Luciano Casanova

Pull request : dynamicParameterSystem

Luciano Casanova

luciano.casanova@femto-st.fr

February 10, 2026

1 Dynamic Parameters

We implemented an option inside the scene json that allows to prescribe changes in all available
physical parameters from TimeStep, Viscosity and SurfaceTension methods. It should be straight-
forward to implement the same system for other type of methods (Elasticity, Vorticity, XSPH). The
syntax inside the scene is as follows:

{
"Configuration"
"Materials" : [{
"FluidModels"
"RigidBodies"
"DynamicParameters": [
{
"fluidId": "inner",
"parameterName": "viscosity",
"defaultValue": 0.0,
"expression" : "10.0 + 2.0 * sin(2.0 * t)"
3,
{
"fluidId": "inner",
"parameterName": "viscosityBoundary",
"defaultValue": 0.0,
"stepFunction": false,
"timelineTimes": "0.5, 1.0",
"timelineValues": "1.0, 2.0"
s
{
"fluidId": "inner",
"parameterName": "surfaceTensionBoundary",
"defaultValue": 50.0,
"stepFunction": true,
"timelineTimes": "1.0, 1.5, 2.0, 2.5, 3.0",
"timelineValues": "0.0, 50.0, 100.0, 200.0, 300.0"
3
]
}

Page 1


mailto:luciano.casanova@femto-st.fr

Luciano Casanova

Each Dynamic Parameter is linked to one fluidld, controls only one parameter (via its
parameterName), has a defaultValue and can change in two different ways. The first one is as a
timeline, which can be changed abruptly or be smoothly interpolated between the given timeline Val-
ues at their respective timelineTimes. The other possibility is via a mathematical expression that
is parsed using tinyexrpr.

1.1 DynamicParameterSystem

The DynamicParameterSystem allows simulation parameters to change dynamically dur-
ing runtime according to predefined schedules. This improves experiment repeatability by setting
parameter changes directly in the scene JSON file rather than requiring manual intervention.

The ParameterSchedule struct encapsulates all information needed to manage a single
parameter’s temporal evolution:

struct ParameterSchedule {

std: :string fluidId; // Target fluid identifier
std::string parameter_name; // Name of parameter to control
std::string expression; // Mathematical expression
std: :vector<std::pair<Real, Real>> timeline; // Time-value pairs
int current_timeline_index; // Tracker

bool use_expression; // Ezpression mode flag

bool use_step_function; // Step vs. interpolation flag
te_expr* compiled_expr; // Compiled expression object
Real current_value; // Current parameter value
Real default_value; // Initial wvalue

bool active; // Enable/disable flag

The DynamicParameterSystem maintains a collection of schedules and provides the in-
terface for adding, updating, and applying parameter changes. The system supports two types of
parameter schedules.

The first one is the timeline schedule. It can be used for gradual parameter transitions
(Interpolation mode, stepFunction = false) or for discrete parameter jumps (Step Function mode,
stepFunction = true).

bool addTimelineSchedule(const std::string& fluidld,
const std::string& paramName,
const std::vector<std::pair<Real, Real>>& timeline,
Real defaultValue,
bool stepFunction) ;

This function automatically orders the given timeline.
The second type of schedule is expression-based.

bool addExpressionSchedule(const std::string& fluidId,
const std::string& paramName,
const std::string& expression,
Real defaultValue);

When this function is called, the expression is parsed and compiled using tinyezpr:

Page 2



Luciano Casanova

bool compileExpression(ParameterSchedule& schedule) {
te_variable vars[] = {
{"t", &m_t_doublel}, // Current simulation time
{"dt", &m_dt_double} // Current timestep
}
int err;
schedule.compiled_expr = te_compile(schedule.expression.c_str(),
vars, 2, &err);
return (schedule.compiled_expr != nullptr && err == 0);

The step() method is called each simulation timestep, which routes to the appropriate eval-
uation method based on the schedule type:

void step() {
const Real currentTime = TimeManager: :getCurrent()->getTime() ;
const Real dt = TimeManager: :getCurrent()->getTimeStepSize();

m_t_double = currentTime; // Updates for expression evaluation
m_dt_double = dt;

for (auto& schedule : m_schedules) {
if (!schedule.active) continue;

Real new_value;

// Determine value based on schedule type
if (schedule.use_expression) {
new_value = te_eval(schedule.compiled_expr);
} else {
if (schedule.use_step_function)
new_value = stepTimeline(...);
else
new_value = interpolateTimeline(...);

3

schedule.current_value = new_value;
applyParameterValue(schedule.fluidId, schedule.parameter_name, new_value);

The applyParameterValue() method routes parameter changes to the appropriate simula-
tion components.

1.2 Additions to SPlisHSPlasH files

In Simulation, we have to add a m_ dynamicParameterSystem member variable, as well as
a updateDynamicParameters() method that calls the inner step() function.
Inside every TimeStep, at the end of the step() method, we add the line

sim->updateDynamicParameters() ;

Page 3



sup
MICRO:
CHz

Luciano Casanova

In the Utilities subfolder we have to add some lines to the SceneParameterOb jects and
the SceneLoader to add the Dynamic Parameters to the scene parsing workflow.

In SceneParameterObjects we create a DynamicParameterObject that stores the en-
tries from the scene json and we initialize its parameters.

By doing that, we can add to the Scene struct in SceneLoader a vector of DynamicParam-
eterObjects. Finally, we add some lines in the readScene function:

L1117 7777777777777 7777777777 77777777
// read dynamic parameters
LI77777777 7777777777777 777777777777777777777777777777777777777777777777777
if (m_jsonData.find("DynamicParameters") != m_jsonData.end())
{

nlohmann: : json dynParams = m_jsonData["DynamicParameters"];

for (auto& param : dynParams)

{
DynamicParameterObject* data = new DynamicParameterObject();
data->initParameters();
readParameterObject (param, data);
scene.dynamicParameters.push_back(data) ;

by

1.3 Additions to Simulator files

Finally, in SimulatorBase, we add the createDynamicParameters() method, which we
call from the buildModel() function. This is where we link the parsed scene to the simulation.

void SimulatorBase::createDynamicParameters() {
Simulation* sim = Simulation::getCurrent();
const Utilities::Sceneloader::Scene& scene =
— SceneConfiguration: :getCurrent()->getScene();

A A A A A A A A A A A a4

// Dynamic parameters

L1117 77 777777777777 7777777777777 777

if (scene.dynamicParameters.empty())

return;

if (sim->getDynamicParameterSystem() == nullptr)

{
DynamicParameterSystem* dps = new DynamicParameterSystem();
sim->setDynamicParameterSystem(dps) ;

¥

DynamicParameterSystem* dps = sim->getDynamicParameterSystem();
for (unsigned int i = 0; i < scene.dynamicParameters.size(); i++)
{

DynamicParameterObject* data = scene.dynamicParameters[i];

const std::string& fluidId = data->fluidId;
const std::string& paramName = data->parameterName;
Real defaultValue = data->defaultValue;

Page 4



Luciano Casanova

if (!data->expression.empty())

{
dps->addExpressionSchedule(fluidId, paramName,
— data->expression, defaultValue);

}
else if (!data->timelineTimes.empty() &&

— !data->timelineValues.empty())

{
std: :vector<Real> times =
- parseCommaSeparatedString(data->timelineTimes) ;
std: :vector<Real> values =
— parseCommaSeparatedString(data->timelineValues);
if (times.size() != values.size()) {
LOG_WARN << "Timeline times and values have
— different sizes for parameter: " << paramName;
continue;
¥
std::vector<std::pair<Real, Real>> timeline;
for (size_t 1 = 0; i < times.size(); ++i) {
timeline.push_back({ times[i], values[i] });
¥
dps->addTimelineSchedule(fluidIld, paramName, timeline,
— defaultValue, data->stepFunction);
¥

Page 5



	Dynamic Parameters
	DynamicParameterSystem
	Additions to SPlisHSPlasH files
	Additions to Simulator files


