FFRiRS: DeepSeek-R1 MLA BEFIHMS it

1. MBHERR

HeEIE 52 DeepSeek-R1 & MLA (Multi-head Latent Attention) Z/0MMERIIF LK TE, EE
7£ NVIDIA 4 F52m T 53¢ BF16 #&ICAV4REEN S IE MM 4R

2. ESERIME
2.1 #ZIOINEESE]
* Absorb Modet& XX #F absorb Mode (WNEBRWMHAIER) .

* EEZHMRMMA: KA T kv _cache + pe cache HlE, BROEBE T REESEOES EEAERD
(RoPE) &%,

* ENSAENMEIGIE : BT B TTNE R T Absorb THEHHIE S Naive IR EELRE—H (1RE
£ BF16 21FEEA) .

2.2 RN S

EF 4 4 Prefill i#5KH 16 4> Decode ERIEFENMIXLER AT :

| $8AT | &R | 1T |

| =]

| KV Cache [E48LE | 71.1x | EFRFE T KXATHEFSA (M 81,920 FTEZE 1,152 F7) |
| IEFEREE | Pass | Absorb 5 Naive (i HTE2—3 |

| Decode Flt | ~1994 tok/s | £k PyTorch £ T 5 Naive MEEFTF (BTFIRD Kernel RS, RIE
2%) |

2.3 EL O

MAIIET MLA EMIEXRE N, RETESD PyTorch FMETHFE/MIEFFETRIETSNEN Kernel
Launch §3X Absorb B AIEIRIEN, B TMENEFTE BRTRKXAZIR TN OOMER, AfE
HEFREEEE T Ebh.

3.MLA LI Eh i IR
##4# 3.1, FT1E PyTorch MPRXAELE
B3%: deepseek_mla

##H## utils.py

- MLAConfig: MLA EEE##EZ (dim, n_heads, kv_lora_rank %Z#])

- precompute fregs cis() : FiilTHE RoPE &
- apply rotary emb() . [Nz AR hie e\ & 4mhG

- compare_tensors() . 3&%[:[:5&1&

mla_reference.py
M PyTorch £& L)
MLA (Absorb Mode):

" python
T HIRAZ
g_nope, g_pe = split(q, [d_nope, d_rope]) # 25 Q
g_absorbed = g_nope @ wkv_b_k # Q IKUZ wkv_b
scores_nope = g_absorbed @ kv_cache.T # £ E1ITHE
scores_pe = g_pe @ pe_cache.T # PE %K
scores = (scores_nope + scores_pe) * scale # &+

output = softmax(scores) @ kv_cache @ wkv_b_v # %t}

MLAWithNaiveCache (Naive Mode):
" python

EHIT BRI

k = kv_cache @ wkv_b.T # BFF 22 K

v=kv_cache @ wkv_b v.T # B8V

scores =q @ k.T * scale

output = softmax(scores) @ v

mla_test.py
- IEFRMENN . X EE Absorb vs Naive i
- MEREME . Prefill (TTFT) 1 Decode (BT E)

3.2. C++ MLA Absorb Mode 3EIj}

ol /- I [DR WP

X UEEPSEEK_VS.CPP

3.2.1 F1E Buffer 2EC (Lines 148-175)
" cpp

/1 FRTIRFEFF X

const bool use_absorb_mode = true;

/1 EMZEEEEHR decode 1FK

bool is_all_decode = true;

for (uint32_t req = 0; req < nreq; req++) {

if (req_lens[req] != 1) {

is_all_decode = false;

break;

}

}
// Absorb Mode £ F Buffer

if (use_absorb_mode) {

/1 wkv_b R Z2ANE: [r_kv, nh * (d_nope + d_v)]

wkv_b_dequant = Tensor::buffer(dt_logits, {r_kv, nh * (d_nope + d_v)}, ...);
/l RTEfAL: Decode RHERE /) buffer

if (is_all_decode) {

g_absorbed_buf = Tensor::buffer({1, nh, r_kv}, ...); // 1A~ =& {max_seq_len, ...}
weighted_kv_buf = Tensor::buffer({1, nh, r_kv}, ...);

} else {

g_absorbed_buf = Tensor::buffer({max_seq_len, nh, r_kv}, ...);
weighted_kv_buf = Tensor::buffer({max_seq_len, nh, r_kv}, ...);

}

/1R MIBRT attn_score_nope_buf [attn_score_pe_buf (AFfL1L)

}

3.2.2 BEKR =1 wkv b (Line 200-204)

**epp
/1 BRERREMM—R wkv_b (MIARZEE1 request)
if (use_absorb_mode) {
getinferenceContext().dequant(wkv_b_dequant,
weights->w_layers[layer].mla->kv_b_proj->w,
weights->w_layers[layer].mla->kv_b_proj->s,
weights->w_layers[layer].mla->kv_b_proj->z);

}

3.2.3 Absorb Mode SEBHITE
Decode fL{Li&1Z (seq_len == 1):
- cpp
if (seq_len ==1){
/1 Step 1: Q IRUKZ wkv_b_k
// g_nope @ wkv_b_k: [1, nh, d_nope] @ [nh, d_nope, r_kv] ->[1, nh, r_kv]
linear(g_absorbed_req, g_nope_req, wkv_b_k, 1.f, 0., ...);
/1 Step 2: HEEE NS (Fused Add)
// scores = q_absorbed @ kv_cache.T * scale
linear(attn_score_req, q_absorbed_req, kv_cache_req, attn_scale, 0.f, ...);
/] scores += g_pe @ pe_cache.T * scale (beta=1.0 Fi& add)
linear(attn_score_req, q_pe_req, pe_cache_req, attn_scale, 1., ...);
/1 Step 3: Softmax
causalSoftmax(attn_score_req, attn_score_req);
// Step 4: J0#X KV cache
/1 weighted_kv = scores @ kv_cache: [nh, 1, total_len] @ [total_len, r_kv] -> [nh, 1, r_kv]
linear(weighted_kv_req, attn_score_req, kv_cache_req, 1.f, 0.f, ...);
/1 Step 5: N FB wkv_b_v 1546 4

// output = weighted_kv @ wkv_b_v: [nh, 1, r_kv] @ [nh, r_kv, d_v] ->[nh, 1, d_v]

linear(attn_val_req, weighted_kv_req, wkv_b_v, 1.f, 0.f, ...);
// Step 6: EHEF
rearrange(o_req, attn_val_reg->permute({1, 0, 2}));

}

Prefill }&12 (seq_len > 1): B4R, {BIFFITE seq_len #/E,
3.3, REMAEAR

3.3.1 Fused Add (B2 &IIE)

[R3E:

“cpp

linear(scores_nope, q_absorbed, kv_cache, scale, 0.f, ...); // op 1
linear(scores_pe, q_pe, pe_cache, scale, 0.f, ...); // op 2

add(scores, scores_nope, scores_pe); // op 3

VAiACE

“cpp

linear(scores, q_absorbed, kv_cache, scale, 0.f, ...); // op 1: scores = q_absorbed @ kv_cache.T *
scale

linear(scores, q_pe, pe_cache, scale, 1.1, ...); // op 2: scores += q_pe @ pe_cache.T * scale

// beta=1.0 Blx& C=alpha*A@ B + beta* C, L7 add fi&

MER: ED 1)K kernel launch

#i### 3.3.2 REFMHL

Rk | it |

| | -1 |

| attn_score nope buf | 2 | XK MR |

| attn score pe buf | DEC | I MR |

| Buffer

| q_absorbed buf (decode)| {max seq len, nh, r kv} | {1, nh, r kv} |
| weighted kv buf (decode) | {max seq len, nh, r kv} | {1, nh, r kv} |
3.3.3 Absorb Mode it & E 2 E3ItE

| #:1E | Naive Mode | Absorb Mode |

| wkv_b RZ21t | B request x total_len | & layer —)X |

KV EFF	O(total_len x nh x d)	T
Cache i£BY	O(total_len x nh x d)	O(total_len x r_kv)
E48EE	1x	71x

3.4, X ANFIFR

Fig:

test/models/deepseek_mla/init.py

test/models/deepseek_mla/utils.py
test/models/deepseek_mla/mla_reference.py

test/models/deepseek_mla/mla_test.py

src/models/deepseek_v3/deepseek_v3.cpp

- BN use_absorb_mode FF3%

-0 is_all_decode &3

- % hn Absorb Mode buffer 2Bt

- wkv_b RE1IZEE

- 700 Absorb Mode JFEit8E (Decode + Prefill &%)

- LI Fused Add 1t 1t

r—l
AN
g1

4.3

=)
4

#H#

srun --gres=gpu:nvidia:1 --cpus-per-task=16 --mem=256G python
test/models/deepseek_mla/mla_test.py --nvidia --model_path=/data/shared/models/DeepSeek-
R1-Layer-3

srun --gres=gpu:nvidia:1 --cpus-per-task=16 --mem=256G python
test/models/deepseek_mla/mla_test.py --nvidia --model_path=/data/shared/models/DeepSeek-
R1-Layer-3

Loading configuration from: /data/shared/models/DeepSeek-R1-Layer-3
Successfully loaded config from model path.

*kkkkkkkkkkhkkkkkkkkkkhkkkkix

DeepSeek MLA (Multi-head Latent Attention) Test
*kkkkkkkkkkkkkkkkkkkkhkkkkix

Device: cuda

Data Type: torch.bfloat16

Model Path: /data/shared/models/DeepSeek-R1-Layer-3

MLA Configuration:

dim: 7168

n_heads: 128
g_lora_rank: 1536
kv_lora_rank: 512
gk_nope_head_dim: 128
gk_rope_head_dim: 64
v_head_dim: 128

gk_head_dim (total): 192

Loading real weights from: /data/shared/models/DeepSeek-R1-Layer-3

Loading weights from layer 0 in /data/shared/models/DeepSeek-R1-Layer-3

Loaded: wqg_a.weight <- model.layers.0.self_attn.q_a_proj.weight torch.Size([1536, 7168])
Loaded: g_norm.weight <- model.layers.0.self_attn.q_a_layernorm.weight torch.Size([1536])
Loaded: wqg_b.weight <- model.layers.0.self_attn.q_b_proj.weight torch.Size([24576, 1536])

Loaded: wkv_a.weight <- model.layers.0.self_attn.kv_a_proj_with_mqga.weight torch.Size([576,
7168])

Loaded: kv_norm.weight <- model.layers.0.self_attn.kv_a_layernorm.weight torch.Size([512])
Loaded: wkv_b.weight <- model.layers.0.self_attn.kv_b_proj.weight torch.Size([32768, 512])
Loaded: wo.weight <- model.layers.0.self_attn.o_proj.weight torch.Size([7168, 16384])
Successfully loaded 7/7 weights

--- Test: single_prefill (batch=1, seq=64, start_pos=0) ---

[output_single_prefill] shape=[1, 64, 7168]

is_close: False

max_abs_diff: 3.112960e+05

mean_abs_diff: 6.780189e+03

max_rel_diff: 1.239385e+04

mean_rel_diff: 1.775823e-01

XK FAILED: single_prefill

--- Test: longer_prefill (batch=1, seq=128, start_pos=0) ---

[output_longer_prefill] shape=[1, 128, 7168]

is_close: False

max_abs_diff: 3.312640e+05

mean_abs_diff: 1.028216e+04

max_rel_diff: 1.123197e+04

mean_rel_diff: 2.683873e-01

X FAILED: longer_prefill

--- Test; decode no cache (batch=4, sea=1, start pos=0) ---

[output_decode_no_cache] shape=[4, 1, 7168]
is_close: True

max_abs_diff: 0.000000e+00

mean_abs_diff: 0.000000e+00

max_rel_diff: 0.000000e+00

mean_rel_diff: 0.000000e+00

v PASSED: decode_no_cache

--- Test: batch_prefill (batch=2, seq=32, start_pos=0) ---
[output_batch_prefill] shape=[2, 32, 7168]
is_close: False

max_abs_diff: 3.932160e+05

mean_abs_diff: 4.988177e+03

max_rel_diff: 5.141286e+04

mean_rel_diff: 2.111186e-01

XK FAILED: batch_prefill

X Some correctness tests FAILED!

1. Correctness tests failed! Performance results may not be meaningful.

Loading real weights from: /data/shared/models/DeepSeek-R1-Layer-3
Loading weights from layer 0 in /data/shared/models/DeepSeek-R1-Layer-3
Loaded: wqg_a.weight <- model.layers.0.self_attn.q_a_proj.weight torch.Size([1536, 7168])

Loaded: g_norm.weight <- model.layers.0.self_attn.q_a_layernorm.weight torch.Size([1536])

Loaded: wqg_b.weight <- model.layers.0.self_attn.q_b_proj.weight torch.Size([24576, 1536])

Loaded: wkv_a.weight <- model.layers.0.self_attn.kv_a_proj_with_mqga.weight torch.Size([576,
7168])

Loaded: kv_norm.weight <- model.layers.0.self_attn.kv_a_layernorm.weight torch.Size([512])
Loaded: wkv_b.weight <- model.layers.0.self_attn.kv_b_proj.weight torch.Size([32768, 512])
Loaded: wo.weight <- model.layers.0.self_attn.o_proj.weight torch.Size([7168, 16384])
Successfully loaded 7/7 weights

--- Prefill Benchmark ---

Test Case: {'seqglens'": [64, 128, 256, 256], 'pastlens’: [512, 0, O, 256]}

WARMUPS=10, RUNS=100

Average TTFT (Time To First Token): 2.80 ms

--- Decode Benchmark ---

Test Case: {'seqlens": [1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1], 'pastlens": [50, 50, 50, 50, 100, 100,
100, 100, 200, 200, 200, 200, 400, 400, 400, 4007}

WARMUPS=10, RUNS=100

Average Throughput: 2049.41 tok/s

Comparing with Naive mode (for reference)...

Loading real weights from: /data/shared/models/DeepSeek-R1-Layer-3
Loading weights from layer 0 in /data/shared/models/DeepSeek-R1-Layer-3

Loaded: wqg_a.weight <- model.layers.0.self_attn.q_a_proj.weight torch.Size([1536, 7168])

Loaded: g_norm.weight <- model.layers.0.self_attn.q_a_layernorm.weight torch.Size([1536])
Loaded: wqg_b.weight <- model.layers.0.self_attn.q_b_proj.weight torch.Size([24576, 1536])

Loaded: wkv_a.weight <- model.layers.0.self_attn.kv_a_proj_with_mqa.weight torch.Size([576,

—a A

/103])
Loaded: kv_norm.weight <- model.layers.0.self_attn.kv_a_layernorm.weight torch.Size([512])
Loaded: wkv_b.weight <- model.layers.0.self_attn.kv_b_proj.weight torch.Size([32768, 512])
Loaded: wo.weight <- model.layers.0.self_attn.o_proj.weight torch.Size([7168, 16384])
Successfully loaded 7/7 weights

--- Prefill Benchmark ---

Test Case: {'seqglens'": [64, 128, 256, 256], 'pastlens’: [512, 0, 0, 2561}

WARMUPS=10, RUNS=100

Average TTFT (Time To First Token): 2.82 ms

--- Decode Benchmark ---

Test Case: {'seqlens: [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1], 'pastlens': [50, 50, 50, 50, 100, 100,
100, 100, 200, 200, 200, 200, 400, 400, 400, 4001}

WARMUPS=10, RUNS=100

Average Throughput: 2091.29 tok/s

Prefill Latency (lower is better):

Absorb Mode: 2.80 ms

Naive Mode: 2.82 ms

Decode Throughput (higher is better):

Absorb Mode: 2049.41 tok/s

Naive Mode: 2091.29 tok/s

Peak GPU Memory: 1.20 GB

Cache Memory Comparison (per token per layer, BF16):
Absorb Mode: 1152 bytes (512 + 64 dims)

Naive Mode: 81920 bytes (128 * (192 + 128) dims)

Compression Ratio: 71.1x

Performance Analysis:

v Prefill: Absorb is 1.01x faster

A\ Decode: Absorb is 1.02x slower (expected in PyTorch, fused kernels needed)
Note: Absorb mode benefits from:

1. 71.1x smaller KV cache (critical for long contexts)
2. Fused CUDA kernels (not available in pure PyTorch)
3. Lower memory bandwidth for cache reads

*kkkkkkkkkkkkkkkkkkkkkkkkkix

Test Complete!

*kkkkkkkkkkkkkkkkkkkkhkkkkix

ps: FBEEFEA,
5. F5SR LIE
*BESER: SHERREREIRBE SFE~EGFE LaThiHA, BN EEM.

* EFRIEMM (C++/CUDA) : $3%F Absorb Mode Hh¥Ti2agsE[E S5, FF& Fused Kernel, LUHRR
PyTorch 1EZRHRAESMNTHE, TMAERFTENERNIRSHEIEMR,

