
Twitter Stock Bot

John Matthew Fong
The University of Texas at Austin
jmfong@cs.utexas.edu

Hassaan Markhiani
The University of Texas at Austin
hassaan@cs.utexas.edu

Abstract

The stock market is influenced by pub-
lic information and opinion, and Twitter
is an accessible communication tool we
can use to gauge public opinion. In this
paper, we utilize Twitter to construct a
tool that provides information about the
stock market. We incorporate many natu-
ral language processing techniques to pro-
vide feedback about a given company.
More specifically, we use sentiment analy-
sis to determine a company’s public opin-
ion and build a classifier to predict the
returns of a stock based on article snip-
pets from recent New York Times articles.
Our results show that our sentiment ana-
lyzer achieves an accuracy of 49.43% and
58.80% and our classifier achieves an ac-
curacy of 45.66%. This indicates that there
is a correlation with news article snippets
and stock returns, and that it is possible to
predict expected returns based recent arti-
cles.

1 Introduction

The stock market allows for the trading of com-
pany stocks at agreed prices. By buying and sell-
ing shares at different prices, it is possible to earn
a profit, so there is an entire industry around help-
ing investors optimize and maximize their prof-
its. An important aspect of this industry is being
able to predict the movements in the stock market,
and any bit of information that offers a competitive
edge to an investor is relevant.

Since investors determine the price of a stock
based on publicly available information about the
company, public information has a significant im-
pact on the stock market. Thus, it is reasonable to
conclude that financial news articles and twitter’s
opinion may have an influence on the movement

of certain stocks. We wanted to build a tool for in-
vestors that could provide this information, so we
decided to implement a bot that provides relevant
information about a company. Given a tweet, the
bot provides information for the company name
or stock exchange symbol mentioned in the tweet.
The bot provides the last price of the company’s
stock, an estimate of the outlook of the stock price,
public opinion of the company on Twitter, and a
link to the Yahoo! Finance page for the company.

The stock information is obtained through Ya-
hoo!’s Yahoo Query Language API, and the link
in the bot’s tweet is shortened using Bit.ly’s API.
The stock outlook is determined based on snippets
from articles related to the company retrieved from
the New York Times using their API. The articles
are processed by our classifier to determine the
stock’s outlook. The sentiment analysis portion of
the bot is based on a few of Liu’s ideas and ap-
proaches (Liu, 2010). The goal of the project was
to build a bot that can provide helpful information
to an investor, as a tool, so our bot also provides
helpful responses in ambiguous situations.

Since the sentiment analysis and stock outlook
prediction are major components of our project,
we evaluated their performance by testing on un-
trained datasets. We tested our sentiment analy-
sis method on a set of tweets from the 2008 pres-
idential debate (Shamma et al., 2009; Diakopou-
los and Shamma, 2010) and the Stanford Twitter
Sentiment dataset (Go et al., 2009). Our results
show that our sentiment analysis method is able
to achieve an accuracy of 49.43% and 58.80% re-
spectively. For our stock outlook prediction, we
constructed 4 sets of training and testing corpora.
The set of news articles is the same across the dif-
ferent corpora and contain the 10 most recent arti-
cles about the NASDAQ, NSYE, and AMEX com-
panies from the New York Times. The only differ-
ence is that the labels are based on returns over
different time periods (1, 3, 5, and 7 days). Our

classifier is able to achieve an accuracy of 45.66%
on the testset for the 7 day returns, which was the
highest.

2 Parsing Tweets

When our bot receives a status (tweet), it first
tokenizes the text of the status. In the last it-
eration of our bot, we used a simple tokenizer
that left in characters like punctuation. However,
we switched to using a custom tokenizer that re-
moves and splits on all characters that aren’t let-
ters or numbers because we found this lead to bet-
ter performance. Because we are only dealing
with disambiguating the names of companies, it
makes sense to remove characters that don’t com-
monly appear in the names of companies. Ques-
tion marks, exclamation points, apostrophes and
various other characters are very rare in com-
pany names, but our methods are robust enough to
correctly handle disambiguation even when these
characters do appear. We also remove all stop-
words from the tweet text because these words are
not important when determining which company a
tweet refers to.

After tokenizing, we search an inverted index
for companies that may have been mentioned in
the tweet. For each word mentioned in the tweet,
every company with the same word in its name
gets a point. If one company gets the most points,
that company is determined to be the company that
was asked about in the tweet. Alternatively, there
are several states that will cause our bot to be “con-
fused” and ask for more information from the user.
If multiple companies are tied for the top score,
then we select the words in the tweet that are con-
tained in these companies’ names, tell the user that
these words led to confusion and ask for clarifica-
tion. However, if no companies are found we con-
sider all words in the tweet to be confusing and
once again ask the user for clarification. A spe-
cial case arises when the tweet only contains stop-
words (all of which are removed), which leads us
to select one of several random replies to the user.

2.1 Inverted Index

We use an inverted index as our main method of
disambiguating company names. The inverted in-
dex is a map of words to a set of stock symbols
whose corresponding company names contain that
word, illustrated in Figure 1. We build the index
by reading two files with data about companies

Figure 1: Illustration of our inverted index. Note
that company names are shown for clarity, but the
index actually stores symbols such as AAPL (Ap-
ple, Inc.).

from the NYSE and NASDAQ stock exchanges.
Similar to parsing tweets, the company names are
tokenized using our alphanumeric tokenizer and
the symbol is added to the set that corresponds to
each word. This is convenient, efficient and effec-
tive because words like “Apple,” “Microsoft,” and
“Google” have only one entry, as do many other
company names. When a word has many associ-
ated companies, performance is not hurt because
mentioning these words alone would not typically
be enough information to disambiguate the com-
pany name in any circumstance. Our counting
method yields a similar result to taking the union
of the sets of companies related to words in the
tweet, and usually leads to a unique result when a
full company name is mentioned.

2.2 Special Syntax

In addition to our typical behavior that involves
parsing and responding to tweets, there is a spe-
cial syntax that our bot responds to. When a user
tweets with the format “UPDATE (SYMBOL):
Company name”, the bot takes the stock symbol
and company name that were mentioned and up-
dates its inverted index. Using this ability we can
improve the bot’s behavior by adding more com-
panies, or different names for companies. For ex-
ample, without an update the bot cannot find the
company “American Airlines.” This is because
the company is owned by the AMR Corporation,
though many users may not know this. Using the
special syntax we can update the bot with the more
colloquial and commonly used name.

3 Predicting Stock Return

In order to predict stock return, we analyzed arti-
cles from the New York Times regarding the com-
pany. We began by building a corpus of article
snippets from the New York Times. We used the
New York Times API to query for article snippets
for each company in the NYSE and NASDAQ.
The API returned the 10 most recent articles, but
since it is possible for some articles to be unrelated
to stock price, we filtered the set to only contain ar-
ticles from the “Business Day,” “Technology,” and
“Your Money” sections. Finally, we obtained the
average returns achieved over the varying time pe-
riods following the article’s release from the com-
panies related to the article. In total, we were able
to collect 5,196 articles.

The corpus was then split into 90% (4,676 ar-
ticles) and 10% (520 articles) for our training and
testing dataset respectively. Using the dataset, a
classifier was produced to predict a stock’s ex-
pected returns, similar to the methods performed
previously (O’Flaherty and Folsom, 2012). Since
it is difficult to directly predict the returns, the
classifier predicts one of three labels (Good, OK,
and Bad). The thresholds of the labels are de-
scribed in Table 1.

The classifier uses L2-regularized logistic re-
gression with the following features for each docu-
ment: tokenized and stemmed word counts, polar-
ity of the article, extracted company names, and
a dollar sign counter. We used the Twokenizer
from Nak and the Porter Stemmer from Chalk for
tokenization and stemming respectively. The po-
larity of the article is determined using the same
technique described in Section 4. The inverted in-
dex method used to extract company names from
tweets (Section 2.1) is also used to extract possi-
ble company mentions. However, rather than force
the result of company name disambiguation to be
unique, we use the entire list of company names
occurring in the article as a feature. This is neces-
sary because we cannot ask the articles for clari-
fication, like we do with users on Twitter, and we
found that the use of a list of possible company
names improved our results more than only using
the feature when a unique name occurs.

To predict the stock outlook, the New York
Times API was used to obtain the most recent arti-
cles snippets about the company. In our case, any
article published within a week is considered re-
cent. The classifier then identifies the most prob-

able label for each of the recent and relevant ar-
ticles. Finally, the most occurring label across
the articles is used as the stock outlook. If the
API could not find any recent and relevant articles,
then we use the simple metric described in Equa-
tion 1, where pc is the current price of the stock,
pl is the year’s lowest price and ph is the year’s
highest price. When calculating stock outlook in
this way, it is calculated to be Good, OK, or Bad
based on where the current price lies in the range
of the stock’s 52 week high and low. If the current
price is above 70% of the range, then the outlook
is Good. If the current price is between 30% - 70%
of the range, then the outlook is OK. If the current
price is below 30% of the range, then the outlook
is Bad.

Label Expected Return
Good > 0.005
OK ≤ 0.005, > −0.005
Bad ≤ −0.005

Table 1: Stock Outlook Classifier Labels.

outlook =
pc − pl

ph − pl
(1)

4 Sentiment Analysis

Determining the sentiment of tweets and business
articles is a crucial portion of our bot’s behav-
ior. Analyzing the polarity of tweets on Twitter
is the sole way we determine if public opinion of
a company is good or bad. We also use sentiment
analysis as a key feature in our classifier that de-
cides whether a business article indicates whether
a stock will go up or down in the near future.

Rather than perform a simple sentiment analysis
by counting the number of positive and negative
words, we use a slightly more complicated method
that utilizes bigrams in the text and negates polar-
ity where it is appropriate. We first generated a
list of “negation” words that consists of the words
“no” and “not” as well as all contractions that
end in “n’t”. Because it is common practice on
Twitter to leave out apostrophes, we have also in-
cluded duplicates of these negative contractions
with apostrophes removed. For example, “dont”
and “cant” are considered negations words. When
analyzing bigrams of the text, if the first word is
one of our negation words, we reverse the polar-
ity of the second word. Words that are neither

positive nor negative are not affected. Our senti-
ment metric is defined in Equation 2, where “Pos”
is the number of words judged to be positive and
“Neg” is the number of words judged to be nega-
tive (Flinchbaugh and Latimer, 2012).

sentiment =
Pos−Neg

Pos + Neg
(2)

5 Bot Behavior

Conversations we have had with the bot can be
seen in Figures 2 - 6. When asked a question about
a single company, the bot can successfully respond
with information about that company. The for-
mat of tweets containing company information is
shown below.

If multiple companies or no companies are men-
tioned, the bot responds asking for clarification
with the stock symbol. An example of the inverted
index being updated is also shown in Figure 6.

@Twitter Handle Company Name

(Company Symbol), P rice : Stock Price,

Outlook : (Good|OK|Bad),
Opinion : (Good|OK|Bad),
Info : Y ahoo F inance Link

6 Evaluation Methodology

Since the sentiment analysis and stock outlook
prediction are major components of our project,
we evaluated their performance by testing on un-
trained datasets. We tested our sentiment analysis
method on a set of tweets from the 2008 debate
(Shamma et al., 2009; Diakopoulos and Shamma,
2010) and the Stanford Twitter Sentiment dataset
(Go et al., 2009). For our stock outlook predic-
tion, we constructed 4 sets of training and test-
ing corpora. The set of news articles is the same
across the different corpora and contain the 10
most recent articles about the NASDAQ, NSYE,
and AMEX companies from the New York Times.
The original set of articles obtained from the New
York Times contained 5,196 articles, which was
split into a 90% training set (4,676 articles) and a
10% testing set (520 articles). The only difference
between the 4 datasets is that the labels are based
on returns over different time periods (1, 3, 5, and
7 days). We then tested our trained classifier on
the test sets. Our goal was to get a measure for the
accuracy of our two systems.

Figure 2: Normal Behavior

Figure 3: Response when multiple companies may
have been mentioned

Figure 4: Response when no companies can be
found

Figure 5: Response when the tweet contains only
stop words

Figure 6: A conversation illustrating the UPDATE
special syntax

7 Results and Discussion

Our results turned out well; both of our systems
significantly outperformed the random baseline.
Our sentiment analysis system was able to achieve
an accuracy of 49.43% and 58.80%. Our system
achieved decent f-scores across all categories as
well (Table 6). Although our lexicon based ap-
proach worked fairly well, machine learning al-
gorithms could have achieved better results (Go
et al., 2009). We attempted to train a classifier
for our sentiment analysis portion, but we were
not able to construct an accurate classifier based
on the data available. Our lexicon based approach
achieved higher accuracies than classifiers trained
one set and tested against the other, i.e. trained on
the debate dataset and tested on the Stanford Twit-
ter Sentiment dataset and vice-versa.

Our results for the stock outlook classifier were
interesting. We achieved the highest accuracy pre-
dicting the 7 day returns, which was a bit sur-
prising. We were expecting the 1 day returns to
achieve the highest accuracy because we believed
that the effect of an article might be short term.
Our 7 day return stock outlook classifier was able
to achieve an accuracy of 45.66%, with an average
error of 0.8959. An error below one means that on
average, well performing stocks will not be classi-
fied as bad and poor performing stocks will not be
classified as good. According to Table 3, our clas-
sifier does a good job of predicting Good returns,
a decent job of predicting Bad returns, and a terri-
ble job of predicting OK returns. This works out
well for us because our users would rely mostly on
Good and Bad predictions, while ignoring OK pre-
dictions. Unfortunately, these results could have
been better (O’Flaherty and Folsom, 2012). Cur-
rently, during training of our classifier, our system
builds the list of an article’s mentioned companies
based on the New York Times search results. A
better metric might be to only consider companies
that were explicitly mentioned in the article rather
than trust the results of the API call that might
have returned only articles indirectly related to the
company. The returns being predicted are based
on the mentioned companies, so our current sys-
tem might incorporate returns of stocks that we
not talked about in the article. Using the stricter
approach might produce better results.

N (days) Accuracy
1 41.62
3 41.62
5 43.35
7 45.66

Table 2: Overall accuracy for predicting the N day
stock return based on analysis of business articles.

54 124 5 183 Bad
59 180 4 243 Good
18 72 3 93 OK
131 376 12
Bad Good OK

Table 3: Confusion matrix for predicting the 7 day
stock return based on analysis of business articles.
Columns give predicted counts. Rows give gold
counts.

8 Conclusion

We set out to build a useful tool for investors that
would provide real time information about both
the future performance of stocks and the public
opinion of stocks with natural language process-
ing techniques. Our bot has the ability to disam-
biguate company names when specific questions
are asked and can be updated when its knowl-
edge of company names is incomplete. The bot
can therefore provide information about a com-
pany when asked questions about it in plain En-
glish. By using a classifier trained on a corpus of
past news articles, we were able to predict 7 day
returns for stocks 45.66% accuracy, with f-scores
for predicting good and bad performance much
higher than a random selector could perform. We
also used Twitter to gauge the real time opinion
of users about a company to provide valuable in-
formation about public opinion. In tests of our
accuracy predicting sentiment, we achieved a re-
spectable 49.43% and 58.80% accuracy when test-
ing on two different data sets, labelled tweets from
the presidential debate and the Stanford Twitter
sentiment data set. While the bot is likely not so-
phisticated enough to be the sole tool used by in-
vestors, we believe that our results indicate it could
be useful as a filter when deciding which stocks to
invest in by providing a quick analysis that might
otherwise take users a large amount of work to du-
plicate.

Precision Recall F-score
41.22 29.51 34.39 Bad
47.87 74.07 58.16 Good
25.00 3.23 5.71 OK
38.03 35.60 32.76 Average

Table 4: Precision, recall, and f-score for predict-
ing the 7 day stock return based on analysis of
business articles.

136 173 63 372 negative
21 135 41 197 neutral
9 95 122 226 positive
166 403 226
negative neutral positive

Table 5: Confusion matrix for estimating senti-
ment of tweets from the 2008 presidential debate.
Columns give predicted counts. Rows give gold
counts.

9 Code

All of our code is accessible from github.com.
Please keep in mind that API keys are required to
run the project but are not provided. The format of
the “.properties” files is provided on the project’s
wiki page. Link:
https : //github.com/hassaanm/tshrdlu

References
Rowland O’Flaherty and Woody Folsom. 2012. Pre-

dicting Stock Trends Using Natural Language Pro-
cessing of Headlines.

Bo Pang and Lillian Lee. 2008. Opinion Mining and
Sentiment Analysis. Foundations and Trends in In-
formation Retrieval Vol. 2, Nos. 12.

Bing Liu. 2012. Sentiment Analysis and Subjectivity.
Handbook of Natural Language Processing, Second
Edition.

Evgeniy Gabrilovich and Shaul Markovitch. 2007.
Computing Semantic Relatedness using Wikipedia-
based Explicit Semantic Analysis. IJCAI-07: 1606-
1611.

Silviu Cucerzan. 2007. Large-Scale Named Entity
Disambiguation Based on Wikipedia Data. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning: 708-716.

Gyozo Gidofalvi. 2001. Using News Articles to Pre-
dict Stock Price Movements. Department of Com-

Precision Recall F-score
81.93 36.56 50.56 negative
33.50 68.53 45.00 neutral
53.98 53.98 53.98 positive
56.47 53.02 49.85 Average

Table 6: Precision, recall, and f-score for estimat-
ing sentiment of tweets from the 2008 presidential
debate.

puter Science and Engineering, University of Cali-
fornia.

Gabriel Pui Cheong Fung, Jeffrey Xu Yu, and Hongjun
Lu. 2005. The Predicting Power of Textual Infor-
mation on Financial Markets. IEEE Intelligent In-
formatics Bulletin Vol 5 No 1.

Wenbin Zhang and Steven Skiena. 2010. Trading
Strategies to Exploit Blog and News Sentiment. In
Proceedings of the Fourth International AAAI Con-
ference on Weblogs and Social Media.

Ben Frisbee. 2010. The Predictive Power of Financial
Blogs. Department of Economics, Haverford Col-
lege.

Robert Schumaker. 2010. An Analysis of Verbs in
Financial News Articles and their Impact on Stock
Price. In Proceedings of the NAACL HLT 2010
Workshop on Computational Linguistics in a World
of Social Media: 34.

David A. Shamma, Lyndon Kennedy, and Elizabeth F.
Churchill. 2009. Tweet the Debates: Understand-
ing Community Annotation of Uncollected Sources.
In Proceedings of the First SIGMM Workshop on
Social Media: 3-10.

Nicholas A. Diakopoulos and David A. Shamma 2010.
Characterizing Debate Performance via Aggregated
Twitter Sentiment. In Proceedings of the 28th Inter-
national Conference on Human Factors in Comput-
ing Systems: 1195-1198.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter Sentiment Classication using Distant Supervi-
sion. Stanford University.

Anne Flinchbaugh and Eric Latimer 2012. ReelTalk:
Project Phase 5 - An interactive sentiment analysis
application. The University of Texas at Austin.

