mirrored from https://chromium.googlesource.com/v8/v8.git
-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
Copy pathmul-fft.cc
789 lines (734 loc) · 28.5 KB
/
mul-fft.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// FFT-based multiplication, due to Schönhage and Strassen.
// This implementation mostly follows the description given in:
// Christoph Lüders: Fast Multiplication of Large Integers,
// http://arxiv.org/abs/1503.04955
#include "src/bigint/bigint-internal.h"
#include "src/bigint/digit-arithmetic.h"
#include "src/bigint/util.h"
namespace v8 {
namespace bigint {
namespace {
////////////////////////////////////////////////////////////////////////////////
// Part 1: Functions for "mod F_n" arithmetic.
// F_n is of the shape 2^K + 1, and for convenience we use K to count the
// number of digits rather than the number of bits, so F_n (or K) are implicit
// and deduced from the length {len} of the digits array.
// Helper function for {ModFn} below.
void ModFn_Helper(digit_t* x, int len, signed_digit_t high) {
if (high > 0) {
digit_t borrow = high;
x[len - 1] = 0;
for (int i = 0; i < len; i++) {
x[i] = digit_sub(x[i], borrow, &borrow);
if (borrow == 0) break;
}
} else {
digit_t carry = -high;
x[len - 1] = 0;
for (int i = 0; i < len; i++) {
x[i] = digit_add2(x[i], carry, &carry);
if (carry == 0) break;
}
}
}
// {x} := {x} mod F_n, assuming that {x} is "slightly" larger than F_n (e.g.
// after addition of two numbers that were mod-F_n-normalized before).
void ModFn(digit_t* x, int len) {
int K = len - 1;
signed_digit_t high = x[K];
if (high == 0) return;
ModFn_Helper(x, len, high);
high = x[K];
if (high == 0) return;
DCHECK(high == 1 || high == -1);
ModFn_Helper(x, len, high);
high = x[K];
if (high == -1) ModFn_Helper(x, len, high);
}
// {dest} := {src} mod F_n, assuming that {src} is about twice as long as F_n
// (e.g. after multiplication of two numbers that were mod-F_n-normalized
// before).
// {len} is length of {dest}; {src} is twice as long.
void ModFnDoubleWidth(digit_t* dest, const digit_t* src, int len) {
int K = len - 1;
digit_t borrow = 0;
for (int i = 0; i < K; i++) {
dest[i] = digit_sub2(src[i], src[i + K], borrow, &borrow);
}
dest[K] = digit_sub2(0, src[2 * K], borrow, &borrow);
// {borrow} may be non-zero here, that's OK as {ModFn} will take care of it.
ModFn(dest, len);
}
// Sets {sum} := {a} + {b} and {diff} := {a} - {b}, which is more efficient
// than computing sum and difference separately. Applies "mod F_n" normalization
// to both results.
void SumDiff(digit_t* sum, digit_t* diff, const digit_t* a, const digit_t* b,
int len) {
digit_t carry = 0;
digit_t borrow = 0;
for (int i = 0; i < len; i++) {
// Read both values first, because inputs and outputs can overlap.
digit_t ai = a[i];
digit_t bi = b[i];
sum[i] = digit_add3(ai, bi, carry, &carry);
diff[i] = digit_sub2(ai, bi, borrow, &borrow);
}
ModFn(sum, len);
ModFn(diff, len);
}
// {result} := ({input} << shift) mod F_n, where shift >= K.
void ShiftModFn_Large(digit_t* result, const digit_t* input, int digit_shift,
int bits_shift, int K) {
// If {digit_shift} is greater than K, we use the following transformation
// (where, since everything is mod 2^K + 1, we are allowed to add or
// subtract any multiple of 2^K + 1 at any time):
// x * 2^{K+m} mod 2^K + 1
// == x * 2^K * 2^m - (2^K + 1)*(x * 2^m) mod 2^K + 1
// == x * 2^K * 2^m - x * 2^K * 2^m - x * 2^m mod 2^K + 1
// == -x * 2^m mod 2^K + 1
// So the flow is the same as for m < K, but we invert the subtraction's
// operands. In order to avoid underflow, we virtually initialize the
// result to 2^K + 1:
// input = [ iK ][iK-1] .... .... [ i1 ][ i0 ]
// result = [ 1][0000] .... .... [0000][0001]
// + [ iK ] .... [ iX ]
// - [iX-1] .... [ i0 ]
DCHECK(digit_shift >= K);
digit_shift -= K;
digit_t borrow = 0;
if (bits_shift == 0) {
digit_t carry = 1;
for (int i = 0; i < digit_shift; i++) {
result[i] = digit_add2(input[i + K - digit_shift], carry, &carry);
}
result[digit_shift] = digit_sub(input[K] + carry, input[0], &borrow);
for (int i = digit_shift + 1; i < K; i++) {
digit_t d = input[i - digit_shift];
result[i] = digit_sub2(0, d, borrow, &borrow);
}
} else {
digit_t add_carry = 1;
digit_t input_carry =
input[K - digit_shift - 1] >> (kDigitBits - bits_shift);
for (int i = 0; i < digit_shift; i++) {
digit_t d = input[i + K - digit_shift];
digit_t summand = (d << bits_shift) | input_carry;
result[i] = digit_add2(summand, add_carry, &add_carry);
input_carry = d >> (kDigitBits - bits_shift);
}
{
// result[digit_shift] = (add_carry + iK_part) - i0_part
digit_t d = input[K];
digit_t iK_part = (d << bits_shift) | input_carry;
digit_t iK_carry = d >> (kDigitBits - bits_shift);
digit_t sum = digit_add2(add_carry, iK_part, &add_carry);
// {iK_carry} is less than a full digit, so we can merge {add_carry}
// into it without overflow.
iK_carry += add_carry;
d = input[0];
digit_t i0_part = d << bits_shift;
result[digit_shift] = digit_sub(sum, i0_part, &borrow);
input_carry = d >> (kDigitBits - bits_shift);
if (digit_shift + 1 < K) {
d = input[1];
digit_t subtrahend = (d << bits_shift) | input_carry;
result[digit_shift + 1] =
digit_sub2(iK_carry, subtrahend, borrow, &borrow);
input_carry = d >> (kDigitBits - bits_shift);
}
}
for (int i = digit_shift + 2; i < K; i++) {
digit_t d = input[i - digit_shift];
digit_t subtrahend = (d << bits_shift) | input_carry;
result[i] = digit_sub2(0, subtrahend, borrow, &borrow);
input_carry = d >> (kDigitBits - bits_shift);
}
}
// The virtual 1 in result[K] should be eliminated by {borrow}. If there
// is no borrow, then the virtual initialization was too much. Subtract
// 2^K + 1.
result[K] = 0;
if (borrow != 1) {
borrow = 1;
for (int i = 0; i < K; i++) {
result[i] = digit_sub(result[i], borrow, &borrow);
if (borrow == 0) break;
}
if (borrow != 0) {
// The result must be 2^K.
for (int i = 0; i < K; i++) result[i] = 0;
result[K] = 1;
}
}
}
// Sets {result} := {input} * 2^{power_of_two} mod 2^{K} + 1.
// This function is highly relevant for overall performance.
void ShiftModFn(digit_t* result, const digit_t* input, int power_of_two, int K,
int zero_above = 0x7FFFFFFF) {
// The modulo-reduction amounts to a subtraction, which we combine
// with the shift as follows:
// input = [ iK ][iK-1] .... .... [ i1 ][ i0 ]
// result = [iX-1] .... [ i0 ] <---------- shift by {power_of_two}
// - [ iK ] .... [ iX ]
// where "X" is the index "K - digit_shift".
int digit_shift = power_of_two / kDigitBits;
int bits_shift = power_of_two % kDigitBits;
// By an analogous construction to the "digit_shift >= K" case,
// it turns out that:
// x * 2^{2K+m} == x * 2^m mod 2^K + 1.
while (digit_shift >= 2 * K) digit_shift -= 2 * K; // Faster than '%'!
if (digit_shift >= K) {
return ShiftModFn_Large(result, input, digit_shift, bits_shift, K);
}
digit_t borrow = 0;
if (bits_shift == 0) {
// We do a single pass over {input}, starting by copying digits [i1] to
// [iX-1] to result indices digit_shift+1 to K-1.
int i = 1;
// Read input digits unless we know they are zero.
int cap = std::min(K - digit_shift, zero_above);
for (; i < cap; i++) {
result[i + digit_shift] = input[i];
}
// Any remaining work can hard-code the knowledge that input[i] == 0.
for (; i < K - digit_shift; i++) {
DCHECK(input[i] == 0);
result[i + digit_shift] = 0;
}
// Second phase: subtract input digits [iX] to [iK] from (virtually) zero-
// initialized result indices 0 to digit_shift-1.
cap = std::min(K, zero_above);
for (; i < cap; i++) {
digit_t d = input[i];
result[i - K + digit_shift] = digit_sub2(0, d, borrow, &borrow);
}
// Any remaining work can hard-code the knowledge that input[i] == 0.
for (; i < K; i++) {
DCHECK(input[i] == 0);
result[i - K + digit_shift] = digit_sub(0, borrow, &borrow);
}
// Last step: subtract [iK] from [i0] and store at result index digit_shift.
result[digit_shift] = digit_sub2(input[0], input[K], borrow, &borrow);
} else {
// Same flow as before, but taking bits_shift != 0 into account.
// First phase: result indices digit_shift+1 to K.
digit_t carry = 0;
int i = 0;
// Read input digits unless we know they are zero.
int cap = std::min(K - digit_shift, zero_above);
for (; i < cap; i++) {
digit_t d = input[i];
result[i + digit_shift] = (d << bits_shift) | carry;
carry = d >> (kDigitBits - bits_shift);
}
// Any remaining work can hard-code the knowledge that input[i] == 0.
for (; i < K - digit_shift; i++) {
DCHECK(input[i] == 0);
result[i + digit_shift] = carry;
carry = 0;
}
// Second phase: result indices 0 to digit_shift - 1.
cap = std::min(K, zero_above);
for (; i < cap; i++) {
digit_t d = input[i];
result[i - K + digit_shift] =
digit_sub2(0, (d << bits_shift) | carry, borrow, &borrow);
carry = d >> (kDigitBits - bits_shift);
}
// Any remaining work can hard-code the knowledge that input[i] == 0.
if (i < K) {
DCHECK(input[i] == 0);
result[i - K + digit_shift] = digit_sub2(0, carry, borrow, &borrow);
carry = 0;
i++;
}
for (; i < K; i++) {
DCHECK(input[i] == 0);
result[i - K + digit_shift] = digit_sub(0, borrow, &borrow);
}
// Last step: compute result[digit_shift].
digit_t d = input[K];
result[digit_shift] = digit_sub2(
result[digit_shift], (d << bits_shift) | carry, borrow, &borrow);
// No carry left.
DCHECK((d >> (kDigitBits - bits_shift)) == 0);
}
result[K] = 0;
for (int i = digit_shift + 1; i <= K && borrow > 0; i++) {
result[i] = digit_sub(result[i], borrow, &borrow);
}
if (borrow > 0) {
// Underflow means we subtracted too much. Add 2^K + 1.
digit_t carry = 1;
for (int i = 0; i <= K; i++) {
result[i] = digit_add2(result[i], carry, &carry);
if (carry == 0) break;
}
result[K] = digit_add2(result[K], 1, &carry);
}
}
////////////////////////////////////////////////////////////////////////////////
// Part 2: FFT-based multiplication is very sensitive to appropriate choice
// of parameters. The following functions choose the parameters that the
// subsequent actual computation will use. This is partially based on formal
// constraints and partially on experimentally-determined heuristics.
struct Parameters {
// We never use the default values, but skipping zero-initialization
// of these fields saddens and confuses MSan.
int m{0};
int K{0};
int n{0};
int s{0};
int r{0};
};
// Computes parameters for the main calculation, given a bit length {N} and
// an {m}. See the paper for details.
void ComputeParameters(int N, int m, Parameters* params) {
N *= kDigitBits;
int n = 1 << m; // 2^m
int nhalf = n >> 1;
int s = (N + n - 1) >> m; // ceil(N/n)
s = RoundUp(s, kDigitBits);
int K = m + 2 * s + 1; // K must be at least this big...
K = RoundUp(K, nhalf); // ...and a multiple of n/2.
int r = K >> (m - 1); // Which multiple?
// We want recursive calls to make progress, so force K to be a multiple
// of 8 if it's above the recursion threshold. Otherwise, K must be a
// multiple of kDigitBits.
const int threshold = (K + 1 >= kFftInnerThreshold * kDigitBits)
? 3 + kLog2DigitBits
: kLog2DigitBits;
int K_tz = CountTrailingZeros(K);
while (K_tz < threshold) {
K += (1 << K_tz);
r = K >> (m - 1);
K_tz = CountTrailingZeros(K);
}
DCHECK(K % kDigitBits == 0);
DCHECK(s % kDigitBits == 0);
params->K = K / kDigitBits;
params->s = s / kDigitBits;
params->n = n;
params->r = r;
}
// Computes parameters for recursive invocations ("inner layer").
void ComputeParameters_Inner(int N, Parameters* params) {
int max_m = CountTrailingZeros(N);
int N_bits = BitLength(N);
int m = N_bits - 4; // Don't let s get too small.
m = std::min(max_m, m);
N *= kDigitBits;
int n = 1 << m; // 2^m
// We can't round up s in the inner layer, because N = n*s is fixed.
int s = N >> m;
DCHECK(N == s * n);
int K = m + 2 * s + 1; // K must be at least this big...
K = RoundUp(K, n); // ...and a multiple of n and kDigitBits.
K = RoundUp(K, kDigitBits);
params->r = K >> m; // Which multiple?
DCHECK(K % kDigitBits == 0);
DCHECK(s % kDigitBits == 0);
params->K = K / kDigitBits;
params->s = s / kDigitBits;
params->n = n;
params->m = m;
}
int PredictInnerK(int N) {
Parameters params;
ComputeParameters_Inner(N, ¶ms);
return params.K;
}
// Applies heuristics to decide whether {m} should be decremented, by looking
// at what would happen to {K} and {s} if {m} was decremented.
bool ShouldDecrementM(const Parameters& current, const Parameters& next,
const Parameters& after_next) {
// K == 64 seems to work particularly well.
if (current.K == 64 && next.K >= 112) return false;
// Small values for s are never efficient.
if (current.s < 6) return true;
// The time is roughly determined by K * n. When we decrement m, then
// n always halves, and K usually gets bigger, by up to 2x.
// For not-quite-so-small s, look at how much bigger K would get: if
// the K increase is small enough, making n smaller is worth it.
// Empirically, it's most meaningful to look at the K *after* next.
// The specific threshold values have been chosen by running many
// benchmarks on inputs of many sizes, and manually selecting thresholds
// that seemed to produce good results.
double factor = static_cast<double>(after_next.K) / current.K;
if ((current.s == 6 && factor < 3.85) || // --
(current.s == 7 && factor < 3.73) || // --
(current.s == 8 && factor < 3.55) || // --
(current.s == 9 && factor < 3.50) || // --
factor < 3.4) {
return true;
}
// If K is just below the recursion threshold, make sure we do recurse,
// unless doing so would be particularly inefficient (large inner_K).
// If K is just above the recursion threshold, doubling it often makes
// the inner call more efficient.
if (current.K >= 160 && current.K < 250 && PredictInnerK(next.K) < 28) {
return true;
}
// If we found no reason to decrement, keep m as large as possible.
return false;
}
// Decides what parameters to use for a given input bit length {N}.
// Returns the chosen m.
int GetParameters(int N, Parameters* params) {
int N_bits = BitLength(N);
int max_m = N_bits - 3; // Larger m make s too small.
max_m = std::max(kLog2DigitBits, max_m); // Smaller m break the logic below.
int m = max_m;
Parameters current;
ComputeParameters(N, m, ¤t);
Parameters next;
ComputeParameters(N, m - 1, &next);
while (m > 2) {
Parameters after_next;
ComputeParameters(N, m - 2, &after_next);
if (ShouldDecrementM(current, next, after_next)) {
m--;
current = next;
next = after_next;
} else {
break;
}
}
*params = current;
return m;
}
////////////////////////////////////////////////////////////////////////////////
// Part 3: Fast Fourier Transformation.
class FFTContainer {
public:
// {n} is the number of chunks, whose length is {K}+1.
// {K} determines F_n = 2^(K * kDigitBits) + 1.
FFTContainer(int n, int K, ProcessorImpl* processor)
: n_(n), K_(K), length_(K + 1), processor_(processor) {
storage_ = new digit_t[length_ * n_];
part_ = new digit_t*[n_];
digit_t* ptr = storage_;
for (int i = 0; i < n; i++, ptr += length_) {
part_[i] = ptr;
}
temp_ = new digit_t[length_ * 2];
}
FFTContainer() = delete;
FFTContainer(const FFTContainer&) = delete;
FFTContainer& operator=(const FFTContainer&) = delete;
~FFTContainer() {
delete[] storage_;
delete[] part_;
delete[] temp_;
}
void Start_Default(Digits X, int chunk_size, int theta, int omega);
void Start(Digits X, int chunk_size, int theta, int omega);
void NormalizeAndRecombine(int omega, int m, RWDigits Z, int chunk_size);
void CounterWeightAndRecombine(int theta, int m, RWDigits Z, int chunk_size);
void FFT_ReturnShuffledThreadsafe(int start, int len, int omega,
digit_t* temp);
void FFT_Recurse(int start, int half, int omega, digit_t* temp);
void BackwardFFT(int start, int len, int omega);
void BackwardFFT_Threadsafe(int start, int len, int omega, digit_t* temp);
void PointwiseMultiply(const FFTContainer& other);
void DoPointwiseMultiplication(const FFTContainer& other, int start, int end,
digit_t* temp);
int length() const { return length_; }
private:
const int n_; // Number of parts.
const int K_; // Always length_ - 1.
const int length_; // Length of each part, in digits.
ProcessorImpl* processor_;
digit_t* storage_; // Combined storage of all parts.
digit_t** part_; // Pointers to each part.
digit_t* temp_; // Temporary storage with size 2 * length_.
};
inline void CopyAndZeroExtend(digit_t* dst, const digit_t* src,
int digits_to_copy, size_t total_bytes) {
size_t bytes_to_copy = digits_to_copy * sizeof(digit_t);
memcpy(dst, src, bytes_to_copy);
memset(dst + digits_to_copy, 0, total_bytes - bytes_to_copy);
}
// Reads {X} into the FFTContainer's internal storage, dividing it into chunks
// while doing so; then performs the forward FFT.
void FFTContainer::Start_Default(Digits X, int chunk_size, int theta,
int omega) {
int len = X.len();
const digit_t* pointer = X.digits();
const size_t part_length_in_bytes = length_ * sizeof(digit_t);
int current_theta = 0;
int i = 0;
for (; i < n_ && len > 0; i++, current_theta += theta) {
chunk_size = std::min(chunk_size, len);
// For invocations via MultiplyFFT_Inner, X.len() == n_ * chunk_size + 1,
// because the outer layer's "K" is passed as the inner layer's "N".
// Since X is (mod Fn)-normalized on the outer layer, there is the rare
// corner case where X[n_ * chunk_size] == 1. Detect that case, and handle
// the extra bit as part of the last chunk; we always have the space.
if (i == n_ - 1 && len == chunk_size + 1) {
DCHECK(X[n_ * chunk_size] <= 1);
DCHECK(length_ >= chunk_size + 1);
chunk_size++;
}
if (current_theta != 0) {
// Multiply with theta^i, and reduce modulo 2^K + 1.
// We pass theta as a shift amount; it really means 2^theta.
CopyAndZeroExtend(temp_, pointer, chunk_size, part_length_in_bytes);
ShiftModFn(part_[i], temp_, current_theta, K_, chunk_size);
} else {
CopyAndZeroExtend(part_[i], pointer, chunk_size, part_length_in_bytes);
}
pointer += chunk_size;
len -= chunk_size;
}
DCHECK(len == 0);
for (; i < n_; i++) {
memset(part_[i], 0, part_length_in_bytes);
}
FFT_ReturnShuffledThreadsafe(0, n_, omega, temp_);
}
// This version of Start is optimized for the case where ~half of the
// container will be filled with padding zeros.
void FFTContainer::Start(Digits X, int chunk_size, int theta, int omega) {
int len = X.len();
if (len > n_ * chunk_size / 2) {
return Start_Default(X, chunk_size, theta, omega);
}
DCHECK(theta == 0);
const digit_t* pointer = X.digits();
const size_t part_length_in_bytes = length_ * sizeof(digit_t);
int nhalf = n_ / 2;
// Unrolled first iteration.
CopyAndZeroExtend(part_[0], pointer, chunk_size, part_length_in_bytes);
CopyAndZeroExtend(part_[nhalf], pointer, chunk_size, part_length_in_bytes);
pointer += chunk_size;
len -= chunk_size;
int i = 1;
for (; i < nhalf && len > 0; i++) {
chunk_size = std::min(chunk_size, len);
CopyAndZeroExtend(part_[i], pointer, chunk_size, part_length_in_bytes);
int w = omega * i;
ShiftModFn(part_[i + nhalf], part_[i], w, K_, chunk_size);
pointer += chunk_size;
len -= chunk_size;
}
for (; i < nhalf; i++) {
memset(part_[i], 0, part_length_in_bytes);
memset(part_[i + nhalf], 0, part_length_in_bytes);
}
FFT_Recurse(0, nhalf, omega, temp_);
}
// Forward transformation.
// We use the "DIF" aka "decimation in frequency" transform, because it
// leaves the result in "bit reversed" order, which is precisely what we
// need as input for the "DIT" aka "decimation in time" backwards transform.
void FFTContainer::FFT_ReturnShuffledThreadsafe(int start, int len, int omega,
digit_t* temp) {
DCHECK((len & 1) == 0); // {len} must be even.
int half = len / 2;
SumDiff(part_[start], part_[start + half], part_[start], part_[start + half],
length_);
for (int k = 1; k < half; k++) {
SumDiff(part_[start + k], temp, part_[start + k], part_[start + half + k],
length_);
int w = omega * k;
ShiftModFn(part_[start + half + k], temp, w, K_);
}
FFT_Recurse(start, half, omega, temp);
}
// Recursive step of the above, factored out for additional callers.
void FFTContainer::FFT_Recurse(int start, int half, int omega, digit_t* temp) {
if (half > 1) {
FFT_ReturnShuffledThreadsafe(start, half, 2 * omega, temp);
FFT_ReturnShuffledThreadsafe(start + half, half, 2 * omega, temp);
}
}
// Backward transformation.
// We use the "DIT" aka "decimation in time" transform here, because it
// turns bit-reversed input into normally sorted output.
void FFTContainer::BackwardFFT(int start, int len, int omega) {
BackwardFFT_Threadsafe(start, len, omega, temp_);
}
void FFTContainer::BackwardFFT_Threadsafe(int start, int len, int omega,
digit_t* temp) {
DCHECK((len & 1) == 0); // {len} must be even.
int half = len / 2;
// Don't recurse for half == 2, as PointwiseMultiply already performed
// the first level of the backwards FFT.
if (half > 2) {
BackwardFFT_Threadsafe(start, half, 2 * omega, temp);
BackwardFFT_Threadsafe(start + half, half, 2 * omega, temp);
}
SumDiff(part_[start], part_[start + half], part_[start], part_[start + half],
length_);
for (int k = 1; k < half; k++) {
int w = omega * (len - k);
ShiftModFn(temp, part_[start + half + k], w, K_);
SumDiff(part_[start + k], part_[start + half + k], part_[start + k], temp,
length_);
}
}
// Recombines the result's parts into {Z}, after backwards FFT.
void FFTContainer::NormalizeAndRecombine(int omega, int m, RWDigits Z,
int chunk_size) {
Z.Clear();
int z_index = 0;
const int shift = n_ * omega - m;
for (int i = 0; i < n_; i++, z_index += chunk_size) {
digit_t* part = part_[i];
ShiftModFn(temp_, part, shift, K_);
digit_t carry = 0;
int zi = z_index;
int j = 0;
for (; j < length_ && zi < Z.len(); j++, zi++) {
Z[zi] = digit_add3(Z[zi], temp_[j], carry, &carry);
}
for (; j < length_; j++) {
DCHECK(temp_[j] == 0);
}
if (carry != 0) {
DCHECK(zi < Z.len());
Z[zi] = carry;
}
}
}
// Helper function for {CounterWeightAndRecombine} below.
bool ShouldBeNegative(const digit_t* x, int xlen, digit_t threshold, int s) {
if (x[2 * s] >= threshold) return true;
for (int i = 2 * s + 1; i < xlen; i++) {
if (x[i] > 0) return true;
}
return false;
}
// Same as {NormalizeAndRecombine} above, but for the needs of the recursive
// invocation ("inner layer") of FFT multiplication, where an additional
// counter-weighting step is required.
void FFTContainer::CounterWeightAndRecombine(int theta, int m, RWDigits Z,
int s) {
Z.Clear();
int z_index = 0;
for (int k = 0; k < n_; k++, z_index += s) {
int shift = -theta * k - m;
if (shift < 0) shift += 2 * n_ * theta;
DCHECK(shift >= 0);
digit_t* input = part_[k];
ShiftModFn(temp_, input, shift, K_);
int remaining_z = Z.len() - z_index;
if (ShouldBeNegative(temp_, length_, k + 1, s)) {
// Subtract F_n from input before adding to result. We use the following
// transformation (knowing that X < F_n):
// Z + (X - F_n) == Z - (F_n - X)
digit_t borrow_z = 0;
digit_t borrow_Fn = 0;
{
// i == 0:
digit_t d = digit_sub(1, temp_[0], &borrow_Fn);
Z[z_index] = digit_sub(Z[z_index], d, &borrow_z);
}
int i = 1;
for (; i < K_ && i < remaining_z; i++) {
digit_t d = digit_sub2(0, temp_[i], borrow_Fn, &borrow_Fn);
Z[z_index + i] = digit_sub2(Z[z_index + i], d, borrow_z, &borrow_z);
}
DCHECK(i == K_ && K_ == length_ - 1);
for (; i < length_ && i < remaining_z; i++) {
digit_t d = digit_sub2(1, temp_[i], borrow_Fn, &borrow_Fn);
Z[z_index + i] = digit_sub2(Z[z_index + i], d, borrow_z, &borrow_z);
}
DCHECK(borrow_Fn == 0);
for (; borrow_z > 0 && i < remaining_z; i++) {
Z[z_index + i] = digit_sub(Z[z_index + i], borrow_z, &borrow_z);
}
} else {
digit_t carry = 0;
int i = 0;
for (; i < length_ && i < remaining_z; i++) {
Z[z_index + i] = digit_add3(Z[z_index + i], temp_[i], carry, &carry);
}
for (; i < length_; i++) {
DCHECK(temp_[i] == 0);
}
for (; carry > 0 && i < remaining_z; i++) {
Z[z_index + i] = digit_add2(Z[z_index + i], carry, &carry);
}
// {carry} might be != 0 here if Z was negative before. That's fine.
}
}
}
// Main FFT function for recursive invocations ("inner layer").
void MultiplyFFT_Inner(RWDigits Z, Digits X, Digits Y, const Parameters& params,
ProcessorImpl* processor) {
int omega = 2 * params.r; // really: 2^(2r)
int theta = params.r; // really: 2^r
FFTContainer a(params.n, params.K, processor);
a.Start_Default(X, params.s, theta, omega);
FFTContainer b(params.n, params.K, processor);
b.Start_Default(Y, params.s, theta, omega);
a.PointwiseMultiply(b);
if (processor->should_terminate()) return;
FFTContainer& c = a;
c.BackwardFFT(0, params.n, omega);
c.CounterWeightAndRecombine(theta, params.m, Z, params.s);
}
// Actual implementation of pointwise multiplications.
void FFTContainer::DoPointwiseMultiplication(const FFTContainer& other,
int start, int end,
digit_t* temp) {
// The (K_ & 3) != 0 condition makes sure that the inner FFT gets
// to split the work into at least 4 chunks.
bool use_fft = length_ >= kFftInnerThreshold && (K_ & 3) == 0;
Parameters params;
if (use_fft) ComputeParameters_Inner(K_, ¶ms);
RWDigits result(temp, 2 * length_);
for (int i = start; i < end; i++) {
Digits A(part_[i], length_);
Digits B(other.part_[i], length_);
if (use_fft) {
MultiplyFFT_Inner(result, A, B, params, processor_);
} else {
processor_->Multiply(result, A, B);
}
if (processor_->should_terminate()) return;
ModFnDoubleWidth(part_[i], result.digits(), length_);
// To improve cache friendliness, we perform the first level of the
// backwards FFT here.
if ((i & 1) == 1) {
SumDiff(part_[i - 1], part_[i], part_[i - 1], part_[i], length_);
}
}
}
// Convenient entry point for pointwise multiplications.
void FFTContainer::PointwiseMultiply(const FFTContainer& other) {
DCHECK(n_ == other.n_);
DoPointwiseMultiplication(other, 0, n_, temp_);
}
} // namespace
////////////////////////////////////////////////////////////////////////////////
// Part 4: Tying everything together into a multiplication algorithm.
// TODO(jkummerow): Consider doing a "Mersenne transform" and CRT reconstruction
// of the final result. Might yield a few percent of perf improvement.
// TODO(jkummerow): Consider implementing the "sqrt(2) trick".
// Gaudry/Kruppa/Zimmerman report that it saved them around 10%.
void ProcessorImpl::MultiplyFFT(RWDigits Z, Digits X, Digits Y) {
Parameters params;
int m = GetParameters(X.len() + Y.len(), ¶ms);
int omega = params.r; // really: 2^r
FFTContainer a(params.n, params.K, this);
a.Start(X, params.s, 0, omega);
if (X == Y) {
// Squaring.
a.PointwiseMultiply(a);
} else {
FFTContainer b(params.n, params.K, this);
b.Start(Y, params.s, 0, omega);
a.PointwiseMultiply(b);
}
if (should_terminate()) return;
a.BackwardFFT(0, params.n, omega);
a.NormalizeAndRecombine(omega, m, Z, params.s);
}
} // namespace bigint
} // namespace v8