1 Manual solution to minimum failing example

1.1 Notation

- Δt : time step, set to 1 to simplify the minimm failing example.
- Δx : cell width, set to 1 to simpilfy the minimum failing example.
- $u_{i, j}$: Evolving variable at cell i, time j. u is arranged on a 1-D grid with 2 cells.
- $u_{i-, j}$: Face value of left (west) face of cell i
- $u_{i+, j}$: Face value of right (east) face of cell i
- u_{g} : ghost cell on the right end of the mesh
- α_{i-} or α_{i+} : The α weight to use on u_{i} when calculating the face value u_{i-} or u_{i+} for a convection term
- v : Convection strength on faces: $[0,1,1]$

1.2 Problem definition

We want to solve

$$
\frac{d u}{d t}=-\nabla \cdot(v u)
$$

subject to a boundary condition that

$$
u_{0-}=1, u_{1+}=1
$$

using the implicit method, for one time step, stepping from $t=0$ to $t=1$ for simplicity.

The implicit method discretization using $\Delta t=1$ is:

$$
\begin{aligned}
& u_{0,1}-F_{0,1}=u_{0,0} \\
& u_{1,1}-F_{1,1}=u_{1,0}
\end{aligned}
$$

where F is the contribution of the convection term to the linear system.

$$
\rightarrow \quad \begin{aligned}
& u_{0,1}=F_{0,1}+u_{0,0} \\
& u_{1,1}=F_{1,1}+u_{1,0}
\end{aligned}
$$

Expanding F to define the contribution of the convection term, using $\Delta x=1$ to keep the expression simple, we get:

$$
\begin{aligned}
& u_{0,1}=v_{0} u_{0-, 1}-v_{1} u_{0+, 1}+u_{0,0} \\
& u_{1,1}=v_{1} u_{1-, 1}-v_{2} u_{1+, 1}+u_{1,0}
\end{aligned}
$$

Filling in concrete values for v we obtain:

$$
\begin{gathered}
u_{0,1}=-u_{0+, 1}+u_{0,0} \\
u_{1,1}=u_{1-, 1}-u_{1+, 1}+u_{1,0}
\end{gathered}
$$

Filling in $u_{1+, 1} \equiv 1$ from the boundary condition:

$$
\begin{gathered}
u_{0,1}=-u_{0+, 1}+u_{0,0} \\
u_{1,1}=u_{1-, 1}-1+u_{1,0}
\end{gathered}
$$

Using α weighting to calculate internal face values:

$$
\begin{gathered}
u_{0,1}=-\alpha_{0+} u_{0,1}+\left(1-\alpha_{0+}\right) u_{1,1}+u_{0,0} \\
u_{1,1}=\alpha_{1-} u_{1,1}+\left(1-\alpha_{1-}\right) u_{0,1}-1+u_{1,0}
\end{gathered}
$$

Substituting in $\alpha_{0+}=1$ and $\alpha_{1-}=0$ we get:

$$
\begin{gathered}
u_{0,1}=-u_{0,1}+u_{0,0} \\
u_{1,1}=u_{0,1}-1+u_{1,0}
\end{gathered}
$$

Solving this, we get

$$
\begin{gathered}
u_{0,1}=\frac{u_{0,0}}{2} \\
u_{1,1}=u_{0,1}-1+u_{1,0}
\end{gathered}
$$

Starting from initial conditions of $u=[0,0]$ this gives $[0,-1]$ but FiPy returns $[0,0]$.
(I do obtain $[0,0]$ however if I calculated $u_{1+, 1}$ above using α weighting on a ghost cell, though that's probably not the only valid way to obtain $[0,0]$)

