STAT: the Stack Trace Analysis Tool

Gregory L. Lee
Dorian C. Arnold
Dong H. Ahn
Bronis R. de Supinski
Nicklas B. Jensen
Sven Karlsson
Matthew P. LeGendre
Barton P. Miller
Niklas Q. Nielsen
Martin Schulz

STAT: the Stack Trace Analysis Tool
by Gregory L. Lee

by Dorian C. Arnold

by Dong H. Ahn

by Bronis R. de Supinski
by Nicklas B. Jensen

by Sven Karlsson

by Matthew P. LeGendre
by Barton P. Miller

by Niklas Q. Nielsen

by Martin Schulz

Table of Contents

Disclaimer vii
AUSPICE .ottt vii
LACEIISE ettt e e e st e et e et e e e be e e tb e e e tbee e aaeaeraeaanes vii

1. Introduction 1

2. Overview 3

3. Changelog 7
SEAL VEISION 4. 2.2 ..ottt e e e et e et e eetaeeenaeeereeeeareeeenneeeenneean 7
SEAL VEISION 4. 2.1 oottt ettt e et e e et e e e ve e e taee e ateeeeateeeesseeesneaan 7
SEAL VEISION 4.2.0 .oiiiiiiieeiie ettt ettt e et e e st e e et e e e saa e e abeeeesee e nreeennaean 7
SEAL VEISION 4.1.0 1ot e e e e eeeaneean 7
SEAL VEISION 4.0.2 oottt ettt e et e et e e e te e e e abeeeeabee e aaeeeeabeeenaseeeeaseeesneaan 7
SEAt VEISION 4.0.1 oottt e et e e st e e b e e e be e e abeeeesee e nbeeennneaas 7
SEAL VEISION 4.0.0 oot ettt et e e e e ae e e e e aeeeeaneean 8
SEAt VEISION 3.0.1 .ooiiiiiiiieeeee ettt e e v e e e tae e e abe e eabeeeeaaeeeaneaan 8
SEAL VEISION 3.0 1.uuiiiiiiieeiie ettt ettt e et e s te e e st e e e sbae e saee e sseeesseeenseeannneean 8
SEAL VEISION 2.2 ...ttt ettt ettt e et e e e ettt e e e e e taa e e e e eeabaeeeeeenssaeeeesensaseeeeennsaneeeans 8
SEAL VEISION 2.1 et ettt e e et e e tae e e ab e e eareeeeareeeaneenn 9
STAT VEISION 2.0 ..eicuiieiieciiieieeie e ettt e st e e reesbeestaeetaeebeesssesseesabeebesssaessseesseenseenens 9

4. Installing STAT 11
Dependent Packages..........ccocueueiiuriiiiiiciciiiie s 11
INSEALLATION ...ttt ettt ettt ettt et et ettt e e b et ereereereennereas 11

5. Using the stat-cl Command 15
DeSCIIPHION oottt 15
StAt-CLl OPHIONS ...t e 15
STAT Usage Example.........cooiioiiiiiiiiiiicc s 17

6. Using the stat-view GUI 19
DeSCIIPLION ...ocviiiiiic s 19
The stat-View NOAE MENUcc.ocoiiiiiiiiiiieceeeee ettt ettt ceveeeaeeeaeeereeeaeeeaeea 20
The Stat-VIEW TOOIDATcc.coviiiiiieteceieee ettt ettt ene s 22

7. Using the stat-gui GUI 25
DeSCIIPHION ..ttt 25
Stat-gui OPLIONSooviviiiiiici s 25
The stat-gui GUI ToOIDaTcccccoiiiiiiiiiii s 26
Sample OPIONS ...t 27
ProceSS TaDIEoovieeeieiiceeceeteeeeteete ettt ettt ettt ettt ereeeae e ae et rean 29
Equivalence Classes and Subset Debugging..........ccccceoveceiniiiiiiniciciiiiceene, 30
AVATIADILIEY .ot 31

8. Setting STAT Preferences and Options 33
Preference FAlES ...t ettt ettt e aeeeae s 33
Loading and Saving Preferences.............ccovviinvininiiniinns 35
Environment Variablescc.ooioieiiiieiiiiececcieetece ettt eve s eae v 35

9. Prescription-Based Debugging With Prototype DySectAPI 39
OVEIVIEW .evieetiecireeieeeteesiteeeteeeteesteesaeese e beesebeesseebeessaessseeaseesssesseeseseeseenseessseenseenseens 39
TS TALLIATION ettt e e s e e st e et e e s et e e teessareesanneesenaeesnes 40
USAZE...oiiiiiii et 40

10. Tips and Tricks Using STAT 43
Running STAT at Scale.........ccccooiiiiiiiiiiiiiiiiiic e 43
Using STAT with 10 Watchdog and SLURM ..o 43
Running STAT in a Batch SCript.......ccvoiiiiiiiiicciiceecerrer e 44

11. Using the stat-bench Emulator 47
DeSCIIPHION ..ttt 47
stat-bench OPHiONSccoeuiiiiiiiiiiccc e 47
stat-bench Usage Example ..o, 49

vl

12. Using the stat-script Python Interface
DeSCIIPLION ..eviiiitc s
13. Troubleshooting Guide
TrOUDLESNOOTING ...
Bibliography

Disclaimer

Auspice

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

License
Copyright (c) 2007-2020, Lawrence Livermore National Security, LLC.

Produced at the Lawrence Livermore National Laboratory

Written by Gregory Lee [lee218@lInl.gov], Dorian Arnold, Matthew LeGendre, Dong
Ahn, Bronis de Supinski, Barton Miller, Martin Schulz, Niklas Nielson, Nicklas Bo
Jensen, Jesper Nileson, and Sven Karlsson.

LLNL-CODE-750488.
All rights reserved.

This file is part of STAT. For details, see http://www.github.com/LLNL/STAT.
Please also read STAT /LICENSE.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the disclaimer below.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer (as noted below) in the documentation and/or other
materials provided with the distribution.

Neither the name of the LLNS/LLNL nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL
SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S. Depart-
ment of Energy (DOE). This work was produced at Lawrence Livermore National
Laboratory under Contract No. DE-AC52-07NA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National Security,
LLC nor any of their employees, makes any warranty, express or implied, or assumes
any liability or responsibility for the accuracy, completeness, or usefulness of any in-
formation, apparatus, product, or process disclosed, or represents that its use would
not infringe privately-owned rights.

vil

Disclaimer

viii

3. Also, reference herein to any specific commercial products, process, or services by
trade name, trademark, manufacturer or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Gov-
ernment or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or Lawrence Livermore National Security, LLC, and shall not be used
for advertising or product endorsement purposes.

Chapter 1. Introduction

Notes

The Stack Trace Analysis Tool (STAT) is a highly scalable, lightweight debugger for
parallel applications. STAT is developed as a collaboration between the Lawrence
Livermore National Laboratory, the University of Wisconsin, the University of
New Mexico, and the Denmark Technical University. It is currently open source
software released under the Berkeley Software Distribution (BSD) license. It builds
on a highly-portable, open-source infrastructure, including LaunchMON for tool
daemon launching, MRNet for scalable communication, and StackWalker for
obtaining stack traces.

STAT works by gathering stack traces from all of a parallel application’s processes
and merging them into a compact and intuitive form. The resulting output indicates
the location in the code that each application process is executing, which can help
narrow down a bug. Furthermore, the merging process naturally groups processes
that exhibit similar behavior into process equivalence classes. A single representa-
tive of each equivalence can then be examined with a full-featured debugger like
TotalView' or DDT? for more in-depth analysis.

STAT has been ported to several platforms, including x86, Power, and Arm Linux
clusters, IBM’s Bluegene/L, Bluegene/P, and Bluegene/Q machines, and Cray sys-
tems. It works for Message Passing Interface (MPI) applications written in C, C++,
and Fortran and also supports threads. STAT can also use cuda-gdb for its backend,
enabling it to gather GPU stack traces in CUDA codes. STAT has already demon-
strated scalability over 3,000,000 MP1 tasks and its logarithmic scaling characteristics
position it well for even larger systems.

1. http://www.roguewave.com/products-services/totalview

2. http://www.allinea.com

Chapter 1. Introduction

Chapter 2. Overview

STAT, the Stack Trace Analysis Tool, helps isolate bugs by gathering stack traces from
each individual process of a parallel application and merging them into a global,
yet compact representation. Each stack trace, as depicted in Figure 2-1, captures the
function calling sequence of an individual process. The nodes are labeled with the
function names and the directed edges show the function calling sequence from caller
to callee. STAT’s stack trace merging process forms a call graph prefix tree, which can
be seen in Figure 2-1. The prefix tree groups together traces from different processes
that have the same calling sequence and labels the edges with the count and set of
tasks that exhibited that calling sequence. Nodes in the prefix tree that are visited by
the same set of tasks are given the same color, providing the user with a quick means
of identifying the various process equivalence classes.

/ .

l I0: 16536 [0-16535)
B T

l 0 16536: [0-16535)

__libc_start_main —

l 0 16536 [0-16535]
i [|

l 0 16536 [0-16535]

rr_simdation

l

compute

B192 [0-15,22,...]| 4095 [15-24,30,...]

40096:[25-29,31,....]

Figure 2-1. A single stack trace (left) and a STAT merged call prefix tree (right)

STAT merges stack traces into 2D spatial and 3D spatial-temporal call prefix trees.
The 2D spatial call prefix tree (Figure 2-2) represents a single snapshot of the en-
tire application. The 3D spatial-temporal call prefix tree (Figure 2-3) takes a series of
snapshots from the application over time and is useful for analyzing time-varying
behavior.

Chapter 2. Overview

B

IS o 0-24095]
r

096 0-4095]

403 [0,3-4095]

[prer Barrier | | do_sendorstall |

4034:{0,3- 4095] 1]

r
[MPIDI_BGLGI Barrier | [_gettimeckday |

393103 14,16-37 . [N 621 15,38,84,140,..]

013 0,358 1] NET (4163 59.127,0]

2613:[0,3-6,8-12,...[% 190:[2350,62,79,...]

2208:[0,3-69-12,..)

Figure 2-2. A 2D spatial call prefix tree

]

A096:[0-4095]

_start_blrts

K09 0-40195]

Figure 2-3. A 3D spatial call prefix tree

Stack traces based on function names only provide a high-level overview of the ap-
plication’s execution. However, for certain bugs this view may be too coarse-grained
so STAT is also capable of gathering stack traces with more fine-grained information.
In particular, STAT can also record the program counter of each frame or with the
appropriate debug information compiled into the application (i.e., with the "-g" com-
piler flag), STAT can gather the source file and line number of each stack frame. Both
of these refinements can further delineate processes and refine the process equiva-

Chapter 2. Overview

lence classes.

In addition, line number information can be fed into a static code analysis engine to
derive the logical temporal order of the MPI tasks Figure 2-4. This analysis traverses
from the root of the tree towards the leaves, at each step analyzing the control flow of
the source code and sorting sibling nodes by the amount of execution progress made
through the code. For straight-line code, this simply means that one task has made
more progress if it has executed past the point of another task, i.e., if it has a greater
line number. This ordering is partial since two tasks in different branches of an if-else
are incomparable. In cases where the program points being compared are within a
loop, STAT can extract the loop ordering variable from the application processes and
further delineate tasks by execution progress. This analysis is useful for identifying
the culprit in a deadlocked or livelocked application, where the problematic task has
often either made the least or most progress through the code, leaving the remaining
tasks stuck in a barrier or blocked pending a message. Note, this feature is still a

prototype.

—E04-62] L _4| 1[3]
[mangrii | [maingTiz | _

|'_:|'_] 1:12] '.I'_:fS]

61:[0,4-63]

¥ ¥
| do_stuff@T1.1.1 | | do_stuff@T1.2.1 |

[
1:[1] L[2] 1:3]

v
| compute@T1.1.1.1 | |MP|_WaImII@waltall.c:190 |

Figure 2-4. STAT’s temporal ordering analysis engine indicates that task 1 has
made the least progress. In this example, task 1 is stuck in a compute cycle, while
the other tasks are blocked in MPI communication, waiting for task 1.

Chapter 2. Overview

Chapter 3. Changelog

stat version 4.2.2

+ invoke python with -s to prevent user site-packages from interferring allow speci-
fication of GSETTINGS_SCHEMA_DIR for GUI

stat version 4.2.1

« update to support dropping of local_var.h from Dyninst 12

stat version 4.2.0

« Core file debugging enhancements
 Backend refactoring

« as always, numerous other bug fixes and minor enhancements (refer to ChangeLog
file in top-level directory)

stat version 4.1.0

e DynlInst 10.2 support
¢ Initial rocgdb support

« as always, numerous other bug fixes and minor enhancements (refer to ChangeLog
file in top-level directory)

stat version 4.0.2

e DynlInst 10.X support
+ Core file merging enhancements

« as always, numerous other bug fixes and minor enhancements (refer to ChangeLog
file in top-level directory)

stat version 4.0.1

+ Python 3 and xdot 0.9 support added

Chapter 3. Changelog

« as always, numerous other bug fixes and minor enhancements (refer to ChangeLog
file in top-level directory)

stat version 4.0.0

+ Added GDB and Cuda GDB backend support

+ Core file merging enhancements

» GUI enhancements

» ability for Dysect API to dump lightweight core via callpath

« as always, numerous other bug fixes and minor enhancements (refer to ChangeLog
file in top-level directory)

stat version 3.0.1

e Dyninst 9.3.0 support
¢ added ability to launch multiple daemons per node

« as always, numerous other bug fixes and minor enhancements (refer to ChangeLog
file in top-level directory)

stat version 3.0

» added OpenMP OMPD support and ehanced thread display

+ added data analytics to DySectAPI

 added DySectAPI probe tree visualizer

« fixes to FGFS and file broadcasting

« STAT now requires graphlib 3.0 to support generic edge labels

« as always, numerous other bug fixes and minor enhancements (refer to ChangeLog
file in top-level directory)

stat version 2.2

» most edits for this release were bug fixes and enhancements to the prototype
DySectAPI (refer to ChangeLog file in top-level directory for details of changes)

» DySectAPI session added to STAT GUI
 added module offset granularity
+ cleaner daemon crash handling

* build system fixes

Chapter 3. Changelog

« as always, numerous other bug fixes and minor enhancements (refer to ChangeLog
file in top-level directory)

stat version 2.1

+ added prototype DySectAPI
+ added prototype temporal ordering capability

« improved python wrapping, including new python-script command and a python-
based test script to run through stat functionality

» modified cut/hide interface to allow for user-defined programming models

» modified dot file naming convention for easier sequencing. also allow specification
of dot filename on gather.

« new process table interface (via file->properties)
« added cp location policy
« improved bg/q support, including use of stackwalker timeouts.

« improved fgfs support, including adding bg/q support and re-enabling mrnet fail-
ure recovery when fgfs is in use

« better labeling of error tasks in stack traces

« as always, numerous other bug fixes and minor enhancements (refer to ChangeLog
file in top-level directory)

STAT version 2.0

+ The capitalized STAT commands have been deprecated in favor of all lowercase
commands. The STAT command is now stat-cl, STATGUI is now stat-gui,
STATview is now stat-view, and STATBench is now stat-bench.

» Added optional build with Fast Global File Status plus target application binary
file broadcasting

» Added Python-script-level debugging (Python must be built with -g and
preferrably -O0)

+ Added ability to manually specify serial processes to attach to
» Added count + representative level of detail

 Added join equivalence class GUI feature

¢ Added cut text GUI feature

» Added GUI preferences menu item

* (old) DynInst support has been removed. STAT now strictly requires the Stack-
walker component of Dynlnst.

* Graphlib 2.0 required (removed support for 1.X)
» MRNet version 3 or greater required (removed support for 1.X and 2.X)
+ Added ability to manually specify list of processes

¢ Numerous other bug fixes and minor enhancements (refer to ChangeLog file in
top-level directory)

Chapter 3. Changelog

10

Chapter 4. Installing STAT

Dependent Packages

STAT has several dependencies

Table 4-1. STAT Dependent Packages

Package ‘ What It Does

Package Web Page

Graphlib version 3.0 or greater ‘ Graph creation, merging, and export

https:/ /github.com/LLNL/graphlib/

Launchmon ‘ Scalable daemon co-location

https:/ /github.com/LLNL/LaunchMON

Libdwarf Debug information parsing (Required
by StackWalker)

https:/ /www.prevanders.net/dwarf.html

MRNet version 3.0 or greater Scalable multicast and reduction
network

https:/ /github.com/dyninst/mrnet

StackWalker Lightweight stack trace sampling

https://github.com/dyninst/dyninst

In addition, STAT requires Python' and the STAT GUI requires PyGTK? both of
which are commonly preinstalled with many Linux operating systems. STAT can be
built with Python 2.X and PyGTK 2.X. However, starting with STAT version 4.0.1,
STAT can optionally be built with Python 3.X. The use of Python 3.X also requires
PyGTK version 3.X and requires you to manually install the xdot python package’.
STAT also requires SWIG* to generate Python wrappers for STAT’s core function-
ality. The Pygments® Python module can optionally be installed to allow the STAT
GUI to perform syntax highlighting of source code. Another GUI requirement is the
Graphviz® package to render the DOT format graph files.

STAT can also be optionally built with the Fast Global File Status (FGFS)’
library. This library helps STAT identify when a file (target binary) resides
on a shared file system that may become a bottleneck if all STAT daemons
try to access that file at the same time. If so, STAT will access the file from
the STAT frontend and distribute its contents to the daemons via the
MRNet communication tree. The two necessary components of FGFS can be
downloaded from https://github.com/LLNL/MountPointAttributes and
https:/ / github.com/LLNL/FastGlobalFileStatus

Installation

STAT and its dependencies can also be built via the Spack package management
tool, available at https://github.com/spack/spack. Running spack install stat
should build STAT and all of its dependencies, including those require for the STAT
GUI. Note that three Spack variants exist. The first is +examples, to enable building
example MPI code that STAT can be tested against. This is disabled by default to
avoid requiring an MPI library, but enabling it will trigger a build of MPL The
second is +dysect to enable building of the DySectAPI. The third is +fgfs to build
with FastGlobalFileStatus and target binary broadcast support. FGFS is crucial

11

Chapter 4. Installing STAT

12

to scalability, particularly when debugging applications that load several large
dynamic libraries.

For STAT 4.0.1 and beyond, the spack build of STAT requires Python 3 and will re-
quire the activation of the py-xdot package ./bin/spack activate py-xdot. For versions
up to and including STAT 4.0.0, the spack build of STAT requires Python 2 and re-
quires the activation of the py-pygtk and py-enum34 packages ./bin/spack activate
py-pygtk and ./bin/spack activate py-enum34.

When building STAT itself, first run configure. You will need to use the
--with-package options to specify the install prefix for mrnet, graphlib,
launchmon, libdwarf, and dyninst. These options will add the necessary include
and library search paths to the compile options. Refer to configure --help for exact
options. You may also wish to specify the maximum number of communication
processes to launch per node with the option --with-procspernode=number,
generally set to the number of cores per node.

STAT creates wrapper scripts for the stat-cl and stat-gui commands. These wrappers
set appropriate paths for the launchmon and mrnet_commnode executables, based
on the ——with-launchmon and --with-mrnet configure options, thus it is important
to specify both of these even if they share a prefix.

STAT will try to build the GUI by default. Building and running the STAT GUI re-
quires SWIG and pygtk. If you need to modify your PYTHONPATH envirnment
variable to search for side installed site-packages, you can do this by specifying
STAT_PYTHONPATH=path during configure. This will add the appropriate directory
to the $PYTHONPATH environment variable within the stat-gui script. To disable
the building of the GUI, use the --enable-gui=no configure option.

On BlueGene systems, be sure to configure --with-bluegene. This will enable the
BGL macro for BlueGene specific compilation. It is important to note that on Blue-
Gene systems, you may need to use an alternate hostname for the front-end node
in order to get MRNet to bind to the appropriate network interface that can com-
municate with the I/O nodes. By default, STAT will append "-io" to the hostname.
Alternatively, you can specify the hostname with the STAT_FE_HOSTNAME envi-
ronment variable.

To compile on Cray systems runnig alps, you no longer need to specify
--with-cray-alps. An example configure line for Cray:

./configure —--with-launchmon=/tmp/work/lee218/install \
——with-mrnet=/tmp/work/lee218/install \
—-with—-graphlib==/tmp/work/lee218/install \
—--with-stackwalker=/tmp/work/lee218/install \
—-with-libdwarf=/tmp/work/lee218/install \
—-prefix=/tmp/work/lee218/install \

MPICC=cc MPICXX=CC MPIF77=ftn —--enable-shared LD=/usr/bin/1ld

Note that specifying 1LD=/usr/bin/1d may be required on Cray systems to avoid
using the compute node linker. It is also worth noting that Cray includes a build of
STAT as part of their system software stack. It is typically installed in /opt/cray/stat
and can be loaded via modules.

After running configure you just need to run:

make
make install

Note that STAT hardcodes the paths to its daemon and filter shared object, assum-
ing that they are in $prefix/bin and $prefix/lib respectively, thus testing should be
done in the install prefix after running make install and the installation directory
should not be moved. The path to these components can, however, be overridden

Chapter 4. Installing STAT

with the ——daemon and --filter arguments. Further, the STAT_PREFIX environ-
ment variable can be defined to override the hardcoded paths in STAT. STAT will
also, by default, add rpaths to dependent libraries. This behavior can be disabled
by specifying -——with-rpath=no. However, when doing so, you must be sure to set
LD_LIBRARY_PATH to point to the directories containing the dependent libraries.

STAT can also be configured to use GDB as a backend instead of Dyninst. To specify
the path to gdb, use the --with-gdb flag. If CUDA kernal traces are desired, the
path should point to a working cuda-gdb executable. Note that STAT currently still
requires Dyninst as a dependence even when using the GDB backend.

Dyninst 12 removed the local_varh header file that STAT wuses to

gather python traces. If this feature is needed, you will either need

to use Dyninst version 11 or lower, or copy the local varh file from

https:/ /raw.githubusercontent.com/dyninst/dyninst/5c7e0ee327399cfae50d77f977f6655c2ca3ae4 /stackv
to your Dyninst 12+ installation’s include directory

Notes

http:/ /www.python.org/

http:/ /www.pygtk.org/

https:/ /pypi.org/project/xdot/

http:/ /www.swig.org/

http:/ /pygments.org/

http:/ /www.graphviz.org/

https:/ /github.com/LLNL/FastGlobalFileStatus

N o Ok »h =

13

Chapter 4. Installing STAT

14

Chapter 5. Using the stat-cl Command

Description

STAT (the Stack Trace Analysis Tool) is a highly scalable, lightweight tool that gathers
and merges stack traces from all of the processes of a parallel application. After run-
ning the stat-cl command, STAT will create a stat_results directory in your current
working directory. This directory will contain a subdirectory, based on your parallel
application’s executable name, with the merged stack traces in DOT format.

stat-cl Options

-a, --autotopo

let STAT automatically create topology.

-f, --fanout width
Sets the maximum tree topology fanout to width. Specify nodes to launch com-
munications processes on with -—nodes.

-d, --depth depth
Sets the tree topology depth to depth. Specify nodes to launch communications
processes on with --nodes.

-z, --daemonspernode num

Sets the number of daemons per node to num.

-u, —-usertopology topology
Specify the number of communication nodes per layer in the tree topology, sep-
arated by dashes, with topology. Specify nodes to launch communications pro-
cesses on with --nodes. Example topologies: 4, 4-16, 5-20-75.

-n, --nodes nodelist
Use the specified nodes in nodelist. To be used with --fanout, —--depth, or
—--usertopology. Example nodes lists: hostl; host1,host2; host[1,5-7,9].

-N, --nodesfile £ilename
Use the file £i1ename, which should contain the list of nodes for communication
processes

-A, --appnodes
Allow tool communication processes to be co-located on nodes running applica-
tion processes.

-x, --exclusive

Do not use the front-end or back-end nodes for communication processes.

'p, “pI'OCS processes

Sets the maximum number of communication processes to be spawned per node
to processes. This should typically be set to a number less than or equal to the
number of CPU cores per node.

15

Chapter 5. Using the stat-cI Command

16

-j, --jobid id
Append :id to the output directory and file prefixes. This is useful for associating
STAT results with a batch job.

-1, --retries count

Attempt count retries per sample to try to get a complete stack trace.

-R, --retryfreq frequency
Wait frequency microseconds between sample retries. To be used with the
--retries option.

-P, --withpc

Sample program counter values in addition to function names.

-m, --withmoduleoffset

Sample module offset only.

-1, --withline

Sample source line number in addition to function names.

-0, --withopenmp

Translate OpenMP stacks to logical application view

-c, --comprehensive
Gather 5 traces: function only; module offset; function + PC; function + line; and
3D function only.

-U, --countrep
Only gather edge labels with the task count and a single representative. This will
improve performance at extreme (i.e., over 1 million tasks) scales.

-w, -—-withthreads

Sample stack traces from helper threads in addition to the main thread.

-H, --maxdaemonthreads count

Allow sampling of up to count threads per daemon.

-y, --withpython
Where applicable, gather Python script level stack traces, rather than show the
Python interpreter stack traces. This requires the Python interpreter being de-
bugged to be built with -g and preferrably -OO0.

-t, --traces count

Gather count traces per process.

-T, —-tracefreq frequency
Wait frequency milliseconds between samples. To be used with the --traces
option.

-S, --sampleindividual

Save all individual samples in addition to the 3D trace when using --traces
option.

Chapter 5. Using the stat-cl Command

-C, --create arg_list

Launch the application under STAT’s control. All arguments after -C are used
to launch the app. Namely, arg_1ist is the command that you would normally
use to launch your application.

-1, --serial arg_list
Attach to a list of serial processes. All arguments after -I are interpreted as pro-
cesses. Namely, arg_1list is a white-space-separated list of processes to attach
to, where each process is of the form [exe@][hostname:]PID.

-D, --daemon path
Specify the full path path to the STAT daemon executable. Use this only if you
wish to override the default.

-F, -filter path
Specify the full path path to the STAT filter shared object. Use this only if you
wish to override the default.

-s, —-sleep time
Sleep for time seconds before attaching and gathering traces. This gives the ap-
plication time to get to a hung state.

-1, --log

[FE | BE | cP]

Enable debug logging of the FE frontend, B backend, cP communication pro-
cess, sw Stackwalker, swerr Stackwalker on error. Multiple log options may be
specified (i.e., -1 FE -1 BE).

-L, --logdir 10og_directory
Dump logging output into log_directory. To be used with the --1og option.

-M, --mrnetprintf
Use MRNet'’s printf for STAT debug logging.

-X, --dysectapi session

Run the specified DySectAPI session.

-b, --dysectapi_batch secs

Run the specified DySectAPI in batch mode. Session stops after secs seconds or
detach action.

-G, --gdb
Use (cuda-)gdb to drive the daemons. If you are using cuda-gdb and want stack
traces from cuda threads, you must also explicitly specify -w.

-Q, -cudaquick

When using cuda-gdb as the BE, gather less comprehensive, but faster cuda
traces. Cuda frames will only show the top of the stack, not the full call path.
This also defaults to display filename and line number and will not resolve the
function name.

17

Chapter 5. Using the stat-cI Command

STAT Usage Example

18

The most typical usage is to invoke STAT on the job launcher’s PID:

% srun mpi_application argl arg2 &
[1] 16842

% ps

PID TTY TIME CMD
16755 pts/0 00:00:00 bash
16842 pts/0 00:00:00 srun
16871 pts/0 00:00:00 ps

% stat-cl 16842

Or for Flux, there is an additional step required:

% flux mini run -n 8 mpi_application &
[1] 216842

% flux Jjobs -A
JOBID USER NAME ST NTASKS NNODES RUNTIME NODELIST
fdB2peU7 lee2l8 a.out R 8 2 12.89s fluke[6-7]
% flux job attach —--debug fdB2peU7&
[3] 216853
% stat-cl 216853

You can also launch your application under STAT’s control with the -c option. All
arguments after —c are used for job launch:

o

% stat-cl -C srun mpi_application argl arg2

With the -a option (or when automatic topology is set as default), STAT will try to au-
tomatically create a scalable topology for large scale jobs. However, if you wish you
may manually specify a topology at larger scales. For example, if you're running on
1024 nodes, you may want to try a fanout of sqrt(1024) = 32. You will need to specify
a list of nodes that contains enough processors to accommodate the ceil(1024/32)
= 32 communication processes being launched with the --nodes option. Be sure
that you have login permissions to the specified nodes and that they contain the
mrnet_commnode executable and the STAT_FilterDefinitions.so library.

% stat-cl —--fanout 32 --nodes atlas[l-4] —--procs 8 16482

Upon successful completion, STAT will write its output to a stat_results directory
within the current working directory. Each run creates a subdirectory named after the
application with a unique integer ID. STAT’s output indicates the directory created
with a message such as:

Results written to /home/user/bin/stat_results/mpi_application.6

Within that directory will be one or more files with a .dot extension. These .dot files
can be viewed with stat-view.

Chapter 6. Using the stat-view GUI

Description

stat-view (Figure 6-1) is a GUI for viewing STAT-outputted dot files. stat-view pro-
vides easy navigation of the call prefix tree and also allows manipulation of the call
tree to help focus on areas of interest. Each node in the STAT call prefix tree repre-
sents a function call and the directed edges denote the calling sequence. Further, the
edges are labeled by the set of tasks that have taken that call path. For simplification,
stat-view will display the number of tasks in the set and truncate long task lists in
the main display with "..." notation. Similarly, long function node label names will
be truncated with "..." notation. The truncation length can be modified via the File-
>Preferences menu (this requires clicking the Layout button to rerender any already
loaded graphs). Nodes are colored based on the set of tasks of the incoming edge,
providing a visual distinction when different tasks take different branches.

The stat-view GUI also allows you to view the application source files in the stack
traces, when sampling is done at the source file and line number granularity. This
may require the source file’s path to be added to the search path, through File ->
Add Search Paths. If an application’s source code is edited after STAT is run, the line
numbers shown in the stack traces may not be accurate. To alleviate this problem,
STAT can optionally cache the source files for the currently displayed .dot file. To
cache files click on the File -> Add Search Paths menu item. This will find and save
the source files in the .dot file’s stat_results directory. The next time you open the .dot
file with stat-view, the source files will automatically be loaded from the cache.

19

Chapter 6. Using the stat-view GUI

K () sTATview <@rzmerll> ®@ 0
File Edit View Help
P prs v o~ e
8 B 9 ¢ @@ @ & T ¥ ¥ % & H wm wm g @
Open SaveAs Undo Redo Reset Layout Cut Join EqC Path Path Tasks Tasks TO TO Search EqC Toat
01_mpi_ringtopo.0151.2D.dot ‘
/T -Command History—
Es.olm
14:(0,3-15]
Join Equivalence Class
Collapse
Collapse Depth
Hide
Expand
Expand All 13:3.15)
‘ S
intra_shmerm_Bar View Source | intra_shmem_Barrier@intra_fns
Translate
Temporally Order Children Lz[l}]

Figure 6-1. A screenshot of the stat-view GUI.

The stat-view Node Menu

By left clicking on a node in the call prefix tree you will get a window displaying
the full list of tasks and the full frame label (Figure 6-2). This window also contains

buttons that allow for the manipulation of the graph from that node. Right clicking on

a node provides a pop-up menu with the same options. Note all of these operations
are performed on the current visible state of the call prefix tree.

20

Chapter 6. Using the stat-view GUI

X) Node <@rzmerl1>

Stack Frame:

14 Total Tasks:
0, 3-15

P Advanced

Join 2 Temporally
Equivalence Collapse EZH?:ESE Hide Expand E)‘clpand Focus ggeuv:ce Order
Class P Children

Figure 6-2. The node pop-up window

The node operations are defined as follows:

Advanced
Display the full node and edge attributes.

Join Equivalence Class
collapses all of the descendent nodes with the same equivalence class into the
current node and renders in a new tab.

Collapse
hide all of the descendents of the selected node.

Collapse Depth
collapse the entire tree to the depth of the selected node.

Hide

the same as Collapse, but also hides the selected node.

Expand

show (unhide) the immediate children of the selected node.

Expand All

show (unhide) all descendents of the selected node.

Focus
hide all nodes that are neither ancestors nor descendents of the selected node.
(Note: This will not unhide any hidden ancestors.)

View Source

creates a popup window (Figure 6-3) displaying the source file (only for stack
traces with line number information). This may require the source file’s path to
be added to the search path, through File -> Add Search Paths.

Translate

For traces with module and offset granularity, this button will translate all node
labels into source file and line number information and open the resulting graph
in a new tab.

21

oK

Chapter 6. Using the stat-view GUI

Temporally Order Children

(prototype only) determine the temporal order of the node’s children (only for
stack traces with line number information). Requires the source file’s path and
all include paths to be added to the search path, through File -> Add Search

Paths.

OK

closes the pop-up window.

A () source View /g/g0/lee218/src/STAT/examples/src/mpi_ringtopo.c ——) = &y
mpi_ringtopo.c

v | UU_RELELVELRIEY, Lay, oLUIlU], s1eysiu]); =]
-041\ do_Sendorstall(next, tag, rank, &buf[1], ®s[1], numtasks);
===042| MPI_Waitall(z, reqgs, stats);

043 |
Bjoaa| MPI_Barrier(MPI_COMM_WORLD) ;

045] MPI_Finalize();

646 return 0;

047] }

048 |

0649| void do_SendOrStall(int to, int tag, int rank, int* buf, MPI_Request* req, int n)

050] {

051] int i;

052 if (rank == 1)

053] {

054 if (sleeptime == -1}

055] {

056 printf("ss, MPL task %d of %d stalling\n", hostname, rank, n);

057 fflush(stdout) ;
B=8oss| while(1) ;

059 }

ol e o
<] m | [>]

Figure 6-3. The source view window. The colored arrows correspond to the nodes

in the call prefix tree.

The stat-view Toolbar

The main window also has several tree manipulation options (Figure 6-4). Note the
initial click of a traversal operation operates on the original call prefix tree, while the
remaining operations are performed on the current visible state of the call prefix tree.

22

e g ¢ # B « *® ¥ T ¥ & H m

Open SaveAs Undo Redo Reset Layout Cut Join EqC Path Path Tasks Tasks TO

Figure 6-4. The stat-view tree manipulation toolbar.
The toolbar operations are defined as follows:
Open

Open a STAT generated .dot file

Save As

. #a H

TO Search EqC

Save the current graph in .dot format, which can be displayed by stat-view or in
an image format, such as PNG or PDF, which can be viewed on any computer

with an image viewer

Undo

Undo the previous operation

Chapter 6. Using the stat-view GUI

Redo

Redo the undone operation

Reset
Revert to the original graph

Layout

Reset the layout of the current graph and open in a new tab. This is useful for
compacting wide trees after performing some pruning operations.

Cut
This feature (Figure 6-5) allows you to collapse the prefix tree below the imple-
mentation frames for various programming models. For instance, a user may
wish to hide all calls that happen within the MPI library. The programming
models may be entered in a configuration file or added by the user. STATview
looks for configuration files in $prefix/etc/STAT/STATview_models.conf and
in SHOME/.STATview_models.conf. Programming models are specified as reg-
ular expressions, using Python’s re module syntax, and the re.search function is
used in favor of re.match.
K @ Hide Programming Model Frames & @& @
Programming Models
tanide | Model " |sensiive %29 |
|4¢L| Pthreads ~pthread_[a-zA-Z];
|I| MPI 0 ~pmpi_la-zA-Z];
9
‘ Add Model H Remove Model ‘
| Done |
Figure 6-5. The stat-view programming model cutting interface.
[Cut] MPI

Collapse the MPI implementation frames below the MPI function call.

[Cut] Pthreads
Collapse the Pthread implementation frames below the Pthread function call.
Join

Join consecutive nodes of the same equivalence class into a single node and ren-
der in a new tab. This is useful for condensing long call sequences.

[Traverse] Eq C
Traverse the prefix tree by expanding the leaves to the next equivalence class set.
The first click will display the top-level equivalence class.

[Traverse Longest] Path

Traversal focus on the next longest call path(s). The first click will focus on the
longest path.

23

Chapter 6. Using the stat-view GUI

24

[Traverse Shortest] Path
Traversal focus on the next shortest call path(s). The first click will focus on the
shortest path.

[Traverse Least] Tasks
Traversal focus on the path(s) with the next least visiting tasks. The first click
will focus on the path with the least visiting tasks.

[Traverse Most] Tasks
Traversal focus on the path(s) with the next most visiting tasks. The first click
will focus on the path with the most visiting tasks.

[Traverse Least] TO

Temporal Order traversal focus on the path(s) that have made the least execution
progress in the application. The first click will focus on the path that has made
the least progress.

[Traverse Most] TO

Temporal Order traversal focus on the path(s) that have made the most execution
progress in the application. The first click will focus on the path that has made
the most progress.

Search

Search for call paths containing specified text, taken by specified tasks, or from
specified hosts. Search text may be a regular expression, using the syntax de-
scribed in http:/ /docs.python.org/library/re.html.

[Identify] Eq C

Identify the equivalence classes of the visible graph. After clicking on this button,
a window will pop up showing the complete list of equivalence classes.

Chapter 7. Using the stat-gui GUI

Description

STAT includes a graphical user interface (GUI) to run STAT and to visualize STAT’s
outputted call prefix trees (Figure 7-1). This GUI provides a variety of operations to
help focus on particular call paths and tasks of interest. It can also be used to identify
the various equivalence classes and includes an interface to attach a heavyweight

debugger to the representative subset of tasks.

XK O sTAT
Ele Edit View Help

12_mpi_ringtopo.0079.3D.dot

=

Attach

[2048:(0-2047]

_start@?

[2048:(0-2047]

_libc_start_main@libc-start.c:226

204610,3-2047]

main@mpi_ringtopo.c:41

do_SendOrStall@mpi_ringtopo.c:58

e ¥ ¢ @ © %« * ¥ T ¥ e 9

Open SaveAs Undo Redo Reset Layout Cut Join EqC Path Path Tasks Tasks

main@mpi_ringtopo.c:44

PMPI_Barrier@barrier.c:70

Figure 7-1. A screenshot of the STAT GUI

stat-gui Options

-a, —-attach [hostname:]PID

Attach to the parallel job with resource manager [hostname:]PID.

-P, --withpc

Sample program counter values in addition to function names.

-m, --withmoduleoffset

Sample module offset only.

-i, --withline

Sample source line number in addition to function names.

-0, --withopenmp

Translate OpenMP stacks to logical application view

-U, --countrep

Only gather edge labels with the task count and a single representative. This will
improve performance at extreme (i.e., over 1 million tasks) scales.

Chapter 7. Using the stat-gui GUI

-w, --withthreads
Sample stack traces from helper threads in addition to the main thread.

-y, --withpython
Where applicable, gather Python script level stack traces, rather than show the
Python interpreter stack traces. This requires the Python interpreter being de-
bugged to be built with -g and preferrably -OO0.

-C, --create arg_1list
Launch the application under STAT’s control. All arguments after -C are used
to launch the app. Namely, arg_1list is the command that you would normally
use to launch your application.

-1, --serial arg_list
Attach to a list of serial processes. All arguments after -I are interpreted as pro-
cesses. Namely, arg_list is a white-space-separated list of processes to attach
to, where each process is of the form [exe@][hostname:]PID.

-d, --debugdaemons

launch the daemons under the deubgger

-s, --sleep time
Sleep for time seconds before attaching and gathering traces. This gives the ap-
plication time to get to a hung state.

-1, -log

[FE | BE | cP]

Enable debug logging of the FE frontend, BE backend, cP communication pro-
cess, sw Stackwalker, swerR Stackwalker on error. Multiple log options may be
specified (i.e., -1 FE -1 BE).

-L, —-logdir 1og_directory
Dump logging output into log_directory. To be used with the --1o0g option.

-M, --mrnetprintf
Use MRNet'’s printf for STAT debug logging.

-G, --gdb
Use (cuda-)gdb to drive the daemons. If you are using cuda-gdb and want stack
traces from cuda threads, you must also explicitly specify -w.

-Q, --cudaquick

When using cuda-gdb as the BE, gather less comprehensive, but faster cuda
traces. Cuda frames will only show the top of the stack, not the full call path.
This also defaults to display filename and line number and will not resolve the
function name.

The stat-gui GUI Toolbar

In addition to the operations provided by stat-view, stat-gui provides a toolbar (Fig-
ure 7-2) to control STAT’s operation.

26

Chapter 7. Using the stat-gui GUI

-4

Attach
ReAttach

<|
Detach

Pause

Resume

=
%

Sample

@,

Sample
Multiple

Figure 7-2. The STAT GUI toolbar.

Attach

Attach to your application and gather an initial sample.

ReAttach

Reattach to the parallel application and gather an initial sample.

Detach

Detach from your application.

Pause

Put the application in a stopped state.

Resume

Set the application running.

Sample

Gather and merge a single stack trace from each task in your parallel application.
The application is left in a stopped state after sampling.

Sample Multiple

Gather and merge multiple stack traces from each task in your parallel applica-
tion over time. The application is left in a stopped state after sampling.

Sample Options
STAT has several options for stack trace sampling (Figure 7-3).

27

Chapter 7. Using the stat-gui GUI

28

A () stack Sample Preferences <@rzwiz5>- () (=) @

Per Sample Options
+ With Threads
Max Threads Per Daemon 512
4 With OpenMP
+ With CUDA Quick
+ Gather Python Traces
Stack Frame (node) Sample Options
function only
function and pc
module offset
) function and line
Process Set (edge) Sample Options
o) full list
count and representative

Run Time Before Sample (sec)| 0 =

~ Advanced

Num Retries 5 : Retry Frequency (us) 10
Multiple Sample Options
Nurm Traces| 10 : Trace Frequency (ms) 1000

Gather Individual Samples
+ Clear On Sample

Cancel oK

Figure 7-3. The stat-gui operation toolbar.

These options are defined as follows:

With Threads
Sample helper threads in addition to the main thread.

Max Threads Per Daemoncount

Allow sampling of up to count threads per daemon.

With CUDA Quick

When using cuda-gdb as the BE, gather less comprehensive, but faster cuda
traces. Cuda frames will only show the top of the stack, not the full call path.
This also defaults to display filename and line number and will not resolve the
function name.

With OpenMP
Translate OpenMP stacks into logical application view (requires application built
with OMPD-enabled OpenMP)

Gather Python Traces

Where applicable, gather Python script level stack traces, rather than show the
Python interpreter stack traces. This requires the Python interpreter being de-
bugged to be built with -g and preferrably -OO0.

function only | module offset | function and pc | function and line

Sample traces with function name only, or module name and offset, or function
name with the CPU program counter, or function name with the source file and
line number. When gathering the module and offset, you can later translate all
of the node labels into source file and line number via the GUI (left or right click
on a node).

full list | count and representative

Sample traces with the full task list or just the count and a single representative.
When gathering the count and representative, you can actually query an indi-

Chapter 7. Using the stat-gui GUI

vidual STAT graph node (through the left-click menu) for the full edge label, as
long as the STAT session is still attached.

Run Time Before Sample

Resume the application and let it run for the specified amount of time before
gathering the sample

Retries/Retry Frequency (Advanced)

Sometimes a process may be in a state (i.e., function prologue or epilogue) such
that a complete stack trace may not be obtainable. This option controls how
many times to retry sampling and how often to wait (in microseconds) between
retries to try and get a complete trace.

Traces/Trace Frequency

When sampling multiple traces over time, these options specify how many traces
to gather per process and how long to wait between samples.

Gather Individual Samples

When sampling multiple traces over time, this option enables STAT to gather all
of the intermediate 2D prefix trees in addition to the fully merged 3D prefix tree.
The traces will be displayed in individual tabs.

Clear On Sample

When sampling multiple traces over time, STAT accumulates the traces that are
gathered. This option determines whether to clear the accumulated traces when
gathering additional traces.

Process Table

The application process table can be accessed through the stat-gui File->Properties
menu item. This window (Figure 7-4) lists the properties of the application, including
the number of nodes, processes, the job launcher host and PID and a 4-tuple list of
application process rank, host, PID, and executable. The executable path in the 4-
tuple is an index into the executable list at the top of the window in order to reduce
duplication of text. The 4-tuple process table list can be filtered by ranks or hosts.

29

Chapter 7. Using the stat-gui GUI

A () Properties <@hype201>
Application Executable(s) (index:path)
0:/collabjusr/global/tools/stat/chaos_5_x86_64_ib/stat-test/share/STAT/examples/bin/mpi_ringtopo)

®
®
%)

Number of application nodes
128

Number of application processes
2048

Job Launcher (host:PID})
hype201:7281

Filter Ranks [“ Filter Ranks|
Filter Hosts | || Fiter Hosts |
Process Table (rank host:PID exe_index) —
Rank Host FID EXE

0 hype201 7373 0

hype201 7374
hype201 7375
hype201 7376
hype201 7377
hypez201 7378
hype201 7379
hype201 7380
hype201 7381
hype201 7382
hype201 7383
hype201 7384
hype201 7385
hype201 7386
hypez201 7387
o S

[r R T I R N R

P
S Y N
R = = R R R =R =T = R ===

b
v

Figure 7-4. The properties window shows the application properties and lists the

individual application processes.

Equivalence Classes and Subset Debugging

30

stat-gui can also serve as an interface to attach a full-featured debugger such as
TotalView or DDT to a subset of application tasks. This interface can be accessed
through the "identify equivalence classes" Eq C button, which will pop up the equiv-
alence classes window (Figure 7-5). You can then select a single representative, all, or
none of an equivalence classes’ tasks to form a subset of tasks. The Attach to Subset
buttons will launch the specified debugger and attach to the subset of tasks (note,
this detaches STAT from the application). There are two DDT subset-attach buttons.
The preferred DDT method is to use DDT bulk attach which is more scalable than
the DDT host:PID attach. If the bulk attach fails, then users may fall back to the
host:PID attach. The Debugger Options button allows you to modify the debugger

path.

Chapter 7. Using the stat-qui GUI

Equivalence Classes (on rzwiz5)

3 Equivalence Classes:
Rep All None tasks

[vf (] [| selectall
® O O 2]
@0 o m
® O O I

Manually Specify Additional Tasks:

Attach TotalView Attach DDT bulk attach Attach DDT host:pid attach Debugger
to Subset to Subset to Subset Options

Cance

Figure 7-5. The equivalence classes window. The colored task lists correspond to
the nodes in the prefix tree.

Availability

STAT has been ported to Linux x86 clusters, IBM BlueGene systems, CORAL and
CORAL EA systems, Cray systems, and Intel Xeon Phi systems. It can be run against
various resource managers, including SLURM, OpenMPI's OpenRTE, and Intel

MPI’s mpiexec.hyrdra.

31

Chapter 7. Using the stat-gui GUI

32

Chapter 8. Setting STAT Preferences and Options

Preference Files

Several files can influence how STAT runs. The first such file is
$prefix/etc/STAT /nodes.txt, which specifies a list of hostnames, one hostname per
line, on which to launch MRNet communication processes. This file is designed
to be shared by all users and should point to shared resources that all users
have remote shell access to, such as login nodes. Note that by default STAT will
not test access to a node before trying to launch communication processes. If the
STAT_CHECK_NODE_ACCESS environment variable is set to any value, then
STAT will try to run (via remote shell) a simple test to see if the node is accessible
before adding it to the MRNet tree. Also note that nodes.txt will not be used if the
-A or "Share App Nodes" option is enabled.

STAT GUI preferences can be set with an installation specific STAT.conf or
user specific .STATrc file. The installation specific file should be placed in
$prefix/etc/STAT/STAT.conf, while the user specific file should be placed in
$HOME/.STATrc. Options specified in the user’s .STATrc file will always take
precedence over the STAT installation’s .STATrc file. Each preference file specifies
one option per line of the format:

Option = Value

Here is a list of options:

Remote Host = hostname

Sets the default remote host to hostname to search for the job launcher process.

Remote Host Shell = rsh/ssh
Sets the default remote host shell to rsh or ssh to get a process listing on remote
hosts.
Resource Manager = Auto/Alps/Slurm
Sets the default resource manager to Alps or Slurm for searching for the job
launcher process, or use Auto to determine the resourece manager automatically.
Job Launcher = regex
Sets the default regular expression to regex (i.e., "'mpirun | srun") for filtering the
process listing for the job launcher process.
Tool Daemon Path = path
Use the STAT deamon executable installed in path instead of the default.

Filter Path = path
Use the STAT filter shared object installed in path instead of the default.

Topology Type = automatic/depth/max fanout/custom
Use the specified topology type when building the MRNet communication tree.
The automatic topology is typically recommended and set by default.
Topology = topology

Use topology for the specific topology configuration. This should be used with
the Topology Type option. Refer to the stat-cl options to see valid Topology spec-
ifications for a given Topology Type.

33

Chapter 8. Setting STAT Preferences and Options

34

Communication Nodes = nodelist

Use the nodes listed in node1ist for MRNet communication processes.

Check Node Access = true/false
Controls whether to check access to a node before trying to launch MRNet com-
munication processes on it.

CP policy = noneshare app nodes|exclusive

Controls where to launch communication processes. When set to share app
nodes, they will be launched on nodes running application processes. On Blue-
Gene systems, this will actually place them on the I/O nodes, and requires users
to be able to access the I/O nodes via a remote shell. When set to exclusive,
then the communication processes will only be run on specified nodes that do
not run other STAT tool processes (e.g., the STAT frontend and the back-end dae-
mons).
Communication Processes per Node = count

Launch no more than count MRNet communication processes per node.

Num Traces = count

Gather count stack traces when sampling multiple.

Trace Frequency (ms) = count

Let the process run count milliseconds between multiple samples.

Num Retries = count

Attempt count retries to try to obtain a complete stack trace.

Retry Frequency (ms) = count

Let the process run count milliseconds between stack sample retries.

With Threads = true/false

Controls whether to gather stack traces from threads.

With OpenMP = true/false

Controls whether to translate OpenMP stack traces to logical application view.

Gather Python Traces = true/false
Controls whether to gather Python script level stack traces, rather than show the
Python interpreter stack traces.
Sample Type = function only/module offset|function and pc/function and
line

Controls the granularity of the nodes in the gathered stack traces.

Edge Type = full list/count and representative
Controls the granularity of the edges in the gathered stack traces.

DDT Path = path
Use the DDT executable installed in path for subset debugging.

DDT LaunchMON Prefix = path

Use the LaunchMON installation in path for improved DDT subset attaching,
otherwise attach via hostname:PID pairs.

Chapter 8. Setting STAT Preferences and Options

TotalView Path = path
Use the TotalView executable installed in path for subset debugging.

Additional Debugger Args = args
Add args to the argument list when launching TotalView or DDT.

Log Dir = directory
Write STAT debug logs to directory.

Log Frontend = true/ false

Controls whether to enable debug logging of the STAT frontend.

Log Backend = true/false
Controls whether to enable debug logging of the STAT backend.

Log CP = true/false
Controls whether to enable debug logging of the STAT communication pro-
cesses.

Log SW = true/false
Controls whether to enable debug logging of Stackwalker by the STAT backend.

Log SWERR = true/false
Controls whether to enable debug logging of Stackwalker by the STAT backend
when a Stackwalker error is detected.

Use MRNet Printf = true/false

Controls whether to use MRNet's printf when writing debug logs. This is helpful
to correlate timing between STAT log messages and MRNet debug log messages,
when MRNet logging is being logged (via the STAT_MRNET_OUTPUT_LEVEL
enviornment variable).

GDB BE = true/false

Controls whether to use (cuda-)gdb to drive the deamons.

With CUDA QUICK = true/false

When using cuda-gdb as the BE, controls whether to gather less comprehensive,
but faster cuda traces. Cuda frames will only show the top of the stack, not the
full call path. This also defaults to display filename and line number and will not
resolve the function name.

GDB Path = path

Use the gdb executable installed in path for debugging when GDB BE is set to
true.

Loading and Saving Preferences

Options from a STAT session can be saved to a preferences file that can be loaded on
subsequent sessions. This can be accessed through the File -> Load Preferences and
File -> Save Preferences menu items.

35

Chapter 8. Setting STAT Preferences and Options

Environment Variables

36

Several environment variables influence STAT and its dependent packages. Note that
dependent package environment variables are prefixed with "STAT_" to avoid con-
flict with other tools using that package. The STAT process will then set the appropri-
ate (i.e., without "STAT_") environment variable to pass the value to the dependent
package.

STAT_PREFIX=directory

Use directory as the installation prefix instead of the compile-time
STAT_PREFIX macro when looking for STAT components and configuration
files.

STAT_CONNECTION_TIMEOUT=t ime

Wait time seconds for daemons to connect to MRNet. Upon timeout, run with
the available subset.

STAT DAEMON_PATH=path

Use the STAT daemon executable path instead of the default. path must be set
to the full path of the STATD executable.

STAT FILTER_PATH=path

Use the STAT filter shared object path instead of the default. path must be set to
the full path of the STAT_FilterDefinitions.so shared object file.

STAT_FGFS_FILTER _PATH=path

Use the STAT FGFS filter shared object path instead of the default. path must be
set to the full path of the STAT_FilterDefinitions.so shared object file.

STAT_MRNET_OUTPUT_LEVEL=1evel
Enable MRNet debug logging at 1evel (0-5).

STAT_MRNET_PORT_BASE=port
Set the MRNet base port number to port.

STAT_MRNET_STARTUP_TIMEOUT=seconds

Set the MRNet connection timeout to seconds.

STAT _CONNECT _TIMEOUT=seconds

Set the STAT connection timeout to seconds, after which STAT will try to con-
tinue with any subset of daemons that have connected.

STAT_MRNET_DEBUG_LOG_DIRECTORY=directory
Write MRNet debug log files to directory.

STAT_OUTPUT_REDIRECT_DIR=directory

Redirect stdout and stderr to a set of hostname specific files in directory.

STAT_MRN_COMM_PATH=path

Use the mrnet_commnode executable path. path must be set to the full
path of the mrnet_commnode executable. (Deprecated along with MRNet’s
MRN_COMM_PATH)

Chapter 8. Setting STAT Preferences and Options

STAT_MRNET_COMM_PATH=path

Use the mrnet_commnode executable path. path must be set to the full path of
the mrnet_commnode executable.

STAT XPLAT_RSH=path

Use the remote shell path for launching mrnet_commnode processes.

STAT_PROCS_PER_NODE=count

Allow up to count communication processes to be launched per node.

STAT_FE_HOSTNAME=value

Set the STAT Front End hostname to vaiue. This may be necessary for example
on BlueGene systems to use the proper network interface for the I/O nodes to
connect back to.

STAT _CHECK_NODE_ACCESS=value

Set to any value to have STAT check user access to any specified nodes before
launching communication processes.

STAT _GROUP_OPS=vailue

Set to any value to enable Stackwalker’s group operations. Group operations
may help with performance when a single daemon needs to manage a large
number of target processes. This is on by default on BG/Q systems.

STAT_LMON_PREFIX=path
Sets the LaunchMON installation prefix to path.

STAT_LMON_LAUNCHMON_ENGINE_PATH=path

Use the launchmon executable path. path must be set to the full path of the
launchmon executable.

STAT LMON_REMOTE_LOGIN=command
Use the remote shell command for LaunchMON remote debugging.

STAT_LMON_DEBUG_BES=value

Launch the backends under a debugger’s control if valueis set (must be enabled
in LaunchMON configuration).

STAT _USAGE_LOG=path
Record usage of STAT in the file located in path. path must be writeable by user.

STAT_ADDR2LINE=path

Use the addr2line utility located in path to translate module and offset prefix
trees in the stat-view GUL

STAT_GDB=path
Use the gdb located in path to drive the daemons.

STAT_INTELGT_MAX_THREADS=number

Set to a positive integer to limit the number of threads used for call-stack cap-
ture. STAT will capture stack traces from only the first N threads. For example,
STAT_INTELGT_MAX_THREADS=100 will capture the first 100 threads. If the value
is not a positive integer, this setting is ignored and all threads are captured.

37

Chapter 8. Setting STAT Preferences and Options

38

STAT_INTELGT_EXPR_FILTER=expression

Set to a GDB expression to selectively filter threads for call-stack capture.
Only threads where the expression evaluates to true (non-zero) will
have their stack traces captured. The new line characters and system
commands keywords like ’shell’, ’'call’, ’'python’, ’source’,
"dump’, ’restore’ are not allowed. The expression is evaluated in the
context of each thread using GDB’s thread apply command. For example,
STAT_INTELGT_EXPR_FILTER="\$_thread <= 50" will capture only threads
with ID 50 or lower. The expression must be a valid GDB expression that
returns a boolean value.

Security Note: This expression is directly evaluated by GDB. For security, the ex-
pression is validated to reject dangerous GDB commands (such as shell, call,
python) and multi-line input. Only use this feature in trusted environments
where environment variables are controlled.

Chapter 9. Prescription-Based Debugging With Prototype
DySectAPI

Overview

Debugging is a critical step in the development of any parallel program. However,
the traditional interactive debugging model, where users manually step through
code and inspect their application, does not scale well even for current supercomput-
ers due its centralized nature. While lightweight debugging models, such as STAT,
scale well, they can currently only debug a subset of bug classes. We therefore pro-
pose a new model, which we call prescriptive debugging, to fill this gap between
these two approaches. This user-guided model allows programmers to express and
test their debugging intuition in a way that helps to reduce the error space.

We have implemented a prototype implementation embodying the prescriptive de-
bugging model, the DySectAPI, allowing programmers to construct probe trees for
automatic, event-driven debugging at scale. The DySectAPI implementation can run
with a low overhead.

The traditional debugging paradigm has survived because it provides the rudimen-
tary operations that a user needs to effectively reduce the error search space. In a typ-
ical debug session, a user first sets a breakpoint at a particular code location. Once
that breakpoint is triggered, the user will evaluate the state of the application and
subsequently set another breakpoint, perhaps on a subset of processes that satisfy
certain conditions. This process is then repeated until the bug is isolated.

Our new prescriptive debugging model aims to capture the flexibility and generality
of this interactive process, but allow users to codify individual steps and sequences
in the form of debug probes that can then be executed without the need for indi-
vidual interactions between debugger and user. Essentially, the prescriptive debug-
ging model provides the means for a user to codify their debugging intuition into
prescribed debug sessions. The application can then be submitted into the system’s
batch queue to be run under that debug session.

At runtime, the debugger follows the user’s intuition by executing the debug probes
and, at the end, scalably gathers summary information that can be examined by the
user during the execution or at their convenience after the job has completed. Our
prescriptive parallel debugging model is built upon the notion of probes that can
be linked together into a probe tree. A probe itself is composed of a domain, events,
conditions, and actions as defined below.

The domain is the set of processes to install a probe into. It also includes a synchro-
nization operation that determines how long the probe should wait for processes in
the domain before proceeding. More precisely, after the first process triggers a probe,
the remaining processes have until some specified timeout to participate.

We define an event as an occurrence of interest. Events borrowed from traditional
debuggers include breakpoints, which specify a code location (when reached, the de-
bugger will stop the target process) and data watchpoints, which monitor particular
variables, memory locations or registers. An event can also be a user-defined timeout
that instructs a probe to be triggered after some elapsed amount of time. Events can
also capture asynchronous occurrences such as a program crash, a signal being raised
or a system-level event such as memory exhaustion.

These events allow programmers to express their debugging in terms of a set of
procedures and in terms of code behaviors (e.g., on detecting a hang or slowness).
Further, individual events can also be composed together to enable advanced fine-
grained event selection. When an event occurs, its associated condition is evaluated.
The condition is an expression that can be evaluated either locally on each backend
or globally across the domain. A local condition may, for instance, check if a variable
equals a particular value. A global condition can evaluate an aggregated value, such
as minimum, maximum or average, across the entire domain. Conditions can also

39

Chapter 9. Prescription-Based Debugging With Prototype DySectAPI

be composed to specify multiple variables of interest or to combine local and global
evaluations.

If the condition is satisfied, the probe is said to be triggered, and the specified actions
are executed. Probe actions can be formulated by the user as an aggregation or a re-
duction, for example, aggregated messages, merged stack traces or the minimum and
maximum of a variable. A probe can optionally include a set of child probes, which is
enabled upon the satisfaction of the parent probe’s condition. In this manner, a user
can create a probe tree. A probe tree naturally matches the control-flow traversal that
is typical of an interactive session with a traditional debugger. This can effectively
narrow down the search space across the source-code dimension.

Installation

Usage

40

The DySectAPI comes included in STAT’s source code. It can be built by turning on
the ——enable-dysectapi configure flag. DySectAPI requires DynlInst library, which
can be specified with the -~-with-stackwalker=path configure option.

A DySectAPI probe session is constructed as a C++ program. You will need to in-
clude the "DysectAPLh" header file, which contains the specifications for the various
DySectAPI objects and for the session routines. Your session must define a Dysect-
Status DysectAPIL::onProcStart(int arge, char **argv) routine, which will create and
link Probe objects. This section will only cover the high-level basics of constructing a
debug session. For detailed information about the various constructs, you may refer
to the header files or the reference guide.

A Probe consists of an Event, Condition, Domain, and an Action or list of Actions.
Various Probe signatures exist, so not all components are required. Probes can be
linked into a tree with the Probe::link(Probe *) routine. Probe tree roots can be enabled
via the Probe::setup() routine.

An Event is an occurence of interest. DySectAPI defines several event types: Loca-
tion; Timer; Async. Furthermore, Events can be combined with And, Or, and Not
releations. A Location, essentially a debugger breakpoint, specifies where to install
a probe. DySectAPI supports three location specifications: a function name; a source
file and line number; or a program counter address. A Location can also be marked
as pending, which informs DySectAPI that the probe should not be enabled until the
parent probe has been triggered. A Timer specifies a timeout period to wait before
triggering the Probe. An Async can be various asynchronous events, such as a signal,
crash, or process exit.

A Condition specifies the circumstances under which a probe is to be triggered. Most
conditions evaluate a data expression, such as whether a specified variable equals a
certain value or falls within a given range. Conditions can be combined with And,
Or, and Not relations.

The Domain specifies the set of processes within which to install a probe. The sup-
ported domains are World (i.e., all processes), a rank-specified Group, or Inherit
(from the parent probe). A Domain can also specify a timeout, which indicates the
amount of time to wait after the first process encounters the probe’s event before
proceeding.

An Action indicates what to do once a probe has been triggered. The currently im-
plemented Actions are: trace, null, totalview, depositCore, signal, loadLibrary, irpc,
writeModuleVariable, stat, detach, detachAll, stackTrace, fullStackTrace, startTrace,
stopTrace. The trace action prints out an aggregated trace message. The totalview
action detaches DySectAPI from the target processes that triggered the probe and at-
taches the TotalView debugger to that set of processes. The depositCore action, which

Chapter 9. Prescription-Based Debugging With Prototype DySectAPI

requires the libdepositcore library, causes the triggering processes to dump a core file.
The signal action sends the specified integer signal to the triggered processes. The
loadLibrary action loads the specified shared library into the triggered processes.
The irpc action will invoke a function within the target processes. the writeModule-
Variable action will modify the contents of a variable. The stat action will gather a
Stack Trace Analysis Tool merged stack trace of the application. The detach action
will detach DySectAPI from the triggered processes, while the detachAll action will
detach DySectAPI from all application processes. The stackTrace and fullStackTrace
actions will print an aggregated, text-based stack trace of the triggered processes. The
startTrace and stopTrace actions indicate when to start and stop data tracing.

An example DySectAPI session can be seen below:

/% File: session.C */
#include <DysectAPI.h>
#include <stdio.h>

/+ Single entry for debug daemon =/
DysectStatus DysectAPI::onProcStart (int argc, char xxargv) {

/+ Probe creation x/

Probex entry = new Probe (Code::location("entry(foo)"),
Local::eval("argc >= 5"),
Domain::group("12,25,65-70", Wait::inf));

/* Within 500 ms and call frame has not been left =/

Probe* timer = new Probe (Event::And(Time::within (500),
Event::Not (Async::leaveFrame())),
Domain::group("..", 400),
Action: :trace ("Took more than 500ms to return from

foo()"));

/+* Event chain =*/
entry->link (timer);

/* Setup probe tree */
entry->setup () ;

return DysectOK;

The session can be compiled with the dysectc command.

o

% dysectc session.C

You will then need to run stat-cl and specify the generated session .so file with the
stat-cl -X=path option, for example:

% stat-cl -X $PWD/libsession.so —-C srun mpi_application

41

Chapter 9. Prescription-Based Debugging With Prototype DySectAPI

42

Chapter 10. Tips and Tricks Using STAT

Running STAT at scale

STAT is highly scalable and its default analysis has been shown to run effectively on
jobs even over one million MPI tasks. Even so, at extreme scales, there are several
options that may make STAT’s operation even more scalable. The first is to specify
the underlying communication tree topology. By default, the stat-cl command and
stat-gui will try to deploy the automatic topology, which defaults to a fanout of 64.
STAT will, by default, try to co-locate the communication processes on the applica-
tion nodes (or associated I/O node on BG systems). To avoid the default co-location
option for the stat-cl script (remove the -a option). For the stat-gui GUI, create a pref-
erences file and specify an alternative CP policy option. Refer to the options sections
to learn about more topology options.

Typically, STAT launches one debug daemon per node. This can become a bottle-
neck if that daemon is resposible for debugging many target processes. STAT has a
daemonspernode that allows users to request that multiple daemons be launched per
node and distribute the target processes between them. This will help offload some of
the debugging workload, however, be aware that this will increase STAT’s memory
usage per node.

Another consideration at scale is the granularity of debug information. At larger
scales, you may prefer to start with coarse-grained analysis. For example, you may
not need full task lists for the edge labels, but rather, would like to gather edge la-
bels with just the task count and a representative rank. Within the stat-gui GUI, one
can then request the full task list of a given edge via the left-click menu of the de-
sired edge’s target node. Note, with the stat-cl command, the full task lists would not
be gathered and thus would not be available for post-mortem analysis via the stat-
view GUL The count and representative granularity will result in faster sampling
and smaller output-file size.

The granularity of the stack traces themselves can also be adjusted to alleviate bottle-
necks at scale. In particular, symbol resolution can be expensive, particularly when
gathering traces at the function and line level of granularity, but even with the func-
tion only granularity. This can cause the many STAT daemons to perform many file
operation requests at the same time, straining the target file system. To alleviate this
issue, you may gather stack traces with the module and offset granularity. The stat-
gui and stat-view GUIs can later translate the module and offset into function and
line number via addr2line. This translation feature is available only through a left-
click of a module and offset node and will translate the entire prefix tree. Note that
the file-system bottleneck can also be mitigated with the --with-£fgfs configure op-
tion, to enable scalable file operations via the FastGlobalFileStatus' module.

Using STAT with 10 Watchdog and SLURM

STAT can be used in conjunction with the IO Watchdog® utility, which monitors ap-
plication output to detect hangs. To enable STAT with the IO Watchdog, add the
following to the file S(HOME/ .io-watchdogrc

search /usr/local/tools/io-watchdog/actions
timeout = 20m
actions = STAT, kill

You will then need to run your application with the --io-watchdog srun option:

o

% srun —-—-io-watchdog mpi_application

43

Chapter 10. Tips and Tricks Using STAT

When STAT is invoked, it will create a stat_results directory in the current working
directory, as it would in a typical STAT run. The outputted .dot files can then be
viewed with stat-view. For more details about using IO Watchdog, refer to the 10
Watchdog README file in /usr/local/tools/io-watchdog/README.

Running STAT in a Batch Script

44

A good way to run STAT is at the end of a batch script. For example, if an application
is estimated to take 10 hours to run and 12 hours are allocated, then you may consider
your application hung if it is still running up to the 12th hour. In such a situation, one
may choose to run STAT in the last 10 minutes of the allocation to get diagnostic
information about the job.

The following example script demonstrates how one might setup STAT to catch a
hung job in a batch script.

#!/bin/sh
perform your batch script prologue/setup here

stat_wait_time_minutes=120
application_exited=0

#run the application and get the launcher PID
srun mpi_ringtopo &
pid=s$!

periodically check for application exit
for i in ‘seq ${stat_wait_time_minutes}®
do
sleep 60
ps -p ${pid}
if test $7? -eq 1
then
the application exited, so we’re done!
application_exited=1
break
fi
done

if the application is still running then invoke STAT
if test ${application_exited} -eq 0
then
/usr/local/bin/stat-cl -c ${pid}
waitpid ${pid} # alternatively you may want to ‘kill -TERM ${pid}‘
fi

perform your batch script epilogue/cleanup here

Within the for loop, the script will check every minute (sleep for 60 seconds between
checks) to see if the application is still running by running ‘ps‘ on the PID of the job
launcher. If the application has exited, the script will break from the loop and perform
any remaining operations in the batch script. If the wait time, 120 minutes in this ex-
ample, expires then STAT will be run to gather stack traces from the application. The
wait time should be set such that STAT has enough time to run (i.e., 10 minutes to
be safe) within the batch script’s allocated time. Note the -c option to STAT gathers
a "comprehensive" set of stack traces, with varying levels of detail. After STAT com-
pletes, the script then waits for the application to exit. Alternatively, you may want
to kill the application if it isn’t making any progress.

Chapter 10. Tips and Tricks Using STAT

Notes

1. https://github.com/dongahn/FastGlobalFileStatus
2. http://code.google.com/p/io-watchdog/

45

Chapter 10. Tips and Tricks Using STAT

46

Chapter 11. Using the stat-bench Emulator

Description

The Stack Trace Analysis Tool is a highly scalable, lightweight tool that gathers and
merges stack traces from all of the processes of a parallel application. stat-bench is
a benchmark that can emulate STAT’s performance. By utilizing your entire parallel
allocation (launching one stat-bench daemon emulator per core) and generating arti-
ficial stack traces, stat-bench is able model STAT’s performance using less resources
than an actual STAT run requires. With various options, you can also map stat-bench
to your target machine architecture and target application. After completion, stat-
bench will create a stat_results directory in your current working directory. This di-
rectory will contain a subdirectory for the current run, with the merged stack traces
in DOT format as well as a performance results text file. An example stat-bench gen-
erated prefix tree emulating 1M (1024*1024) tasks can be seen in Figure 11-1.

=

104857 6:[0-1048575]

F
| __libc_start_main

104857 6:[0-1048575]

838784:(1-4,6-9,11-14,...]

2009664:(2,7,12,17....[%419456:[1,3.6,8,11,...]

629248:(0-2,5-7,10-12,...]209664:(4,9,14,19....]

419584:[0-1,5-6,10-11,...] 200664:[4,9,14,19,...] 209664:(3,8,13,18,...] “209792:(1,6,11,16,...]

209792:[0,5,10,15,...] [09664:(3,8,13,18,...] 209792:(1,6,11,16,...]

Figure 11-1. A stat-bench generated prefix tree emulating over 1 million tasks.

stat-bench Options

-a, --autotopo

let STAT automatically create topology.

-f, --fanout width

Sets the maximum tree topology fanout to width. Specify nodes to launch com-
munications processes on with ——nodes.

47

Chapter 11. Using the stat-bench Emulator

48

-d, --depth depth
Sets the tree topology depth to depth. This option takes precedence over the
-—fanout option. Specify nodes to launch communications processes on with
-—nodes.

-u, --usertopology topology
Specify the number of communication nodes per layer in the tree topology,
separated by dashes, with topology. This option takes precedence over the
-—fanout and --depth options. Specify nodes to launch communications
processes on with ——-nodes. Example topologies: 4, 4-16, 5-20-75.

-n, --nodes nodelist
Use the specified nodes in nodelist. To be used with ——fanout, ——depth, or
--usertopology options. Example nodes lists: host1; host1,host2; host[1,5-7,9].

-A, --appnodes
Allow tool communication processes to be co-located on nodes running applica-
tion processes.

'p, ——prOCS processes
Sets the maximum number of communication processes to be spawned per node
to processes. This should typically be set to the number of CPUs per node.

-D, --daemon path
Specify the full path path to the STATBenchD daemon executable. Use this only
if you wish to override the default.

-F, --filter path
Specify the full path path to the stat-bench filter shared object. Use this only if
you wish to override the default.

-t, --traces count

Gather count traces per process.

-1, --iters count

Perform count gathers.

-n, --numtasks count

Emulate count tasks per daemon.

-m, -maxdepth depth

Generate traces with a maximum depth of depth.

-b, --branch width

Generate traces with a max branching factor of width.

-e, -eqclasses count

Generate traces within count equivalence classes.

-U, --countrep

Only gather edge labels with the task count and a single representative.

-1, --log

Chapter 11. Using the stat-bench Emulator

[FE | BE | cP]

Enable debug logging of the FE frontend, BE backend, or cP communication pro-
cess. Multiple log options may be specified (i.e., -1 FE -1 BE).

-L, —logdir 1og_directory
Dump logging output into log_directory. To be used with the --1og option.

-M, --mrnetprintf
Use MRNet'’s printf for STAT debug logging.

stat-bench Usage Example

In the simplest form, you can invoke stat-bench, from within a parallel allocation,
with no arguments. This will run through with the default settings:

% stat-bench

To model your target machine architecture, you can specify the number of tasks to
emulate per daemon. For instance if your target machine has 16-way SMP compute
nodes:

o

% stat-bench —--numtasks 16

You may also want to model a specific application. For instance, you may have a
climate modeling code with 5 distinct task behaviors, or equivalence classes. You
can also specify the maximum call depth of your application, the average branching
factor from a given function, and the number of distinct traces expected per task:

o

% stat-bench —--eqgclasses 5 —-—maxdepth 17 —--branch 5 —--traces 4

At larger scales, you may want to employ a more scalable tree topology. For example,
if you're running 1024 daemon emulators, you may want to try a fanout of sqrt(1024)
= 32. You will need to specify a list of nodes that contains enough processors to ac-
commodate the ceil(1024/32) = 32 communication processes being launched. Be sure
that you have login permissions to the specified nodes and that they contain the mr-
net_commnode executable and the STAT_FilterDefinitions.so library:

o

% stat-bench --fanout 32 --nodes atlas[1-4] —--procs 8

49

Chapter 11. Using the stat-bench Emulator

50

Chapter 12. Using the stat-script Python Interface

Description

stat-script is a Python interface for STAT. When invoked without any arguments,
this will create an interactive Python environment with the appropriate paths
set to import the STAT module. You can run dir(STAT) to see the available
functions, flags, etc. running help() (i.e., help(STAT.attach)) will display the
description of the function as well as the arguments required. Like the python
command, stat-script can also be supplied with a python script file to execute.
You may refer to examples/scripts/script_test.py in the STAT source or
share/STAT /examples/bin/script_test.py in the installation directory for an
example of how the stat scripting interface can be used.

51

Chapter 12. Using the stat-script Python Interface

52

Chapter 13. Troubleshooting Guide

Troubleshooting

STAT hangs when attaching to Intel MPI jobs

When using the Intel MPI, you may need to alter your LaunchMON installation’s
etc/rm_intel_hydra.conf file and set RM_launch_helper=mpirun. If it is set to
mpiexec.hydra, the daemons may fail to launch on remote nodes.

stack traces are empty

Some optimzations may make it impossible to debug, such as the GNU -fomit-frame-
pointer option, which is enabled at various -O optimization levels. You can turn this
off with the -fno-omit-frame-pointer flag.

stack walks not making it to _start

Processes can be in portions of code from which a debugger cannot walk the stack
(i.e., function prologue or epilogue). Try the -r option to enable STAT to let the process
run a bit and then retry the stack sample.

stack walks with line number information returning ??

Stack traces with line number information requires your code to be compiled with
debug information (i.e., with the -g flag).

/ust/lib/python2.6/site-packages/gtk-2.0/gtk/__init__.py :72: GtkWarning: could
not open display

Be sure to enable X-forwarding and to set your $DISPLAY environment variable.

STATview requires gtk

STAT requires the pygtk module to be installed. If it is side-installed, but sure to set
your $PYTHONPATH environment variable to the directory containing the pygtk
module.

ImportError: No module named STAT

Make sure to run ‘make install’ to install STAT.py in the lib/python[version]/site-
packages directory or set your $PYTHONPATH environment variable to the direc-
tory containing STAT.py

(ERROR): LaunchMON Engine invocation failed, exiting: No such file or
directory

Make sure the launchmon executable is in your $PATH or set the
$STAT_LMON_LAUNCHMON_ENGINE_PATH engine path to the full path to the
executable.

OptionParsing (ERROR): unknown launcher: a.out

You need to attach to your mpirun or equivalent parallel job launch process.

OptionParsing (ERROR): the path[/ust/local/bin/STATD] does not exit.

STAT looks for its components in the configured $prefix. Be sure to run ‘make install’
or set STAT_DAEMON_PATH to the full path to the STATD executable.

53

Chapter 13. Troubleshooting Guide

54

LaunchMON prints a usage message.

This is typically a mismatch in versions of the LaunchMON API and the LaunchMON
engine. Make sure to set your $STAT_LMON_LAUNCHMON_ENGINE_PATH env-

iornment variable to the full path to the appropriate launchmon executable.

(ERRORY): accepting a connection with an engine timed out

STAT may need additional time to launch all of its daemons. You may need to set
your $SLMON_FE_ENGINE_TIMEOUT to a larger value, such as 600.

UnboundLocalError: local variable ’count’ referenced before assignment
This error results from trying to open a STAT >3.0 output with a STAT 2.X GUL

Hang on second attach when using CUDA GDB

In some CUDA environments, you may need to run your application with the
CUDA_VISIBLE_DEVICES environment variable set appropriately, otherwise
cuda-gdb will hang on attach when there is already an existing cuda-gdb session
on the same node. Refer to the "Simultaneous Sessions Support" section of
http:/ /docs.nvidia.com/cuda/cuda-gdb/index.html.

Bibliography

Notes

Nicklas B. Jensen, Niklas Q. Nielsen, Gregory L. Lee, Dong H. Ahn, Sven Karlsson,
Matthew P. Legendre, and Martin Schulz, “A Scalable Prescriptive Parallel De-
bugging Model,” International Parallel & Distributed Processing Symposium, Hy-
derabad, India, May 2015.

Dong H. Ahn, Michael J. Brim, Bronis R. de Supinski, Todd Gamblin, Gregory L.
Lee, Matthew P. Legendre, Barton P. Miller, Adam Moody, and Martin Schulz,
“Efficient and Scalable Retrieval Techniques for Global File Properties,” Inter-
national Parallel & Distributed Processing Symposium, Boston, Massachusetts, May
2013.

Dong H. Ahn, Bronis R. de Supinski, Ignacio Laguna, Gregory L. Lee, Ben Liblit, Bar-
ton P. Miller, and Martin Schulz, “Scalable Temporal Order Analysis for Large
Scale Debugging,” Supercomputing 2009, Portland, Oregon, November 2009.

Gregory L. Lee, Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Matthew
Legendre, Barton P. Miller, Martin Schulz, and Ben Liblit, “Lessons Learned at
208K: Towards Debugging Millions of Cores,” Supercomputing 2008, Austin,
Texas, November 2008.

Dong H. Ahn, Dorian C. Arnold, Bronis R. de Supinski, Gregory L. Lee, Barton P.
Miller, and Martin Schulz, “Overcoming Scalability Challenges for Tool Dae-
mon Launching,” 37th Internation Conference on Parallel Processing (ICPP-08),
Portland, Oregon, September, 2008.

Gregory L. Lee, Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Barton P.
Miller, and Martin Schulz, “Benchmarking the Stack Trace Analysis Tool for
BlueGene/L,” International Conference on Parallel Computing (Parco) 2007,
Aachen and Julich, Germany, September 2007.

Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory L. Lee, Barton P.
Miller, and Martin Schulz, “Stack Trace Analysis for Large Scale Applications,”
International Parallel & Distributed Processing Symposium, Long Beach, California,
March 2007.

http:/ /ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7161535

ftp:/ /ftp.cs.wisc.edu/paradyn/papers/FGFS-IPDPS13-Ahn-validated.pdf
ftp:/ /ftp.cs.wisc.edu/paradyn/papers/Miller09ScalableDebugging.pdf
ftp:/ /ftp.cs.wisc.edu/paradyn/papers/Lee08ScalingSTAT.pdf

ftp:/ /ftp.cs.wisc.edu/paradyn/papers/ Ahn08LaunchMON.pdf

ftp:/ /ftp.cs.wisc.edu/paradyn/papers/Lee07STATBench.pdf

ftp:/ /ftp.cs.wisc.edu/paradyn/papers/ Arnold06STAT.pdf

N o Ok » =

55

56

	STAT: the Stack Trace Analysis Tool
	Table of Contents
	Disclaimer
	Auspice
	License

	Chapter 1. Introduction
	Chapter 2. Overview
	Chapter 3. Changelog
	stat version 4.2.2
	stat version 4.2.1
	stat version 4.2.0
	stat version 4.1.0
	stat version 4.0.2
	stat version 4.0.1
	stat version 4.0.0
	stat version 3.0.1
	stat version 3.0
	stat version 2.2
	stat version 2.1
	STAT version 2.0

	Chapter 4. Installing STAT
	Dependent Packages
	Installation

	Chapter 5. Using the statcl Command
	Description
	statcl Options
	STAT Usage Example

	Chapter 6. Using the statview GUI
	Description
	The statview Node Menu
	The statview Toolbar

	Chapter 7. Using the statgui GUI
	Description
	statgui Options
	The statgui GUI Toolbar
	Sample Options
	Process Table
	Equivalence Classes and Subset Debugging
	Availability

	Chapter 8. Setting STAT Preferences and Options
	Preference Files
	Loading and Saving Preferences
	Environment Variables

	Chapter 9. PrescriptionBased Debugging With Prototype DySectAPI
	Overview
	Installation
	Usage

	Chapter 10. Tips and Tricks Using STAT
	Running STAT at scale
	Using STAT with IO Watchdog and SLURM
	Running STAT in a Batch Script

	Chapter 11. Using the statbench Emulator
	Description
	statbench Options
	statbench Usage Example

	Chapter 12. Using the statscript Python Interface
	Description

	Chapter 13. Troubleshooting Guide
	Troubleshooting

	Bibliography

