
Generating Twitter Replies Based on User Location

Nick Wilson
The University of Texas at Austin

Austin, TX USA
njwilson@cs.utexas.edu

Nazneen Rajani
The University of Texas at Austin

Austin, TX USA
nrajani@cs.utexas.edu

Abstract

This paper discusses the detailed imple-
mentation of our Twitter bot, SpellBound.
When a user tweets to SpellBound, it
fetches the user’s location and generates
candidate replies relevant to the user’s lo-
cation and her past tweets. It then ranks
the generated replies to obtain the one
that most resembles a tweet written by a
genuine person. In this way, SpellBound
uses various machine learning and natu-
ral language processing techniques to post
tweets as a way to communicate like a hu-
man does.

1 Introduction

Our Twitter bot responds to users with automat-
ically generated replies targeted at the user’s in-
terests and location. Rather than retrieving con-
tent written by others and posting it from the bot,
we take the approach of creating a language model
customized to the user and using it to generate sev-
eral unique candidate replies. These replies are
then filtered and ranked to pick the best one. Sam-
ple interactions with our bot show some promising
results, but the ratings from the human evaluation
we conducted show that our results fall far short of
human standards.

The code described in this report can be found
with the “ANLP-Course-Final-Report” tag of our
GitHub repository1.

2 Location Resolver

Our bot depends on the ability to determine the
physical location (latitude and longitude) of the
user tweeting to it. To locate a user, we first check
if the incoming tweet was geotagged and already
includes exact coordinates. Since the large major-
ity of users do not geotag their tweets, we fall back

1http://github.com/ut-anlp-bot/tshrdlu

to locating the user based on the optional free-
form location field in their profile. The contents
of this field are used as a query to the GeoNames2

API (with the AND operator) to search over all
fields in the database. The results are filtered such
that they include only populated places and then
the highest-ranked location is used.

While this approach works quite well if the user
has a standard location like “Austin, TX” in their
profile, there is plenty of room for improvement.
For example, more general indicators of location
such as “Greater Portland Area” will not return
any results. Furthermore, many users do not set
their location field or do not set it to the name of a
real place (Hecht et al., 2011). That said, it is still
frequently a valuable resource for determining a
user’s location and is sufficient for our needs. Our
bot uses “Austin, TX” as the default location if the
user’s location can not be resolved.

3 Generating Candidate Replies

In this section we discuss SpellBound’s imple-
mentation for generating candidate replies. This
procedure is triggered every time a user tweets to
the bot.

3.1 Discovering Local Trends
Using the location resolver described in Section 2,
we attempt to find the location of the user that
tweeted to us. We then query the Twitter API to
get a list of trending topics near the location and
randomly pick one to be the subject of our reply.

3.2 Language Model
In order to generate candidate replies, we use
an aggregate bigram language model (Saul and
Pereira, 1997). It consists of a weighted combi-
nation of three models: an offline model, a user
model, and a trend model. Each of these are dis-
cussed in detail below.

2http://www.geonames.org/



The offline bigram model was created from
1000 random tweets from the Twitter sample
stream. The model was generated and stored of-
fline and is loaded every time the reply generator
is triggered. This model is mainly for adding con-
tent diversity to the aggregate model.

The user bigram model is created using the
tweeting user’s past tweets. The model uses at
most 200 past tweets authored by the user. This
helps in generating a model relevant to a user’s in-
terest and/or what the user has tweeted about in
the past. To assist with development and testing of
the bot, there is a provision to set the user whose
tweets are retrieved to create this model. In order
to set a user, the bot can be sent a tweet:

Set User: put_screen_name_here

The bot will then respond to future tweets with
replies targeted towards the named user.

The trend bigram model is created by searching
on the local trend identified as described in Sec-
tion 3.1. This generates a model relevant to the
local trend.

The tweets used to create the models have a
special start token ‘∧’ and a stop token ‘$$’ in-
serted which allows the language model to deter-
mine the probability of start and end of a reply re-
spectively. The final aggregate model is formed
by combining the aforementioned bigram models
using weights 0.2, 0.4, and 0.4 respectively. This
aggregate model is later used to generate candidate
replies.

A key challenge faced while developing the
bigram model based on trends was that the bot
framework we use was starting a Twitter stream
for monitoring the user’s Twitter feed, but our
original implementation also required using the
Twitter stream and filtering it based on the trend-
ing topic near the user. Since Twitter does not
allow multiple streams, we resorted to using the
search API for tweets related to the trend. The
main limitation of this approach is that searches
count against the Twitter rate limit3 and limit the
number of tweets we can retrieve to build the lan-
guage model. Future work may be able to over-
come this limitation by finding a way to have mul-
tiple Twitter streams open at the same time. This
is discussed in Section 7.

3https://dev.twitter.com/docs/
rate-limiting/1.1

Figure 1: Overview of generating a candidate re-
ply.

3.3 Candidate Replies

Using the aggregate bigram model developed in
Section 3.2, we generate candidate replies for a
time period of 20 seconds using random sampling.
This ensures that we generate a variety of differ-
ent candidates albeit the highly probable replies
are generated frequently. We allow the candidate
replies to start and end naturally symbolized by the
start and end tokens respectively. If the generated
candidate reply does not already contain the hash-
tag from the trending topic, we append it at the end
of the reply.

3.4 Post Processing

In this step we process the candidate replies to
resemble a real tweet. The post-processing in-
cludes capitalizing the first letter after punctua-
tion where appropriate, stripping extra spaces be-
tween tokens, capitalizing ‘i’ when it comes by
itself or with an apostrophe as in “i’ll”. These
filtering steps are primarily done with regular ex-
pressions. Thereafter, we filter the replies that ex-
ceed the character limit (because we allow them
to end naturally, at times they may get very long)
and make a list of distinct candidate replies. Fig-
ure 1 shows a sample candidate reply generation
and post-processing step.

4 Ranking Candidate Replies

Most of the candidate replies generated from our
language model do not look like tweets a real per-
son would write. In order to sort the candidates
and pick the best one, we trained a classifier of-



fline that is designed to distinguish between real
and fake tweets. The confidence scores from the
classifier are used to rank the candidates based on
how real they are predicted to be.

4.1 Generating Data

The training corpus consists of 1400 real tweets
and 1400 fake tweets that were created in batches.
For each batch, we picked a random user and a
random trending topic. Real tweets were collected
from the user’s timeline and the trending topic.
Fake tweets were generated using the same tech-
nique described in Section 3. The tweets were
shuffled and split into a training, development, and
test set containing 2000, 400, and 400 tweets re-
spectively. Each set has an equal number of real
and fake tweets.

4.2 Features

We extract the following types of features after to-
kenizing the tweets with Twokenize (O’Connor et
al., 2010):

Skip (Gappy) Bigrams. A skip bigram is a
pair of tokens in order, possibly with other to-
kens between them (Goodman, 2000). They
are useful for capturing long-distance de-
pendencies between words with sparse data.
Consider the sample tweet “the cat eats fish.”
We use two types of skip bigrams. The first
type encodes the number of tokens in the
gap (e.g., “the + + + fish”). The sec-
ond type encodes all gap sizes equally (e.g.,
“the+ + eats” and “the+ + fish”).
We use gaps containing 1 to 5 tokens for the
first type and 1 to 50 tokens for the second
type.

Duplicate N-Gram Fraction. Fraction of
the tweet’s n-grams (between 1-gram and 5-
grams) that are duplicates. For example, the
tweet “I think I can” contains four unigrams,
one of which is a duplicate.

Number of Tokens. The total number of to-
kens.

Stopword Fraction. The fraction of words
that are stopwords.

Trigrams and Quadrams. Sequences of 3
and 4 tokens.

4.3 Results and Analysis
We used Nak4 to train the model with the L2-
regularized logistic regression solver in LIBLIN-
EAR (Fan et al., 2008). After optimizing the reg-
ularization parameter on the development set, the
model obtains an overall accuracy of 83.5 and an
average F1 score of 83.5 (83.33 for the fake class
and 83.66 for real) on the held-out test set.

Analyzing the results of classification, we no-
tice that the classifier’s performance is mainly af-
fected by candidate replies that are a lot like the
real tweets. For example, the candidate reply
“Never before, promos and bailey combined for
myself. #ThingsICantLiveWithout” was incor-
rectly labeled; it was fake but mistaken as real. On
the other hand an example of a real tweet clas-
sified as fake was “when did you meet Taylor?
#ChristianMingleUsernames”. Looking at these
and other similar examples of mis-classification
we can conclude that the incorrectly labeled tweets
were highly ambiguous and difficult to classify
even by human judgment.

While our model was evaluated on its ability to
distinguish between real and fake tweets, it is im-
portant to note that it is not used to classify any
real tweets in our final application. Instead, it is
used to rank a set of fake tweets based on how
real they seem. An interesting option for future
work would be to investigate the use of learning to
rank algorithms such as SVM-RANK (Joachims,
1999).

5 Examples and Analysis

In this section, we present examples of responses
generated by SpellBound and analyze them.

5.1 Examples
This section discusses examples of tweets gener-
ated and ranked by our Bot. We set the user to Bill
Gates for the following example by tweeting to the
bot:

Set User: billgates

Once the user is set, we tweet to the bot and get a
reply as follows:

USER: Hey, how are you doing today?

BOT: ‘‘I hate you turned to conquer
with my window in the ballet. They
follow fredo #YoureBeingJudged

4http://github.com/scalanlp/nak



The bot was tweeted at from Austin, TX and
one of the trending topics at the time this exam-
ple was created was #YoureBeingJudged. Based
on the aggregate model that combined the of-
fline model, the model generated using Bill Gate’s
past tweets, and the model developed by search-
ing on #YoureBeingJudged, SpellBound generated
several candidate replies and used the classifier to
rank them and select the best one.

Looking at the tweet posted by the bot to the
user, we notice that the word “window” is rele-
vant to the set user which is Bill Gates in this
case. It also has words relevant to the trend and
some random tokens. The above generated reply
ranks highest with a difference of 0.58 between
the confidence scores of the reply being real and
fake. This can be contrasted with the candidate
reply that scores −0.2:

Want’ why text me hables o d
#YoureBeingJudged

Here is another example of a reply posted
by our bot when the set user was “jason-
baldridge” and the local trend randomly selected
was “#ElementaryConfessions”

BOT: Djing in silence, take our
record to death of yourself. 3916
riviera drive. That you <3 enjoy
your dm #ElementaryConfessions

The classifier ranking implementation discour-
ages the bot from posting a reply that has either
too much or too little punctuation and/or other to-
kens.

5.2 Analysis and Interpretation
From the aforementioned examples, we observe
that the responses generated are of poor quality
and do not resemble tweets that are generated by
a human. The main reason for poor response
is the language model used. The offline bigram
model was created using a small number of ran-
dom tweets from the Twitter stream with the pur-
pose of adding more diverse bigrams to the lan-
guage model, however, it adds a lot of noise to
the generated candidate replies. Although the user
bigram model uses a user’s recent tweets for gen-
erating replies, it may not reflect the user’s inter-
ests and thus may not lead to relevant tweet gen-
eration. The trend bigram model is made using
Twitter search API and thus is made using only
around 10 tweets. Although the trend model has

more weight, the bigrams from this model are rare
in the final reply and thus the trending topic almost
always needs to be appended at the end.

We discuss some methods of resolving the is-
sues mentioned above in Section 7.

6 Human Evaluation

Two human subjects not associated with the
project participated in our human evaluation. The
subjects were asked to evaluate each tweet on a
scale of 1 (worst) to 5 (best) according to five mea-
sures:

1. Coherence. Tweet is well-connected; under-
standable; about a single topic.

2. Intelligibility. Tweet is able to be under-
stood; makes sense.

3. Human-ness. Tweet feels natural; written by
a human.

4. Relevance – User. Tweet is relevant to the
user’s interests.

5. Relevance – Trend. Tweet is relevant to the
trending topic.

Table 1 shows the results of the user evalua-
tion for each measure. We observe that the ratings
are really quite poor. In fact, looking at the origi-
nal data, none of the individual ratings was higher
than 2. The highest-scoring measure was human-
ness with an average score of 1.40. The best-rated
tweet had an average score of 1.5:

" haha, eat a neck tattoo so I
mean to to understand that hour.
#ILoveMyMomBecause

The worst-rated tweet had an average score of
1.00:

Fun to moa to california
area is doing homework, have.
#thingsthatirritateme when will
get jealous. #ThankYouJesusFor

Using Spearman’s rank coefficient (rho) to
evaluate the degree of agreement between our hu-
man raters, we find that the scores are actually
slightly negatively correlated (rho = −0.12) in-
dicating a strong lack of agreement5. One pos-
sible explanation for this may be the difficulty in

5Note, however, that Spearman’s rank coefficient does not
capture the fact that both raters agreed that the tweets were
all very bad (scoring a 2 or less on a scale of 1-5) relative to
human standards.



Measure Mean Rating
Coherence 1.15
Intelligibility 1.20
Human-ness 1.40
Relevance – User 1.10
Relevance – Trend 1.20

Table 1: Average user ratings along five different
measures.

distinguishing between the quality of tweets that
are all largely nonsensical. Another possibility is
that the scoring criteria used in the evaluate was
not sufficiently well-defined or the raters were not
well-trained.

Additional evaluation strategies may be useful
for evaluating tweet generation in the future. For
example, we could measure fluency with the cloze
task (Taylor, 1953) where single tokens in a tweet
would be replaced with a blank and raters would
attempt to fill in the blank. A higher rate of correct
blank-filling implies a more fluent tweet.

We could also introduce some automatic evalu-
ation metrics such as those used for evaluating ma-
chine translation systems such as BLEU (Papineni
et al., 2002). These may be useful for evaluating
how similar our generated candidates are to real
tweets from the user or trending topic. Automated
metrics, in addition to providing more feedback on
our final system performance, would allow us to it-
erate more quickly and evaluate possible improve-
ments while developing our tweet generator.

7 Future Work

In this section we discuss how our bot can be im-
proved to generate more relevant responses as well
as other methods which could help improve our
implementation of SpellBound.

7.1 Improved Reply Generation

First, the offline bigram model needs to be trained
on more data so that its purpose is fulfilled. It
would also be nice to classify the tweets used
for the offline model into general categories like
sports, news, politics, etc. A separate model could
be created from each category so that it would help
generate more relevant replies to the user. Topic
based language models try to take advantage of the
fact that different topics will have different kinds
of words (Bellegarda, 2004).

Second, the user bigram model could be trained

on the user’s interest rather than her recent tweets.
This could be achieved by extracting the user’s
interests from her Twitter profile and interactions
with other users and by creating topic models from
her recent tweets.

Finally, the trend bigram model could be cre-
ated by filtering on Twitter stream for trending
tweets rather than using search API and thus
would not be restricted by rate limiting. Also, in-
stead of using a random trend close to the user,
we could use trends that have high degree of over-
lap with the user’s interest and thus be more rele-
vant. This would be done using cosine similarity
between the trending topics and the user’s topics
of interest. For a user whose tweets are geotagged,
our location resolver would have high confidence
and thus instead of fetching tweets based on trends
in the area, SpellBound could make recommenda-
tions for popular nearby places by looking up geo-
tagged Wikipedia articles.

While forming the aggregate model, instead of
using fixed weights, a better technique would be to
use Stacking which is a type of ensemble learning.
To help develop a personality for SpellBound, we
could maintain a session with the user and gener-
ate responses based on the recent interaction with
the user. This can be achieved by fetching the
interaction tweets and creating a language model
from them. (Chu et al., 2010) observe the differ-
ence between humans and bots in terms of tweet-
ing behavior and tweet content and use them as
features in classifying human and bot accounts
on Twitter. We would also like to experiment
with more with their features and incorporate more
human-like features in our bot.

Because of the nature of bigram models, it is not
always possible to generate a reply that is relevant
and also grammatically correct at the same time.
Thus we would like to evaluate the performance of
our bot by generating replies using higher order n-
gram language models created from a much larger
corpus of tweets. We would also like to identify
the limitations of our generated responses and if
the quality of generated responses is below a cer-
tain predefined threshold, use the search API in-
stead to find a relevant response (like the original
Tshrdlu bot). Exploring the quality of tweets us-
ing a template based technique to generate a re-
sponse is also something we would like to experi-
ment with.



Figure 2: General tweet generation pipeline.

7.2 General Tweet Generation Pipeline
Our tweet generation implementation could be
generalized to create a simple framework with
pluggable components for others to build on (Re-
iter and Dale, 2000). Figure 2 shows a sample
architecture. First, one or more language mod-
els are combined by weighting each one as we
do with our aggregate model. Next, one or more
post-processing steps are applied in a preconfig-
ured order to clean them up and remove artifacts
from the first stage. Finally, one or more filters or
rankers are applied to remove tweets from consid-
eration and to surface the best one. If all rankers
report scores on a common scale, each one could
be weighted to prefer the scores from a particu-
larly ranker to suit the goals of the application.

A pluggable architecture such as this would al-
low developers to easily get started with generat-
ing tweets and share components. By allowing
components and weights to be modified at run-
time, bots could easily adapt based on the goals
of the bot. For example, if the bot is having an on-
going conversation with a user, we might want to
give a larger weight to a ranker that measures how
relevant each candidate is to the conversation.

8 Conclusion

In this paper we presented SpellBound, a Twitter
bot that generates a response relevant to the tweet-
ing user’s interests and her location. Our bot uses
a classifier for ranking tweets in order to obtain
a response that most resembles a tweet composed
by a human. To achieve this, we discussed the fea-
tures on which our classifier is trained. Finally,
we analyzed our results and proposed solutions to
address the challenges faced. We envision appli-

cations of our work on automated systems such as
online help, personalized service, or information
acquisition.

References
Jerome R Bellegarda. 2004. Statistical Lan-

guage Model Adaptation: Review and Perspectives.
Speech communication, 42(1):93–108.

Zi Chu, Steven Gianvecchio, Haining Wang, and Sushil
Jajodia. 2010. Who is Tweeting on Twitter: Human,
Bot, or Cyborg? In Proceedings of the 26th Annual
Computer Security Applications Conference, pages
21–30. ACM.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874.

J. Goodman. 2000. A Bit of Progress in Language
Modeling. Technical report, Microsoft Research, 56
Fuchun Peng.

Brent Hecht, Lichan Hong, Bongwon Suh, and Ed H.
Chi. 2011. Tweets from Justin Bieber’s heart: the
dynamics of the location field in user profiles. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11, pages 237–
246, New York, NY, USA. ACM.

Thorsten Joachims. 1999. Advances in kernel meth-
ods. chapter Making large-scale support vector ma-
chine learning practical, pages 169–184. MIT Press,
Cambridge, MA, USA.

Brendan O’Connor, Michel Krieger, and David Ahn.
2010. TweetMotif: Exploratory Search and Topic
Summarization for Twitter. In William W. Cohen,
Samuel Gosling, William W. Cohen, and Samuel
Gosling, editors, ICWSM. The AAAI Press.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Ehud Reiter and Robert Dale. 2000. Building natural
language generation systems. Cambridge Univer-
sity Press, New York, NY, USA.

Lawrence Saul and Fernando Pereira. 1997. Aggre-
gate and mixed-order Markov models for statistical
language processing. In Proceedings of the Second
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 81–89. Somerset, New Jer-
sey: Association for Computational Linguistics.

Wilson Taylor. 1953. Cloze Procedure: A New Tool
for Measuring Readability. Journalism Quarterly,
30:415–433.


