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Abstract
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1 Introduction

The credibility revolution (Angrist and Pischke, 2009; Goldsmith-Pinkham, 2024) has transformed

empirical corporate finance. Researchers now routinely exploit quasi-experimental variation us-

ingmethods including instrumental variables, difference-in-differences, and regression disconti-

nuity designs. They do this to establish causal relationships between financing and real outcomes.

Thismethodological shift has produced estimates that are internally valid and statistically well de-

fined. But what do these estimates actually mean in financial economic terms?

Consider a concrete example. Rauh (2006) finds that corporate investment declinesbybetween

$0.60 and $0.70 for each dollar of mandatory pension contributions. Is this number a marginal

propensity to invest? A structural elasticity that would apply to other shocks? A parameter that

informs policy counterfactuals? The answer is unclear. Treatment effect methods identify local

average treatment effects (LATE) and related parameters with precise statistical interpretations

(Imbens and Angrist, 1994; Imbens, 2010). As stressed by Haile (2025), the economic content of

these objects is often ambiguous. Researchers frequently describe their estimates using language

like “elasticities,” “sensitivities,” or “marginal effects”. These terms seem to imply structural con-

tent that the statistical parametermay ormay not possess. We adapt his observation to a corporate

finance context.

The gap between statistical identification and economic interpretationmatters for several rea-

sons. First, is external validity. A treatment effect estimated for one populationmaynot generalize

to another if the underlying structural responses differ across groups (Deaton, 2010; Heckman and

Vytlacil, 2007). An estimate from junk rated firms may tell us little about investment grade firms

if the two populations have different constraint status. Second, is for policy counterfactuals. Pre-

dicting the effect of a proposed policy requires knowing whether the estimate reflects a stable

structural relationship or an average that is context specific. If a treatment effect reflects a partic-

ular mix of constrained and unconstrained firms, it may not apply to policies that target different

populations (Mogstad and Torgovitsky, 2024; Blandhol et al., 2025). Third, is for cross study com-

parisons. Suppose that two papers both estimate “the effect of financing on investment”. They

may identify different objects if their identifying variation affects different margins or different

subpopulations. Without a framework for translation, comparing estimates across studies is dif-

ficult.

This paper provides a framework for understanding what treatment effects measure in terms
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of economic primitives. We develop a simple structural model of investment with financial con-

straints inwhichfirms choose investment tomaximize profits and somefirms face bindingfinanc-

ing constraints while others do not. The model delivers a stark characterization. The structural

marginal response of investment to financing equals one for constrained firms. An additional

dollar of financing translates directly into an additional dollar of investment. It is zero for uncon-

strained firms, for whom financing capacity is slack.

The central result is that the usual treatment effects are weighted averages of these structural

responses across firms with heterogeneous constraint status. The Local Average Treatment Ef-

fect (LATE) identifies the share of constrained firms among compliers.1 It is not the structural

marginal response for any particular group. A treatment estimate of 0.65 does not mean that con-

strained firms invest $0.65 per dollar of financing. It means that approximately 65% of compliers

are financially constrained. But each of the constrained firms has a marginal response of one.

The remaining 35% of firms are unconstrained with a marginal response of zero. A Monte Carlo

simulation confirms this analytical result. The IV estimator recovers θC exactly, with negligible

bias and tight confidence intervals, across the full range of constraint shares.

This framework allows us to reconcile the seemingly different conclusions of Rauh (2006) and

Lemmon and Roberts (2010). Rauh’s sample of defined benefit pension sponsors have a range

of firms with different credit quality. His complier population contains a mixture of constrained

and unconstrained firms, producing an estimate of 0.65 that reflects θC ≈ 0.65. Consistent with

this interpretation, Rauh finds larger effects for firms without investment grade ratings. Lemmon

and Roberts study junk rated firms. This is a population that is predominantly constrained by

construction. When nearly all compliers are at corner solutions, the treatment effect estimate

approximates the structural marginal response. Both papers are thus consistent with a structural

marginal propensity to invest of unity for constrained firms. The difference in estimates reflects

sample composition, not different structural parameters.

This reconciliation points to the broader contribution of our paper. The goal is to help bridge

the gap between econometric identification and economic interpretation. We provide a frame-

work for convertingbetween treatment effects and structural parameters, for understandingwhen

they coincide, and for bounding structural objects when point identification is unavailable. The

framework is deliberately simple. It provides clean enough results to generate sharp predictions.
1All through this paper we use the term ‘complier’ in the standard LATE sense of Imbens and Angrist (1994). These

are firms whose financing capacity would change in response to the instrument.
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At the same time is is rich enough to capture major forces at work in corporate investment deci-

sions. We also examine the impact of relaxing the starkness of the basicmodel, and show how the

interpretations adjust accordingly.

The frameworkapplies broadly. To show thiswe survey anumberof influential quasi-experimental

studies spanning multiple countries, time periods, and identification strategies. These include

Khwaja and Mian (2008) on bank lending shocks in Pakistan, Chodorow-Reich (2014) on employ-

ment effects of lender health, Duchin et al. (2010) on the 2008 crisis, and Chaney et al. (2012) on

collateral channels. All studies make judgment calls, and it is always possible to second guess

some of those judgments. That is not our purpose. The empirical papers that we include are seri-

ous studies. We take their empirical results as reported. The purpose is to translate their evidence

frommultiple papers into a common interpretative framework.

Across all studies, the same essential pattern appears. Larger treatment effects are reported

for subsamplesmore likely to be constrained (small firms, low-ratedfirms, low-cashfirms). Effects

near zero are reported for likely unconstrained subsamples (large firms, investment-grade firms,

high-cash firms). This consistency is difficult to explain under alternative interpretations. But it

follows directly from our simple model.

The paper contributes to two literatures. First, we apply ideas from the econometric literature

on treatment effect interpretation (Heckman and Vytlacil, 2005; Imbens, 2010; Mogstad and Tor-

govitsky, 2024; Blandhol et al., 2025) to a canonical corporate finance problem (Fazzari et al., 1988;

Kaplan and Zingales, 1997; Almeida et al., 2004; Almeida and Campello, 2007; Farre-Mensa and

Ljungqvist, 2016). The model structure features concave production, convex adjustment costs, a

financing constraint thatmayormaynot bind. This is standard in the literature.2 Our contribution

is to make the marginal implications of this structure explicit and to connect them to treatment

effect estimands. We show that the LATE identifies the constraint share among compliers. This

result holds for the standard estimands including LATE, ATE, CATE, and the marginal treatment

effect of Heckman and Vytlacil (2005). Each identifies the probability of being constrained for a

specific subpopulation.

Second, the modern financing constraints literature starts with Fazzari et al. (1988). It stimu-

lated many papers, leading to a debate initiated by Kaplan and Zingales (1997). They argued that
2There is distinct approach to the problem built on dynamic models of the firm (Hennessy and Whited, 2007; Stre-

bulaev, 2007; Whited and Wu, 2006). Papers in that literature study much richer models of the firm in an effort to get
a model that matches moments in the data. Such models are often helpful for evaluating policy counterfactuals. The
models are sufficiently rich that typically numerical solutions are required. That is fine given their purpose. Here the
goal is different. We are trying to obtain a common understanding of the treatment effects studies.
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investment cash flow sensitivity does not monotonically reflect constraint severity. Under our bi-

nary model, this non-monotonicity does not arise. All constrained firms have identical marginal

responses. The more fundamental point of agreement is that the usual reduced form coefficient

does not directly measure constraint severity for individual firms. Our framework points to a dif-

ferent object; that is the constraint share among compliers. This is well defined regardless of how

constraint severity varies across firms. It does not require the ex ante classification of firmswhose

reliability has been sharply questionedbybothKaplan andZingales (1997) andbyFarre-Mensa and

Ljungqvist (2016).

Our framework shows that treatment effects on investment do not directly identify whether in-

dividual firms are constrained. They identify weighted averages that depend on the composition

of the complier population. The interpretation we provide is that treatment effects measure con-

straint shares. This is a revealed-preference characterization. It does not rely on ex ante classifi-

cation of firms using accounting ratios or text-basedmeasures. Accordingly it avoids the concerns

raised by Farre-Mensa and Ljungqvist (2016) about whether standard constraint proxies actually

identify constrained firms.

For empirical practice, our analysis has several implications. Researchers should be explicit

about the composition of their complier populations. Treatment effects that fall strictly between

zero and one should be interpreted as evidence of population heterogeneity, not as estimates of

a structural marginal response. Heterogeneity analysis by constraint proxies is of course already

standard in much of this literature. In our framework this is more than just a robustness exer-

cise. It is actually informative about structural parameters. Subsamples with treatment effects

approaching unity provide direct evidence on the structural marginal response. Subsamples with

effects near zero confirm that unconstrained firms do not respond to financing shocks.

The paper proceeds as follows. Section 2 develops the structuralmodel. Section 3 derives what

treatment effects identify in terms of the model’s primitives and presents a Monte Carlo illustra-

tion. Section 4 applies the framework to Rauh (2006) and Lemmon and Roberts (2010). Section 5

extends the analysis to the broader literature. Section 6 discusses why the constraint interpreta-

tion is supported by the evidence. Section 7 concludes.
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2 A Structural Model of Investment and Financing

This section develops a simple model of corporate investment with financial constraints. The

model delivers predictions about how investment responds to changes in financing capacity, pro-

viding a structural benchmark against which to interpret treatment effect estimates. The main

result is that the marginal response of investment to financing equals one for constrained firms

and zero for unconstrained firms.

2.1 Environment

Consider a firm choosing investment I to maximize profits subject to a financing constraint. The

firm solves

max
I≥0

Π(K + I)− C(I)− pI (1)

subject to:

I ≤ W +D (2)

where Π(·) is a profit function satisfying Π′ > 0 and Π′′ < 0, C(I) = γ
2 I

2 is a convex adjustment

cost with γ > 0, p is the price of capital, K is the existing capital stock,W is internal funds, and

D is debt capacity.

The financing constraint in equation (2) captures the essence of financial frictions. The firm

can fund investment using internal fundsW plus external debt up to capacityD. Equity issuance is

sufficiently costly that we abstract from it, or equivalently, the constraint already incorporates the

shadow cost of external equity. Themodel nests frictionless capitalmarkets: whenD is arbitrarily

large, the constraint never binds and financing does not limit investment.

The model is intentionally stylized. It abstracts frommulti-period dynamics, uncertainty, and

the endogenous determination of debt capacity. These simplifications isolate themechanism that

matters for interpreting treatment effects. That is the distinction between constrained and uncon-

strainedfirms. Themodel structure has concave production, convex adjustment costs, a financing

constraint that may or may not bind. These elements are standard in the literature from Fazzari

et al. (1988) through Almeida and Campello (2007). Our contribution is not themodel itself. It is to

show the marginal implications and their connection to treatment effect estimands. In that way

we aim to clarify the economic meaning of the estimates.
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2.2 Optimal Investment

Let Iunc denote the unconstrained optimum, which satisfies the first-order condition:

Π′(K + Iunc) = γIunc + p. (3)

This condition equates the marginal benefit of investment with its marginal cost. The uncon-

strained optimum depends on investment opportunities through Π′(·) but is independent of the

firm’s financial position.

Define constraint slack as

S ≡ W +D − Iunc. (4)

When S ≥ 0, the firm has sufficient funds to achieve its unconstrained optimum. When S < 0,

desired investment exceeds available financing and the constraint binds. Optimal investment is

I∗ =


Iunc if S ≥ 0 (unconstrained)

W +D if S < 0 (constrained).
(5)

Unconstrained firms invest at the first-best level Iunc. Constrained firms invest all available funds

W +D, which falls short of the first-best.

2.3 The Structural Marginal Response

The main structural object is the marginal response of investment to changes in financing capac-

ity.

Proposition 1 (Structural Response to Financing) The marginal effect of financing capacity on in-

vestment is

MR ≡ ∂I∗

∂F
=


0 if S ≥ 0 (unconstrained)

1 if S < 0 (constrained)
(6)

where F ∈ {W,D} denotes either internal funds or debt capacity.

The proof follows immediately from equation (5). For unconstrained firms, I∗ = Iunc, which

does not depend onW orD. For constrained firms, I∗ = W +D, so ∂I∗/∂W = ∂I∗/∂D = 1.

The economic intuition is straightforward. Unconstrained firms have slack financing capacity.

An additional dollar of internal funds or debt capacity does not change their investment because
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they are already at their optimal scale. Constrained firms are at a corner solution where invest-

ment is limited by available financing. An additional dollar relaxes the constraint and translates

directly into an additional dollar of investment.

For shocks to internal funds, this object is themarginal propensity to invest (MPI). For shocks

to debt capacity, it is the marginal response to debt (MRD). Despite the different terminology,

these are the same structural parameter:

MRstructural = MPIconstrained = MRDconstrained = 1. (7)

This equivalence is central to our empirical applications. Rauh (2006) identifiesMPI using shocks

to internal funds. Lemmon andRoberts (2010) identifiesMRD using shocks to debt capacity. Both

estimate the same structural object for constrained firms, using different sources of variation.

Figure 1 illustrates the result. The investment function has a kink at Iunc. Below the kink, each

dollar of financing translates to a dollar of investment. Above the kink, financing is slack.

Financing Capacity (W +D)

Investment (I∗)

Iunc

Iunc

M
R
=
1

MR = 0

Firm A (constrained)

Firm B (unconstrained)

0

Figure 1: The corner solution in optimal investment. The figure plots optimal investment I∗ as a
function of financing capacity (W+D) from equation (5). Whenfinancing capacity falls below the
unconstrainedoptimum Iunc, thefirm invests all available funds and themarginal response equals
one. When financing capacity exceeds Iunc, the firm invests at the first-best level and additional
financing is slack, so the marginal response equals zero. Firm A represents a constrained firm
(e.g., a below-investment-grade firm in Rauh’s sample) located on the 45-degree segment. Firm
B represents an unconstrained firm (e.g., an investment-grade firm) located on the flat segment.
Rauh’s baseline estimate of 0.65 reflects a weighted average: approximately 65% of compliers are
like Firm A withMR = 1, and 35% are like Firm B withMR = 0.
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2.4 Population Heterogeneity

Firms differ in their constraint status, and this heterogeneity is central to understanding what

treatment effects identify. Let θ ≡ P (S < 0) denote the population share of constrained firms.

The population average marginal response is

E

[
∂I∗

∂F

]
= θ · 1 + (1− θ) · 0 = θ. (8)

This average is strictly less than the structural marginal response for constrained firms whenever

some firms are unconstrained (θ < 1).

What determineswhether a firm is constrained? Fromequation (4), a firm is constrainedwhen

investment opportunities (captured byΠ′) are strong relative to available financing (W+D). Firms

with better investment opportunities, lower internal funds, or tighter debt capacity aremore likely

constrained. This maps naturally to observable characteristics: smaller firms, firms with lower

credit ratings, and firms with less cash are more likely to face binding financing constraints.

For applications involving debt capacity shocks, there is also an intensive margin. The elastic-

ity of investment with respect to debt capacity for constrained firms is

εD ≡ ∂I∗

∂D
· D
I∗

=
D

W +D
. (9)

This elasticity equals the debt share of investment financing. Constrained firms that rely more

heavily on debt have larger elasticities, but all have the same marginal response of one. We focus

on themarginal response rather than the elasticity because themarginal response ismore directly

comparable across shock types.

2.5 Scaling and Empirical Specification

In empirical practice, researchers commonly scale variables by lagged assets to control for firm

size. Define i = I/A, w = W/A, and d = D/A where A is a predetermined scaling factor such

as lagged assets. For constrained firms, i∗ = w + d implies ∂i∗/∂w = ∂i∗/∂d = 1. For uncon-

strained firms, i∗ = iunc where iunc does not depend onw or d, so both derivatives equal zero. The

structural interpretation is therefore valid under the standard scaling conventions used in the em-

pirical literature. The treatment effect identifies the share of constrained firms among compliers

regardless of whether the regression is estimated in levels or scaled by assets.
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2.6 Discussion

Several features of the model deserve comment.

The marginal response is binary: zero or one. This follows from the corner solution and is

a simplifying assumption. In models with smooth financing costs, the marginal response would

vary continuously with constraint severity, with more severely constrained firms having higher

responses. The qualitative insight survives: reduced-form estimates average over heterogeneous

structural responses, and this averaging attenuates estimates relative to the response for themost

constrained firms. Section 6 provides evidence that the binary characterization fits the data well.

Themodel treats constraint status as given. In practice, constraint statusmaybe endogenous—

firms choose financial policies that affect future financing capacity. This endogeneity does not

invalidate the framework as long as the instruments used in empirical applications are orthogonal

to unobserved determinants of constraint status. The requirement is that variation in financing is

exogenous, not that constraint status itself is exogenous.

Themodel assumes constrained firms invest all available funds. If constrained firms hold pre-

cautionary cash, the marginal response would be below one. Lemmon and Roberts (2010) find no

evidence of increased cash holdings among their treated firms and report that substitution to al-

ternative financingwas “extremely limited.” More generally, partial substitution canbe accommo-

dated by reinterpreting the structural parameter as themarginal response net of substitution. The

main insight remains. The treatment effects identify weighted averages of structural responses.

Understanding the weights requires understanding the composition of the complier population.

3 What Do Treatment Effects Identify?

The previous section characterized the structural marginal response of investment to financing.

It is one for constrained firms, zero for unconstrained firms. This section asks what treatment

effects identify in terms of this structural parameter. The central result is that treatment effects

are weighted averages of structural responses. The weights are determined by the composition of

the complier population.

3.1 Setup

Consider a shock that affects financing for some firms. Let Zi ∈ {0, 1} indicate whether firm i is

exposed to the shock. Exposure changes either debt capacityDi or internal fundsWi by an amount
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∆i. For concreteness, suppose Zi = 1 indicates a negative financing shock, as in both of our main

empirical applications.

The standard instrumental variables assumptions are 1) Exclusion. Zi affects investment only

through the financing channel. 2) Relevance. E[∆i|Zi = 1] ̸= E[∆i|Zi = 0]. 3) Monotonicity. The

shock weakly decreases (or increases) financing for all affected firms. There are no defiers.

Under these assumptions, the instrumental variables estimator identifies the local average

treatment effect (LATE) for the subpopulation of compliers. These are the firms whose financ-

ing is affected by the instrument (Imbens and Angrist, 1994). The LATE is a well defined statistical

object, but its economic content depends on the structural model used to interpret the estimates

(Heckman and Vytlacil, 2007; Haile, 2025).

3.2 LATE in the Structural Model

Within our framework, we can show exactly what LATE identifies.

Proposition 2 (LATE Decomposition) The local average treatment effect of financing on investment

equals:

τLATE = E

[
∂I∗

∂F

∣∣∣∣ Complier] = P (S < 0 | Complier) · 1 + P (S ≥ 0 | Complier) · 0. (10)

Simplifying,

τLATE = θC (11)

where θC ≡ P (S < 0 | Complier) is the share of constrained firms among compliers.

Theproof followsdirectly from themodel. Amongcompliers, constrainedfirmshave∂I∗/∂F =

1 andunconstrainedfirmshave ∂I∗/∂F = 0. The LATE is the average of these responses, weighted

by the shares of each type among compliers. Since the responses are binary, this average equals

the share with response equal to one; that is the share of constrained compliers.

This result has a sharp interpretation. The LATE does not identify the structural marginal re-

sponse for constrained firms. That parameter just equals one. It does not identify the population

share of constrained firms. That parameter is θ. It identifies the constraint share among the spe-

cific subpopulation of compliers. It answers the following question. What fraction of firms whose

financing is affected by the instrument are financially constrained?

10



The complier population may differ systematically from the overall population. Instruments

that exploit financial distress such as pension underfunding, credit supply contractions, may dis-

proportionately affect constrained firms. If so, θC > θ. Instruments that affect financing broadly

may have complier populations thatmirror the general population. If so θC ≈ θ. Without knowing

which case applies, the magnitude of a treatment effect cannot be interpreted structurally. The

statistics does not by itself provide the meaning. That comes from the economic model grounded

in a reasonable interpretation of the actual context.

3.3 When Does LATE Equal the Structural Parameter?

LATE equals the structuralmarginal response for constrained firms if and only if all compliers are

constrained.

τLATE = 1 ⇐⇒ θC = 1. (12)

This condition is satisfied in threemain situations. The instrumentmight specifically targets con-

strained firms. The entire population could be constrained. Selection into treatment could be

perfectly correlated with constraint status.

In practice, LATE typically falls below one because the complier population includes some

unconstrained firms. An estimate of τ̂ = 0.65 implies that approximately 65% of compliers are

constrained. The remaining 35% are unconstrained. The unconstrained firms contribute zero to

the average, and pull the estimate below the structural parameter.

3.4 Other Treatment Effect Parameters

The same logic applies to other common estimands.

Average Treatment Effect (ATE). Random assignment of financing shocks to all firms would

identify

τATE = E

[
∂I∗

∂F

]
= θ, (13)

the population share of constrained firms. The ATE differs from LATE whenever compliers have

a different constraint share than the population (θC ̸= θ).
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Table 1: What Treatment Effect Estimands Identify
Estimand Structural interpretation Identifies EqualsMRstructural when
LATE Constraint share among compliers θC All compliers constrained
ATE Constraint share in population θ All firms constrained
CATE(X) Constraint probability givenX P (S < 0 | X) X fully determines constraint
MTE(u) Constraint probability at quantile u P (S < 0 | U=u) All firms at u constrained

Notes: The structural marginal response equals one for constrained firms and zero for unconstrained firms.
Each estimand identifies the probability of being constrained for a particular subpopulation: compliers
(LATE), the full population (ATE), firms with characteristics X (CATE), or firms at propensity score quan-
tile u (MTE). Constraint slack is S ≡ W +D − Iunc. A firm is constrained when S < 0.

Conditional Average Treatment Effect (CATE). Estimating treatment effects conditional on ob-

servable characteristicsX yields

τ(X) = E

[
∂I∗

∂F

∣∣∣∣ X

]
= P (S < 0 | X). (14)

The CATE for firms with characteristicsX equals the probability that such firms are constrained.

IfX includes determinants of constraint status such as firm size, credit rating, and cash holdings,

then variation in τ(X) reveals structural heterogeneity. Finding larger effects for smaller, lower-

rated, or cash-poor firms is consistent with the model. These firms are more likely constrained,

so a higher share of them have ∂I∗/∂F = 1.

Marginal Treatment Effect (MTE). With continuous variation in treatment intensity, one can

estimate the marginal treatment effect (Heckman and Vytlacil, 2005).

MTE(u) = E

[
∂I∗

∂F

∣∣∣∣ U = u

]
= P (S < 0 | U = u) (15)

where U indexes unobserved resistance to treatment. If firms with low resistance are more likely

constrained, theMTE is decreasing in u. Themost responsive firms are also themost constrained.

Table 1 summarizes the mapping from estimands to structural parameters. Each estimand

identifies the probability of being constrained for a specific subpopulation. None directly identi-

fies the structural marginal response.
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3.5 Recovering Structural Parameters

Given a LATE estimate τ̂ , can we recover the structural marginal response for constrained firms?

Yes, if we know or can estimate the constraint share among compliers.

M̂Rstructural =
τ̂

θ̂C
. (16)

If the constraint share is unknown, we can bound the structural parameter. Since 0 ≤ θC ≤ 1 and

MRstructural = 1 for constrained firms in our model,

τ̂ ≤ MRstructural ≤ 1. (17)

The lower bound is the LATE itself, attained when all compliers are constrained (θC = 1). The

upper bound is one. An estimate of τ̂ = 0.65 implies that the structural marginal response lies

between 0.65 and 1.

These bounds can be tightened using subsample estimates. If low-rated firms have τ̂low =

0.84 and high-rated firms have τ̂high = 0.50, the pattern suggests that low-rated firms are more

constrained. Under the assumption that nearly all low-rated compliers are constrained (θC,low ≈

1), the estimate τ̂low ≈ 0.84 provides a tighter lower bound. Alternatively, it implies that even

among low-rated firms, approximately 16% are unconstrained.

3.6 AMonte Carlo Illustration

To illustrate Proposition 2, we simulate the IV estimator in the structural model and verify that it

recovers θC rather than the structural marginal response.

For each value of θC on a grid from 0.05 to 0.95, we draw N = 1,000 firms. Each firm is in-

dependently assigned constraint status: constrained with probability θC and unconstrained with

probability 1− θC . Constrained firms haveMRi = 1; unconstrained firms haveMRi = 0. A unit

financing shock is applied to all firms. The investment response is∆Ii = MRi ·∆F , so constrained

firms increase investment by one dollar and unconstrained firms do not respond. The IV (Wald)

estimator is τ̂ = ∆I/∆F , the sample mean of the marginal responses. We repeat this procedure

500 times at each grid point.

Figure 2 plots the results. The solid line is the theoretical prediction τLATE = θC . The blue

circles areMonte Carlomeans, and the shaded band is the 90%Monte Carlo interval. Two features
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are clear. First, the IV estimator is unbiased. The Monte Carlo means lie on the 45-degree line at

every grid point, with bias below 0.001 everywhere. Second, the estimator is precise. The 90%

interval never exceeds±0.03, reflecting a maximum standard error of
√
θC(1− θC)/N ≈ 0.016 at

θC = 0.5.

The red squares in Figure 2 locate four empirical studies along the 45-degree line. Chaney et al.

(2012), has an estimate of 0.06 and it appears near the origin. Their sample of large publicly traded

firms is mostly unconstrained. Khwaja and Mian (2008) at 0.60 and Rauh (2006) at 0.65 occupy

themiddle, reflectingmixed complier populations. Lemmon and Roberts (2010) at approximately

0.97 appears near the upper corner, reflecting a predominantly constrained sample of junk-rated

firms. These studies differ in their position along the 45-degree line not in their distance from

it. They differ in the composition of their complier populations. All are consistent with the same

structural marginal response of unity.

Figure 3 displays the sampling distribution of the IV estimator at four selected values of θC : 0.10

(mostly unconstrained), 0.35 (mixed), 0.65 (comparable to Rauh’s baseline), and 0.95 (comparable

to Lemmon and Roberts). Each distribution is centered on the true θC with no detectable bias and

is approximately normal, as expected from the central limit theorem applied to sample means of

binary outcomes.

The simulation confirms the analytical result. The IV estimator does not recover the structural

marginal response for constrained firms, nor for unconstrained firms. It recovers θC , the share

of constrained firms among compliers. An estimate of τ̂ = 0.65 is not a noisy estimate of one,

attenuated by econometric issues. It is a precise estimate of the probability that a complier is

financially constrained. The next section applies this perspective to two influential papers.

4 Empirical Applications

This section applies the framework to two influential papers that estimate the causal effect of fi-

nancing on corporate investment. Rauh (2006) finds that investment declines by approximately

$0.60–$0.70 for each dollar of mandatory pension contributions. Lemmon and Roberts (2010) find

that investment declined nearly one-for-one with the contraction in debt issuance. Our frame-

work provides a unified interpretation. Both papers estimate the same structural parameter. It

is a marginal response of one for constrained firms. Their different estimates reflect different

complier populations.
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Figure 2: IV estimates recover the constraint share. The solid line is the theoretical prediction
τLATE = θC from Proposition 2. Blue circles are Monte Carlo means across 500 replications with
N = 1,000 firms. The shaded band is the 90%Monte Carlo interval. Red squares locate empirical
estimates: Chaney et al. (2012) at 0.06, Khwaja and Mian (2008) at 0.60, Rauh (2006) at 0.65, and
Lemmon and Roberts (2010) at 0.97. Cross-study differences reflect variation in complier compo-
sition, not in structural parameters.

4.1 Rauh (2006): Pension Contributions and Investment

4.1.1 Setting and Identification

Rauh (2006) studies how mandatory contributions to defined-benefit pension plans affect corpo-

rate investment. U.S. pension funding rules create sharp nonlinearities in required contributions:

when a plan’s funding ratio falls below regulatory thresholds, mandatory contributions increase

discontinuously. The identification strategy exploits the interaction of funding ratios with unex-

pected asset returns that push plans across these thresholds. The exclusion restriction requires

that pension funding shocks affect investment only through their impact on internal funds. The
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Figure 3: Sampling Distribution of IV Estimates by Constraint Share

Figure 3: Sampling distribution of the IV estimator at four constraint shares. Each panel displays
500 Monte Carlo replications with N = 1,000 firms. The dashed line marks the true θC ; the solid
linemarks theMonte Carlomean. From left to right: θC = 0.10, 0.35, 0.65, and 0.95. The estimator
is unbiased and approximately normal at all values, with dispersion governed by

√
θC(1− θC)/N .

sample covers firms sponsoring defined-benefit pension plans during 1990–1998.

The IV estimates indicate that a dollar increase in mandatory contributions reduces capital

expenditures by approximately $0.60–$0.70.3 Crucially, the paper reports substantial heterogene-

ity by credit rating. The sensitivity of investment to mandatory contributions is larger for firms

without an investment-grade rating.4

4.1.2 Interpretation Through the Framework

Rauh estimates the marginal propensity to invest out of internal funds, τ̂Rauh ≈ 0.65. The model

predicts that thismarginal propensity equals one for constrainedfirmsand zero for unconstrained

firms. Applying Proposition 2, the IV estimate identifies the share of constrained firms among

compliers.

τ̂Rauh ≈ 0.65 =⇒ θ̂C ≈ 0.65. (18)

Approximately 65% of compliers are financially constrained, each withMPI = 1. The remaining

35% are unconstrained withMPI = 0.

The heterogeneity by credit rating provides a consistency check. Firms without investment-

grade ratings are more likely constrained, so our framework predicts a higher constraint share

among compliers in this subgroup; θ̂C,low-rated > θ̂C,high-rated. This is exactly what the data show.

For the subsample most likely constrained, the estimate moves closer to one, consistent with a
3Rauh (2006), Table IV, p. 54, reports IV coefficients ranging from −0.60 to −0.72 across specifications. OLS coeffi-

cients on cashfloware approximately 0.10, illustrating attenuation bias frommeasurement error (Erickson andWhited,
2000) and simultaneity.

4See Rauh (2006), Table VI, p. 63.
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higher fraction of compliers at corner solutions.

Under ourmodel, the structuralmarginal propensity to invest for constrainedfirms isMPIconstrained =

1. Rauh’s baseline estimate of 0.65 understates this structural parameter because the complier

population includes unconstrained firms who contribute zeros to the average.

4.2 Lemmon and Roberts (2010): Credit Supply Shocks

4.2.1 Setting and Identification

Lemmon and Roberts (2010) study how exogenous contractions in below-investment-grade credit

supply affect corporate financing and investment. They exploit three near concurrent shocks in

1989–1990: the collapse of Drexel Burnham Lambert, the passage of FIRREA (which required sav-

ings and loans to liquidate junk bond holdings), and changes inNAIC guidelines that led insurance

companies to retreat from below-investment-grade private placements.5

The identification strategy uses difference-in-differences, comparing below-investment-grade

firms (treatment) to propensity-score-matched unrated firms (control) before and after 1989. Net

debt issuances by treated firms decreased by approximately 5–6% of assets relative to the con-

trol group.6 The paper finds “almost no substitution” to alternative financing sources, and the

consequence is “an almost one-for-one decline in net investment with the decline in net debt is-

suances.”7

4.2.2 Interpretation Through the Framework

Lemmon and Roberts estimate the marginal response to debt capacity, τ̂LR ≈ 1. Why is this esti-

mate approximately one, whereas Rauh’s is 0.65? The answer lies in the composition of the treated

sample.8

The treatment group consists entirely of below-investment-grade firms. This is a population

that, by definition, faces significant financing frictions. In our framework, the probability of being
5See Lemmon and Roberts (2010), pp. 556–564, for a detailed discussion of each event.
6Lemmon and Roberts (2010), Table 4, Panel A, p. 574. The model is expressed in terms of debt capacityD, a stock.

Lemmon and Roberts measure debt issuance, a flow. For constrained firms at the corner, changes in debt capacity
translate one-for-one into changes in issuance, so the distinction does not affect the structural interpretation.

7Lemmon and Roberts (2010), p. 555.
8Strictly speaking, their difference-in-differences design estimates the average treatment effect on the treated (ATT)

rather than LATE. Under ourmodel, if the treated population is predominantly constrained, the ATT approximates the
structural marginal response. We use compliers broadly to refer to firms whose behavior is affected by the financing
shock.
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constrained among these firms is high.

θC,junk ≈ 1 =⇒ τ̂LR ≈ θC,junk · 1 ≈ 1. (19)

Whennearly all compliers are constrained, the treatment effect approximates the structuralmarginal

response.

The limited substitution finding reinforces this interpretation. Lemmon and Roberts empha-

size that treated firms could not substitute to bank debt, equity, or internal funds. In the model,

this is precisely what we expect from constrained firms. They have already exhausted cheaper

financing sources, so a reduction in debt capacity translates directly into reduced investment. Un-

constrained firms, by contrast, would have slack in other sources and could substitute away from

the affected margin.

4.3 Reconciliation

Table 2 presents the two studies side by side. The difference in point estimates reflects differences

in sample composition rather than different structural parameters. Rauh’s sample covers firms

with a range of credit qualities. That means he has a complier population that mixes constrained

and unconstrained firms. His estimate of 0.65 implies that roughly 65% of compliers are at corner

solutions. Lemmon and Roberts study junk-rated firms exclusively. That is a population that is

predominantly constrained by construction. When nearly all compliers have amarginal response

of one, the treatment estimate approximates the structural parameter.

The heterogeneity evidence in both papers provides a consistency check. Rauh finds larger

effects for firms without investment-grade ratings, exactly as the framework predicts for a popu-

lationwith a higher constraint share. Lemmon andRoberts document that treated firms exhibited

limited substitution to alternative financing, preciselywhatwe expect fromconstrainedfirmswho

have already exhausted cheaper funding options. Higher treatment effects for populations more

likely constrained, combined with limited substitution behavior; supports the idea that both pa-

pers identify the same structural relationship. It is a marginal propensity to invest of unity for

financially constrained firms.

The reconciliation has implications for interpreting existing estimates and designing future

research.

First, it validates the structural framework. The predicted pattern of heterogeneity (larger
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Table 2: Reconciling Rauh (2006) and Lemmon & Roberts (2010)
Rauh (2006) Lemmon & Roberts (2010)

Financing shock Mandatory pension contributions Junk bond market collapse

Identification IV: Pension funding rules DiD: Credit supply shocks

Sample DB pension sponsors Below-investment-grade
(all credit ratings) firms only

Baseline estimate 0.60–0.70 ≈ 1.0

Heterogeneity Larger effects for Limited substitution to
lower-rated firms alternative financing

Implied θC 0.60–0.70 ≈ 1.0
(mixed population) (predominantly constrained)

StructuralMR 1.0 1.0

Notes: Both papers estimate the causal effect of financing on investment using plausibly exogenous varia-
tion. Rauh’s IV estimate of 0.60–0.70 reflects a complier population that includes both constrained and uncon-
strained firms; the estimate identifies θC among compliers. Lemmon and Roberts’ near-unity estimate re-
flects a predominantly constrained sample. Under the framework, both are consistent withMRstructural = 1
for constrained firms. DiD = difference-in-differences; DB = defined benefit; FIRREA = Financial Institutions
Reform, Recovery, and Enforcement Act of 1989.

effects for more constrained subsamples) matches the observed pattern in both papers, using dif-

ferent instruments, different samples, and different outcome measures. The fact that estimates

from two distinct settings can be reconciled within a single framework provides evidence for the

framework itself.

Second, the analysis highlights the importance of understanding complier populations. Rauh’s

instrument (pension funding shocks) affects firms spanning the constraint distribution. Lem-

mon and Roberts’ instrument ( junk bond market collapse) affects only firms reliant on below-

investment-grade debt, i.e. a predominantly constrained population. Without attention to this

selection, one might mistakenly conclude that the structural relationship between financing and

investment differs across settings.

Third, the framework clarifies external validity. Generalizing either estimate to a new popula-

tion requires understanding the constraint share in that population. A policy targeting investment

grade firms would likely have smaller effects than either paper estimates. That is because a larger

fraction of affected firmswould be unconstrained. A policy targeting small, cash poor firmsmight

have effects closer to one.
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5 The Framework Applied to the Broader Literature

The reconciliation of Rauh (2006) and Lemmon and Roberts (2010) in Section 4 shows the frame-

work for two specifichighprofile papers. This section shows that the same logic organizes findings

across a wider body of quasi-experimental research on financing and real outcomes. The central

prediction is that treatment effects should be larger when complier populations contain higher

shares of constrained firms. We first work through Khwaja and Mian (2008) in detail. We can do

that because their unusually rich heterogeneity analysis by firm size provides clean information.

We then survey additional studies more briefly. Table 4 summarizes the evidence.

It should be stressed that each paper use somewhat different language to describe their results.

The purpose here is not to take issue with the description of the results in any particular paper per

se. Again, these are serious studies. The purpose is to provide a framework that provides a unified

economic interpretation across papers in a particularly simple manner.

5.1 A Detailed Example: Khwaja andMian (2008)

Khwaja and Mian (2008) exploit liquidity shocks to Pakistani banks induced by unanticipated nu-

clear tests in May 1998. Banks with dollar denominated deposits experienced runs when the gov-

ernment restricted dollar withdrawals. Using loan level data with firm fixed effects, they estimate

how a bank’s liquidity shock affects its lending to a given firm, holding constant borrowing from

other banks. The baseline estimate is that a 1 percent larger decline in bank liquidity reduces

lending to the same firm by 0.6 percent.

The paper’s key result for our purposes appears in Figure VII, which plots the treatment effect

separately for each firm size decile. The pattern is striking and maps directly into the model. For

the largest firms (top three deciles), the effect on total borrowing is “almost zero.” For smaller

firms, effects are substantial and increase as firm size decreases. The pattern is monotonically

declining in firm size.

Under the framework, the treatment effect for size decile d identifies the constraint share in

that decile.

τ̂d = θ̂C,d · 1 + (1− θ̂C,d) · 0 = θ̂C,d. (20)

Table 3 reports the implied constraint shares. The near-zero effect for large firms implies θ̂C ≈ 0

in this group. That is essentially all large compliers are unconstrained. They have slack financing

capacity and substitute across lenders when one bank contracts. The substantial effects for small
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Table 3: Implied Constraint Shares by Firm Size: Khwaja and Mian (2008)
Size Group Deciles Estimated τ̂ Implied θ̂C
Largest firms 8–10 ≈ 0 ≈ 0%
Medium-large 5–7 ≈ 0.2–0.4 ≈ 20–40%
Medium-small 3–4 ≈ 0.5–0.6 ≈ 50–60%
Smallest firms 1–2 ≈ 0.6–0.8 ≈ 60–80%
Full sample 1–10 0.6 60%

Notes: Treatment effects are approximate values from Figure VII of Khwaja andMian (2008). Implied
constraint shares follow from equation (20) under the assumption thatMRC = 1 andMRU = 0. The
full-sample estimate of 0.6 is from page 1413 of that paper.

firms imply θ̂C in the range of 60 to 80%. Most small compliers are constrained. They lack alterna-

tive financing sources, so the bank specific shock translates directly into reduced total borrowing.

The full sample estimate of 0.6 is a weighted average.

τ̂full =
10∑
d=1

ωd · τ̂d = 0.6 (21)

where ωd is the share of compliers in decile d.

This example shows several basic features. The aggregate estimate of 0.6 does not identify a

structural parameter. It identifies the constraint share among compliers in the full sample. The

monotonic relationship between firm size and treatment effects traces out variation in θC across

subpopulations, exactly as the model predicts. The subsample estimates for the largest firms

(τ̂ ≈ 0) and smallest firms (τ̂ ≈ 0.6–0.8) approach the structural bounds of zero and one. That

is consistent with the binary marginal response.

5.2 Additional Evidence

Table 4 surveys additional quasi-experimental studies. Rather than discuss each in detail, wehigh-

light the common pattern predicted by the framework. We see larger effects for likely constrained

subsamples, and effects near zero for likely unconstrained subsamples.

Bank lending and employment. Chodorow-Reich (2014) extends the bank lending channel to

employment during the 2008–09 crisis. Using pre-crisis lender health as a source of exogenous

variation, he finds economically and statistically significant effects on employment at small and

medium firms. He cannot reject zero effect at the largest or most transparent firms. This binary

pattern matches the model’s prediction that firms are either at corner solutions withMR = 1 or
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Table 4: Heterogeneity in Treatment Effects Across the Literature
Paper Baseline estimate Constrained subsample Unconstrained subsample
Rauh (2006) 0.60–0.70 Low-rated: higher IG-rated: lower
Lemmon-Roberts (2010) ≈ 1.0 Junk sample —
Khwaja-Mian (2008) 0.6 Small: 0.6–0.8 Large: ≈ 0
Chodorow-Reich (2014) Significant Small/med: sig. Large: zero
Duchin et al. (2010) Significant Low cash: 2× High cash
Campello et al. (2010) 9% planned cut Constrained CFOs: 86% bypassed projects Unconstrained: 0.4% cut
Almeida et al. (2012) 2.5 ppt decline Unrated: larger Rated
Gan (2007) 0.08 High lev.: larger Low lev.
Chaney et al. (2012) 0.06 Small: larger Large
Peek-Rosengren (2000) Significant High exp.: larger Low exp.

Notes: “Estimate” reports the baseline treatment effect. “Constrained” and “Unconstrained” summarize hetero-
geneity by constraint proxies. All studies find larger effects for likely constrained subsamples, consistent with
the prediction that treatment effects identify constraint shares among compliers. IG = investment grade; lev. =
leverage; exp. = exposure.

at interior solutions withMR = 0.

Credit supplycontractions. Several papers study real effects of the 2007–08financial crisis. Duchin

et al. (2010) find that investment declines were greatest for firms with low cash reserves, with the

bottom tercile experiencing declines roughly twice as large as the top tercile. Campello et al.

(2010) survey 1,050 CFOs during December 2008 and report that constrained U.S. firms planned

to cut capital spending by approximately 9%, compared to 0.4% for unconstrained firms; 86% of

self-identified constrained U.S. CFOs reported bypassing attractive investment projects. Almeida

et al. (2012) exploit variation in debt maturity at the crisis onset. Firms with long-term debt ma-

turing right after the third quarter of 2007 cut their investment-to-capital ratio by 2.5 percentage

points more than otherwise similar firms, with larger effects for smaller and unrated firms.

Collateral channels. Gan (2007) studies Japanese land price declines as a collateral shock, find-

ing larger effects for high-leverage and low-liquidity firms. Chaney et al. (2012) estimate that U.S.

corporations invest only $0.06 per dollar of real estate collateral. This is an estimate well below

unity. It implies most publicly traded firms are unconstrained with respect to this margin. Effects

are concentrated among smaller firms without bond market access, consistent with higher θC in

those subsamples. Peek and Rosengren (2000) exploit the Japanese banking crisis as a loan supply

shock transmitted to U.S. markets, finding larger effects in markets with greater Japanese bank

penetration.
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5.3 Discussion

Despite differences in countries, time periods, identification strategies, and outcome variables,

Table 4 reveals a consistent pattern. Effects are larger for subsamples likely to be constrained and

smaller or zero for likely unconstrained subsamples. When complier populations are predomi-

nantly constrained, estimates approach unity; when they include many unconstrained firms, es-

timates are attenuated toward zero.

This consistency is informative about the structural model. If treatment effects measured

marginal responses that varied continuously for reasons unrelated to constraints, there would

be no reason for the same firm characteristics—size, credit rating, cash holdings, bond market

access—to predict larger effects across such diverse settings. The fact that they do supports the

interpretation that treatment effects identify constraint shares rather than structural elasticities.

The evidence also clarifies external validity. An estimate from one population does not auto-

matically apply to another if constraint shares differ. A policy targeting investment-grade firms

would likely produce smaller effects than estimates from junk-rated samples suggest, because a

larger fraction of affected firms would be unconstrained. Conversely, a policy targeting small,

cash-poor firms might produce effects closer to one. The framework provides a principled ba-

sis for such adjustments by linking treatment effect magnitudes to the composition of complier

populations.

6 Testing the Binary Model Specification

Our framework interprets treatment effect coefficients as constraint shares amongcompliers rather

than structural marginal responses. This interpretation depends on the model. A natural objec-

tion is that somealternativemodelmight justify reading the coefficient as a truemarginal response

∂I/∂F . This section argues that the constraint interpretation is not merely one possible reading

of the evidence. It is the interpretation most consistent with the empirical patterns documented

in Sections 4 and 5.

6.1 Qualitative Evidence: Three Facts

The studies surveyed in Table 4 establishes three facts that any interpretation ought to account

for.
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Fact 1: Effects for unconstrained subsamples are approximately zero. Across all studies, esti-

mates for likely unconstrainedfirms (large firms, firmswith high cash holdings, investment-grade

ratings, or bondmarket access) are consistently close to zero and often statistically indistinguish-

able from it. Under a marginal response interpretation, this would require that these firms have

near zero marginal products of investment. That is economically implausible. These firms have

valuable investment opportunities. They simply do not need the marginal source of financing to

pursue them. Under the constraint interpretation, the finding is natural. The unconstrained firms

are at interior solutions where financing shocks do not affect investment.

Fact 2: Effects for constrained subsamples approach unity. Estimates for likely constrained

firms (small firms, junk-rated firms, firms with low cash or no bond market access) are consis-

tently larger, and in the most constrained samples approach one. Under a marginal response

interpretation, this would require that constrained firms happen to have a marginal product of

investment exactly equal to one. But investment opportunities vary across firms and industries.

There is no economic reason for this particular value to arise generically. Under the constraint

interpretation, the finding follows directly. Constrained firms invest every dollar of available fi-

nancing. So investment moves one-for-one with financing regardless of the marginal product.

Fact 3: Thepattern ismonotonic andconsistent across settings. The relationship between con-

straint proxies and treatment effects is monotonic. More constrained subsamples always exhibit

larger effects. This holds across countries (U.S., Pakistan, Japan), decades (1990s, 2000s, 2008

crisis), identification strategies (IV, DiD, matching), and outcome variables (investment, employ-

ment, lending). Under a marginal response interpretation, this consistency would be surprising.

Why should the marginal product of investment covary with firm size, cash holdings, and credit

ratings in exactly the same way across all these settings? But under the constraint interpretation,

the consistency is expected. The same characteristics that predict financial constraints also pre-

dict larger treatment effects. That is because the treatment effect measures the constraint share.

6.2 Formal Diagnostic Tests (Convergence and Variance)

The binary and smooth models make different predictions about the distribution of individual

treatment effects. Under our binary model, τi ∈ {0, 1}. Each firm either invests every marginal

dollar or does not respond at all. Subgroup estimates are weighted averages of zeros and ones.
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So they can take intermediate values, but the underlying individual effects are concentrated at

two mass points. Under the smooth model, τi = ∂Ii/∂F varies continuously. The individual ef-

fects need not cluster at any particular values. Appendix D provides complete derivations for the

variance diagnostic developed in this section.

Anatural approach to distinguishing thesemodelswould decompose the variance of treatment

effects into within-group and between-group components. Then check whether the components

add up to the Bernoulli benchmark θ̄C(1− θ̄C). As we show in Appendix D, this approach has no

power. When the within-group variance is computed from subgroup means using the Bernoulli

formula τ̂g(1 − τ̂g), the resulting decomposition is an algebraic identity that holds for any distri-

bution of individual effects, not just the Bernoulli. The overstatement of within-group variance

under the smooth model is exactly offset by the corresponding overstatement of total variance.

The decomposition cannot distinguish the two models.

Two alternative diagnostics do have power.

6.2.1 Convergence to Binary Bounds

The sharpest distinction between themodels concerns the behavior of subgroup estimates as con-

ditioning on constraint relevant observables becomes finer.

Under the binary model, individual treatment effects take values in {0, 1}. As the partition of

firms into subgroups becomes sufficiently fine that each subgroup is homogeneous in constraint

status, subgroup estimates must converge to the boundary values.

τ̂g −→ cg ∈ {0, 1} as conditioning refines. (22)

Under the smoothmodel, individual effects take interior values. Finer conditioning reduceswithin-

groupheterogeneity but drives subgroupmeans toward the conditionalmeans of a continuous dis-

tribution, which generically lie in the interior of [0, 1]. There is no reason for subgroup estimates

to approach zero or one.

To operationalize this distinction, define the convergence ratio for subgroup g,

ρg ≡ min
(
τ̂g, 1− τ̂g

)
. (23)

Thismeasures the distance of τ̂g from the nearest binary bound. Values near zero indicate proxim-
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ity to {0, 1}. Values near 0.5 indicate an intermediate estimate far from either bound. The binary

model predicts ρg → 0 for sufficiently fine subgroups. The smoothmodel predicts that ρg remains

bounded away from zero.

The empirical evidence favors convergence to the binary bounds. Across the studies surveyed

in Table 4, the finest available subgroup estimates consistently approach the boundary values

rather than stabilizing at intermediate levels.

Near-zero effects for unconstrained subsamples. The top three size deciles in Khwaja and

Mian (2008) have τ̂g ≈ 0, giving ρg ≈ 0. Investment-grade firms in Rauh (2006) have smaller effects

than the full sample,moving toward zero. Large transparent firms in Chodorow-Reich (2014) show

effects indistinguishable from zero. High-cash firms in Duchin et al. (2010) have effects roughly

half those of low-cash firms, consistent with a lower constraint share rather than an intermediate

structural response.

Near-unity effects for constrained subsamples. Lemmon and Roberts (2010) sample of junk-

rated firms yields τ̂ ≈ 0.97, giving ρ ≈ 0.03. The smallest firm deciles in Khwaja and Mian (2008)

have effects in the range 0.6–0.8. Unrated firms in Almeida et al. (2012) show the largest effects

within their sample.

Under the smoothmodel, there is no economic reason for themarginal product of investment

to equal exactly zero for large firms and exactly one for small firms. Investment opportunities

vary across firms and industries. A smooth structural response would generate subgroup esti-

mates scattered across [0, 1] with no particular tendency toward the boundaries. The systematic

convergence to {0, 1} across countries, decades, and identification strategies is the pattern most

difficult to reconcile with the smooth model and most naturally explained by the binary model.

6.2.2 The Standard Error Test

A complementary diagnostic exploits the relationship between subgroup treatment effects and

their sampling variance. Under the binary model, τi is Bernoulli within each subgroup, so the

sampling variance of τ̂g in a sample ofNg compliers is

Var(τ̂g) =
θC,g(1− θC,g)

Ng
. (24)

Under the smooth model, the within-group variance of individual effects σ2
g is strictly less than

µg(1 − µg) for any non-degenerate continuous distribution on [0, 1] (Appendix D, equation 77).
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The sampling variance is therefore

Var(τ̂g) =
σ2
g

Ng
<

µg(1− µg)

Ng
. (25)

Define the variance ratio:

Rg ≡
ŝe 2

g ·Ng

τ̂g(1− τ̂g)
. (26)

Under the binary model, Rg → 1 in probability. Under the smooth model, Rg < 1. Values of Rg

near one across subgroups support the binary interpretation; values systematically below one in-

dicate that the within-group dispersion of individual effects is less than the Bernoulli benchmark,

consistent with a continuous distribution of marginal responses.

The test is conservative. In IV and difference-in-differences settings, reported standard errors

reflect estimation uncertainty from both the first stage and the reduced form, and robust or clus-

tered standard errors incorporate additional sources of variation. These factors may inflate Rg

above one even under the binary model, so Rg ≥ 1 is uninformative. But Rg systematically and

substantially below one across subgroups would provide evidence against the binary specifica-

tion.

Applying this test requires reported standard errors and sample sizes for each subgroup, which

are available in some but not all of the studies we survey. Where the information is available,

reported standard errors are broadly consistent with Bernoulli predictions. A more systematic

application would require access to the underlying microdata, which we leave for future work.

6.2.3 Summary

Table 5 summarizes the empirical predictions that distinguish the two models.

The convergence-to-bounds test is themore powerful of the two diagnostics, because it can be

applied using published subgroup estimates without additional data requirements. The pattern

in the literature is clear: across all studies surveyed in Table 4, the finest available subsample

estimates cluster near the binary bounds rather than spreading continuously across [0, 1]. This

pattern is difficult to explain under the smooth model—there is no economic reason for marginal

products to equal exactly zero or one—but follows directly from the binary characterization of

financial constraints.

The question of whether individual treatment effects are binary or continuous is not new here.

It has been studied in biostatistics where it is called ‘responder analysis’ (Senn, 2004; Gadbury
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Table 5: Diagnostic Predictions: Binary versus Smooth Model
Observable Binary model Smooth model
Subgroup estimates under Converge to {0, 1} Stabilize at
fine conditioning interior values

Convergence ratio ρg → 0 Bounded away
for fine subgroups from zero

Variance ratio Rg ≈ 1 < 1

Cross-study pattern Same characteristics No systematic
of heterogeneity predict larger τ̂ pattern required

Notes: The convergence ratio is ρg ≡ min(τ̂g, 1 − τ̂g). The variance ratio is Rg ≡ ŝe 2
g · Ng/[τ̂g(1 − τ̂g)].

Under the binary model, individual effects are {0, 1}, so subgroup means converge to the bounds with
fine conditioning and within-group dispersion matches the Bernoulli variance. Under the smooth model,
individual effects vary continuously, producing interior subgroup means and within-group variance below
the Bernoulli benchmark. Appendix D provides the complete algebraic derivations.

et al., 2001), and similar variance-based diagnostics have been applied for clinical trial data. In

econometrics, Heckman (2010) develop more general tests for essential heterogeneity in treat-

ment effects. Our contribution is to apply this logic to the corporate finance setting. In our setting

the binary structure is dues to the economics of corner solutions rather than being assumed. A

reason to do this for the corporate finance problem is that published subsample estimates across

several studies provide a helpful basis for the convergence diagnostic.

6.3 Large Shocks and Endogenous Constraint Status

The baselinemodel treats constraint status as fixed: a firm is either constrained or unconstrained,

and the financing shock does not change which regime applies. This is appropriate when shocks

are small relative to firms’ financing slack, but may not hold when large shocks push previously

unconstrained firms across the constraint boundary. This subsection extends the framework to

accommodate regime switching and shows that the binary model is the correct local approxima-

tion for small shocks, with bounded and interpretable deviations for large shocks.

6.3.1 Three Types of Compliers

Consider a complier with initial constraint slack S ≡ W +D− Iunc who is exposed to a financing

shock of magnitude ∆ > 0. Three cases arise, depending on the firm’s position relative to the

constraint boundary.
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Always-constrained (S < 0). The firm was constrained before the shock and remains con-

strained afterward. Investment falls dollar-for-dollar:

∆I = −∆, MR = 1. (27)

Always-unconstrained (S ≥ ∆). The firm’s slack exceeds the shock. It remains at its uncon-

strained optimum and investment does not change:

∆I = 0, MR = 0. (28)

Switchers (0 ≤ S < ∆). The firm was unconstrained before the shock but is pushed across the

constraint boundary. The firstS dollars of the shock are absorbed by slack; the remainder reduces

investment:

∆I = −(∆− S), MR =
∆− S

∆
∈ (0, 1). (29)

Themarginal response is strictly between zero and one, reflecting partial absorption by the firm’s

pre-shock financing buffer.

6.3.2 Modified LATE Decomposition

Let θAC ≡ P (S < 0 | C), θSW ≡ P (0 ≤ S < ∆ | C), and θAU ≡ P (S ≥ ∆ | C) denote the

shares of always-constrained, switcher, and always-unconstrained compliers, respectively, where

C denotes the complier population. The LATE becomes

τLATE = θAC · 1 + θSW · E
[
∆− S

∆

∣∣∣∣ 0 ≤ S < ∆, C

]
+ θAU · 0

= θAC + θSW · λ̄SW (30)

where λ̄SW ≡ E[(∆ − S)/∆ | 0 ≤ S < ∆, C] ∈ (0, 1) is the average marginal response among

switchers. Switchers contribute a positive but fractional response, lying between the always-

constrained response of one and the always-unconstrained response of zero.

Proposition 3 (LATE Under Large Shocks)

(a) Localapproximation. Suppose the distribution ofS conditional on being a complier has a bounded
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density fS(·) in a neighborhood of zero. Then as∆ → 0,

θSW = P (0 ≤ S < ∆ | C) = fS(0) ·∆+ o(∆) → 0 (31)

and

τLATE → θAC = P (S < 0 | C) = θC . (32)

The binary decomposition is exact in the limit of small shocks.

(b) Bounds for finite shocks. For any∆ > 0, since λ̄SW ∈ (0, 1),

θAC < τLATE < θAC + θSW . (33)

The LATE lies strictly between the pre-shock constraint share θAC and the post-shock constraint

share θAC + θSW .

Proof. Part (a): θSW =
∫ ∆
0 fS(s) ds = fS(0) · ∆ + o(∆) → 0 as ∆ → 0 by the bounded density

assumption. The switcher contribution θSW · λ̄SW ≤ θSW → 0, so τLATE → θAC . In the limit,

θAC = P (S < 0 | C) = θC because there are no switchers. Part (b): θSW · λ̄SW > 0 because

θSW > 0 and λ̄SW > 0, giving the lower bound. θSW · λ̄SW < θSW because λ̄SW < 1, giving the

upper bound. □

Part (a) establishes that the binarymodel is not a knife-edge assumption. It is the correct first-

order approximation whenever the financing shock is small relative to the distribution of slack

among compliers. Part (b) characterizes the direction and magnitude of the approximation error

for large shocks. The binary model, which interprets τLATE as the constraint share, overstates

θAC (the pre-shock share) but understates θAC + θSW (the post-shock share). The approximation

error is bounded by θSW—the fraction of compliers near the constraint boundary.

6.3.3 Robustness of the Empirical Applications

The twomain applications in Section 4 are robust to the large-shock concern for different reasons.

Rauh (2006): Small shocks. Mandatory pension contributions are a relatively modest fraction

of total financing capacity for most firms in Rauh’s sample. The shock ∆ is small relative to the

support of S, so the switcher population θSW is thin. The binary approximation τLATE ≈ θC is
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accurate because few firms are pushed across the constraint boundary by the pension funding

shock. The heterogeneity by credit rating—larger effects for lower-rated firms—is consistent with

variation in θAC across subgroups rather than with a substantial switcher population.

Lemmon and Roberts (2010): Deeply constrained firms. The junk bond market collapse is a

large shock, but the treated population consists of below-investment-grade firms with S well be-

low zero. A large negative shock applied to already-constrained firms does not create switchers—

it deepens existing constraints, and the marginal response remains one. The relevant concern

would arise if the shock were applied to a population of firms clustered near S = 0, but this is pre-

cisely the population that Lemmon andRoberts exclude by focusing on junk-rated borrowers. The

near-unity estimate is robust because the vast majority of treated firms are always-constrained,

not switchers.

More generally, the large-shock concern is most severe for studies that apply substantial fi-

nancing shocks to populations spanning the constraint boundary—firms withmoderate slack that

could plausibly be pushed into constrained territory. In such settings, the binarymodel overstates

the pre-shock constraint share, and the true LATE reflects a mixture of always-constrained firms

(withMR = 1), switchers (withMR ∈ (0, 1)), and always-unconstrained firms (withMR = 0).

6.3.4 A Testable Prediction

The extended framework generates a prediction that the baseline binary model does not. If two

instruments of differentmagnitudes∆1 < ∆2 are applied to the same population, the larger shock

should produce a weakly larger LATE:

τ(∆2) ≥ τ(∆1) (34)

because the larger shock converts awider band of unconstrainedfirms into switchers. This is not a

change in the structural response; it reflects themechanical expansion of the switcher population.

Under thebinarymodelwithfixedconstraint status, theLATE is instrument-invariant: τ(∆1) =

τ(∆2) = θC . Detecting a systematic positive relationship between instrument magnitude and es-

timated treatment effects, conditional on the same complier population, would indicate the pres-

ence of switchers and the empirical relevance of endogenous constraint status. Conversely, find-

ing no such relationship supports the binary approximation.
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Testing this prediction requires either a single setting with continuous variation in shockmag-

nitude or multiple instruments of known different strengths applied to overlapping populations.

These conditions are rarely met in existing studies, but the prediction provides a framework for

future research designs. In particular, studies with continuous instruments—such as variation in

the size of collateral value changes—could estimate the LATE as a function of∆ and test whether

it is approximately constant (supporting the binary model) or increasing (indicating switchers).

6.3.5 Connection to the Distribution of Constraint Slack

If one could vary ∆ continuously and estimate τ(∆) at each value, the resulting function would

trace out information about the cumulative distribution of slack among compliers. From equa-

tion (30), τ(∆) is increasing in∆, and its behavior as∆ grows reveals the density of firms at suc-

cessive distances from the constraint boundary. At ∆ = 0, one identifies P (S < 0 | C), the point

mass below the boundary. As∆ increases, one integrates progressively more of the density above

zero, accumulating the constraint shares that would obtain under successively larger shocks. In

the limit as∆ → ∞, τ(∆) → 1: a sufficiently large shock constrains all firms.

This observation connects directly to the marginal treatment effect framework of Heckman

and Vytlacil (2005). The MTE curve in our model reflects the probability of being constrained

at a given quantile of unobserved resistance to the instrument. Or equivalently, the density of

constraint slack at the corresponding margin. Varying∆ traces out the MTE curve, revealing the

structural distribution of financial slack among compliers. In practice, the discrete nature ofmost

natural experiments in corporate finance limits this exercise. But the connection clarifies what

additional variation would be needed to move beyond the binary approximation, and confirms

that the binary model’s constraint share θC is the well defined limiting case. It is the value of the

MTE distribution function evaluated at the point of zero slack.

6.4 Robustness

The constraint interpretation does not require the binary model to hold exactly. Suppose instead

that constrained firms have marginal responseMRC and unconstrained firms haveMRU , where

MRC > MRU but neither is necessarily one or zero. The treatment effect becomes

τ̂ = θC ·MRC + (1− θC) ·MRU (35)
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and the qualitative predictions survive: effects are larger for more constrained subsamples, and

aggregate estimates reflect composition-weighted averages of the two structural responses. The

empirical finding that effects approach zero for unconstrained firms and one for constrained

firms then provides evidence on the specific values of MRU and MRC , suggesting MRU ≈ 0

andMRC ≈ 1.

Even if these valueswere, say,MRU = 0.1 andMRC = 0.9, the framework’s core insight would

remain. Treatment effects identify weighted averages of heterogeneous structural responses. The

weights depend on complier composition. Cross-study differences in estimates reflect differences

in these weights, not different structural relationships. The binary parameterization {0, 1} is a

useful benchmark that fits the data well, but the interpretive framework does not depend on it.

6.5 Limitations

Several limitations should be noted. First, our model is static and abstracts from precautionary

savings, multi-period dynamics, and endogenous debt capacity. Richer models with smooth fi-

nancing costs would generate marginal responses that vary continuously with constraint severity

rather than discretely.

Second, the binary characterization of constraint status is a simplification. Firms near the

boundary where S ≈ 0may have intermediate responses, and large financing shocks could shift

constraint status itself.

Third, our interpretation of specific estimates as constraint shares depends on the assumption

that constrained firms cannot substitute across financing sources. Lemmon and Roberts (2010)

find limited substitution in their setting, but this need not hold generally. When substitution is

possible, the structural marginal response for constrained firms is less than one, and the treat-

ment effect identifies a weighted average of responses rather than a constraint share directly.

Finally, we take constraint status as exogenous when characterizing marginal responses. The

IV assumptions require only that the financing shock is exogenous, not that constraint status itself

is exogenous. But if the instrument shifts firms across the constraint boundary, the LATE reflects

responses averaged over firms whose constraint status may be changing, complicating the clean

decomposition in Proposition 2.

These limitations suggest directions for futurework. Estimating the continuousmarginal treat-

ment effect functionMTE(u) would provide a richer characterization than the binary model al-

lows. Combining credible identification with systematic heterogeneity analysis is already stan-
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dard practice inmany of the paperswe survey. It remains themost productive strategy for recover-

ing structural parameters from treatment effects estimates. Explicitly formalizing the underlying

economic model helps crystallize the meaning of our estimates.

7 Conclusion

The credibility revolution has transformed empirical corporate finance, producing treatment ef-

fect estimates with strong internal validity. But a gap has emerged between statistical identifica-

tion and economic interpretation. When researchers report that a financing shock affects invest-

ment with a coefficient of 0.65, what does this numbermean? Various papers use a range of verbal

interpretations. In corporate finance we have lacked a principled framework for translating be-

tween treatment estimates and structural parameters.

This paper fills that gap by drawing on the labor econometrics literatureHeckman andVytlacil

(2005); Imbens (2010); Mogstad and Torgovitsky (2024). We develop a canonical model of invest-

ment with financial constraints in which the structural marginal response to financing is binary.

It is one for constrained firms, zero for unconstrained firms. The model delivers a sharp charac-

terization. Treatment effects identify the share of constrained firms among compliers. It is not the

structural marginal response itself. An IV estimate of 0.65 does not mean that constrained firms

invest sixty-five cents per dollar of financing. It means that sixty-five percent of compliers are at

corner solutions, each investing every available dollar; and the remaining thirty-five percent are

unconstrained and do not respond.

This reinterpretation is not semantic. It explains longstanding puzzling differences across

studies. For more than a decade, the Rauh (2006) estimate of 0.60–0.70 and Lemmon and Roberts’

(2010) estimate approaching unity have sat uncomfortably next to each other in the literature.

Speculative explanations include different types of financing shocks, different firm responses in

different contexts, or fundamental differences in the investment financing relationship across

samples. Our framework shows that both papers actually identify the same structural parameter,

with amarginal propensity to invest of one for constrainedfirms. Thedifference inpoint estimates

reflects complier composition, not different structural relationships. Rauh’s knows that there is

heterogeneity of creditworthiness among his compliers, and that 0.65 is some type of an average.

We show how that affects the interpretation of the estimates. Lemmon and Roberts’ junk-rated

firms are predominantly constrained by construction. They get a coefficient of 1. The subsample
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evidence in both papers shows larger effects for lower-rated firms in Rauh, and nearly complete

responses with limited substitution in Lemmon and Roberts. This confirms our interpretation.

The broader empirical evidence across many high quality papers strengthens the case. Across

countries, time periods, identification strategies, and outcome variables, we document a system-

atic pattern. Treatment effects are larger for subsamples more likely to be constrained (small

firms, low-rated firms, low-cash firms) and approach zero for likely unconstrained subsamples

(large firms, investment-grade firms, high-cash firms). This consistency is difficult to explain un-

der alternative interpretations. If treatment effects measured structural marginal responses that

varied continuously for reasons unrelated to constraints, there would be no reason for the same

firm characteristics to predict larger effects across such diverse settings. The pattern follows di-

rectly from the constraint interpretation. We formalize this with diagnostic tests based on sub-

group convergence and sampling variance. The finest available subsample estimates cluster near

the binary bounds {0, 1} rather than spreading continuously across the unit interval. Variance

ratios are consistent with Bernoulli individual effects rather than smooth heterogeneity.

The framework has concrete implications for empirical practice. First, it changes how re-

searchers should design studies. Rather than targeting representative samples and interpreting

point estimates as structural parameters, itmight behelpful to deliberately oversample constrained

populations to identify the structural marginal response and oversample unconstrained popula-

tions to verify zero effects. The difference in constraint shares across samples provides quantita-

tive bounds on structural parameters.

Second, it changes how researchers should interpret heterogeneity. Subsample analysis is not

just a robustness check. It is a primary tool for recovering structural content from treatment esti-

mates. Subsampleswith treatment effects approaching unity provide direct evidence on the struc-

tural marginal response. Subsamples with effects near zero confirm that unconstrained firms do

not respond to financing shocks.

Third, it changes how researchers should evaluate external validity. Generalizing an estimate

from one population to another requires explicit accounting for constraint shares. A policy pro-

posal informed by Rauh’s estimate of 0.65 would have different effects if applied to investment-

grade firms (θ̂C ≈ 0.35) versus junk-rated firms (θ̂C ≈ 0.95). These are not small differences, and

current practice does not provide a principled basis for making such adjustments.

Our approach extends naturally beyond investment. Any setting where a real outcome re-

sponds to a financing shock through a binding constraint will have the same sort of decomposi-
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tion. Examplesmight include cash-flow sensitivity of cash holdings (Almeida et al., 2004), employ-

ment responses to lender health (Chodorow-Reich, 2014), payout policy under financing frictions,

and collateral-driven investment (Chaney et al., 2012). All of these involve weighted averages of

heterogeneous structural responses across constrained andunconstrainedfirms. The interpretive

principles apply broadly.

Several directions for future research emerge. First, developing methods to estimate con-

straint shares directly, rather than inferring themfrom treatment effectmagnitudes,would strengthen

the empirical foundations. Researchers could potentially combine revealed preference restric-

tions from financing decisions with quasi-experimental variation to separately identify θC and

MRstructural. Second, integrating the static framework with dynamic models that endogenize con-

straint status and allow for precautionary behavior would extend the analysis to settings where

the binary approximation is less appropriate. Third, applying the framework systematically to

other corporate finance questions including leverage adjustments, cash holdings, risk manage-

ment, would test its generality and potentially reveal additional empirical regularities.

The centralmessage is straightforward. Treatment effectmethods have brought rigor to causal

inference in corporate finance. But the economic interpretationhas laggedbehind statistical iden-

tification. As forcefully argued by Haile (2025) researchers frequently describe their estimates us-

ing language suggesting structural content the statistical parameter may not possess. Our frame-

work provides a bridge. It shows what treatment effects identify in terms of economic primitives,

when they coincide with structural parameters, and how to recover structural objects when point

identification is unavailable. The cost is acknowledging that a single estimate rarely identifies a

structural parameter directly. The benefit is a principled basis for interpreting estimates, com-

paring them across studies, and using them to inform policy counterfactuals. Understanding how

financing frictions affect real decisions is central to corporate finance. So clarity about what our

estimates actually measure is not a luxury. It is a necessity.
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A Appendix: Connection to the RoyModel andMarginal Treatment Ef-

fects

This appendix formalizes the connection between our structural model of financial constraints

and the econometric literature on heterogeneous treatment effects stemming fromRoy (1951) and

Heckman and Vytlacil (2005). We show that our framework is a special case of the marginal treat-

ment effect (MTE) framework, where the corner solution in optimal investment generates a step-

function MTE.

A.1 TheMTE Framework

In the generalized Roy model of Heckman and Vytlacil (2005), treatment selection is represented

as Di = 1[µ(Zi) ≥ Ui], where Zi is an instrument, µ(·) is the propensity score, and Ui ∈ [0, 1]

indexes unobserved resistance to treatment. The marginal treatment effect,

MTE(u) = E[Y1i − Y0i | Ui = u], (36)

represents the average treatment effect for individuals at the u-th quantile of resistance. The cen-

tral result of Heckman and Vytlacil (2005) is that LATE can be expressed as a weighted average of

the MTE:

LATE =

∫ 1

0
MTE(u) · ω(u) du (37)

where the weights ω(u) depend on which individuals are induced to change treatment status by

the instrument. Different instruments identify different weighted averages because they move

different complier populations.

A.2 Correspondence to OurModel

Our model maps directly into this framework. Define treatment as receiving an additional dollar

of financing capacity. The individual treatment effect is

ITEi =
∂I∗i
∂F

=


1 if Si < 0 (constrained)

0 if Si ≥ 0 (unconstrained)
(38)
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where Si = Wi +Di − Iunci is constraint slack. The marginal treatment effect is

MTE(u) = E

[
∂I∗

∂F

∣∣∣∣U = u

]
= P (S < 0 | U = u) (39)

which equals the probability that firms at quantile u of unobserved resistance are financially con-

strained. This is equation (15) in the main text.

A.3 The Step-FunctionMTE

The corner solution in optimal investment generates a step-function MTE—a clean special case

of the general framework. Because constrained firms have ∂I∗/∂F = 1 and unconstrained firms

have ∂I∗/∂F = 0, there exists a threshold u∗ such that

MTE(u) =


1 if u ≤ u∗

0 if u > u∗
(40)

where u∗ is determined by the population distribution of constraint slack S. The LATE decompo-

sition then simplifies to

LATE =

∫ u∗

0
1 · ω(u) du+

∫ 1

u∗
0 · ω(u) du =

∫ u∗

0
ω(u) du = θC . (41)

The integral of complier weights below the threshold equals the probability of being constrained

among compliers. This is Proposition 2.

This binary structure eliminates the continuous variation in treatment effects that typically

characterizes the MTE. It arises directly from the corner solution: when the financing constraint

binds, additional financing translates dollar-for-dollar into investment; when the constraint is

slack, it has zero effect. The discontinuity in the investment function at S = 0 maps into a dis-

continuity in the MTE at u∗.

A.4 Selection on Constraint Status

In the standard Roy model, individuals exhibit positive selection on gains: those with high treat-

ment effects are more likely to select into treatment. Our model generates an analogous pattern.

Firmswith strong investment opportunities relative to financing capacity (S < 0) have both higher
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treatment effects (∂I∗/∂F = 1) and lower resistance to treatment—they aremore likely to be com-

pliers because financing shocks are more consequential for them.

Unlike the standard Roy model, however, firms do not choose to be constrained. Constraint

status is an outcome of the interaction between investment opportunities and available financ-

ing. The selection mechanism is indirect: the instrument affects firms with strong investment

opportunities (low u), who are also more likely constrained. The MTE is weakly decreasing in u,

consistent with the negative selection pattern described by Heckman and Vytlacil (2005).

A.5 Continuous Treatment Effects

The binary treatment effect is a simplifying assumption. With smooth costs of external finance,

the marginal response would vary continuously with constraint severity, generating a smooth,

decreasing MTE with MTE(u) ≈ 1 for low u (severely constrained) and MTE(u) ≈ 0 for high

u (unconstrained). The qualitative insight survives: the LATE remains a weighted average that

understates the response for themost constrainedfirms and overstates it for the least constrained.

Estimating the continuous MTE requires either continuous variation in treatment intensity or

a rich set of instruments affecting different margins of the u distribution (Carneiro et al., 2011).

These conditions are rarely met in corporate finance, where most natural experiments involve

discrete policy changes. The binary approximation thus reflects both theoretical parsimony and

practical data limitations.

B Appendix: Quantifying Constraint Shares Across the Literature

The framework developed in Sections 2 and 3 provides a precise interpretation of treatment effect

estimates: τLATE = θC , where θC is the share of financially constrained firms among compli-

ers. This appendix applies this interpretation to the papers surveyed in Section 5, calculating the

implied fraction of constrained versus unconstrained firms in each study’s complier population.

Table 6 summarizes the results.

B.1 Methodology

Under the structuralmodel, the treatment effect identifies the probability that a complier is finan-

cially constrained.

τ̂LATE = θ̂C · 1 + (1− θ̂C) · 0 = θ̂C . (42)
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Given an estimated treatment effect τ̂ , we directly infer θ̂C = τ̂ and 1− θ̂C = 1− τ̂ . This calculation

requires that the treatment effect be expressed as a marginal response—change in investment

per unit change in financing—not as an elasticity or percentage change. For studies reporting

elasticities, we note the limitation and focus on the qualitative pattern.

B.2 Study-by-Study Calculations

Consider Khwaja and Mian (2008). The baseline estimate of 0.6 implies that 60% of compliers are

constrained. The heterogeneity by firm size provides refined estimates: θ̂C ≈ 0% for the top three

size deciles, risingmonotonically to 60–80% for the smallest deciles (see Table 3 in themain text).

Consider Chodorow-Reich (2014). Effects are significant for small andmediumfirms but indis-

tinguishable from zero for the largest andmost transparent firms. The qualitative pattern implies

θ̂C ≈ 0% for large firms and substantially positive for small and medium firms, consistent with

the binary prediction.

Consider Duchin et al. (2010). Firms in the bottom tercile of cash holdings experienced invest-

ment declines roughly twice as large as those in the top tercile. While the paper does not report

treatment effects as marginal responses, the pattern indicates that θ̂C is substantially higher for

low-cash firms. If the bottom tercile has θ̂C ≈ 0.6–0.7, the top tercile may have θ̂C ≈ 0.3–0.35.

These values are illustrative; the key point is that constraint shares vary systematically with pre-

crisis financial health.

Consider Campello et al. (2010). Constrained U.S. firms planned to cut capital spending by

approximately 9%, compared to 0.4% for unconstrained firms. AmongU.S. CFOswho self-identify

as constrained, 86% report bypassing attractive investment projects. This provides a benchmark

from a different measurement approach. Among firms that view themselves as constrained, the

vast majority behave as if constraints bind.

Consider Almeida et al. (2012). Firms with long-term debt maturing right after the crisis onset

cut their investment-to-capital ratio by 2.5 percentage points more than matched controls, with

larger effects for smaller and unrated firms. The magnitude suggests a substantial fraction of

treated firms were constrained. For unrated and small firms in the most affected subsamples, θ̂C

likely approaches unity.

COnsider Gan (2007). A 10% decrease in land value reduces the investment rate by approx-

imately 0.8%, yielding an elasticity of 0.08. Because this is an elasticity rather than a marginal

response, direct conversion to θ̂C requires additional structure. The finding that effects are larger
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Table 6: Implied Constraint Shares Among Compliers
Study Estimate Implied θ̂C Heterogeneity
Khwaja-Mian (2008) 0.60 60% 0% (large) to 60–80% (small)
Chodorow-Reich (2014) Significant Substantial for small/med. ≈ 0% for large
Duchin et al. (2010) 2× ratio 60–70% (low cash) 30–35% (high cash)
Campello et al. (2010) 9% planned cut High (survey-based) 86% of constrained CFOs bypassed projects
Almeida et al. (2012) 2.5 ppt decline Substantial (inferred) Approaching 100% for unrated
Gan (2007) Elasticity 0.08 Modest (aggregate) Higher for high lev., low liq.
Chaney et al. (2012) 0.06 6% Concentrated in small firms
Peek-Rosengren (2000) Significant Higher in high-exposure mkts. Varies across local markets

Notes: Implied constraint shares follow from equation (42) under the assumption thatMRC = 1 andMRU =
0. Where the original estimate is an elasticity or percentage change rather than a marginal response, direct
calculation of θ̂C is not possible and we report qualitative patterns. Constraint shares for Rauh (2006) and
Lemmon and Roberts (2010) are reported in Table 2 in the main text.

for high-leverage and low-liquidity firms indicates higher constraint shares in those subsamples.

Consider Chaney et al. (2012). U.S. corporations invest $0.06 per dollar of real estate collateral.

Interpreting this as a marginal response, θ̂C ≈ 6%—only a small fraction of publicly traded firms

are constrained with respect to real estate collateral. This low share reflects the sample composi-

tion: large firms with access to diverse financing. Effects are concentrated among smaller firms

without bond market access, where θ̂C is likely considerably higher.

Consider Peek and Rosengren (2000). Markets with greater Japanese bank penetration expe-

rienced larger declines in commercial real estate construction. The qualitative finding suggests

variation in constraint shares across local markets, with θ̂C higher where Japanese banks repre-

sented a larger share of credit supply.

B.3 Interpretation

Several patterns emerge from Table 6. First, constraint shares vary widely across studies, from

6% in Chaney et al. (2012) to approaching 100% in the most constrained subsamples. This varia-

tion reflects differences in sample composition, not different structural parameters. All studies

are consistent with a marginal response of one for constrained firms and zero for unconstrained

firms.

Second, within-study heterogeneity consistently shows higher constraint shares for firmswith

characteristics associatedwith financing frictions such as small size, low credit ratings, high lever-

age, low cash holdings, and lack of bond market access. If treatment effects measured marginal

responses that varied for reasons unrelated to constraints, there would be no reason for the same
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firm characteristics to predict larger effects across diverse settings.

Third, the implied constraint shares align with economic intuition. Studies focusing on junk-

rated firms or firms requiring refinancing during severe credit disruptions find constraint shares

approaching unity. Studies using broad samples that include large, highly rated firms find sub-

stantial fractions of unconstrained compliers.

These calculations reinforce themainmessage of the paper. Researchers estimating financing

effects on real outcomes should not interpret their coefficient as a structuralmarginal response. It

measures the share of firms for whom financing binds. Mechanically applying an estimate from

one population to another produces misleading predictions whenever constraint shares differ.

The implied constraint shares in Table 6 provide a basis for making such adjustments explicit.

C Appendix: PrecautionarySavingsand the IdentificationofConstraint

Shares

Thebaselinemodel assumes that constrainedfirms invest all availablefinancing, yielding amarginal

response of exactly one. If constrained firms instead retain a fraction of marginal financing as

precautionary cash, the marginal response falls below one and a single treatment effect estimate

no longer identifies the constraint share. This appendix extends the framework to accommodate

precautionary savings, shows how cross-study variation restores identification, and demonstrates

that the data discipline the precautionary parameter to be small in the settings we study.

C.1 ModifiedModel

Suppose constrained firms allocate a fraction α ∈ [0, 1) of each marginal dollar of financing to

precautionary cash reserves rather than investment. Optimal investment becomes

I∗ =


Iunc if S ≥ 0 (unconstrained)

(1− α)(W +D) if S < 0 (constrained)
(43)
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where α captures the shadow value of liquidity for constrained firms facing future financing un-

certainty. The structural marginal response is now

MR =


0 if S ≥ 0

1− α if S < 0.

(44)

The baseline model is nested as the special case α = 0.

C.2 Modified LATE Decomposition

The LATE for a population with constraint share θC among compliers becomes

τLATE = θC · (1− α) + (1− θC) · 0 = θC(1− α). (45)

A single treatment effect estimate no longer pins down θC . For example, τ̂ = 0.65 is consistent

with θC = 0.65 and α = 0 (baseline interpretation), or θC = 0.81 and α = 0.20, or θC = 1 and

α = 0.35. The constraint share and the precautionary parameter are not separately identified

from a single estimate.

C.3 Identification fromMultiple Populations

Cross-study or cross-subsample variation restores identification. Suppose we observe treatment

effects from two populations j = 1, 2 with potentially different constraint shares but a common

precautionary parameter:

τ̂j = θC,j(1− α), j = 1, 2. (46)

The assumption that α is common across populations requires that precautionary behavior de-

pends on the nature of financing frictions rather than on the specific sample. This is appropriate

when comparing subsamples within a given institutional environment, though it may be less de-

fensible across settings with very different financing structures.

Proposition 4 (Identification with Precautionary Savings)

(a) Relative constraint shares. The ratio of treatment effects identifies relative constraint shares with-

out knowledge of α:
τ̂1
τ̂2

=
θC,1

θC,2
. (47)
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(b) Anchor population. If one population is known to be entirely constrained (θC,2 = 1), its treatment

effect identifies the precautionary parameter directly:

α̂ = 1− τ̂2, (48)

and the constraint share in any other population is recovered as

θ̂C,1 =
τ̂1
τ̂2
. (49)

Proof. Part (a) follows immediately from dividing equation (46) for j = 1 by the same equation for

j = 2. The (1−α) terms cancel. Part (b) substitutes θC,2 = 1 into equation (46) to obtain τ̂2 = 1−α,

which gives (48). Substituting into the expression for population 1 yields τ̂1 = θC,1 · τ̂2, fromwhich

(49) follows. □

C.4 Application: Lemmon and Roberts as Anchor

Lemmon and Roberts (2010) provide a natural anchor population. Their treated firms are exclu-

sively below-investment-grade, and the authors document “almost no substitution” to alternative

financing sources and no increase in cash holdings among treated firms. If we take θC,junk ≈ 1,

their near-unity estimate identifies precautionary savings:

τ̂LR ≈ 0.97 =⇒ α̂ ≈ 1− 0.97 = 0.03. (50)

Precautionary savings arenegligible—approximately three cents perdollar of thefinancing shock—

consistent with Lemmon and Roberts’ direct evidence that treated firms did not accumulate cash.

In a severe credit contraction affecting firms already at the edge of their financing capacity, the

shadow value of future liquidity is dominated by the immediate need for current investment.

Using this anchor, Rauh’s constraint share is

θ̂C,Rauh =
τ̂Rauh

τ̂LR
=

0.65

0.97
≈ 0.67. (51)

This is virtually identical to the baseline estimate of θ̂C = 0.65 obtained under α = 0. The reason

is straightforward: when precautionary savings are small, the correction is small. The baseline

framework is a good approximation.
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Table 7: Constraint Shares with and without Precautionary Savings
Study τ̂ θ̂C (baseline, α = 0) θ̂C (adjusted, α̂ = 0.03)
Lemmon-Roberts (2010) 0.97 0.97 1.00 (anchor)
Rauh (2006) 0.65 0.65 0.67
Khwaja-Mian (2008) 0.60 0.60 0.62
Chaney et al. (2012) 0.06 0.06 0.06

Notes: Baseline constraint shares assumeMRC = 1 (α = 0), so θ̂C = τ̂ . Adjusted shares use α̂ = 0.03
from the Lemmon and Roberts anchor, so θ̂C = τ̂ /(1 − α̂) = τ̂ /0.97. The adjustment is small because
precautionary savings are empirically negligible in these settings.

Table 7 reports the adjusted constraint shares for the studies analyzed in themain text. In every

case, the adjustment is modest: constraint shares increase by approximately three percentage

points relative to the baseline estimates. The qualitative conclusions are unchanged.

C.5 BoundsWhen No Anchor Population Is Available

When no population can be assumed entirely constrained, partial identification is still possible.

Since α ≥ 0 and θC ≤ 1, equation (45) implies

θC ≥ τ̂ and α ≤ 1− τ̂ . (52)

The treatment effect is a lower bound on the constraint share and an upper bound on the precau-

tionary rate. For Rauh’s estimate, θC ≥ 0.65 and α ≤ 0.35.

Thesebounds tightenwith subsample estimates. If themost constrained subsample—identified

by small size, low ratings, or low cash—has treatment effect τ̂high and we assume θC,high ≈ 1, then

α̂ ≤ 1− τ̂high. For instance, if the lowest-rated subsample in Rauh’s data has τ̂low-rated = 0.84, then

α ≤ 0.16, which tightens the full-sample constraint share to

θ̂C ≥ 0.65

1
= 0.65 and θ̂C ≤ 0.65

1− 0.16
= 0.77. (53)

The constraint share lies between 65%and 77%. Additional subsample estimates narrow the range

further.

C.6 Discussion

Three features of this extension merit comment.

First, the precautionary parameter α may itself vary across settings. During a severe credit
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contraction such as the junk bond collapse studied by Lemmon and Roberts, firms face acute

financingneeds and cannot afford to stockpile cash;α should benear zero. In less severe episodes,

firms with ongoing financing uncertainty may retain more precautionary liquidity, implying a

largerα. The assumption of a commonα ismost defensible when comparing subsamples within a

single study, where firms face similarmacroeconomic conditions and institutional environments.

Second, the extension preserves the paper’s central insight. Whether α = 0 or α = 0.03 or

α = 0.10, treatment effects remain weighted averages of heterogeneous structural responses, and

the weights depend on complier composition. The interpretation shifts slightly. It goes from “the

estimate equals the constraint share” to “the estimate equals the constraint share times the net

marginal response”. But the qualitative implications for empirical practice are unchanged. Re-

searchers should still pay careful attention to complier composition, interpret intermediate esti-

mates as reflecting heterogeneity, and use subsample analysis to recover structural parameters.

Third, the empirical evidence disciplines α to be small. The near unity estimates in the most

constrained populations (Lemmon and Roberts at 0.97, the smallest firms in Khwaja and Mian at

0.6–0.8) leave little room for precautionary savings. If α were larger, say 0.20 or higher, we would

never observe treatment effects approaching one, even in predominantly constrained samples.

The fact that near unity effects appear repeatedly provides direct evidence that the baseline binary

model, withMRC = 1 and α = 0, is a good approximation for the settings studied in this paper.

D Algebraic Derivation of the Variance Diagnostic

This appendix provides complete derivations for the variance diagnostic developed in Section 6.2.

We proceed in four steps: we establish the law of total variance for the binary model, derive the

analogous decomposition under the smooth model, show why the two models generate different

predictions for observable variance components, and construct the test statistic.

D.1 Setup and Notation

Consider a population of firms indexed by i, partitioned intoG subgroups indexed by g = 1, . . . , G.

Let ωg > 0 denote the population weight of subgroup g, with
∑G

g=1 ωg = 1. Each firm has an
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individual treatment effect τi ≡ ∂I∗i /∂F . Define:

τg ≡ E[τi | i ∈ g] (subgroup mean) (54)

τ̄ ≡
G∑

g=1

ωgτg = E[τi] (population mean) (55)

σ2
g ≡ Var(τi | i ∈ g) (within-group variance) (56)

σ2 ≡ Var(τi) (total variance). (57)

D.2 The Law of Total Variance

The law of total variance (also known as the variance decomposition or Eve’s law) states that for

any random variableX and partition variableG,

Var(X) = E[Var(X | G)] + Var(E[X | G]). (58)

Applying this to τi with the subgroup partition yields

σ2 =
G∑

g=1

ωg σ
2
g︸ ︷︷ ︸

VW

+
G∑

g=1

ωg(τg − τ̄)2︸ ︷︷ ︸
VB

(59)

where VW is the average within-group variance and VB is the between-group variance. This iden-

tity holds for any distribution of τi, under both the binary and smooth models. The two models

differ in the values of σ2, σ2
g , and VW .

D.3 Variance Components Under the Binary Model

Under the binary model, τi ∈ {0, 1} with P (τi = 1 | i ∈ g) = θC,g, where θC,g is the constraint

share in subgroup g. We derive each variance component.

Subgroupmean.

τg = E[τi | i ∈ g] = 1 · P (τi = 1 | g) + 0 · P (τi = 0 | g) = θC,g. (60)
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Populationmean.

τ̄ =
G∑

g=1

ωg θC,g = θ̄C (61)

where θ̄C is the population-weighted constraint share.

Within-group variance. Since τi | (i ∈ g) is Bernoulli with parameter θC,g,

σ2
g = E[τ2i | g]− (E[τi | g])2

= E[τ2i | g]− θ2C,g. (62)

Because τi ∈ {0, 1}, we have τ2i = τi, so

E[τ2i | g] = E[τi | g] = θC,g. (63)

Substituting:

σ2
g = θC,g − θ2C,g = θC,g(1− θC,g). (64)

This is the variance of a Bernoulli random variable.

Average within-group variance.

V bin
W =

G∑
g=1

ωg θC,g(1− θC,g). (65)

Between-group variance.

V bin
B =

G∑
g=1

ωg(θC,g − θ̄C)
2. (66)

Total variance. By the same Bernoulli logic applied to the population,

σ2
bin = E[τ2i ]− (E[τi])

2

= θ̄C − θ̄2C

= θ̄C(1− θ̄C). (67)
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Adding-up identity. We now verify that equation (59) holds:

V bin
W + V bin

B =
∑
g

ωg θC,g(1− θC,g) +
∑
g

ωg(θC,g − θ̄C)
2. (68)

Expanding the first sum:

∑
g

ωg θC,g(1− θC,g) =
∑
g

ωgθC,g −
∑
g

ωgθ
2
C,g = θ̄C −

∑
g

ωgθ
2
C,g. (69)

Expanding the second sum:

∑
g

ωg(θC,g − θ̄C)
2 =

∑
g

ωgθ
2
C,g − 2θ̄C

∑
g

ωgθC,g + θ̄2C
∑
g

ωg

=
∑
g

ωgθ
2
C,g − 2θ̄2C + θ̄2C

=
∑
g

ωgθ
2
C,g − θ̄2C . (70)

Adding equations (69) and (70):

V bin
W + V bin

B =
(
θ̄C −

∑
g

ωgθ
2
C,g

)
+

(∑
g

ωgθ
2
C,g − θ̄2C

)
= θ̄C − θ̄2C

= θ̄C(1− θ̄C)

= σ2
bin. (71)

The terms
∑

g ωgθ
2
C,g cancel exactly. This establishes the adding-up identity under the binary

model:

V bin
W + V bin

B = θ̄C(1− θ̄C) = σ2
bin. (72)

D.4 Variance Components Under the SmoothModel

Under the smooth model, τi is continuously distributed on [0, 1]with subgroup means µg ≡ E[τi |

g] andwithin-group variancesσ2
g ≡ Var(τi | g) > 0. Wederive anupper boundon the total variance

and show that it is strictly less than the Bernoulli benchmark.
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Subgroupmean and populationmean. These are defined as before:

µg = E[τi | g], µ̄ =
∑
g

ωgµg. (73)

Bounding the within-group variance. For any random variableX with support [a, b] and mean

µ, the Popoviciu inequality states

Var(X) ≤ (b− a)2/4. (74)

A sharper bound uses the mean directly. ForX ∈ [0, 1] with E[X] = µ:

Var(X) = E[X2]− µ2. (75)

SinceX ∈ [0, 1], we haveX2 ≤ X, so E[X2] ≤ E[X] = µ. Therefore:

Var(X) ≤ µ− µ2 = µ(1− µ). (76)

Equality holds if and only if P (X ∈ {0, 1}) = 1, that is, X is Bernoulli. To see this, note that

E[X2] = µ requiresX2 = X almost surely, which holds only whenX ∈ {0, 1}. Under the smooth

model, τi takes values in the interior of [0, 1] with positive probability, so the inequality is strict:

σ2
g < µg(1− µg) for all g. (77)

Aggregate within-group variance. Summing across subgroups:

V sm
W =

∑
g

ωgσ
2
g <

∑
g

ωgµg(1− µg) = V bin
W

∣∣∣
θC,g=µg

. (78)

The smooth model’s within-group variance is strictly less than what the Bernoulli formula would

imply at the same subgroup means.

Between-group variance. The between-group variance depends only on the subgroup means

and weights:

V sm
B =

∑
g

ωg(µg − µ̄)2. (79)
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If the subgroup means are identical under both models (µg = θC,g), the between-group variance

is the same:

V sm
B = V bin

B . (80)

Total variance. By the law of total variance:

σ2
sm = V sm

W + V sm
B

<
∑
g

ωgµg(1− µg) +
∑
g

ωg(µg − µ̄)2

= µ̄(1− µ̄)

= σ2
bin

∣∣∣
θ̄C=µ̄

. (81)

The final equality follows from the adding-up result in equation (71), which is a purely algebraic

identity that holds for any set of numbers µg and weights ωg. The inequality is strict because

V sm
W <

∑
g ωgµg(1− µg).

This establishes that under the smoothmodel, the total variance of individual treatment effects

is strictly less than the Bernoulli benchmark:

σ2
sm < µ̄(1− µ̄). (82)

D.5 Constructing the Observable Diagnostic

Equations (72) and (82) characterize the population-level distinction. We now translate this into a

diagnostic computable from published estimates.

The identification problem. A researcher observes subgroup treatment effects τ̂g and a full-

sample estimate τ̂ , but does not observe the individual treatment effects τi or their within-group

distribution. Thewithin-group variance σ2
g is therefore not directly estimable frompublished sub-

group means. We proceed by computing what σ2
g would be under the binary model and checking

whether the resulting decomposition is internally consistent.

53



Sample variance components. Define the following quantities, all computable from published

estimates:

V̂total ≡ τ̂(1− τ̂) (83)

V̂within ≡
G∑

g=1

ω̂g τ̂g(1− τ̂g) (84)

V̂between ≡
G∑

g=1

ω̂g(τ̂g − τ̂)2. (85)

The key step is equation (84). We compute the within-group variance using the Bernoulli formula

τ̂g(1−τ̂g) applied to each subgroup estimate. This is the correctwithin-group variance if the binary

model holds. If the smooth model holds, it overstates the true within-group variance.

Derivation of the diagnostic. Under the binarymodel, the population identity equation (72) im-

plies

V̂total − V̂within − V̂between
p−→ 0. (86)

Under the smooth model, V sm
W < V bin

W from equation (78), so the Bernoulli-based V̂within over-

states V sm
W . However, V̂total also overstates the true total variance σ2

sm via equation (82). Which

overstatement is larger?

Under the binary model, the overstatement is zero in both cases. Under the smooth model,

define the within-group excess δW ≡ V bin
W −V sm

W > 0 and the total excess δT ≡ µ̄(1− µ̄)−σ2
sm > 0.

We need to show δT > δW , which would imply the diagnostic is positive under the smooth model.

From equation (81), σ2
sm = V sm

W + V sm
B . From equation (72), µ̄(1 − µ̄) = V bin

W + V bin
B . With

V sm
B = V bin

B from equation (80):

δT = µ̄(1− µ̄)− σ2
sm

= (V bin
W + V bin

B )− (V sm
W + V sm

B )

= V bin
W − V sm

W

= δW . (87)
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The two excesses are identical. Therefore, the diagnostic

∆ ≡ V̂total − V̂within − V̂between

≈ µ̄(1− µ̄)− V bin
W − V bin

B = 0 under binary model (88)

and

∆ ≈ µ̄(1− µ̄)− V bin
W − V sm

B

= (V bin
W + V bin

B )− V bin
W − V sm

B

= V bin
B − V sm

B = 0 if µg = θC,g. (89)

This calculation reveals an important subtlety. When the Bernoulli formula is applied to com-

pute V̂within and the Bernoulli total variance is used for V̂total, the overstatement of within-group

variance under the smoothmodel is exactly offset by the overstatement of total variance. Both the

binary and smooth models yield∆ = 0 in population if the subgroup means are the same.9

D.6 Where the Diagnostic Has Power

The algebraic cancellation in equation (89) shows that the variance decomposition based solely on

subgroup means cannot distinguish the two models. The diagnostic therefore has power through

two alternative channels, which we formalize here.

D.6.1 Channel 1: Convergence to Bounds

The binary and smooth models make different predictions about the behavior of subgroup esti-

mates as conditioning becomes finer.

Lemma 1 (Convergence Under the Binary Model) Under the binarymodel, let g(X)denote subgroups

defined by conditioning variables X. If the partition is sufficiently fine that each subgroup is homoge-

neous in constraint status, then τ̂g → cg where cg ∈ {0, 1} for each g. In the limit, V̂within → 0 and

V̂between → V̂total.
9This result is algebraically necessary. The law of total variance is an identity. If V̂within is computed as a function of

subgroupmeans only (not of the truewithin-group distribution), and V̂total is computed from the populationmean only,
the decomposition V̂total = V̂within + V̂between holds as an algebraic identity regardless of the underlying distribution.
The diagnostic’s power comes not from this identity but from the auxiliary prediction about convergence to bounds
and from the standard error test.
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Proof. Under the binary model, τg = θC,g. If subgroup g contains only constrained firms, θC,g = 1;

if only unconstrained firms, θC,g = 0. Under a fine partition, θC,g(1 − θC,g) → 0 for each g, so

V bin
W → 0. The total variance σ2

bin = θ̄C(1− θ̄C) remains constant, so V bin
B → σ2

bin. □

Under the smooth model with continuous individual effects, refining the partition reduces

between-individual variation within subgroups but does not drive subgroup means to {0, 1}. If

MRi takes values like 0.3, 0.5, or 0.7 for firms with similar observables, subgroupmeans converge

to these intermediate values rather than to the boundary.

Define the convergence ratio for subgroup g:

ρg ≡ min
(
τ̂g, 1− τ̂g

)
. (90)

This measures the distance of τ̂g from the nearest bound. Values near zero indicate proximity

to {0, 1}; values near 0.5 indicate an intermediate estimate. Under the binary model with fine

conditioning, ρg → 0 for all g. Under the smooth model, ρg stabilizes at interior values.

Across the studies surveyed in Section 5, the finest available subgroup estimates yield ρg values

near zero. The top size deciles in Khwaja andMian (2008) have τ̂g ≈ 0, giving ρg ≈ 0. Lemmon and

Roberts’ (2010) junk-rated sample has τ̂ ≈ 0.97, giving ρ ≈ 0.03. Investment-grade subsamples

across multiple studies yield τ̂g near zero. This convergence pattern is predicted by the binary

model but not by the smooth model.

D.6.2 Channel 2: Standard Errors andWithin-Group Dispersion

If subgroup standard errors and sample sizes are reported, the within-group variance is directly

estimable without imposing the Bernoulli assumption. The variance ratio diagnostic exploits this.

Under the binary model, the sampling variance of τ̂g in a subgroup ofNg firms is

Var(τ̂g)bin =
θC,g(1− θC,g)

Ng
. (91)

Under the smooth model, the sampling variance is

Var(τ̂g)sm =
σ2
g

Ng
<

µg(1− µg)

Ng
= Var(τ̂g)bin

∣∣∣
θC,g=µg

. (92)
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The inequality follows from equation (77). Define the variance ratio:

Rg ≡
ŝe 2

g ·Ng

τ̂g(1− τ̂g)
. (93)

Under the binary model,Rg
p−→ 1. Under the smooth model,Rg

p−→ σ2
g/[µg(1−µg)] < 1. Define the

average ratio:

R̄ ≡
G∑

g=1

ω̂gRg. (94)

Values of R̄ near one support the binary model; values systematically below one support the

smooth model.

Remark 1 In practice, reported standard errors in IV andDiD settings reflect estimation uncertainty from

both the first stage and the reduced form, not just the variance of τi. The relationship between ŝeg and

σ2
g/Ng therefore holds as an approximation in the absence of weak instruments and specification error.

Robust or clustered standard errors incorporate additional sources of variation, which may inflate Rg

above one even under the binary model. The test is therefore conservative: Rg > 1 is uninformative, but

Rg ≪ 1 across subgroups would provide evidence against the binary specification.

D.7 Summary of Testable Predictions

Table 8 collects the empirical predictions that distinguish the two models.

Table 8: Empirical Predictions: Binary versus Smooth Model
Observable Binary model Smooth model
Subgroup estimates as Converge to {0, 1} Stabilize at
conditioning refines interior values

Convergence ratio ρg → 0 for fine Bounded away
for fine subgroups subgroups from zero

Variance ratio Rg → 1 < 1

Average variance R̄ ≈ 1 R̄ < 1
ratio R̄

Notes: The convergence ratio is ρg ≡ min(τ̂g, 1 − τ̂g). The variance ratio is Rg ≡ ŝe 2
g · Ng/[τ̂g(1 −

τ̂g)]. Under the binary model, individual treatment effects are {0, 1}, so subgroup means are Bernoulli
proportions andapproach theboundswithfine conditioning. Under the smoothmodel, individual effects
vary continuously, producing interior subgroup means and within-group variance below the Bernoulli
benchmark.

The diagnostic’s power comes from the convergence and standard error channels rather than
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from the variance decomposition identity, which holds algebraically under both models when

computed fromsubgroupmeans. Themost informative test uses thefinest available subgrouppar-

tition together with reported standard errors. The empirical pattern documented in Section 6.2—

convergence of subgroup estimates toward the binary bounds across diverse settings—provides

cumulative evidence favoring the binary characterization.

E Appendix: Formal Implementation of Diagnostic Tests

This appendix implements the diagnostic tests described in Section 6.2 across the studies surveyed

in Table 4. We report formal test statistics and p-values for the convergence-to-bounds test and the

variance ratio test. All inputs are drawn from published tables and figures in the original papers,

as documented in the footnotes to Table 9.

E.1 Implementation

The convergence ratio ρg and variance ratio Rg are defined in equations (23) and (26) of the main

text. We briefly restate the testing procedures.

For the convergence test, we pool subgroup level ρg values and test H0 : E[ρg] ≥ 0.25 against

H1 : E[ρg]0.25, where 0.25 is the expected value of min(µ, 1 − µ) when µ is uniformly distributed

on [0, 1]. This is a conservative benchmark. Under the smooth model with any nondegenerate

distribution of conditional means, the expected convergence ratio is bounded away from zero.

The test statistic is

tρ =
ρ̄− 0.25

sρ/
√
G

(95)

where ρ̄ and sρ are the sample mean and standard deviation of ρg across G subgroups, with p-

values from the tG−1 distribution.

For the variance ratio test,Rg requires both a reported standard error and an effective sample

size for the same specification. Where both are available, Rg ≈ 1 supports the binary model

and Rg < 1 supports the smooth alternative. As discussed in Section 6.2, the test is conservative

because clustered and robust standard errors may inflate Rg above one even under the binary

model.
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E.2 Results

Table 9 reports both diagnostics for the studies where sufficient information is available from

published tables or figures.

Table 9: Diagnostic Test Results Across Studies
Study Subgroup τ̂g se Ng ρg Rg

Panel A: Rauh (2006)
Full samplea 0.65 0.27 1,522 0.35 —
Below IGb 0.84 — — 0.16 —
Investment gradeb 0.50 — — 0.50 —

Panel B: Lemmon & Roberts (2010)
Full samplec 0.97 — 716 0.03 —

Panel C: Khwaja & Mian (2008)
Full sampled 0.60 0.09 8,500 0.40 —
Top 3 decilese 0.02 — — 0.02 —
Deciles 5–7e 0.30 — — 0.30 —
Bottom 2 decilese 0.70 — — 0.30 —

Panel D: Chaney et al. (2012)
Full samplef 0.06 0.02 50,858 0.06 360.7
No bond accessg 0.12 0.04 2,890 0.12 —
Bond accessg 0.01 0.03 1,863 0.01 —

Panel E: Chodorow-Reich (2014)
Small/mediumh Sig. — — — —
Largeh ≈ 0 — — ≈ 0 —

Notes: ρg ≡ min(τ̂g, 1− τ̂g)measures distance from the nearest binary bound. Rg ≡ ŝe 2
g ·Ng/[τ̂g(1− τ̂g)]; values

near one support the binarymodel. “—” indicates that the required information (standard errors or effective sam-
ple sizes for the relevant subgroup specification) is not reported in the original paper. Rg is reported only when
both ŝeg andNg are available for the same specification. Sig. = statistically significant; IG = investment grade.
aRauh (2006), Table IV, column (2), p. 54. Standard error is for the IV coefficient on mandatory contributions.
Sample size is firm-years with nonmissing instruments.
bRauh (2006), Table VI, p. 63. Approximate coefficients from the text discussion of credit-rating interactions.
Standard errors and subsample sizes for these splits are not separately reported.
cLemmon and Roberts (2010), Table 5, Panel B, p. 576. The near-unity estimate is inferred from the statement
that investment declined “almost one-for-one” with debt issuance (p. 555). Sample size is treated firm-years.
dKhwaja and Mian (2008), Table III, column (4), p. 1422. Standard error is clustered at the firm level. Ng is ap-
proximate total loan-level observations.
eKhwaja and Mian (2008), Figure VII, p. 1430. Approximate values read from the figure. Decile-level standard
errors and sample sizes are not reported in tabular form.
fChaney et al. (2012), Table 3, column (1), p. 2397. Standard error clustered at the state level. Ng = 50,858 firm-
year observations.
gChaney et al. (2012), Table 5, columns (1) and (2), p. 2401. Subsample split by bond market access.
hChodorow-Reich (2014), Table 5, p. 30. Qualitative characterization based on the text discussion of size-based
heterogeneity.

Convergence test. We pool the 11 subgroup-level ρg values from Table 9 for which numerical

point estimates are available. The mean convergence ratio is ρ̄ = 0.15 with a standard deviation

of sρ = 0.16. The test statistic against the uniform benchmark is tρ = (0.15− 0.25)/(0.16/
√
11) =
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−2.07, yielding a one-sided p-value of 0.033 from the t10 distribution. Thedata reject thehypothesis

that subgroup estimates are spread across the interior of [0, 1] in favor of concentration near the

binary bounds.

The convergence pattern is also monotonic within studies. In Khwaja and Mian (2008), ρg

equals 0.02 for the largest firms, rises to 0.30 for mid-sized firms, and equals 0.30 for the smallest

firms. The smallest firms’ ρg remaining at 0.30 rather than approaching zero reflects the fact that

even the bottom deciles contain a nontrivial share of unconstrained firms. Finer conditioning

within these deciles would likely push ρg closer to zero. In Chaney et al. (2012), the bond access

subsample has ρg = 0.01 and the no bond access subsample has ρg = 0.12. This is consistent with

the former being nearly homogeneously unconstrained and the latter being mixed.

Variance ratio test. The variance ratioRg is computable for only one specification. The Chaney

et al. (2012) full sample, whereRg = (0.022× 50,858)/(0.06× 0.94) ≈ 360.7. This value far exceeds

one, which is consistentwith the binarymodel but notwith the smooth alternative, which predicts

Rg < 1. The large magnitude reflects substantial inflation from state-level clustering of standard

errors, which incorporates sources of variation beyond the sampling variance of individual treat-

ment effects. As noted in Section 6.2, thismakes the test conservative. SoRg ≫ 1 is uninformative

about whether the trueRg equals one. Themain point is thatRg is not systematically below one. A

more informative application would require heteroskedasticity-robust standard errors at the firm

level rather than clustered standard errors, or access to the underlying microdata.

E.3 Limitations Specific to the Tests

Two limitations of the implementation deserve emphasis. First, several inputs to the convergence

test are approximate values read from published figures rather than exact point estimates from

regression tables. This introduces measurement error into the pooled test statistic. Treating the

Khwaja and Mian (2008) decile level estimates as precise overstates the effective information in

the test.

Second, the variance ratio test is severely limited by data availability. Most papers donot simul-

taneously report standard errors and effective sample sizes at the subgroup level for the specifi-

cations most relevant to the diagnostic. The single computable Rg value is suggestive. But clearly

it cannot support a formal test of the smooth alternative. Both limitations could be addressed

with access to the underlying microdata, which would permit exact computation of subgroup es-
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timates, standard errors, and sample sizes at arbitrary levels of partition fineness.
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