
Luciano Casanova

Pull request : dynamicParameterSystem

Luciano Casanova

luciano.casanova@femto-st.fr

February 10, 2026

1 Dynamic Parameters

We implemented an option inside the scene json that allows to prescribe changes in all available
physical parameters from TimeStep, Viscosity and SurfaceTension methods. It should be straight-
forward to implement the same system for other type of methods (Elasticity, Vorticity, XSPH). The
syntax inside the scene is as follows:

{
"Configuration" : {...},
"Materials" : [{...}],
"FluidModels" : [{...}],
"RigidBodies" : {[...]},
"DynamicParameters": [

{
"fluidId": "inner",
"parameterName": "viscosity",
"defaultValue": 0.0,
"expression" : "10.0 + 2.0 * sin(2.0 * t)"

},
{

"fluidId": "inner",
"parameterName": "viscosityBoundary",
"defaultValue": 0.0,
"stepFunction": false,
"timelineTimes": "0.5, 1.0",
"timelineValues": "1.0, 2.0"

},
{

"fluidId": "inner",
"parameterName": "surfaceTensionBoundary",
"defaultValue": 50.0,
"stepFunction": true,
"timelineTimes": "1.0, 1.5, 2.0, 2.5, 3.0",
"timelineValues": "0.0, 50.0, 100.0, 200.0, 300.0"

}
]

}

Page 1

mailto:luciano.casanova@femto-st.fr


Luciano Casanova

Each Dynamic Parameter is linked to one fluidId, controls only one parameter (via its
parameterName), has a defaultValue and can change in two different ways. The first one is as a
timeline, which can be changed abruptly or be smoothly interpolated between the given timelineVal-
ues at their respective timelineTimes. The other possibility is via a mathematical expression that
is parsed using tinyexpr.

1.1 DynamicParameterSystem
The DynamicParameterSystem allows simulation parameters to change dynamically dur-

ing runtime according to predefined schedules. This improves experiment repeatability by setting
parameter changes directly in the scene JSON file rather than requiring manual intervention.

The ParameterSchedule struct encapsulates all information needed to manage a single
parameter’s temporal evolution:

struct ParameterSchedule {
std::string fluidId; // Target fluid identifier
std::string parameter_name; // Name of parameter to control
std::string expression; // Mathematical expression
std::vector<std::pair<Real, Real>> timeline; // Time-value pairs
int current_timeline_index; // Tracker
bool use_expression; // Expression mode flag
bool use_step_function; // Step vs. interpolation flag
te_expr* compiled_expr; // Compiled expression object
Real current_value; // Current parameter value
Real default_value; // Initial value
bool active; // Enable/disable flag

};

The DynamicParameterSystem maintains a collection of schedules and provides the in-
terface for adding, updating, and applying parameter changes. The system supports two types of
parameter schedules.

The first one is the timeline schedule. It can be used for gradual parameter transitions
(Interpolation mode, stepFunction = false) or for discrete parameter jumps (Step Function mode,
stepFunction = true).

bool addTimelineSchedule(const std::string& fluidId,
const std::string& paramName,
const std::vector<std::pair<Real, Real>>& timeline,
Real defaultValue,
bool stepFunction);

This function automatically orders the given timeline.
The second type of schedule is expression-based.

bool addExpressionSchedule(const std::string& fluidId,
const std::string& paramName,
const std::string& expression,
Real defaultValue);

When this function is called, the expression is parsed and compiled using tinyexpr :

Page 2



Luciano Casanova

bool compileExpression(ParameterSchedule& schedule) {
te_variable vars[] = {

{"t", &m_t_double}, // Current simulation time
{"dt", &m_dt_double} // Current timestep

};
int err;
schedule.compiled_expr = te_compile(schedule.expression.c_str(),

vars, 2, &err);
return (schedule.compiled_expr != nullptr && err == 0);

}

The step() method is called each simulation timestep, which routes to the appropriate eval-
uation method based on the schedule type:

void step() {
const Real currentTime = TimeManager::getCurrent()->getTime();
const Real dt = TimeManager::getCurrent()->getTimeStepSize();

m_t_double = currentTime; // Updates for expression evaluation
m_dt_double = dt;

for (auto& schedule : m_schedules) {
if (!schedule.active) continue;

Real new_value;

// Determine value based on schedule type
if (schedule.use_expression) {

new_value = te_eval(schedule.compiled_expr);
} else {

if (schedule.use_step_function)
new_value = stepTimeline(...);

else
new_value = interpolateTimeline(...);

}

schedule.current_value = new_value;
applyParameterValue(schedule.fluidId, schedule.parameter_name, new_value);
}

}
}

The applyParameterValue() method routes parameter changes to the appropriate simula-
tion components.

1.2 Additions to SPlisHSPlasH files
In Simulation, we have to add a m_dynamicParameterSystem member variable, as well as

a updateDynamicParameters() method that calls the inner step() function.
Inside every TimeStep, at the end of the step() method, we add the line

sim->updateDynamicParameters();

Page 3



Luciano Casanova

In the Utilities subfolder we have to add some lines to the SceneParameterObjects and
the SceneLoader to add the Dynamic Parameters to the scene parsing workflow.

In SceneParameterObjects we create a DynamicParameterObject that stores the en-
tries from the scene json and we initialize its parameters.

By doing that, we can add to the Scene struct in SceneLoader a vector of DynamicParam-
eterObjects. Finally, we add some lines in the readScene function:

//////////////////////////////////////////////////////////////////////////
// read dynamic parameters
//////////////////////////////////////////////////////////////////////////
if (m_jsonData.find("DynamicParameters") != m_jsonData.end())
{

nlohmann::json dynParams = m_jsonData["DynamicParameters"];
for (auto& param : dynParams)
{

DynamicParameterObject* data = new DynamicParameterObject();
data->initParameters();
readParameterObject(param, data);
scene.dynamicParameters.push_back(data);

}
}

1.3 Additions to Simulator files
Finally, in SimulatorBase, we add the createDynamicParameters() method, which we

call from the buildModel() function. This is where we link the parsed scene to the simulation.

void SimulatorBase::createDynamicParameters() {
Simulation* sim = Simulation::getCurrent();
const Utilities::SceneLoader::Scene& scene =

SceneConfiguration::getCurrent()->getScene();↪→

//////////////////////////////////////////////////////////////////////////
// Dynamic parameters
//////////////////////////////////////////////////////////////////////////

if (scene.dynamicParameters.empty())
return;

if (sim->getDynamicParameterSystem() == nullptr)
{

DynamicParameterSystem* dps = new DynamicParameterSystem();
sim->setDynamicParameterSystem(dps);

}

DynamicParameterSystem* dps = sim->getDynamicParameterSystem();
for (unsigned int i = 0; i < scene.dynamicParameters.size(); i++)
{

DynamicParameterObject* data = scene.dynamicParameters[i];

const std::string& fluidId = data->fluidId;
const std::string& paramName = data->parameterName;
Real defaultValue = data->defaultValue;

Page 4



Luciano Casanova

if (!data->expression.empty())
{

dps->addExpressionSchedule(fluidId, paramName,
data->expression, defaultValue);↪→

}
else if (!data->timelineTimes.empty() &&

!data->timelineValues.empty())↪→

{
std::vector<Real> times =

parseCommaSeparatedString(data->timelineTimes);↪→

std::vector<Real> values =
parseCommaSeparatedString(data->timelineValues);↪→

if (times.size() != values.size()) {
LOG_WARN << "Timeline times and values have

different sizes for parameter: " << paramName;↪→

continue;
}

std::vector<std::pair<Real, Real>> timeline;
for (size_t i = 0; i < times.size(); ++i) {

timeline.push_back({ times[i], values[i] });
}

dps->addTimelineSchedule(fluidId, paramName, timeline,
defaultValue, data->stepFunction);↪→

}
}

}

Page 5


	Dynamic Parameters
	DynamicParameterSystem
	Additions to SPlisHSPlasH files
	Additions to Simulator files


