
I am attempting to model solid-state transformations in Inconel 625 based on a published Inconel 718
model [?], which is a generalization of the KKS binary model [?]. Model parameters are listed in Appendix ??.

To capture δ and Laves precipitates in a γ matrix, I have chosen Ni–30 % Cr–2 % Nb as the model
system. The interdendritic regions in additive manufacturing get enriched to Ni–31 % Cr–13 % Nb. The
four-phase three-component model is represented using two composition fields (xCr, xNb) and two phase
fields (φδ, φLaves). The CALPHAD database was modified from Du et al. [?] to make δ a line compound.

1 Phase Field Model

In this model, the system composition depends on the pure-phase compositions and phase fractions:

xCr =
(

1−
∑

h(|φi|)
)
xγCr + h(|φδ|)xδCr + h(|φL|)xL

Cr (1)

xNb =
(

1−
∑

h(|φi|)
)
xγNb + h(|φδ|)xδNb + h(|φL|)xL

Nb (2)

h(φ) = φ3
(
6φ2 − 15φ+ 10

)
(3)

Therefore, the ternary model is implemented with two “real” compositions (xCr, xNb) and six ‘fictitious”
compositions (xγCr, x

γ
Nb, x

δ
Cr, x

δ
Nb, x

L
Cr, x

L
Nb).

Zhou et al. [?] defines the order parameter such that φi = ±1 indicates presence of the phase i, and
φi = 0 indicates absence. The matrix phase γ exists where

∑
h(|φi|) = 0. This allows for multiple discrete

precipitates of the same phase, without unphysical coalescence. The free energy density is

+ωδ(φδ)
2(1− |φδ|)2 + ωL(φL)2(1−|φ

L|)2

+ αφ2
δφ

2
L

f(x, φ, t) =
(

1−
∑

h(|φi|)
)
fγ(xγCr, x

γ
Nb) + h(|φδ|)fδ(xδCr, x

δ
Nb) + h(|φL|)f

L(x

L,x

Ni

L)+ωδ(φδ)
2(1−|φδ|)2+ωL(φ

L)2(1−|φ
L|)2+αφ2

δ
φ2
L

Nb

with the elastic energy of the Zhou model neglected here. The first line weighs the single-phase free energy
expressions by their respective phase fractions, the second establishes double-well potentials between matrix
(γ, φ = 0) and the precipitate phases (φ = ±1), and the third line penalizes triple junctions and coalescence
of precipitate phases.

The KKS interface model [?] assumes constant chemical potential through the interface, so

µ̃Cr =
∂fγ
∂xγCr

=
∂fδ
∂xδCr

=
∂fL

∂xL
Cr

(4)

µ̃Nb =
∂fγ
∂xγNb

=
∂fδ
∂xδNb

=
∂fL

∂xL
Nb

(5)

The pure phase compositions
(
xij
)

are determined by solving the parallel tangent construction constrained
by the conservation of mass

0 = xCr −
(

1−
∑

h(|φi|)
)
xγCr − h(|φδ|)xδCr − h(|φL|)xL

Cr (6)

0 = xNb −
(

1−
∑

h(|φi|)
)
xγNb − h(|φδ|)xδNb − h(|φL|)xL

Nb (7)

and equality of chemical potentials for each phase,

0 =
∂fγ
∂xγCr

− ∂fδ
∂xδCr

(8)

0 =
∂fγ
∂xγNb

− ∂fδ
∂xδNb

(9)

0 =
∂fγ
∂xγCr

− ∂fL

∂xL
Cr

(10)

0 =
∂fγ
∂xγNb

− ∂fL

∂xL
Nb

(11)
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in which each partial derivative is evaluated at the pure phase composition xij , not the system composition
xj . This set of eight equations should uniquely solve for the eight unknown pure compositions at each
point, given that xNii=1−xiCr−xiNb

. This solution is found using the GNU Scientific Library’s multiroot solver,
provided these eight equations and the Jacobian matrix defined by their partial derivatives with respect to
xγCr, x

γ
Nb, xδCr, x

δ
Nb, xL

Cr, and xL
Nb. The complete Jacobian matrix is written in Appendix ??.

The first guess for each composition is made using line compound approximations for each phase, applied
after the initial condition (t = 0). Subsequent guesses simply copy the result of the previous timestep.
During the iterations, xCr, xNb, φδ, and φL are held constant. In the event that a valid solution cannot be
found, at any time during the simulation, the line compound guesses are applied. Details are provided in
Appendix ??.

2 Thermodynamic Model

The pure phase free energies depend on Gibbs free energy expressions, divided by molar volume to convert
from J/mol to J/m3. The Gibbs free energy expressions are read from a CALPHAD database (Du et al. [?])
using pycalphad. This substitution is not valid over the entire ternary composition space, and sometimes
incurs kinks.

CALPHAD represents phases in terms of sublattice compositions y, not system compositions x. This is
fundamental to CALPHAD. Each sublattice has a site fraction a, similar to the subscripts in a molecular
formula. The sublattice compositions are constrained by mass conservation:

a′ + a′′ + · · · = 1 (12)

a′y′A + a′′y′′A + · · · = xA

a′y′B + a′′y′′B + · · · = xB (13)

where ′ indicates the first sublattice, ′′ the second, etc. The lattice fractions are also conserved:

y′A + y′B + · · · = 1

y′′A + y′′B + · · · = 1 (14)

These constraints can, for some phases, be used to map sublattice compositions directly into system compo-
sitions. If all but one component appear on only one sublattice each, then y maps into x uniquely.

• γ is represented with one sublattice [?], (Cr,Nb,Ni)1. This maps trivially:

y′Cr = xCr

y′Nb = xNb

y′Ni = xNi

• δ is represented with two sublattices [?], (Nb,Ni)1/4(Cr,Nb,Ni)3/4. Since Nb and Ni appear on
both, this cannot be mapped. However, if we assume that Nb partitions to the first sublattice,
(Nb,Ni)1/4(Cr,Ni)3/4 can be solved.

y′′Cr =
4

3
xCr xCr <

3

4

y′Nb = 4xNb xNb <
1

4

y′Ni = 1− 4xNb y′′Ni = 1− 4

3
xCr

• Laves is represented with two sublattices, (Cr,Nb,Ni)2/3(Cr,Nb)1/3. Since Cr and Nb appear on
both sublattices, this cannot be mapped. Again, assuming that Nb partitions to the second lattice,
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(Cr,Ni)2/3(Cr,Nb)1/3 can be solved.

y′Cr = 1− 3

2
xNi y′′Cr = 1− 3xNb

y′′Nb = 3xNb xNb <
1

3

y′Ni =
3

2
xNi xNi <

2

3

2.1 Taylor series approximation

Since smooth and continuously differentiable functions are needed, the single-phase free energies are ap-
proximated by second-order Taylor series expansion about control compositions a = (aCr, aNb, aNi) chosen
empirically such that the phase diagram is qualitatively correct. For each phase α ∈ (γ, δ,Laves),

fα ≈ fα (aαCr, a
α
Nb)

+
∑
i

∂fα (aαCr, a
α
Nb)

∂xαi
(xαi − aαi )

+
∑
i

∑
j

1

2

∂2fα (aαCr, a
α
Nb)

∂xαi ∂x
α
j

(xαi − aαi )
(
xαj − aαj

)
(15)

with i, j ∈ Cr,Nb,Ni. Note that, depending on the CALPHAD expression, some terms are null for each
phase.

2.2 Continuous and Differentiable Boundaries

The KKS interface model [?] requires the free energy landscape for each phase to be smooth, continuous, and
differentiable everywhere. In the CALPHAD database, however, the sublattice description introduces bounds
on the valid domain for each phase, outside of which the free energy is undefined. We therefore construct
a “funnel” around each CALPHAD free energy to help numerical methods gone astray to find their way
back inside the valid domain. For simplicity, the funnels are constructed using independent linear functions
of one composition each, stitched together using hyperbolic tangent (tanh) functions. These interpolate
through an exclusion zone of width α around the border of each valid domain, guaranteeing continuity and
differentiability.

For an arbitrary CALPHAD model with a constraint on only one composition, the free energy landscape
is stitched together from the CALPHAD expression G(x) and the funnel expression V (x) with critical
composition x∗. Considering Fig. ??, a tanh function is applied to interpolate between G (parabolic, on the
left) and V (linear, on the right) as follows:

ξ =
2π

α

(
x− x∗ − α

2

)
V (x) = max(G(x)) +

1

4
(max(G(x))−min(G(x))) (x− x∗) (16)

F (x) = G(x) +
1

2
(V (x)−G(x)) [1 + tanh ξ]

=
1

2
[1− tanh ξ]G(x) +

1

2
[1 + tanh ξ]V (x). (17)

With constraints on two compositions,

ξi =
2π

α

(
xi − x∗i −

α

2

)
(18)

F (x1, x2) = G(x1, x2) +
1

2
(V (x1)−G(x1, x2)) [1 + tanh ξ1] +

1

2
(V (x2)−G(x1, x2)) [1 + tanh ξ2]

=
1

2
[− tanh ξ1 − tanh ξ2]G(x1, x2) +

1

2
[1 + tanh ξ1]V (x1) +

1

2
[1 + tanh ξ2]V (x2). (19)
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Figure 1: Schematic interpolation between the CALPHAD free energy G(x) and a funnel potential V (x)
using a hyperbolic tangent function over a finite composition ∆x = α, shown between the vertical lines. The
splined function F (x) is smooth, continuous, and differentiable everywhere.

Generalizing to constraints on N compositions, and adding terms to cancel undesirable contributions in
regions where more than one funnel function is active,1

F (~x) =
1

2

2−N −
N∑
i=1

tanh ξi +
1

2

N∑
i=1

∑
j>i

(1 + tanh ξi) (1 + tanh ξj)

G(~x)

+
1

2

N∑
i=1

(1 + tanh ξi)−
1

4

∑
j>i

(1 + tanh ξi) (1 + tanh ξj)

V (xi). (20)

For a “high-side” constraint, e.g. approaching x∗Cr = 1 from inside the simplex, α should be positive in the
definition of ξ (Eqn. ??). For a “low-side” constraint, e.g. approaching x∗Cr = 0 from inside the simplex, α
should be negative. No other changes are necessary to reverse directionality of the tanh profiles.

3 Equations of Motion for Phases {φ}
The {φi} are not conserved, so Allen-Cahn dynamics are assumed:

∂φi
∂t

= −Li
δF
δφi

= −Li
(
∂f

∂φi
− κi∇2φi

)
. (21)

From Eqn. ??,

∂f

∂φn
= − sgn(φi)h

′(|φn|) [fγ(xγCr, x
γ
Nb)− fn(xnCr, x

n
Nb)] +

[
1−

∑
h(|φi|)

] ∂fγ
∂φn

+ h(|φn|)
∂fn
∂φn

+ 2ωnφn (1− |φn|)2 − 2ωnφ
2
n sgn(φn) (1− |φn|) + 2αφn

∑
i 6=n

φ2
i . (22)

Invoking the multivariable chain rule and chemical potential (Eqns. ?? and ??),

∂fα
∂φα

=
∑
j

∂fα
∂xαj

∂xαj
∂φα

=
∑
j

∂xαj
∂φα

µ̃j

∂f

∂φn
= − sgn(φn)h′(|φn|) [fγ(xγCr, x

γ
Nb)− fn(xnCr, x

n
Nb)] +

∑
j

([
1−

∑
h(|φi|)

] ∂xγj
∂φn

+ h(|φn|)
∂xnj
∂φn

)
µ̃j

+ 2ωnφn (1− |φn|) [1− h(|φn|)− sgn(φn)φn] + 2αφn
∑
i 6=n

φ2
i . (23)

Implicitly differentiating both sides of the expression for system composition, Eqns. ?? and ??, with
respect to a phase,2

∂xj
∂φn

= − sgn(φn)h′(|φn|)
[
xγj − x

n
j

]
+
[
1−

∑
h(|φi|)

] ∂xγj
∂φn

+ h(|φn|)
∂xnj
∂φn

(24)

∂xj
∂φn

≡ 0 (25)

sgn(φn)h′(|φn|)
[
xγj − x

n
j

]
=
[
1−

∑
h(|φi|)

] ∂xγj
∂φn

+ h(|φn|)
∂xnj
∂φn

. (26)

1The double-summation in the coefficient of G(~x) removes an extraneous term of −G(~x) in “corners”, while the sum over j
in the coefficient of V (xi) produces the average 1

2
[V (xi) + V (xj)] instead of the full sum of V (xi) + V (xj) in those regions.

2Cf. Eqn. 6.91 in Provatas and Elder [?]. The amount of species should not change explicitly with changes in phase.
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Substituting Eqn. ?? into Eqn. ?? and simplifying, we arrive at the final result:

∂f

∂φn
= − sgn(φn)h′(|φn|)

fγ(xγCr, x
γ
Nb)− fn(xnCr, x

n
Nb)−

∑
j

[
xγj − x

n
j

]
µ̃j


+ 2ωnφn (1− |φn|) [1− h(|φn|)− sgn(φn)φn] + 2αφn

∑
i 6=n

φ2
i . (27)

4 Equations of Motion for Compositions {x}
Composition is conserved, so we choose Cahn-Hilliard dynamics for x:

∂x`
∂t

= ∇ ·
∑
k

M`k∇
δF
δxk

= ∇ ·
∑
k

M`k∇
∂f

∂xk
. (28)

Differentiating Eqn. ??, then applying the chain rule and the definition of chemical potential,

∂f

∂xk
=

[
1−

∑
α

h(|φα|)

]
∂fγ
∂xk

+
∑
α

h(|φα|)
∂fα
∂xk

(29)

=
∑
j

[
1−

∑
α

h(|φα|)

]
∂fγ
∂xγj

∂xγj
∂xk

+
∑
j

∑
α

h(|φα|)
∂fα
∂xαj

∂xαj
∂xk

(30)

=
∑
j

([
1−

∑
α

h(|φα|)

]
∂xγj
∂xk

µγj +
∑
α

h(|φα|)
∂xαj
∂xk

µαj

)
. (31)

Since the pure-phase composition xαj depends only on xj ,
∂xαj
∂xk

= δjk, and

∂f

∂xk
=

[
1−

∑
α

h(|φα|)

]
µγk +

∑
α

h(|φα|)µαk . (32)

In this phase field formulation, µ̃k ≡ µγk = µαk (Eqn. ??) and

∂f

∂xk
= µ̃k. (33)

Substituting Eqn. ?? into Eqn. ??, with a proportionality constant V 2
m, we

∂x`
∂t

= V 2
m∇ ·

∑
k

M`k∇µ̃k. (34)

Since we do not have detailed interfacial data, the mobility matrix is diagonal and M`k = δ`kM`, i.e. the
mobility of element ` only depends on its own concentration field. Using this simplification, we can recover
the form presented by Zhou et al. [?]:

∂x`
∂t

= V 2
m∇ ·M`∇µ̃k. (35)

If we further invoke the chain rule,

∂x`
∂t

= V 2
m∇ ·M`

∑
j

∂µ̃k
∂xγj
∇xγj (36)

= V 2
m∇ ·M`

∑
j

∂2fγ
∂xγ` ∂x

γ
j

∇xγj (37)
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For the specific case of paraboloid approximations to the pure free energy expressions, the cross-terms of
curvature are zero, and we have an equivalent result in terms of composition rather than chemical potential:

∂x`
∂t

= 2V 2
m∇ ·M`C

γ
`∇x

γ
` , (38)

with curvature Cγ` = 1
2

∂2fγ

∂(xγ` )
2 .

We can also use the definition of diffusivity:

Dα
`j =

∑
k

Mα
`k

∂2fγ
∂xα` ∂x

α
j

(39)

∂x`
∂t

= ∇ ·
∑
j

Dγ
`j∇x

γ
j . (40)

For Cr–Nb–Ni, we have diffusivity data at 1273 K [?]; for a matrix of Ni–26.4 % Cr–1.3 % Nb,

D̃Ni =

[
D̃CrCr D̃CrNb

D̃NbCr D̃NbNb

]
=

[
2.16 2.97
0.56 4.29

]
× 10−15 m2 s−1. (41)

If we treat diffusivity as temperature-independent, then

∂x`
∂t

= Dγ
`Cr∇

2xγCr +Dγ
`Nb∇

2xγNb. (42)

5 Timestep Adaptivity

If the phase-field φ advances more than one mesh point in a given timestep, the solution is unstable. In
practice, φ should advance 0.1∆x or less. Using the advection equation,

∆φ

∆t
= u|∇φ| (43)

with velocity u normal to the interface, we can take a step ∆t << (∆x)2

4D and solve for

∆t∗ =
0.1∆x

u
, (44)

the timestep we “should” have taken to move the interface as quickly as possible. If the global maximum
∆t∗ is smaller than the actual ∆t, we can speed up for the next step. Otherwise, if ∆t > ∆t∗, the current
step is invalid and must be repeated with a smaller timestep. Useful scaling factors were empirically found
to be 1.00001∆t to accelerate and 0.9∆t to brake, although braking is best avoided.
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A Model parameters

Table 1: Model parameters used in this work
Parameter Symbol Value
Mesh resolution ∆x 5.0× 10−9 m
Timestep ∆t 5.0× 10−7 s
Temperature T 870 ◦C
Molar volume Vm 1.0× 10−5 m3/mol
Trijunction penalty α 1.07× 1011 J/m3

Interfacial energy σδ = σL 1.01 J/m2

Gradient penalty κδ = κL 1.24× 10−8 J/m
Mobility MCr = MNb 2.42× 10−18 mol2/Nsm2

Diffusivity DCr = DNb 1.58× 10−16 m2/s
Mobility Lδ = LL 2.904× 10−11 m2/N/s
Interface width 2λ 7∆x
Interface width 2λ 35× 10−9 m
Well height ωδ = ωL 6.6σδ/2λ
Well height ωδ = ωL 1.9× 108 J/m3

γ curvature CγCr 4.8× 1010 J/m3

CγNb 6.1× 109 J/m3

δ curvature CδCr 5.4× 1010 J/m3

CδNb 6.8× 1011 J/m3

Laves curvature CL
Nb 1.2× 1011 J/m3

CL
Ni 1.1× 1010 J/m3

γ composition exγCr 1.00 %
exγNb 32.3 %

δ composition exδCr 0.88 %
exδNb 24.9 %

Laves composition exL
Nb 30.6 %

exL
Ni 49.1 %

γ minimum f0
γ (exγCr,

exγNb) −7.9722× 109 J/m3

δ minimum f0
δ

(
exδCr,

exδNb

)
−8.5488× 109 J/m3

Laves minimum f0
L

(
exL

Nb,
exL

Ni

)
−8.0522× 109 J/m3

B Units of the Diffusion Equations

The expression ∂x
∂t should have units of s−1. For Eqn. ??, this is clearly so:

1

s
=

m2

s

1

m2

=
1

s
.

The unusual units in Eqn. ?? make the equivalence just slightly less obvious, but it is straightforward
nonetheless:

1

s
=

m6

mol2
mol2

N s m2

J

m3 m2 =
m6

mol2
mol2 s2

kg m s m2

kg m2

m3 m2 s2 =
kg m8 s2 mol2

kg m8 s3 mol2

=
1

s
.
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Eqns. ??, ??, and ?? are interchangeable, simply adjust the timestep to satisfy

∆t < min

(
(∆x)

2

8V 2
mMNbC

γ
Nb

,
(∆x)

2

4DNb

)
.

C Common Tangent

The Jacobian matrix
(
Jij = ∂fi

∂xj

)
for this system of eight equations, depending on the eight unknown

compositions {xiCr}, {xiNb}, is written

Jij ∂xγCr ∂xγNb ∂xδCr ∂xδNb ∂xLCr ∂xLNb

∂(Eqn. ??) −1 +
∑
h(|φi|) 0 −h(|φδ|) 0 −h(|φL|) 0

∂(Eqn. ??) 0 −1 +
∑
h(|φi|) 0 −h(|φδ|) 0 −h(|φL|)

∂(Eqn. ??)
∂2fγ
∂(x

γ
Cr)

2

∂2fγ
∂x
γ
Cr∂x

γ
Nb

∂2fδ
∂(xδCr)

2

∂2fδ
∂xδCr∂x

δ
Nb

0 0

∂(Eqn. ??)
∂2fγ

∂x
γ
Nb
∂x
γ
Cr

∂2fγ
∂(x

γ
Nb

)2
∂2fδ

∂xδ
Nb
∂xδCr

∂2fδ
∂(xδ

Nb
)2

0 0

∂(Eqn. ??)
∂2fγ
∂(x

γ
Cr)

2

∂2fγ
∂x
γ
Cr∂x

γ
Nb

0 0 ∂2fL
∂(xLCr)

2
∂2fL

∂xLCr∂x
L
Nb

∂(Eqn. ??)
∂2fγ

∂x
γ
Nb
∂x
γ
Cr

∂2fγ
∂(x

γ
Nb

)2
0 0 ∂2fL

∂xL
Nb
∂xLCr

∂2fL
∂(xL

Nb
)2

D Line Compound Approximations

Initial guesses, and replacement values for parallel tangent iterations which fail to converge, are made using
line compound approximations based on the pure phase regions observed on the Cr–Nb–Ni phase diagram.
Specifically, the composition of one species is set equal to a constant value, and the other two are scaled
from their “real” values (as opposed to the “fictitious” quantities being solved for) to satisfy conservation of
mass in each point (

∑
xi = 1). Replacements for un-converged values are perturbed with random noise of

amplitude ε = 10−5.

xγNb = 0.015

xγCr =
xCr

xCr + xγNb + xNi

=
xCr

1 + xγNb − xNb

xδNi = 0.75

xδCr =
xCr

xCr + xNb + xδNi

xδNb =
xNb

xCr + xNb + xδNi

xL
Nb = 0.30

xL
Cr =

xCr

1 + xL
Nb − xNb
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