encodings aftehunked has been provided.
® Allow \n to be used as token separator instead\of

® Allow \r\n not to be provided after a chunk.

® Allow spaces to be present after a chunk size and béfore
All the above will expose your application to request smuggling or poisoning attack. Avoid
using this option.

--inspect-brk=[[host:]port]
Activate inspector omost:port and break at start of user script. Defdudist:port is
127.0.0.1:9229. If por® is specified, a random available port will be used. See V8 Inspector
integration for Node.js for further explanation on Node.js debugger.

--inspect-port=[host:]port
Set thehost:port to be used when the inspector is activated. Useful when activating the
inspector by sending tielGUSR1signal. Except wherdisable-sigusrlis passed. Default
host is127.0.0.1. If porO is specified, a random available port will be used. See the security
warning below regarding thieost parameter usage.

--inspect-publish-uid=stderr,http
Specify ways of the inspector web socket url exposure. By default inspector websocket url is
available in stderr and undgson/list endpoint orhttp://host:port/json/list.

--inspect-wait=[[host:]port]
Activate inspector omost:port and wait for debugger to be attached. Deféalst:port is
127.0.0.1:9229. If por® is specified, a random available port will be used. See V8 Inspector
integration for Node.js for further explanation on Node.js debugger.

--inspect=[[host:]port]
Activate inspector omost:port. Default is127.0.0.1:9229. If por® is specified, a random
available port will be used. V8 inspector integration allows tools such as Chrome DevTools
and IDEs to debug and profile Node.js instances. The tools attach to Node.js instances via a tcp
port and communicate using the Chrome DevTools Protocol. See V8 Inspector integration for
Node.js for further explanation on Node.js debugger.

-i, --interactive

January 26, 2026

NODE(1) General Commands Manual NODE(1)

Opens the REPL even if stdin does not appear to be a terminal.

--jitless Disable runtime allocation of executable memory. This may be required on some platforms for
security reasons. It can also reduce attack surface on other platforms, but the performance
impact may be severe.

--localstorage-file=file
The file used to storlcalStoragedata. If the file does not exist, it is created the first time
localStorageis accessed. The same file may be shared between multiple Node.js processes
concurrently.

--max-http-header-size=size
Specify the maximum size, in bytes, of HTTP headers. Defaults to 16 KiB.

--max-old-space-size-percentage=percentage
Sets the maximum memory size of V8's old memory section as a percentage of available
system memory. This flag takes precedence evraax-old-space-sizavhen both are specified.
Thepercentageparameter must be a number greater than 0 and up to 100, representing the
percentage of available system memory to allocate to the V8 heate: This flag utilizes
--max-old-space-size, which may be unreliable on 32-bit platforms due to integer overflow
issues.

Using 50% of available system memory
node --max-old-space-size-percentage=50 index.js

Using 75% of available system memory
node --max-old-space-size-percentage=75 index.js

--napi-modules
This option is a no-op. It is kept for compatibility.

--network-family-autoselection-attempt-timeout
Sets the default value for the network family autoselection attempt timeout. For more
information, seaet.getDefaultAutoSelectFamilyAttemptTimeout().

--no-addons
Disable thenode-addonsexports condition as well as disable loading native addons. \Afhen
addonsis specified, callingprocess.dloperor requiring a native C++ addon will fail and throw
an exception.

January 26, 2026

NODE(1) General Commands Manual NODE(1)

--no-async-context-frame
Disables the use dfsyncLocalStoragebacked byAsyncContextFrameand uses the prior
implementation which relied on async_hooks. The previous model is retained for compatibility
with Electron and for cases where the context flow may differ. However, if a difference in flow
is found please report it.

--no-deprecation
Silence deprecation warnings.

--no-experimental-detect-module
Disable using syntax detection to determine module type.

--no-experimental-global-navigator
Disable exposition of Navigator API on the global scope.

--no-experimental-repl-await
Use this flag to disable top-level await in REPL.

--no-experimental-require-module
Legacy alias for-no-require-module.

--no-experimental-sqlite
Disable the experimentalbde:sqlite module.

--no-experimental-websocket
Disable exposition ofWebSocket>on the global scope.

--no-experimental-webstorage
DisableWeb Storagesupport.

--no-extra-info-on-fatal-exception
Hide extra information on fatal exception that causes exit.

--no-force-async-hooks-checks
Disables runtime checks fasync_hooks. These will still be enabled dynamically when

async_hookss enabled.

--no-global-search-paths
Do not search modules from global paths Ii#dOME/.node_modulesand$NODE_PATH.

January 26, 2026

NODE(1) General Commands Manual NODE(1)

--no-network-family-autoselection
Disables the family autoselection algorithm unless connection options explicitly enables it.

--no-require-module
Disable support for loading a synchronous ES module grapéguire(). See Loading
ECMAScript modules usingequire().

--no-strip-types
Disable type-stripping for TypeScript files. For more information, see the TypeScript type-
stripping documentation.

--no-warnings
Silence all process warnings (including deprecations).

--node-memory-debug
Enable extra debug checks for memory leaks in Node.js internals. This is usually only useful for
developers debugging Node.js itself.

--openssl-config=file
Load an OpenSSL configuration file on startup. Among other uses, this can be used to enable
FIPS-compliant crypto if Node.js is built against FIPS-enabled OpenSSL.

--openssl-legacy-provider
Enable OpenSSL 3.0 legacy provider. For more information please see OSSL_PROVIDER-
legacy.

--openssl-shared-config
Enable OpenSSL default configuration sectiopenssl_conto be read from the OpenSSL
configuration file. The default configuration file is namegdenssl.cnfbut this can be changed
using the environment variab@PENSSL_CONF, or by using the command line option
--openssl-config. The location of the default OpenSSL configuration file depends on how
OpenSSL is being linked to Node.js. Sharing the OpenSSL configuration may have unwanted
implications and it is recommended to use a configuration section specific to Node.js which is
nodejs_confand is default when this option is not used.

--pending-deprecation
Emit pending deprecation warnings. Pending deprecations are generally identical to a runtime
deprecation with the notable exception that they are tuafidaly default and will not be
emitted unless either thepending-deprecationcommand-line flag, or the
NODE_PENDING_DEPRECATION=1 environment variable, is set. Pending deprecations are

January 26, 2026

NODE(1) General Commands Manual NODE(1)

used to provide a kind of selective "early warning" mechanism that developers may leverage to
detect deprecated API usage.

--permission
Enable the Permission Model for current process. When enabled, the following permissions are

restricted:

® File System - manageable throughllow-fs-read, --allow-fs-write flags
® Network - manageable througkallow-net flag

® Child Process - manageable througdllow-child-processflag

® Worker Threads - manageable throughllow-worker flag

® WASI - manageable throughallow-wasiflag

® Addons - manageable througtallow-addonsflag

--preserve-symlinks
Instructs the module loader to preserve symbolic links when resolving and caching modules.
By default, when Node.js loads a module from a path that is symbolically linked to a different
on-disk location, Node.js will dereference the link and use the actual on-disk "real path" of the
module as both an identifier and as a root path to locate other dependency modules. In most
cases, this default behavior is acceptable. However, when using symbolically linked peer
dependencies, as illustrated in the example below, the default behavior causes an exception to
be thrown ifmoduleA attempts to requirenoduleB as a peer dependency:

{appDir}
<?><?><?> app
| <?><?><?>index.js
| <?><?><?>node_modules
| <?><?><?>moduleA -> {appDir}/moduleA
| <?><?><?>moduleB
| <?><?><?>index.js
| <?><?><?> package.json
<?><?><?> moduleA
<?><?><?> index.js
<?><?><?> package.json
The--preserve-symlinkscommand-line flag instructs Node.js to use the symlink path for

January 26, 2026

NODE(1)

General Commands Manual NODE(1)

modules as opposed to the real path, allowing symbolically linked peer dependencies to be
found. Note, however, that usingpreserve-symlinkscan have other side effects. Specifically,
symbolically linkednativemodules can fail to load if those are linked from more than one
location in the dependency tree (Node.js would see those as two separate modules and would
attempt to load the module multiple times, causing an exception to be thrown)--praserve-
symlinks flag does not apply to the main module, which allavegle --preserve-symlinks
node_module/.bin/<foo>to work. To apply the same behavior for the main module, also use
--preserve-symlinks-main.

--preserve-symlinks-main

Instructs the module loader to preserve symbolic links when resolving and caching the main
module (require.main). This flag exists so that the main module can be opted-in to the same
behavior that-preserve-symlinksgives to all other imports; they are separate flags, however,
for backward compatibility with older Node.js versionspreserve-symlinks-maindoes not
imply --preserve-symlinks; use-preserve-symlinks-mainin addition to--preserve-symlinks
when it is not desirable to follow symlinks before resolving relative paths.--peeserve-
symlinks for more information.

-p, --print script

--prof

Identical to-e but prints the result.

Generate V8 profiler output.

--prof-process

Process V8 profiler output generated using the V8 optiprof.

--redirect-warnings=file

Write process warnings to the given file instead of printing to stderr. The file will be created if
it does not exist, and will be appended to if it does. If an error occurs while attempting to write
the warning to the file, the warning will be written to stderr instead. flleename may be an
absolute path. If it is not, the default directory it will be written to is controlled by the
--diagnostic-dir command-line option.

--report-compact

Write reports in a compact format, single-line JSON, more easily consumable by log processing
systems than the default multi-line format designed for human consumption.

--report-dir=directory, -eport-directory=directory

Location at which the report will be generated.

January 26, 2026

NODE(1) General Commands Manual NODE(1)

--report-exclude-env
When--report-exclude-envis passed the diagnostic report generated will not contain the
environmentVariables data.

--report-exclude-network
Excludeheader.networkinterfacesfrom the diagnostic report. By default this is not set and the
network interfaces are included.

--report-filename=filename
Name of the file to which the report will be written. If the filename is sestdout’ or 'stderr’,
the report is written to the stdout or stderr of the process respectively.

--report-on-fatalerror
Enables the report to be triggered on fatal errors (internal errors within the Node.js runtime such
as out of memory) that lead to termination of the application. Useful to inspect various
diagnostic data elements such as heap, stack, event loop state, resource consumption etc. to
reason about the fatal error.

--report-on-signal
Enables report to be generated upon receiving the specified (or predefined) signal to the running
Node.js process. The signal to trigger the report is specified threogport-signal.

--report-signal=signal
Sets or resets the signal for report generation (not supported on Windows). Default signal is
SIGUSR2.

--report-uncaught-exception
Enables report to be generated when the process exits due to an uncaught exception. Useful
when inspecting the JavaScript stack in conjunction with native stack and other runtime
environment data.

-r, --require module
Preload the specified module at startup. Folloaguire()’s module resolution rulegnodule
may be either a path to a file, or a node module name. Modules preloadedrethire will
run before modules preloaded withmport. Modules are preloaded into the main thread as
well as any worker threads, forked processes, or clustered processes.

--run This runs a specified command from a package.jststapts" object. If a missingcommand”

is provided, it will list the available scripts--run will traverse up to the root directory and finds
apackage.jsorfile to run the command from:-run prepends/node_modules/.birfor each

January 26, 2026

NODE(1)

General Commands Manual NODE(1)

ancestor of the current directory, to tRATH in order to execute the binaries from different
folders where multiplevode_moduledirectories are present,ahcestor-
folder/node_modules/.binis a directory.--run executes the command in the directory
containing the relatedackage.json. For example, the following command will run thst
script of thepackage.jsonin the current folder:

$ node --run test
You can also pass arguments to the command. Any argument-aftérbe appended to the

script:

$ node --run test -- --verbose

--secure-heap-min=n

When using-secure-heap, the-secure-heap-minflag specifies the minimum allocation from
the secure heap. The minimum valuisThe maximum value is the lesser-eecure-heapor
2147483647. The value given must be a power of two.

--secure-heap=n

Initializes an OpenSSL secure heamdiytes. When initialized, the secure heap is used for
selected types of allocations within OpenSSL during key generation and other operations. This
is useful, for instance, to prevent sensitive information from leaking due to pointer overruns or
underruns. The secure heap is a fixed size and cannot be resized at runtime so, if used, it is
important to select a large enough heap to cover all application uses. The heap size given must
be a power of two. Any value less than 2 will disable the secure heap. The secure heap is
disabled by default. The secure heap is not available on Windows. See
CRYPTO_secure_malloc_initfor more details.

--snapshot-blob=path

When used with-build-snapshot,--snapshot-blobspecifies the path where the generated
snapshot blob is written to. If not specified, the generated blob is writtena@pshot.blobin the
current working directory. When used withadbuild-snapshot,--snapshot-blobspecifies the

path to the blob that is used to restore the application state. When loading a snapshot, Node.js
checks that:

® The version, architecture, and platform of the running Node.js binary are exactly the same
as that of the binary that generates the snapshot.

® The V8 flags and CPU features are compatible with that of the binary that generates the

shapshot.
If they don’t match, Node.js refuses to load the snapshot and exits with status code 1.

January 26, 2026

NODE(2) General Commands Manual NODE(1)

--test Starts the Node.js command line test runner. This flag cannot be combinedwatich-path,
--check,--eval, --interactive, or the inspector. See the documentation on running tests from the
command line for more details.

--test-concurrency
The maximum number of test files that the test runner CLI will execute concurrentiyest-
isolation is set to'none’, this flag is ignored and concurrency is one. Otherwise, concurrency
defaults toos.availableParallelism() - 1.

--test-coverage-branches=threshold
Require a minimum percent of covered branches. If code coverage does not reach the threshold
specified, the process will exit with code

--test-coverage-exclude
Excludes specific files from code coverage using a glob pattern, which can match both absolute
and relative file paths. This option may be specified multiple times to exclude multiple glob
patterns. If both-test-coverage-excludand--test-coverage-includeare provided, files must
meetboth criteria to be included in the coverage report. By default all the matching test files
are excluded from the coverage report. Specifying this option will override the default
behavior.

--test-coverage-functions=threshold
Require a minimum percent of covered functions. If code coverage does not reach the threshold
specified, the process will exit with code

--test-coverage-include
Includes specific files in code coverage using a glob pattern, which can match both absolute and
relative file paths. This option may be specified multiple times to include multiple glob
patterns. If both-test-coverage-excludand--test-coverage-includeare provided, files must
meetboth criteria to be included in the coverage report.

--test-coverage-lines=threshold
Require a minimum percent of covered lines. If code coverage does not reach the threshold
specified, the process will exit with code

--test-force-exit
Configures the test runner to exit the process once all known tests have finished executing even

if the event loop would otherwise remain active.

--test-global-setup=module

January 26, 2026

NODE(1) General Commands Manual NODE(1)

Specify a module that will be evaluated before all tests are executed and can be used to setup
global state or fixtures for tests. See the documentation on global setup and teardown for more
details.

--test-isolation=mode
Configures the type of test isolation used in the test runner. \ifiaafe is 'process’, each test
file is run in a separate child process. Whendeis 'none’, all test files run in the same process
as the test runner. The default isolation modgiiecess’. This flag is ignored if the-testflag
is not present. See the test runner execution model section for more information.

--test-name-pattern
A regular expression that configures the test runner to only execute tests whose name matches
the provided pattern. See the documentation on filtering tests by name for more details. If both
--test-name-patternand--test-skip-pattern are supplied, tests must satigfgth requirements in
order to be executed.

--test-only
Configures the test runner to only execute top level tests that hawatpeption set. This flag
is not necessary when test isolation is disabled.

--test-reporter
A test reporter to use when running tests. See the documentation on test reporters for more
details.

--test-reporter-destination
The destination for the corresponding test reporter. See the documentation on test reporters for
more details.

--test-rerun-failures
A path to a file allowing the test runner to persist the state of the test suite between runs. The
test runner will use this file to determine which tests have already succeeded or failed, allowing
for re-running of failed tests without having to re-run the entire test suite. The test runner will
create this file if it does not exist. See the documentation on test reruns for more details.

--test-shard
Test suite shard to execute in a formakaidex>/<total>, where

® indexis a positive integer, index of divided parts.

® total is a positive integer, total of divided part.

January 26, 2026

NODE(1) General Commands Manual NODE(1)

This command will divide all tests files intotal equal parts, and will run only those that
happen to be in amdex part. For example, to split your tests suite into three parts, use this:

node --test --test-shard=1/3
node --test --test-shard=2/3
node --test --test-shard=3/3

--test-skip-pattern
A regular expression that configures the test runner to skip tests whose name matches the
provided pattern. See the documentation on filtering tests by name for more details. If both

--test-name-patternand--test-skip-pattern are supplied, tests must satigfgth requirements in
order to be executed.

--test-timeout
A number of milliseconds the test execution will fail after. If unspecified, subtests inherit this
value from their parent. The default valudminity.

--test-update-snapshots
Regenerates the snapshot files used by the test runner for snapshot testing.

--throw-deprecation
Throw errors for deprecations.

--title=title
Setprocess.titleon startup.

--tIs-cipher-list=list
Specify an alternative default TLS cipher list. Requires Node.js to be built with crypto support
(default).

--tls-keylog=file
Log TLS key material to a file. The key material is in NSSLKEYLOGFILE format and can
be used by software (such as Wireshark) to decrypt the TLS traffic.

--tls-max-v1.2
Settls. DEFAULT_MAX_VERSION to 'TLSv1.2'. Use to disable support for TLSv1.3.

--tls-max-v1.3
Set defaultls. DEFAULT_MAX_VERSION to 'TLSv1.3". Use to enable support for TLSv1.3.

January 26, 2026

NODE(1) General Commands Manual NODE(1)

--tls-min-v1.0
Set defaultls. DEFAULT_MIN_VERSION to 'TLSv1'. Use for compatibility with old TLS
clients or servers.

--tls-min-v1.1
Set defaultls. DEFAULT_MIN_VERSION to 'TLSv1.1'. Use for compatibility with old TLS
clients or servers.

--tls-min-v1.2
Set defaultls. DEFAULT_MIN_VERSION to 'TLSv1.2'. This is the default for 12.x and later,
but the option is supported for compatibility with older Node.js versions.

--tIs-min-v1.3
Set defaultls. DEFAULT_MIN_VERSION to 'TLSv1.3'. Use to disable support for TLSv1.2,

which is not as secure as TLSv1.3.

--trace-deprecation
Print stack traces for deprecations.

-t -
o eI:Tr\i/nt information about any access to environment variables done in the current Node.js
instance to stderr, including:
® The environment variable reads that Node.js does internally.
® Writes in the form ofprocess.env.KEY = "SOME VALUE".
® Reads in the form gbrocess.env.KEY.

® Definitions in the form ofObject.defineProperty(process.env, 'KEY’, {...}).

® Queries in the form oObject.hasOwn(process.env, 'KEY’),
process.env.hasOwnProperty(KEY’)or 'KEY” in process.env.

® Deletions in the form oflelete process.env.KEY.
® Enumerations inf the form af.process.enwr Object.keys(process.env).
Only the names of the environment variables being accessed are printed. The values are not

printed. To print the stack trace of the access,-tsace-env-js-stackand/or--trace-env-
native-stack.

January 26, 2026

NODE(2) General Commands Manual NODE(1)

--trace-env-js-stack
In addition to what-trace-envdoes, this prints the JavaScript stack trace of the access.

--trace-env-native-stack
In addition to what-trace-envdoes, this prints the native stack trace of the access.

--trace-event-categories
A comma separated list of categories that should be traced when trace event tracing is enabled
using--trace-events-enabled.

--trace-event-file-pattern
Template string specifying the filepath for the trace event data, it suppastion} and

${pid}.

--trace-events-enabled
Enables the collection of trace event tracing information.

--trace-exit
Prints a stack trace whenever an environment is exited proactively, i.e. invatangss.exit().

--trace-require-module=mode
Prints information about usage of Loading ECMAScript modules usgngire(). Whenmode
is all, all usage is printed. Whemodeis no-node-modules, usage from tmode_modules
folder is excluded.

--trace-sigint
Prints a stack trace on SIGINT.

--trace-sync-io
Prints a stack trace whenever synchronous I/O is detected after the first turn of the event loop.

--trace-tls
Prints TLS packet trace information sdderr. This can be used to debug TLS connection
problems.

--trace-uncaught
Print stack traces for uncaught exceptions; usually, the stack trace associated with the creation
of anError is printed, whereas this makes Node.js also print the stack trace associated with
throwing the value (which does not need to beearor instance). Enabling this option may
affect garbage collection behavior negatively.

January 26, 2026

NODE(1) General Commands Manual NODE(1)

--trace-warnings
Print stack traces for process warnings (including deprecations).

--track-heap-objects
Track heap object allocations for heap snapshots.

--unhandled-rejections=mode
Using this flag allows to change what should happen when an unhandled rejection occurs. One
of the following modes can be chosen:

® throw: Emit unhandledRejection. If this hook is not set, raise the unhandled rejection as an
uncaught exception. This is the default.

® strict: Raise the unhandled rejection as an uncaught exception. If the exception is handled,
unhandledRejectionis emitted.

® warn: Always trigger a warning, no matter if thenhandledRejectionhook is set or not but
do not print the deprecation warning.

® warn-with-error-code: Emit unhandledRejection. If this hook is not set, trigger a warning,
and set the process exit code to 1.

® none: Silence all warnings.
If a rejection happens during the command line entry point’'s ES module static loading phase, it
will always raise it as an uncaught exception.

--use-bundled-ca--use-openssl-ca
Use bundled Mozilla CA store as supplied by current Node.js version or use OpenSSL'’s default
CA store. The default store is selectable at build-time. The bundled CA store, as supplied by
Node.js, is a snapshot of Mozilla CA store that is fixed at release time. It is identical on all
supported platforms. Using OpenSSL store allows for external modifications of the store. For
most Linux and BSD distributions, this store is maintained by the distribution maintainers and
system administrators. OpenSSL CA store location is dependent on configuration of the
OpenSSL library but this can be altered at runtime using environment variables. See
SSL_CERT_DIR andSSL_CERT_FILE.

--use-env-proxy
When enabled, Node.js parses HIETP_PROXY, HTTPS_PROXY andNO_PROXY
environment variables during startup, and tunnels requests over the specified proxy. This is
equivalent to setting thlODE_USE_ENV_PROXY=1environment variable. When both are

January 26, 2026

NODE(1) General Commands Manual NODE(1)

set,--use-env-proxytakes precedence.

--use-largepages=mode
Re-map the Node.js static code to large memory pages at startup. If supported on the target
system, this will cause the Node.js static code to be moved onto 2 MiB pages instead of 4 KiB
pages. The following values are valid fmode:

® off: No mapping will be attempted. This is the default.

® on: If supported by the OS, mapping will be attempted. Failure to map will be ignored and a
message will be printed to standard error.

® silent: If supported by the OS, mapping will be attempted. Failure to map will be ignored
and will not be reported.

--use-system-ca
Node.js uses the trusted CA certificates present in the system store along willisthe
bundled-caoption and theNODE_EXTRA_CA_CERTS environment variable. On platforms
other than Windows and macOS, this loads certificates from the directory and file trusted by
OpenSSL, similar te-use-openssl-ca, with the difference being that it caches the certificates
after first load. On Windows and macOS, the certificate trust policy is similar to Chromium’s
policy for locally trusted certificates, but with some differences: On macOS, the following
settings are respected:
® Default and System Keychains.Bl -bullet
© Trust:..Bl -bullet
® Any certificate where the "When using this certificate" flag is set to "Always Trust" or

® Any certificate where the "Secure Sockets Layer (SSL)" flag is set to "Always Trust".

The certificate must also be valid, with "X.509 Basic Policy" setto "Always Trust".
On Windows, the following settings are respected:

® Local Machine (accessed wiazrtim.msc).Bl -bullet
® Trust:..Bl -bullet

® Trusted Root Certification Authorities

January 26, 2026

NODE(1) General Commands Manual NODE(1)

® Trusted People

® Enterprise Trust -> Enterprise -> Trusted Root Certification Authorities

® Enterprise Trust -> Enterprise -> Trusted People

® Enterprise Trust -> Group Policy -> Trusted Root Certification Authorities

® Enterprise Trust -> Group Policy -> Trusted People

Current User (accessed vdartmgr.msc).BI -bullet

Trust:.Bl -bullet

Trusted Root Certification Authorities

Enterprise Trust -> Group Policy -> Trusted Root Certification Authorities On Windows and macOS,
Node.js would check that the user settings for the trusted certificates do not forbid them for TLS server
authentication before using them. Node.js currently does not support distrust/revocation of certificates
from another source based on system settings. On other systems, Node.js loads certificates from the
default certificate file (typicallyetc/ssl/cert.pem) and default certificate directory (typically

letc/ssl/certs) that the version of OpenSSL that Node.js links to respects. This typically works with the
convention on major Linux distributions and other Unix-like systems. If the overriding OpenSSL
environment variables (typicallgSL_CERT_FILE andSSL_CERT_DIR, depending on the

configuration of the OpenSSL that Node.js links to) are set, the specified paths will be used to load
certificates instead. These environment variables can be used as workarounds if the conventional paths
used by the version of OpenSSL Node.js links to are not consistent with the system configuration that
the users have for some reason.

Print V8 command-line options.

Set V8's thread pool size which will be used to allocate background jobs. If 8ahtn Node.js will

choose an appropriate size of the thread pool based on an estimate of the amount of parallelism. The
amount of parallelism refers to the number of computations that can be carried out simultaneously in a
given machine. In general, it's the same as the amount of CPUs, but it may diverge in environments such
as VMs or containers.

Print node’s version.

Starts Node.js in watch mode. When in watch mode, changes in the watched files cause the Node.js
process to restart. By default, watch mode will watch the entry point and any required or imported
module. Use-watch-path to specify what paths to watch. This flag cannot be combined wétheck,
--eval, --interactive, or the REPL. Note: The-watch flag requires a file path as an argument and is
incompatible with--run or inline script input, as-run takes precedence and ignores watch mode. If no
file is provided, Node.js will exit with status code

node --watch index.js
Customizes the signal sent to the process on watch mode restarts.

January 26, 2026

NODE(1) General Commands Manual NODE(1)

node --watch --watch-kill-signal SIGINT test.js

Starts Node.js in watch mode and specifies what paths to watch. When in watch mode, changes in the
watched paths cause the Node.js process to restart. This will turn off watching of required or imported
modules, even when used in combination witliatch. This flag cannot be combined witkcheck,

--eval, --interactive, --test, or the REPL. Note: Usingwatch-path implicitly enables--watch, which
requires a file path and is incompatible withun, as--run takes precedence and ignores watch mode.

node --watch-path=./src --watch-path=./tests index.js

This option is only supported on macOS and Windows. An
ERR_FEATURE_UNAVAILABLE_ON_PLATFORM exception will be thrown when the option is
used on a platform that does not support it.

Disable the clearing of the console when watch mode restarts the process.

node --watch --watch-preserve-output test.js
Automatically zero-fills all newly allocateBuffer instances.

ENVIRONMENT
FORCE_COLOH]1, 2, 3]
TheFORCE_COLOR environment variable is used to enable ANSI colorized output. The value
may be:

® 1,true, or the empty string indicate 16-color support,
® 2to indicate 256-color support, or

® 3to indicate 16 million-color support.

WhenFORCE_COLOR is used and set to a supported value, boti\tde COLOR, and
NODE_DISABLE_COLORS environment variables are ignored. Any other value will result in
colorized output being disabled.

NODE_COMPILE_CACHHir
Enable the module compile cache for the Node.js instance. See the documentation of module
compile cache for details.

NODE_COMPILE_CACHE_PORTABLHA
When set to 1, the module compile cache can be reused across different directory locations as

long as the module layout relative to the cache directory remains the same.

NODE_DEBUGmModule[,<?>]

January 26, 2026

NODE(1)

General Commands Manual NODE(1)

',-separated list of core modules that should print debug information.

NODE_DEBUG_NATIVEmodule[,<?>]

',’-separated list of core C++ modules that should print debug information.

NODE_DISABLE_COLORSL

When set, colors will not be used in the REPL.

NODE_DISABLE_COMPILE_CACHEL

Disable the module compile cache for the Node.js instance. See the documentation of module
compile cache for details.

NODE_EXTRA_CA_CERTSile

When set, the well known "root" CAs (like VeriSign) will be extended with the extra
certificates infile. The file should consist of one or more trusted certificates in PEM format. A
message will be emitted (once) wiphocess.emitWarning()if the file is missing or malformed,
but any errors are otherwise ignored. Neither the well known nor extra certificates are used
when theca options property is explicitly specified for a TLS or HTTPS client or server. This
environment variable is ignored whanderuns as setuid root or has Linux file capabilities set.
TheNODE_EXTRA_CA_CERTS environment variable is only read when the Node.js process
is first launched. Changing the value at runtime using
process.env.NODE_EXTRA_CA_CERTShas no effect on the current process.

NODE_ICU_DATAfile

Data path for ICU (Intlobject) data. Will extend linked-in data when compiled with small-icu
support.

NODE_NO_WARNINGS1

When set tdl, process warnings are silenced.

NODE_OPTIONSoptions...

A space-separated list of command-line optimpgions...are interpreted before command-line
options, so command-line options will override or compound after anythiogtions....

Node.js will exit with an error if an option that is not allowed in the environment is used, such
as-p or a script file. If an option value contains a space, it can be escaped using double quotes:

NODE_OPTIONS="--require "./my path/file.js"

A singleton flag passed as a command-line option will override the same flag passed into
NODE_OPTIONS:

January 26, 2026

NODE(1)

General Commands Manual NODE(1)

The inspector will be available on port 5555
NODE_OPTIONS="--inspect=localhost:4444’ node --inspect=localhost:5555

A flag that can be passed multiple times will be treated as N@DE_OPTIONS instances
were passed first, and then its command-line instances afterwards:
NODE_OPTIONS="--require "./a.js" node --require "./b.js"

#is equivalent to:

node --require "./a.js" --require "./b.js"

Node.js options that are allowed are in the following list. If an option supports both --XX and
--no-XX variants, they are both supported but only one is included in the list below.
® --allow-addons

® --allow-child-process

® --allow-fs-read

® --allow-fs-write

® --allow-inspector

® --allow-net

® --allow-wasi

® --allow-worker

® --conditions,-C

® --cpu-prof-dir

® --cpu-prof-interval

® --cpu-prof-name

® --cpu-prof

® --diagnostic-dir

® --disable-proto

January 26, 2026

NODE(1)

General Commands Manual

--disable-sigusrl

--disable-warning
--disable-wasm-trap-handler
--dns-result-order

--enable-fips
--enable-network-family-autoselection
--enable-source-maps

--entry-url
--experimental-abortcontroller
--experimental-addon-modules
--experimental-detect-module
--experimental-eventsource
--experimental-import-meta-resolve
--experimental-json-modules
--experimental-loader
--experimental-modules
--experimental-print-required-tla
--experimental-quic
--experimental-require-module

--experimental-shadow-realm

January 26, 2026

NODE(1)

NODE(1)

General Commands Manual

--experimental-specifier-resolution
--experimental-test-isolation
--experimental-top-level-await
--experimental-transform-types
--experimental-vm-modules
--experimental-wasi-unstable-previewl
--force-context-aware

--force-fips
--force-node-api-uncaught-exceptions-policy
--frozen-intrinsics

--heap-prof-dir

--heap-prof-interval

--heap-prof-name

--heap-prof
--heapsnapshot-near-heap-limit
--heapsnapshot-signal

--http-parser

--icu-data-dir

--import

--input-type

January 26, 2026

NODE(1)

NODE(1)

General Commands Manual

--insecure-http-parser
--inspect-brk

--inspect-port, --debug-port
--inspect-publish-uid

--inspect-wait

--inspect

--localstorage-file
--max-http-header-size
--max-old-space-size-percentage
--napi-modules
--network-family-autoselection-attempt-timeout
--no-addons
--no-async-context-frame
--no-deprecation
--no-experimental-global-navigator
--no-experimental-repl-await
--no-experimental-sqlite
--no-experimental-strip-types
--no-experimental-websocket

--no-experimental-webstorage

January 26, 2026

NODE(1)

NODE(1)

General Commands Manual

--no-extra-info-on-fatal-exception
--no-force-async-hooks-checks
--no-global-search-paths
--no-network-family-autoselection
--no-strip-types

--no-warnings

--no-webstorage
--node-memory-debug
--openssl-config
--openssl-legacy-provider
--openssl-shared-config
--pending-deprecation
--permission
--preserve-symlinks-main
--preserve-symlinks
--prof-process
--redirect-warnings
--report-compact

--report-dir, --report-directory

--report-exclude-env

January 26, 2026

NODE(1)

NODE(1)

General Commands Manual

--report-exclude-network
--report-filename
--report-on-fatalerror
--report-on-signal
--report-signal
--report-uncaught-exception
--require-module
--require, -r
--secure-heap-min
--secure-heap
--snapshot-blob
--test-coverage-branches
--test-coverage-exclude
--test-coverage-functions
--test-coverage-include
--test-coverage-lines
--test-global-setup
--test-isolation
--test-name-pattern

--test-only

January 26, 2026

NODE(1)

NODE(1)

General Commands Manual

--test-reporter-destination
--test-reporter
--test-rerun-failures
--test-shard
--test-skip-pattern
--throw-deprecation
--title

--tIs-cipher-list
--tls-keylog
--tls-max-v1.2
--tls-max-v1.3
--tls-min-v1.0
--tls-min-v1.1
--tIs-min-v1.2
--tls-min-v1.3
--trace-deprecation
--trace-env-js-stack
--trace-env-native-stack
--trace-env

--trace-event-categories

January 26, 2026

NODE(1)

NODE(1)

General Commands Manual

--trace-event-file-pattern
--trace-events-enabled
--trace-exit
--trace-require-module
--trace-sigint
--trace-sync-io
--trace-tls
--trace-uncaught
--trace-warnings
--track-heap-objects
--unhandled-rejections
--use-bundled-ca
--uUse-env-proxy
--use-largepages
--use-openssl-ca
--use-system-ca
--v8-pool-size
--watch-kill-signal
--watch-path

--watch-preserve-output

January 26, 2026

NODE(1)

NODE(1)

®

®

General Commands Manual

--watch

--zero-fill-buffers

V8 options that are allowed are:

®

®

--perf-basic-prof-only-functions, --perf-basic-prof, --perf-prof-unwinding-info, and --perf-prof

--abort-on-uncaught-exception
--disallow-code-generation-from-strings
--enable-etw-stack-walking
--expose-gc
--interpreted-frames-native-stack
--jitless

--max-old-space-size
--max-semi-space-size
--perf-basic-prof-only-functions
--perf-basic-prof
--perf-prof-unwinding-info
--perf-prof

--stack-trace-limit

NODE(1)

are only available on Linux--enable-etw-stack-walkingis only available on Windows.

NODE_PATHpath[:<?>]
"’-separated list of directories prefixed to the module search path. On Windows, this is a
'»’-separated list instead.

NODE_PENDING_DEPRECATION
When set tdl, emit pending deprecation warnings. Pending deprecations are generally
identical to a runtime deprecation with the notable exception that they are toffitaddefault

January 26, 2026

NODE(1)

General Commands Manual NODE(1)

and will not be emitted unless either thpending-deprecationcommand-line flag, or the
NODE_PENDING_DEPRECATION=1 environment variable, is set. Pending deprecations are
used to provide a kind of selective "early warning" mechanism that developers may leverage to
detect deprecated API usage.

NODE_PENDING_PIPE_INSTANCEmBstances

Set the number of pending pipe instance handles when the pipe server is waiting for
connections. This setting applies to Windows only.

NODE_PRESERVE_SYMLINKS

When set tdl, instructs the module loader to preserve symbolic links when resolving and
caching modules.

NODE_REDIRECT_WARNINGSile

When set, process warnings will be emitted to the given file instead of printing to stderr. The
file will be created if it does not exist, and will be appended to if it does. If an error occurs
while attempting to write the warning to the file, the warning will be written to stderr instead.
This is equivalent to using theredirect-warnings=file command-line flag.

NODE_REPL_EXTERNAL_MODULHile

Path to a Node.js module which will be loaded in place of the built-in REPL. Overriding this
value to an empty string (") will use the built-in REPL.

NODE_REPL_HISTORYile

Path to the file used to store the persistent REPL history. The default path is
~/.node_repl_history, which is overridden by this variable. Setting the value to an empty string
(" or’’) disables persistent REPL history.

NODE_SKIP_PLATFORM_CHECKalue

If value equals?’, the check for a supported platform is skipped during Node.js startup.
Node.js might not execute correctly. Any issues encountered on unsupported platforms will not
be fixed.

NODE_TEST_CONTEXTalue

NODE_

If value equalschild’, test reporter options will be overridden and test output will be sent to
stdout in the TAP format. If any other value is provided, Node.js makes no guarantees about the
reporter format used or its stability.

TLS_REJECT_UNAUTHORIZEDalue
If value equalsO’, certificate validation is disabled for TLS connections. This makes TLS, and

January 26, 2026

NODE(1) General Commands Manual NODE(1)

HTTPS by extension, insecure. The use of this environment variable is strongly discouraged.
NODE_USE_ENV_PROXY

When enabled, Node.js parses HIETP_PROXY, HTTPS_PROXY andNO_PROXY
environment variables during startup, and tunnels requests over the specified proxy. This can
also be enabled using theise-env-proxycommand-line flag. When both are setjse-env-

proxy takes precedence.

NODE_USE_SYSTEM_CA
Node.js uses the trusted CA certificates present in the system store along willisthe
bundled-caoption and thtNODE_EXTRA_CA_CERTS environment variable. This can also
be enabled using theuse-system-c@ommand-line flag. When both are setjse-system-ca
takes precedence.

NODE_V8 COVERAGHIir
When set, Node.js will begin outputting V8 JavaScript code coverage and Source Map data to
the directory provided as an argument (coverage information is written as JSON to files with a
coverageprefix). NODE_V8 COVERAGE will automatically propagate to subprocesses,
making it easier to instrument applications that call¢h#éd _process.spawn(family of
functions.NODE_V8_ COVERAGE can be set to an empty string, to prevent propagation.

NO_COLOR<any>
NO_COLOR is an alias foNODE_DISABLE_COLORS. The value of the environment
variable is arbitrary.

OPENSSL_CONFile
Load an OpenSSL configuration file on startup. Among other uses, this can be used to enable
FIPS-compliant crypto if Node.js is built witticonfigure --openssl-fips. If the-openssl-config
command-line option is used, the environment variable is ignored.

SSL_CERT_DIRdir
If --use-openssl-caés enabled, or if-use-system-cas enabled on platforms other than macOS
and Windows, this overrides and sets OpenSSL'’s directory containing trusted certificates. Be
aware that unless the child environment is explicitly set, this environment variable will be
inherited by any child processes, and if they use OpenSSL, it may cause them to trust the same
CAs as node.

SSL_CERT_FILHile
If --use-openssl-cés enabled, or if-use-system-cas enabled on platforms other than macOS

January 26, 2026

NODE(1)

TZ

General Commands Manual NODE(1)

and Windows, this overrides and sets OpenSSL'’s file containing trusted certificates. Be aware
that unless the child environment is explicitly set, this environment variable will be inherited by
any child processes, and if they use OpenSSL, it may cause them to trust the same CAs as node.

TheTZ environment variable is used to specify the timezone configuration. While Node.js
does not support all of the various ways tfi&t is handled in other environments, it does
support basic timezone IDs (such’Bsc/UTC’, 'Europe/Paris’, or 'America/New_York’). It

may support a few other abbreviations or aliases, but these are strongly discouraged and not
guaranteed.

$ TZ=Europe/Dublin node -pe "new Date().toString()"
Wed May 12 2021 20:30:48 GMT+0100 (Irish Standard Time)

UV_THREADPOOL_SIZEsize

BUGS

Set the number of threads used in libuv’s threadposizethreads. Asynchronous system

APIs are used by Node.js whenever possible, but where they do not exist, libuv’s threadpool is
used to create asynchronous node APIs based on synchronous system APIs. Node.js APIs that
use the threadpool are:

® all fs APIs, other than the file watcher APIs and those that are explicitly synchronous

® asynchronous crypto APIs such@aygpto.pbkdf2(), crypto.scrypt(), crypto.randomBytes(),
crypto.randomkFill(), crypto.generateKeyPair()

® dns.lookup()

® all zlib APIs, other than those that are explicitly synchronous

Because libuv’s threadpool has a fixed size, it means that if for whatever reason any of these
APIs takes a long time, other (seemingly unrelated) APIs that run in libuv’s threadpool will
experience degraded performance. In order to mitigate this issue, one potential solution is to
increase the size of libuv’s threadpool by setting’the_ THREADPOOL_SIZE’' environment
variable to a value greater thdrits current default value). However, setting this from inside

the process usingrocess.env.UV_THREADPOOL_SIZE=sizés not guranteed to work as the
threadpool would have been created as part of the runtime initialisation much before user code
is run. For more information, see the libuv threadpool documentation.

Bugs are tracked in GitHub Issudgtps://github.com/nodejs/node/issues

January 26, 2026

NODE(1) General Commands Manual NODE(1)

COPYRIGHT
Copyright Node.js contributors. Node.js is available under the MIT license.

Node.js also includes external libraries that are available under a variety of licenses. See
https://github.com/nodejs/node/blob/HEAD/LICENSE for the full license text.

SEE ALSO
Website:https://nodejs.org/

Documentationhttps://nodejs.org/api/

GitHub repository and issue trackétips://github.com/nodejs/node

January 26, 2026

