
Reading and filtering long-read modifica-
tion data with bsseq

SrenBlikdal

3 February 2026

Abstract

This guide outlines a likelihood-based framework for preparing and filtering long-read data
from Oxford Nanopore for analysis with the bsseq package. Unlike conversion-based methods,
single-molecule sequencing captures both the nucleotide sequence and epigenetic modifica-
tions directly. This information enables detection of sample-specific CpG loci and supports
effective data filtering prior to downstream modification analysis. The guide demonstrates
how to process Oxford Nanopore data into bedMethyl format and filter data based on CpG
likelihoods prior to modification analysis in bsseq.

Package

bsseq 1.48.0

Contents

1 Introduction . 3

1.1 Terminology . 3

1.2 Citation. 3

1.3 Dependencies . 3

2 Preprocessing. 4

2.1 Base and modification calling with Dorado 4

2.2 Mapping with Minimap2 and SAMtools 4

2.3 Pileup modifications with Modkit. 5

3 Reading bedMethyl files . 5

3.1 Reading read-based pileup . 5

3.2 Reading reference CpG loci only 6

4 Filter a single sample . 6

4.1 Coverage filtering . 6

4.2 Likelihood filtering . 8

5 Filter multiple samples . 11

bsseq long-read

5.1 Coverage filtering . 11

5.2 Likelihood filtering . 13

6 HDF5 storage . 15

7 Converting to BSseq . 16

8 Summary . 17

9 sessionInfo() . 18

10 References . 19

2

bsseq long-read

1 Introduction
This guide outlines how to read and filter Oxford Nanopore sequencing data using the bsseq

package in R. Designed for DNA methylation analysis, bsseq offers tools for reading, filtering,
analyzing and visualizing modification data.

The first part focuses on preprocessing. It begins with processing raw POD5 sequencing files
into basecalled and modification-called BAM files using dorado. Next, these reads are mapped
to a reference genome, while preserving modification information, using SAMtools and Min

imap2. Finally, modification information is summarized in read-based bedMethyl files using
Modkit.

The second part of the guide demonstrates how to read bedMethyl files as MethylCounts

objects, and filtering them based on coverage and likelihood of representing a homozygous
and/or heterozygous CpG loci. This workflow is illustrated using both single-sample and a
multi-sample MethylCounts object.

1.1 Terminology
The following terms are used throughout this document:

Basecalling: Determining the sequenced nucleotide sequence (A,C,G or T) from the raw
sequencing signals.
Modification calling: Identifying the modification state from the raw sequencing signal. In
this guide, limited to C in CpG-context modifications: C, 5hmC or 5mC.
CpG site: A cytosine followed by a guanine in a DNA strand (5’ to 3’).
CpG locus: The combined term for the CpG site the forward and reverse strand in double
stranded DNA.
CpG status: Inferring if a locus is a homozygous CpG, heterozygous CpG, a homozygous or
heterozygous CpG or not a CpG at all based on sequencing data mapped to the position in
the reference genome.
.99 homozygous CpG filtering: Filtering for loci with scaled likelihood above 99% of being
a homozygous CpG locus given the data.
.99 heterozygous CpG filtering: Filtering for loci with scaled likelihood of above 99% of
being a heterozygous CpG locus given the data.
.99 ‘allCpG’ filtering: Filtering for loci with scaled likelihood of above 99% of being a
homozygous CpG locus or heterozygous CpG locus given the data.
Reference-guided filtering: Restricting analysis to loci that overlap CpG loci in the reference
genome (using the –cpg or –preset traditional in Modkit).

1.2 Citation
If you use the likelihood filtering, please cite our preprint [Hansen:2025], while the general
use can be cited from the BSmooth paper [Hansen:2012].

1.3 Dependencies

library(bsseq)

library(tidyverse)

#Additional software modules needed for preprocessing:

#Dorado https://github.com/nanoporetech/dorado

3

bsseq long-read

#SAMtools https://github.com/samtools

#Minimap2 https://github.com/lh3/minimap2

#Modkit https://github.com/nanoporetech/modkit

2 Preprocessing
Before importing modification data from Oxford Nanopore sequencing into the bsseq package,
the raw POD5 data must be processed to generate base and modification called reads, mapped
to a reference genome, and summarized in the pileup format, bedMethyl.

2.1 Base and modification calling with Dorado
To obtain the base and modification calls from the raw signal data, we use the dorado base-
caller. The following command will base and modification call the POD5 files in the input
directory using a CpG-context model to call 5-methylcytosine and 5-hydroxymethylcytosine
and output an unaligned BAM file. The unaligned BAM file will contain basecalls and modifica-
tion calls for each read.

Set input and output directories

input_directory= #/insert/input/directory/with/POD5/files/here

output_directory= #/insert/output/directory/for/unaligned/bam/files/here

Run dorado basecaller with modification calling

dorado basecaller sup,5mCG_5hmCG \

$input_directory/ > $output_directory/unaligned.bam

2.2 Mapping with Minimap2 and SAMtools
To map the unaligned BAM file to a reference genome, we use minimap2 and samtools. The
following command converts the BAM to FASTQ, maps the reads, and output a sorted and
indexed BAM file with modification tags.

Set output directory and reference genome

output_directory= #/insert/output/directory/for/unaligned/bam/files/here

reference_genome= #/insert/reference/genome/here

cd $output_directory

Map reads to the reference genome

samtools fastq -TMM,ML unaligned.bam | \

minimap2 -ax map-ont -y $reference_genome - | \

samtools view -bS -| \

samtools sort - > aligned.bam

Index the aligned BAM file

samtools index aligned.bam

4

bsseq long-read

2.3 Pileup modifications with Modkit
To generate a modification pileup from the aligned BAM file, we use modkit. The pileup can
be read-based approach to include all the CpG loci observed in the reads (recommended), or
reference-guided and restricted to the CpG loci in the reference genome (not recommended).

2.3.1 Read-based pileup

For read-based pileup we do not set any flags related to the reference genome CpG loci (–CpG
or —-motif CG 0). However, since we used a CpG-context model for modification calling,
only the reference positions with at least one mapped CpG site are included in the pileup.

Set directory

output_directory= #/insert/output/directory/for/unaligned/bam/files/here

cd $output_directory

Pileup modification from all CpG loci observed in the reads

modkit pileup aligned.bam all_GpG.bedMethyl

2.3.2 Reference-guided pileup

For reference-guided pileup we use the --cpg flag to restrict the analysis to the CpG loci in
the reference genome.

Set directory and reference genome

output_directory= #/insert/output/directory/for/unaligned/bam/files/here

reference_genome= #/insert/reference/genome/here

cd $output_directory

Pileup modification from the CpG loci present in the reference genome

modkit pileup --$reference_genome --cpg aligned.bam ref_GpG.bedMethyl

The commands above represent the minimum requirements needed to process the raw Ox-
ford Nanopore sequencing data into a bedMethyl file. We strongly recommend reading the
documentation for each program to adjust the parameters for your project and data.

3 Reading bedMethyl files
The function read.bedMethyl() reads one or more bedMethyl file(s) and returns a Methyl

Counts object which can be used for likelihood filtering, when setting output = "Methyl

Counts". Setting strandCollapse = TRUE merges data from the forward and reverse strand
into a single representation.

3.1 Reading read-based pileup
The read-based bedMethyl files include all CpG loci observed in the reads should be read as
MethylCounts objects as follows:

files<-list.files("~/Desktop/BSseq_long-read/data/silversides_chr24/modkit",

full.names=T)

mc_all<-read.bedMethyl(files, strandCollapse = T, output = "MethylCounts")

5

bsseq long-read

Validating bedMethyl files and collecting metadata ...

mc_all

An object of type 'MethylCounts' with

1153438 loci

9 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

All assays are in-memory

The MethylCounts object includes all the loci which are a CpG sites in at least one read
mapped to the position. This includes non-reference CpG loci and false positive CpG loci
introduced by sequencing and mapping errors.

3.2 Reading reference CpG loci only
The reference-guided bedMethyl files include only the CpG loci present in the reference
genome, and can be read as BSseq objects or as MethylCounts objects as follows:

files<-list.files("~/Desktop/BSseq_long-read/data/silversides_chr24/modkit_cpg",

full.names=T)

mc_cpg<-read.bedMethyl(files=files, strandCollapse = T, output = "MethylCounts")

mc_cpg

An object of type 'MethylCounts' with

341336 loci

9 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

All assays are in-memory

This object includes only loci that are a CpG site in at least one read, and are a CpG loci in
the reference genome.

4 Filter a single sample
Modification analysis is often restricted to a subset of the loci in a sample. Filtering can be
based on coverage thresholds or based on the likelihood of a locus being a homozygous or
heterozygous CpG.

4.1 Coverage filtering
A MethylCounts object can be filtered using getMethylCounts(), where the coverage repre-
sent the number of times a CpG site is mapped at a specific locus.

4.1.1 All CpG loci

#get the first sample

mc_all_1 <- mc_all[,1]

#get the indices of loci with coverage >= 5

loci.idx <- which(getMethylCounts(mc_all_1, type="Cov")>= 5)

6

bsseq long-read

#filter the object to retain these loci

mc_all_1_filtered <- mc_all_1[loci.idx,]

mc_all_1_filtered

An object of type 'MethylCounts' with

344661 loci

1 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

All assays are in-memory

4.1.2 Reference CpG loci

mc_cpg_1 <- mc_cpg[,1]

loci.idx <- which(getMethylCounts(mc_cpg_1, type="Cov")>= 5)

mc_cpg_1_filtered<-mc_cpg_1[loci.idx,]

mc_cpg_1_filtered

An object of type 'MethylCounts' with

292828 loci

1 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

All assays are in-memory

In addition to the sample and the sequencing depth of a sample, the number of coverage
filtered loci depend on whether non-reference CpG loci are included, and which coverage
threshold is applied.

1e+05

2e+05

3e+05

4e+05

0 10 20 30

Coverage threshold

N
um

be
r

of
 lo

ci

Type

all_CpG

ref_CpG

Coverage filtering

7

bsseq long-read

4.2 Likelihood filtering
A MethylCounts object imported using read.bedMethyl() includes both the CpG coverage
and the non-CpG coverage all loci, which we use to estimate the error rate and call the CpG
status i.e. determine if a locus is a homozygous CpG, a heterozygous CpG or not a CpG at
all.

4.2.1 .99 “allCpG” filtering

To get the total (homozygous and heterozygous) CpG loci in a sample, one can use the
getCpGs() function with type set to "allCpG".

This can be for all the CpG loci observed in the reads:

#get the first sample

mc_all_1 <- mc_all[,1]

#get the indices of loci with scaled likelihood above 0.99 of being a "allCpG"

loci.idx <- getCpGs(mc_all_1, type = "allCpG", threshold = 0.99)

#filter the object to retain these loci

mc_all_1_filtered <- mc_all_1[loci.idx,]

mc_all_1_filtered

An object of type 'MethylCounts' with

348807 loci

1 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

All assays are in-memory

Or for all the reference CpG loci observed in the reads:

mc_cpg_1 <- mc_cpg[,1]

loci.idx <- getCpGs(mc_cpg_1, type = "allCpG", threshold = 0.99)

mc_cpg_1_filtered <- mc_cpg_1[loci.idx,]

mc_cpg_1_filtered

An object of type 'MethylCounts' with

296732 loci

1 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

All assays are in-memory

The number of “AllCpG” loci depends on the likelihood threshold and whether non-reference
CpG loci are included.

8

bsseq long-read

0e+00

1e+05

2e+05

3e+05

0.95 0.96 0.97 0.98 0.99 1.00

Likelihood threshold

N
um

be
r

of
 lo

ci

Type

all_CpG

ref_CpG

Homozygous and heterozygous CpG loci

4.2.2 .99 homozygous CpG

To get the homozygous CpG loci in a sample we use getCpGs() with type = "homozygous".

This can be for all the CpG loci observed in the reads:

#get the first sample

mc_all_1 <- mc_all[,1]

#get the indices of loci with scaled likelihood above 0.99 of being homozygous

loci.idx <- getCpGs(mc_all_1, type = "homozygous", threshold = 0.99)

#filter the object to retain these loci

mc_all_1_filtered <- mc_all_1[loci.idx,]

mc_all_1_filtered

An object of type 'MethylCounts' with

272614 loci

1 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

All assays are in-memory

Or for all the reference CpG loci observed in the reads:

mc_cpg_1 <- mc_cpg[,1]

loci.idx <- getCpGs(mc_cpg_1, type = "homozygous", threshold = 0.99)

mc_cpg_1_filtered <- mc_cpg_1[loci.idx,]

mc_cpg_1_filtered

An object of type 'MethylCounts' with

247335 loci

1 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

All assays are in-memory

9

bsseq long-read

The number of homozygous loci depends on the likelihood threshold and whether non-
reference CpG loci are included.

0e+00

1e+05

2e+05

0.95 0.96 0.97 0.98 0.99 1.00

Likelihood threshold

N
um

be
r

of
 lo

ci

Type

all_CpG

ref_CpG

Homozygous CpG loci

4.2.3 .99 heterozygous CpG

To get the heterozygous CpG loci in a sample, we use the getCpGs() function with type =

"heterozygous".

This can be for all the CpG loci observed in the reads:

#get the first sample

mc_all_1 <- mc_all[,1]

#get the indices of loci with scaled likelihood above 0.99 of being heterozygous

loci.idx <- getCpGs(mc_all_1, type = "heterozygous", threshold = 0.99)

#filter the object to retain these loci

mc_all_1_filtered <- mc_all_1[loci.idx,]

mc_all_1_filtered

An object of type 'MethylCounts' with

48699 loci

1 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

All assays are in-memory

Or for all the reference CpG loci observed in the reads:

mc_cpg_1 <- mc_cpg[,1]

loci.idx <- getCpGs(mc_cpg_1, type = "heterozygous", threshold = 0.99)

mc_cpg_1_filtered <- mc_cpg_1[loci.idx,]

mc_cpg_1_filtered

An object of type 'MethylCounts' with

26132 loci

1 samples

5mC and 5hmC data from all samples

10

bsseq long-read

CG-context modification model detected for all samples

All assays are in-memory

The number of heterozygous CpG loci depends on the likelihood threshold applied and
whether non-reference CpG loci are retained. Reference-guided pileup generally removes
~half of the heterozygous loci in a sample.

0

10000

20000

30000

40000

50000

0.95 0.96 0.97 0.98 0.99 1.00

Likelihood threshold

N
um

be
r

of
 lo

ci

Type

all_CpG

ref_CpG

Heterozygous CpG loci

5 Filter multiple samples
A project often includes multiple samples, and filtering can be applied to all samples in a
MethylCounts object. Samples often share CpG loci and it is therefore advantageous to filter
the loci in the multi-sample MethylCounts object to avoid false positive CpG loci introduced
by sequencing and mapping errors.

5.1 Coverage filtering
A multi-sample MethylCounts object can be coverage filtered using getMethylCounts().

5.1.1 Coverage threshold

The coverage threshold can restrict the analysis to the loci with a coverage above a threshold
in all samples (here, 9 samples):

11

bsseq long-read

0e+00

1e+05

2e+05

3e+05

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Coverage threshold

N
um

be
r

of
 lo

ci

Type

all_CpG

ref_CpG

Coverage filtering all samples

5.1.2 Samples threshold

The coverage filtering can be less conservative by including all loci passing the threshold of
5X in some of the 9 samples:

300000

350000

400000

450000

1 2 3 4 5 6 7 8 9

Samples passing 5X coverage threshold

N
um

be
r

of
 lo

ci

Type

all_CpG

ref_CpG

Coverage filtering

5.1.3 Example

Filtering a MethylCounts object to retain only loci with a coverage of at least 5X in at least
six of the nine samples can be done using this command:

loci.idx <- which(

DelayedMatrixStats::rowSums2(getMethylCounts(mc_all, type="Cov")>= 5) >= 6)

mc_coverage_filtered <- mc_all[loci.idx,]

mc_coverage_filtered

12

bsseq long-read

An object of type 'MethylCounts' with

344815 loci

9 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

All assays are in-memory

5.2 Likelihood filtering
For likelihood filtering of multiple samples, we recommend utilizing the functions getCpGMa

trix() and getMaxLikelihoodMatrix() to obtain the CpG matrix and the maximum likeli-
hood matrix for the samples.

The function getCpGMatrix() returns a matrix with the most likely CpG call for the loci and
sample with the same dimensions as the MethylCounts object. In the the default setting
homozygous CpG loci are represented by 0, heterozygous CpG loci by 1 and non-CpG loci by
2.

G_all <- getCpGMatrix(mc_all)

head(G_all)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 2 2 0 2 2 2 2 2 2

[2,] 2 2 2 2 2 2 2 2 2

[3,] 1 0 0 0 2 1 2 0 1

[4,] 1 0 2 0 2 1 2 1 0

[5,] 2 2 2 2 2 1 2 2 2

[6,] 1 2 2 2 0 2 2 2 2

The function getMaxLikelihoodMatrix returns a matrix with the corresponding scaled likeli-
hood of most likely CpG call for the loci and sample with the same dimensions.

Q_all <- getMaxLikelihoodMatrix(mc_all)

head(round(Q_all,3))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.333 0.333 0.990 0.333 0.333 0.333 0.333 0.333 0.333

[2,] 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.995

[3,] 0.969 1.000 0.875 0.997 0.333 1.000 0.333 0.997 1.000

[4,] 0.941 1.000 0.333 0.997 0.333 1.000 0.333 0.989 1.000

[5,] 0.333 0.333 0.333 0.333 0.333 1.000 0.333 0.333 0.333

[6,] 0.941 0.990 0.652 0.333 0.650 0.333 0.333 0.333 0.333

Both functions can be run using allCpG = TRUE, where 0 in the CpG matrix represent ho-
mozygous or heterozygous CpG and the MaxLikelihoodMatrix represent the joint probability
of homozygous or heterozygous CpG. This is useful for filtering the data based on likelihood
thresholds.

G_all <- getCpGMatrix(mc_all, allCpG = TRUE)

head(G_all)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 2 2 0 2 2 2 2 2 2

[2,] 2 2 2 2 2 2 2 2 2

[3,] 0 0 0 0 2 0 2 0 0

13

bsseq long-read

[4,] 0 0 2 0 2 0 2 0 0

[5,] 2 2 2 2 2 0 2 2 2

[6,] 0 2 2 2 0 2 2 2 2

Q_all <- getMaxLikelihoodMatrix(mc_all, allCpG = TRUE)

head(round(Q_all,3))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.333 0.333 1.000 0.333 0.333 0.333 0.333 0.333 0.333

[2,] 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.995

[3,] 1.000 1.000 1.000 1.000 0.333 1.000 0.333 1.000 1.000

[4,] 1.000 1.000 0.333 1.000 0.333 1.000 0.333 0.989 1.000

[5,] 0.333 0.333 0.333 0.333 0.333 1.000 0.333 0.333 0.333

[6,] 0.941 0.990 0.652 0.333 1.000 0.333 0.333 0.333 0.333

In both settings, locus with a coverage of 0 are represented as non-CpGs with likelihood of
1/3.

5.2.1 Likelihood threshold

The multi-sample MethylCounts object can be filtered for loci scaled likelihood of being a
homozygous or heterozygous CpG loci in all nine samples above a certain likelihood threshold.

200000

225000

250000

275000

0.95 0.96 0.97 0.98 0.99 1.00

Likelihood threshold

N
um

be
r

of
 C

pG
 lo

ci

Type

all_CpG_hom

ref_CpG_hom

Likelihood filtering

5.2.2 Samples threshold

The likelihood threshold can be combined with the samples threshold for more relaxed filtering
for loci scaled likelihood of being a homozygous or heterozygous CpG loci in X out of all nine
samples.

14

bsseq long-read

300000

350000

400000

450000

1 2 3 4 5 6 7 8 9

Samples passing .99 all filtering

N
um

be
r

of
 C

pG
 lo

ci

Type

all_CpG_hom

ref_CpG_hom

Samples passing likelihood filtering

5.2.3 Example

The likelihood and samples thresholds can be combined to filter for e.g. loci with a likelihood
above 0.99 of being a homozygous or heterozygous CpG loci in at least six of the nine samples:

G_all <- getCpGMatrix(mc_all, allCpG = TRUE)

Q_all <- getMaxLikelihoodMatrix(mc_all, allCpG = TRUE)

loci.idx <- which(

DelayedMatrixStats::rowSums2(Q_all >= .99 & G_all==0) >= 6)

mc_filtered <- mc_all[loci.idx,]

mc_filtered

An object of type 'MethylCounts' with

346944 loci

9 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

All assays are in-memory

6 HDF5 storage
The raw or filtered MethylCounts object can be saved as an HDF5 file using the save

HDF5SummarizedExperiment() function from the HDF5Array package. This allows for efficient
storage and retrieval of large datasets.

HDF5Array::saveHDF5SummarizedExperiment(mc_filtered, "~/Desktop/mc_filtered.hdf5", replace = TRUE)

mc_filtered<-HDF5Array::loadHDF5SummarizedExperiment("~/Desktop/mc_filtered.hdf5")

mc_filtered

An object of type 'MethylCounts' with

346944 loci

9 samples

5mC and 5hmC data from all samples

15

bsseq long-read

CG-context modification model detected for all samples

Some assays are HDF5Array-backed

7 Converting to BSseq
For downstream analysis the filtered MethylCounts object can be converted to a BSseq object
using the BSseq() constructor function.

Filter and process a sample from the MethylCounts object

mc_sample <- mc_filtered[, 1]

mc_sample_filtered <- mc_sample[

getCpGs(mc_sample, type = "homozygous", threshold = 0.99)]

Display the filtered MethylCounts object

mc_sample_filtered

An object of type 'MethylCounts' with

267767 loci

1 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

Some assays are HDF5Array-backed

Depending on the analysis, you can specify the modification type (mods) as “5mC+5hmC”
(default).

Convert to BSseq with both 5mC and 5hmC data

bs <- BSseq(mc = mc_sample_filtered, mods = "5mC+5hmC")

bs

An object of type 'BSseq' with

267767 loci

1 samples

5mC+5hmC values are stored in 'M'

has not been smoothed

Some assays are HDF5Array-backed

Calculate the mean methylation using raw data

mean(getMeth(bs, type = "raw"))

[1] 0.70369

Or only one modification type, e.g., “5mC”:

Convert to BSseq with only 5mC data

bs_M <- BSseq(mc = mc_sample_filtered, mods = "5mC")

bs_M

An object of type 'BSseq' with

267767 loci

1 samples

5mC values are stored in 'M'

has not been smoothed

Some assays are HDF5Array-backed

16

bsseq long-read

Calculate the mean methylation for 5mC

mean(getMeth(bs_M, type = "raw"))

[1] 0.6674152

or “5hmC”:

Convert to BSseq with only 5hmC data

bs_H <- BSseq(mc = mc_sample_filtered, mods = "5hmC")

bs_H

An object of type 'BSseq' with

267767 loci

1 samples

5hmC values are stored in 'M'

has not been smoothed

Some assays are HDF5Array-backed

Calculate the mean methylation for 5hmC

mean(getMeth(bs_H, type = "raw"))

[1] 0.0362748

8 Summary
In summary bedMethyl files from modkit can be imported in to bsseq and filtered for loci with
a specific coverage or a specific likelihood of being a homozygous, heterozygous or homozy-
gous/heterozygous CpG loci in all or a subset of samples. A import of a multi-sample project
and filtering for loci with a scaled likelihood above 0.99 of being homozygous/heterozygous
CpG loci in at least six samples and a coverage of at least 5 in at least six samples can be
obtain with this command:

files<-list.files("~/Desktop/BSseq_long-read/data/silversides_chr24/modkit",

full.names=T)

mc_all<-read.bedMethyl(files, strandCollapse = T, output = "MethylCounts")

G <- getCpGMatrix(mc_all, allCpG = TRUE)

Q <- getMaxLikelihoodMatrix(mc_all, allCpG = TRUE)

loci.idx <- which(

DelayedMatrixStats::rowSums2(Q >= .99 & G==0) >= 6 &

DelayedMatrixStats::rowSums2(getMethylCounts(mc_all, type="Cov")>= 5) >= 6)

mc_filtered <- mc_all[loci.idx,]

mc_filtered

An object of type 'MethylCounts' with

341389 loci

9 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

All assays are in-memory

Specific samples in the BSseq object can be filtered for loci with a high probability of being
e.g. homozygous CpG loci:

17

bsseq long-read

mc_sample<- mc_filtered[,1]

mc_sample_filtered<-mc_sample[

getCpGs(mc_sample, type = "homozygous", threshold = 0.99)]

mc_sample_filtered

An object of type 'MethylCounts' with

267180 loci

1 samples

5mC and 5hmC data from all samples

CG-context modification model detected for all samples

All assays are in-memory

bs_sample_filtered<-BSseq(mc = mc_sample_filtered)

bs_sample_filtered

An object of type 'BSseq' with

267180 loci

1 samples

5mC+5hmC values are stored in 'M'

has not been smoothed

All assays are in-memory

9 sessionInfo()
R version 4.5.1 (2025-06-13)

Platform: x86_64-apple-darwin20

Running under: macOS Tahoe 26.2

##

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.1

##

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

time zone: Europe/Copenhagen

tzcode source: internal

##

attached base packages:

[1] stats4 stats graphics grDevices utils datasets methods

[8] base

##

other attached packages:

[1] lubridate_1.9.4 forcats_1.0.0

[3] stringr_1.5.1 dplyr_1.1.4

[5] purrr_1.1.0 readr_2.1.5

[7] tidyr_1.3.1 tibble_3.3.0

[9] ggplot2_4.0.1 tidyverse_2.0.0

[11] bsseq_1.48.0 SummarizedExperiment_1.39.1

[13] Biobase_2.69.0 MatrixGenerics_1.21.0

[15] matrixStats_1.5.0 GenomicRanges_1.61.1

18

bsseq long-read

[17] Seqinfo_0.99.2 IRanges_2.43.0

[19] S4Vectors_0.47.0 BiocGenerics_0.55.1

[21] generics_0.1.4 BiocStyle_2.37.0

##

loaded via a namespace (and not attached):

[1] tidyselect_1.2.1 farver_2.1.2

[3] R.utils_2.13.0 Biostrings_2.77.2

[5] S7_0.2.1 bitops_1.0-9

[7] fastmap_1.2.0 RCurl_1.98-1.17

[9] GenomicAlignments_1.45.2 XML_3.99-0.18

[11] digest_0.6.37 timechange_0.3.0

[13] lifecycle_1.0.4 statmod_1.5.0

[15] magrittr_2.0.3 compiler_4.5.1

[17] rlang_1.1.6 tools_4.5.1

[19] yaml_2.3.10 data.table_1.17.8

[21] rtracklayer_1.69.1 knitr_1.50

[23] labeling_0.4.3 S4Arrays_1.9.1

[25] curl_6.4.0 DelayedArray_0.35.2

[27] RColorBrewer_1.1-3 abind_1.4-8

[29] BiocParallel_1.43.4 HDF5Array_1.37.0

[31] withr_3.0.2 R.oo_1.27.1

[33] grid_4.5.1 beachmat_2.25.3

[35] Rhdf5lib_1.31.0 scales_1.4.0

[37] gtools_3.9.5 tinytex_0.58

[39] cli_3.6.5 rmarkdown_2.29

[41] crayon_1.5.3 rstudioapi_0.17.1

[43] tzdb_0.5.0 httr_1.4.7

[45] rjson_0.2.23 DelayedMatrixStats_1.31.0

[47] rhdf5_2.53.3 parallel_4.5.1

[49] BiocManager_1.30.26 XVector_0.49.0

[51] restfulr_0.0.16 vctrs_0.6.5

[53] Matrix_1.7-3 bookdown_0.43

[55] hms_1.1.3 h5mread_1.1.1

[57] locfit_1.5-9.12 limma_3.65.3

[59] glue_1.8.0 codetools_0.2-20

[61] stringi_1.8.7 gtable_0.3.6

[63] BiocIO_1.19.0 pillar_1.11.0

[65] htmltools_0.5.8.1 rhdf5filters_1.21.0

[67] BSgenome_1.77.1 R6_2.6.1

[69] sparseMatrixStats_1.21.0 evaluate_1.0.4

[71] lattice_0.22-7 R.methodsS3_1.8.2

[73] Rsamtools_2.25.2 Rcpp_1.1.0

[75] SparseArray_1.9.1 permute_0.9-8

[77] xfun_0.52 pkgconfig_2.0.3

10 References

19

	1 Introduction
	1.1 Terminology
	1.2 Citation
	1.3 Dependencies

	2 Preprocessing
	2.1 Base and modification calling with Dorado
	2.2 Mapping with Minimap2 and SAMtools
	2.3 Pileup modifications with Modkit

	3 Reading bedMethyl files
	3.1 Reading read-based pileup
	3.2 Reading reference CpG loci only

	4 Filter a single sample
	4.1 Coverage filtering
	4.2 Likelihood filtering

	5 Filter multiple samples
	5.1 Coverage filtering
	5.2 Likelihood filtering

	6 HDF5 storage
	7 Converting to BSseq
	8 Summary
	9 sessionInfo()
	10 References

