Skip to content
Permalink
dcbe436d40
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
3464 lines (2780 sloc) 122 KB
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_SPACES_H_
#define V8_HEAP_SPACES_H_
#include <atomic>
#include <list>
#include <map>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "src/base/atomic-utils.h"
#include "src/base/bounded-page-allocator.h"
#include "src/base/export-template.h"
#include "src/base/iterator.h"
#include "src/base/list.h"
#include "src/base/macros.h"
#include "src/base/platform/mutex.h"
#include "src/common/globals.h"
#include "src/flags/flags.h"
#include "src/heap/basic-memory-chunk.h"
#include "src/heap/heap.h"
#include "src/heap/invalidated-slots.h"
#include "src/heap/marking.h"
#include "src/heap/slot-set.h"
#include "src/objects/free-space.h"
#include "src/objects/heap-object.h"
#include "src/objects/map.h"
#include "src/objects/objects.h"
#include "src/tasks/cancelable-task.h"
#include "src/utils/allocation.h"
#include "src/utils/utils.h"
#include "testing/gtest/include/gtest/gtest_prod.h" // nogncheck
namespace v8 {
namespace internal {
namespace heap {
class HeapTester;
class TestCodePageAllocatorScope;
} // namespace heap
class AllocationObserver;
class CompactionSpace;
class CompactionSpaceCollection;
class FreeList;
class Isolate;
class LargeObjectSpace;
class LinearAllocationArea;
class LocalArrayBufferTracker;
class LocalSpace;
class MemoryAllocator;
class MemoryChunk;
class MemoryChunkLayout;
class OffThreadSpace;
class Page;
class PagedSpace;
class SemiSpace;
class SlotsBuffer;
class SlotSet;
class TypedSlotSet;
class Space;
// -----------------------------------------------------------------------------
// Heap structures:
//
// A JS heap consists of a young generation, an old generation, and a large
// object space. The young generation is divided into two semispaces. A
// scavenger implements Cheney's copying algorithm. The old generation is
// separated into a map space and an old object space. The map space contains
// all (and only) map objects, the rest of old objects go into the old space.
// The old generation is collected by a mark-sweep-compact collector.
//
// The semispaces of the young generation are contiguous. The old and map
// spaces consists of a list of pages. A page has a page header and an object
// area.
//
// There is a separate large object space for objects larger than
// kMaxRegularHeapObjectSize, so that they do not have to move during
// collection. The large object space is paged. Pages in large object space
// may be larger than the page size.
//
// A store-buffer based write barrier is used to keep track of intergenerational
// references. See heap/store-buffer.h.
//
// During scavenges and mark-sweep collections we sometimes (after a store
// buffer overflow) iterate intergenerational pointers without decoding heap
// object maps so if the page belongs to old space or large object space
// it is essential to guarantee that the page does not contain any
// garbage pointers to new space: every pointer aligned word which satisfies
// the Heap::InNewSpace() predicate must be a pointer to a live heap object in
// new space. Thus objects in old space and large object spaces should have a
// special layout (e.g. no bare integer fields). This requirement does not
// apply to map space which is iterated in a special fashion. However we still
// require pointer fields of dead maps to be cleaned.
//
// To enable lazy cleaning of old space pages we can mark chunks of the page
// as being garbage. Garbage sections are marked with a special map. These
// sections are skipped when scanning the page, even if we are otherwise
// scanning without regard for object boundaries. Garbage sections are chained
// together to form a free list after a GC. Garbage sections created outside
// of GCs by object trunctation etc. may not be in the free list chain. Very
// small free spaces are ignored, they need only be cleaned of bogus pointers
// into new space.
//
// Each page may have up to one special garbage section. The start of this
// section is denoted by the top field in the space. The end of the section
// is denoted by the limit field in the space. This special garbage section
// is not marked with a free space map in the data. The point of this section
// is to enable linear allocation without having to constantly update the byte
// array every time the top field is updated and a new object is created. The
// special garbage section is not in the chain of garbage sections.
//
// Since the top and limit fields are in the space, not the page, only one page
// has a special garbage section, and if the top and limit are equal then there
// is no special garbage section.
// Some assertion macros used in the debugging mode.
#define DCHECK_OBJECT_SIZE(size) \
DCHECK((0 < size) && (size <= kMaxRegularHeapObjectSize))
#define DCHECK_CODEOBJECT_SIZE(size, code_space) \
DCHECK((0 < size) && (size <= code_space->AreaSize()))
using FreeListCategoryType = int32_t;
static const FreeListCategoryType kFirstCategory = 0;
static const FreeListCategoryType kInvalidCategory = -1;
enum FreeMode { kLinkCategory, kDoNotLinkCategory };
enum class SpaceAccountingMode { kSpaceAccounted, kSpaceUnaccounted };
// A free list category maintains a linked list of free memory blocks.
class FreeListCategory {
public:
void Initialize(FreeListCategoryType type) {
type_ = type;
available_ = 0;
prev_ = nullptr;
next_ = nullptr;
}
void Reset(FreeList* owner);
void RepairFreeList(Heap* heap);
// Relinks the category into the currently owning free list. Requires that the
// category is currently unlinked.
void Relink(FreeList* owner);
void Free(Address address, size_t size_in_bytes, FreeMode mode,
FreeList* owner);
// Performs a single try to pick a node of at least |minimum_size| from the
// category. Stores the actual size in |node_size|. Returns nullptr if no
// node is found.
FreeSpace PickNodeFromList(size_t minimum_size, size_t* node_size);
// Picks a node of at least |minimum_size| from the category. Stores the
// actual size in |node_size|. Returns nullptr if no node is found.
FreeSpace SearchForNodeInList(size_t minimum_size, size_t* node_size);
inline bool is_linked(FreeList* owner) const;
bool is_empty() { return top().is_null(); }
uint32_t available() const { return available_; }
size_t SumFreeList();
int FreeListLength();
private:
// For debug builds we accurately compute free lists lengths up until
// {kVeryLongFreeList} by manually walking the list.
static const int kVeryLongFreeList = 500;
// Updates |available_|, |length_| and free_list_->Available() after an
// allocation of size |allocation_size|.
inline void UpdateCountersAfterAllocation(size_t allocation_size);
FreeSpace top() { return top_; }
void set_top(FreeSpace top) { top_ = top; }
FreeListCategory* prev() { return prev_; }
void set_prev(FreeListCategory* prev) { prev_ = prev; }
FreeListCategory* next() { return next_; }
void set_next(FreeListCategory* next) { next_ = next; }
// |type_|: The type of this free list category.
FreeListCategoryType type_ = kInvalidCategory;
// |available_|: Total available bytes in all blocks of this free list
// category.
uint32_t available_ = 0;
// |top_|: Points to the top FreeSpace in the free list category.
FreeSpace top_;
FreeListCategory* prev_ = nullptr;
FreeListCategory* next_ = nullptr;
friend class FreeList;
friend class FreeListManyCached;
friend class PagedSpace;
friend class MapSpace;
};
// A free list maintains free blocks of memory. The free list is organized in
// a way to encourage objects allocated around the same time to be near each
// other. The normal way to allocate is intended to be by bumping a 'top'
// pointer until it hits a 'limit' pointer. When the limit is hit we need to
// find a new space to allocate from. This is done with the free list, which is
// divided up into rough categories to cut down on waste. Having finer
// categories would scatter allocation more.
class FreeList {
public:
// Creates a Freelist of the default class (FreeListLegacy for now).
V8_EXPORT_PRIVATE static FreeList* CreateFreeList();
virtual ~FreeList() = default;
// Returns how much memory can be allocated after freeing maximum_freed
// memory.
virtual size_t GuaranteedAllocatable(size_t maximum_freed) = 0;
// Adds a node on the free list. The block of size {size_in_bytes} starting
// at {start} is placed on the free list. The return value is the number of
// bytes that were not added to the free list, because the freed memory block
// was too small. Bookkeeping information will be written to the block, i.e.,
// its contents will be destroyed. The start address should be word aligned,
// and the size should be a non-zero multiple of the word size.
virtual size_t Free(Address start, size_t size_in_bytes, FreeMode mode);
// Allocates a free space node frome the free list of at least size_in_bytes
// bytes. Returns the actual node size in node_size which can be bigger than
// size_in_bytes. This method returns null if the allocation request cannot be
// handled by the free list.
virtual V8_WARN_UNUSED_RESULT FreeSpace Allocate(size_t size_in_bytes,
size_t* node_size,
AllocationOrigin origin) = 0;
// Returns a page containing an entry for a given type, or nullptr otherwise.
V8_EXPORT_PRIVATE virtual Page* GetPageForSize(size_t size_in_bytes) = 0;
virtual void Reset();
// Return the number of bytes available on the free list.
size_t Available() {
DCHECK(available_ == SumFreeLists());
return available_;
}
// Update number of available bytes on the Freelists.
void IncreaseAvailableBytes(size_t bytes) { available_ += bytes; }
void DecreaseAvailableBytes(size_t bytes) { available_ -= bytes; }
bool IsEmpty() {
bool empty = true;
ForAllFreeListCategories([&empty](FreeListCategory* category) {
if (!category->is_empty()) empty = false;
});
return empty;
}
// Used after booting the VM.
void RepairLists(Heap* heap);
V8_EXPORT_PRIVATE size_t EvictFreeListItems(Page* page);
int number_of_categories() { return number_of_categories_; }
FreeListCategoryType last_category() { return last_category_; }
size_t wasted_bytes() { return wasted_bytes_; }
template <typename Callback>
void ForAllFreeListCategories(FreeListCategoryType type, Callback callback) {
FreeListCategory* current = categories_[type];
while (current != nullptr) {
FreeListCategory* next = current->next();
callback(current);
current = next;
}
}
template <typename Callback>
void ForAllFreeListCategories(Callback callback) {
for (int i = kFirstCategory; i < number_of_categories(); i++) {
ForAllFreeListCategories(static_cast<FreeListCategoryType>(i), callback);
}
}
virtual bool AddCategory(FreeListCategory* category);
virtual V8_EXPORT_PRIVATE void RemoveCategory(FreeListCategory* category);
void PrintCategories(FreeListCategoryType type);
protected:
class FreeListCategoryIterator final {
public:
FreeListCategoryIterator(FreeList* free_list, FreeListCategoryType type)
: current_(free_list->categories_[type]) {}
bool HasNext() const { return current_ != nullptr; }
FreeListCategory* Next() {
DCHECK(HasNext());
FreeListCategory* tmp = current_;
current_ = current_->next();
return tmp;
}
private:
FreeListCategory* current_;
};
#ifdef DEBUG
V8_EXPORT_PRIVATE size_t SumFreeLists();
bool IsVeryLong();
#endif
// Tries to retrieve a node from the first category in a given |type|.
// Returns nullptr if the category is empty or the top entry is smaller
// than minimum_size.
FreeSpace TryFindNodeIn(FreeListCategoryType type, size_t minimum_size,
size_t* node_size);
// Searches a given |type| for a node of at least |minimum_size|.
FreeSpace SearchForNodeInList(FreeListCategoryType type, size_t minimum_size,
size_t* node_size);
// Returns the smallest category in which an object of |size_in_bytes| could
// fit.
virtual FreeListCategoryType SelectFreeListCategoryType(
size_t size_in_bytes) = 0;
FreeListCategory* top(FreeListCategoryType type) const {
return categories_[type];
}
inline Page* GetPageForCategoryType(FreeListCategoryType type);
int number_of_categories_ = 0;
FreeListCategoryType last_category_ = 0;
size_t min_block_size_ = 0;
std::atomic<size_t> wasted_bytes_{0};
FreeListCategory** categories_ = nullptr;
// |available_|: The number of bytes in this freelist.
size_t available_ = 0;
friend class FreeListCategory;
friend class Page;
friend class MemoryChunk;
friend class ReadOnlyPage;
friend class MapSpace;
};
// FreeList used for spaces that don't have freelists
// (only the LargeObject space for now).
class NoFreeList final : public FreeList {
public:
size_t GuaranteedAllocatable(size_t maximum_freed) final {
FATAL("NoFreeList can't be used as a standard FreeList. ");
}
size_t Free(Address start, size_t size_in_bytes, FreeMode mode) final {
FATAL("NoFreeList can't be used as a standard FreeList.");
}
V8_WARN_UNUSED_RESULT FreeSpace Allocate(size_t size_in_bytes,
size_t* node_size,
AllocationOrigin origin) final {
FATAL("NoFreeList can't be used as a standard FreeList.");
}
Page* GetPageForSize(size_t size_in_bytes) final {
FATAL("NoFreeList can't be used as a standard FreeList.");
}
private:
FreeListCategoryType SelectFreeListCategoryType(size_t size_in_bytes) final {
FATAL("NoFreeList can't be used as a standard FreeList.");
}
};
// ----------------------------------------------------------------------------
// Space is the abstract superclass for all allocation spaces.
class V8_EXPORT_PRIVATE Space : public Malloced {
public:
Space(Heap* heap, AllocationSpace id, FreeList* free_list)
: allocation_observers_paused_(false),
heap_(heap),
id_(id),
committed_(0),
max_committed_(0),
free_list_(std::unique_ptr<FreeList>(free_list)) {
external_backing_store_bytes_ =
new std::atomic<size_t>[ExternalBackingStoreType::kNumTypes];
external_backing_store_bytes_[ExternalBackingStoreType::kArrayBuffer] = 0;
external_backing_store_bytes_[ExternalBackingStoreType::kExternalString] =
0;
}
static inline void MoveExternalBackingStoreBytes(
ExternalBackingStoreType type, Space* from, Space* to, size_t amount);
virtual ~Space() {
delete[] external_backing_store_bytes_;
external_backing_store_bytes_ = nullptr;
}
Heap* heap() const {
DCHECK_NOT_NULL(heap_);
return heap_;
}
bool IsDetached() const { return heap_ == nullptr; }
AllocationSpace identity() { return id_; }
const char* name() { return Heap::GetSpaceName(id_); }
virtual void AddAllocationObserver(AllocationObserver* observer);
virtual void RemoveAllocationObserver(AllocationObserver* observer);
virtual void PauseAllocationObservers();
virtual void ResumeAllocationObservers();
virtual void StartNextInlineAllocationStep() {}
void AllocationStep(int bytes_since_last, Address soon_object, int size);
// An AllocationStep equivalent to be called after merging a contiguous
// chunk of an off-thread space into this space. The chunk is treated as a
// single allocation-folding group.
void AllocationStepAfterMerge(Address first_object_in_chunk, int size);
// Return the total amount committed memory for this space, i.e., allocatable
// memory and page headers.
virtual size_t CommittedMemory() { return committed_; }
virtual size_t MaximumCommittedMemory() { return max_committed_; }
// Returns allocated size.
virtual size_t Size() = 0;
// Returns size of objects. Can differ from the allocated size
// (e.g. see OldLargeObjectSpace).
virtual size_t SizeOfObjects() { return Size(); }
// Approximate amount of physical memory committed for this space.
virtual size_t CommittedPhysicalMemory() = 0;
// Return the available bytes without growing.
virtual size_t Available() = 0;
virtual int RoundSizeDownToObjectAlignment(int size) {
if (id_ == CODE_SPACE) {
return RoundDown(size, kCodeAlignment);
} else {
return RoundDown(size, kTaggedSize);
}
}
virtual std::unique_ptr<ObjectIterator> GetObjectIterator(Heap* heap) = 0;
void AccountCommitted(size_t bytes) {
DCHECK_GE(committed_ + bytes, committed_);
committed_ += bytes;
if (committed_ > max_committed_) {
max_committed_ = committed_;
}
}
void AccountUncommitted(size_t bytes) {
DCHECK_GE(committed_, committed_ - bytes);
committed_ -= bytes;
}
inline void IncrementExternalBackingStoreBytes(ExternalBackingStoreType type,
size_t amount);
inline void DecrementExternalBackingStoreBytes(ExternalBackingStoreType type,
size_t amount);
// Returns amount of off-heap memory in-use by objects in this Space.
virtual size_t ExternalBackingStoreBytes(
ExternalBackingStoreType type) const {
return external_backing_store_bytes_[type];
}
void* GetRandomMmapAddr();
MemoryChunk* first_page() { return memory_chunk_list_.front(); }
MemoryChunk* last_page() { return memory_chunk_list_.back(); }
base::List<MemoryChunk>& memory_chunk_list() { return memory_chunk_list_; }
FreeList* free_list() { return free_list_.get(); }
#ifdef DEBUG
virtual void Print() = 0;
#endif
protected:
intptr_t GetNextInlineAllocationStepSize();
bool AllocationObserversActive() {
return !allocation_observers_paused_ && !allocation_observers_.empty();
}
void DetachFromHeap() { heap_ = nullptr; }
std::vector<AllocationObserver*> allocation_observers_;
// The List manages the pages that belong to the given space.
base::List<MemoryChunk> memory_chunk_list_;
// Tracks off-heap memory used by this space.
std::atomic<size_t>* external_backing_store_bytes_;
bool allocation_observers_paused_;
Heap* heap_;
AllocationSpace id_;
// Keeps track of committed memory in a space.
size_t committed_;
size_t max_committed_;
std::unique_ptr<FreeList> free_list_;
DISALLOW_COPY_AND_ASSIGN(Space);
};
// The CodeObjectRegistry holds all start addresses of code objects of a given
// MemoryChunk. Each MemoryChunk owns a separate CodeObjectRegistry. The
// CodeObjectRegistry allows fast lookup from an inner pointer of a code object
// to the actual code object.
class V8_EXPORT_PRIVATE CodeObjectRegistry {
public:
void RegisterNewlyAllocatedCodeObject(Address code);
void RegisterAlreadyExistingCodeObject(Address code);
void Clear();
void Finalize();
bool Contains(Address code) const;
Address GetCodeObjectStartFromInnerAddress(Address address) const;
private:
std::vector<Address> code_object_registry_already_existing_;
std::set<Address> code_object_registry_newly_allocated_;
};
class V8_EXPORT_PRIVATE MemoryChunkLayout {
public:
static size_t CodePageGuardStartOffset();
static size_t CodePageGuardSize();
static intptr_t ObjectStartOffsetInCodePage();
static intptr_t ObjectEndOffsetInCodePage();
static size_t AllocatableMemoryInCodePage();
static intptr_t ObjectStartOffsetInDataPage();
static size_t AllocatableMemoryInDataPage();
static size_t ObjectStartOffsetInMemoryChunk(AllocationSpace space);
static size_t AllocatableMemoryInMemoryChunk(AllocationSpace space);
};
// MemoryChunk represents a memory region owned by a specific space.
// It is divided into the header and the body. Chunk start is always
// 1MB aligned. Start of the body is aligned so it can accommodate
// any heap object.
class MemoryChunk : public BasicMemoryChunk {
public:
// Use with std data structures.
struct Hasher {
size_t operator()(MemoryChunk* const chunk) const {
return reinterpret_cast<size_t>(chunk) >> kPageSizeBits;
}
};
using Flags = uintptr_t;
static const Flags kPointersToHereAreInterestingMask =
POINTERS_TO_HERE_ARE_INTERESTING;
static const Flags kPointersFromHereAreInterestingMask =
POINTERS_FROM_HERE_ARE_INTERESTING;
static const Flags kEvacuationCandidateMask = EVACUATION_CANDIDATE;
static const Flags kIsInYoungGenerationMask = FROM_PAGE | TO_PAGE;
static const Flags kIsLargePageMask = LARGE_PAGE;
static const Flags kSkipEvacuationSlotsRecordingMask =
kEvacuationCandidateMask | kIsInYoungGenerationMask;
// |kDone|: The page state when sweeping is complete or sweeping must not be
// performed on that page. Sweeper threads that are done with their work
// will set this value and not touch the page anymore.
// |kPending|: This page is ready for parallel sweeping.
// |kInProgress|: This page is currently swept by a sweeper thread.
enum class ConcurrentSweepingState : intptr_t {
kDone,
kPending,
kInProgress,
};
static const size_t kHeaderSize =
BasicMemoryChunk::kHeaderSize // Parent size.
+ 3 * kSystemPointerSize // VirtualMemory reservation_
+ kSystemPointerSize // Address owner_
+ kSizetSize // size_t progress_bar_
+ kIntptrSize // intptr_t live_byte_count_
+ kSystemPointerSize // SlotSet* sweeping_slot_set_
+ kSystemPointerSize *
NUMBER_OF_REMEMBERED_SET_TYPES // TypedSlotSet* array
+ kSystemPointerSize *
NUMBER_OF_REMEMBERED_SET_TYPES // InvalidatedSlots* array
+ kSystemPointerSize // std::atomic<intptr_t> high_water_mark_
+ kSystemPointerSize // base::Mutex* mutex_
+ kSystemPointerSize // std::atomic<ConcurrentSweepingState>
// concurrent_sweeping_
+ kSystemPointerSize // base::Mutex* page_protection_change_mutex_
+ kSystemPointerSize // unitptr_t write_unprotect_counter_
+ kSizetSize * ExternalBackingStoreType::kNumTypes
// std::atomic<size_t> external_backing_store_bytes_
+ kSizetSize // size_t allocated_bytes_
+ kSizetSize // size_t wasted_memory_
+ kSystemPointerSize * 2 // base::ListNode
+ kSystemPointerSize // FreeListCategory** categories__
+ kSystemPointerSize // LocalArrayBufferTracker* local_tracker_
+ kIntptrSize // std::atomic<intptr_t> young_generation_live_byte_count_
+ kSystemPointerSize // Bitmap* young_generation_bitmap_
+ kSystemPointerSize // CodeObjectRegistry* code_object_registry_
+ kSystemPointerSize; // PossiblyEmptyBuckets possibly_empty_buckets_
// Page size in bytes. This must be a multiple of the OS page size.
static const int kPageSize = 1 << kPageSizeBits;
// Maximum number of nested code memory modification scopes.
static const int kMaxWriteUnprotectCounter = 3;
// Only works if the pointer is in the first kPageSize of the MemoryChunk.
static MemoryChunk* FromAddress(Address a) {
DCHECK(!V8_ENABLE_THIRD_PARTY_HEAP_BOOL);
return reinterpret_cast<MemoryChunk*>(BaseAddress(a));
}
// Only works if the object is in the first kPageSize of the MemoryChunk.
static MemoryChunk* FromHeapObject(HeapObject o) {
DCHECK(!V8_ENABLE_THIRD_PARTY_HEAP_BOOL);
return reinterpret_cast<MemoryChunk*>(BaseAddress(o.ptr()));
}
void SetOldGenerationPageFlags(bool is_marking);
void SetYoungGenerationPageFlags(bool is_marking);
static inline void UpdateHighWaterMark(Address mark) {
if (mark == kNullAddress) return;
// Need to subtract one from the mark because when a chunk is full the
// top points to the next address after the chunk, which effectively belongs
// to another chunk. See the comment to Page::FromAllocationAreaAddress.
MemoryChunk* chunk = MemoryChunk::FromAddress(mark - 1);
intptr_t new_mark = static_cast<intptr_t>(mark - chunk->address());
intptr_t old_mark = chunk->high_water_mark_.load(std::memory_order_relaxed);
while ((new_mark > old_mark) &&
!chunk->high_water_mark_.compare_exchange_weak(
old_mark, new_mark, std::memory_order_acq_rel)) {
}
}
static inline void MoveExternalBackingStoreBytes(
ExternalBackingStoreType type, MemoryChunk* from, MemoryChunk* to,
size_t amount);
void DiscardUnusedMemory(Address addr, size_t size);
base::Mutex* mutex() { return mutex_; }
void set_concurrent_sweeping_state(ConcurrentSweepingState state) {
concurrent_sweeping_ = state;
}
ConcurrentSweepingState concurrent_sweeping_state() {
return static_cast<ConcurrentSweepingState>(concurrent_sweeping_.load());
}
bool SweepingDone() {
return concurrent_sweeping_ == ConcurrentSweepingState::kDone;
}
inline Heap* heap() const {
DCHECK_NOT_NULL(heap_);
return heap_;
}
#ifdef THREAD_SANITIZER
// Perform a dummy acquire load to tell TSAN that there is no data race in
// mark-bit initialization. See MemoryChunk::Initialize for the corresponding
// release store.
void SynchronizedHeapLoad();
#endif
template <RememberedSetType type>
bool ContainsSlots() {
return slot_set<type>() != nullptr || typed_slot_set<type>() != nullptr ||
invalidated_slots<type>() != nullptr;
}
template <RememberedSetType type, AccessMode access_mode = AccessMode::ATOMIC>
SlotSet* slot_set() {
if (access_mode == AccessMode::ATOMIC)
return base::AsAtomicPointer::Acquire_Load(&slot_set_[type]);
return slot_set_[type];
}
template <AccessMode access_mode = AccessMode::ATOMIC>
SlotSet* sweeping_slot_set() {
if (access_mode == AccessMode::ATOMIC)
return base::AsAtomicPointer::Acquire_Load(&sweeping_slot_set_);
return sweeping_slot_set_;
}
template <RememberedSetType type, AccessMode access_mode = AccessMode::ATOMIC>
TypedSlotSet* typed_slot_set() {
if (access_mode == AccessMode::ATOMIC)
return base::AsAtomicPointer::Acquire_Load(&typed_slot_set_[type]);
return typed_slot_set_[type];
}
template <RememberedSetType type>
V8_EXPORT_PRIVATE SlotSet* AllocateSlotSet();
SlotSet* AllocateSweepingSlotSet();
SlotSet* AllocateSlotSet(SlotSet** slot_set);
// Not safe to be called concurrently.
template <RememberedSetType type>
void ReleaseSlotSet();
void ReleaseSlotSet(SlotSet** slot_set);
void ReleaseSweepingSlotSet();
template <RememberedSetType type>
TypedSlotSet* AllocateTypedSlotSet();
// Not safe to be called concurrently.
template <RememberedSetType type>
void ReleaseTypedSlotSet();
template <RememberedSetType type>
InvalidatedSlots* AllocateInvalidatedSlots();
template <RememberedSetType type>
void ReleaseInvalidatedSlots();
template <RememberedSetType type>
V8_EXPORT_PRIVATE void RegisterObjectWithInvalidatedSlots(HeapObject object);
void InvalidateRecordedSlots(HeapObject object);
template <RememberedSetType type>
bool RegisteredObjectWithInvalidatedSlots(HeapObject object);
template <RememberedSetType type>
InvalidatedSlots* invalidated_slots() {
return invalidated_slots_[type];
}
void ReleaseLocalTracker();
void AllocateYoungGenerationBitmap();
void ReleaseYoungGenerationBitmap();
int FreeListsLength();
// Approximate amount of physical memory committed for this chunk.
V8_EXPORT_PRIVATE size_t CommittedPhysicalMemory();
Address HighWaterMark() { return address() + high_water_mark_; }
size_t ProgressBar() {
DCHECK(IsFlagSet<AccessMode::ATOMIC>(HAS_PROGRESS_BAR));
return progress_bar_.load(std::memory_order_acquire);
}
bool TrySetProgressBar(size_t old_value, size_t new_value) {
DCHECK(IsFlagSet<AccessMode::ATOMIC>(HAS_PROGRESS_BAR));
return progress_bar_.compare_exchange_strong(old_value, new_value,
std::memory_order_acq_rel);
}
void ResetProgressBar() {
if (IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) {
progress_bar_.store(0, std::memory_order_release);
}
}
inline void IncrementExternalBackingStoreBytes(ExternalBackingStoreType type,
size_t amount);
inline void DecrementExternalBackingStoreBytes(ExternalBackingStoreType type,
size_t amount);
size_t ExternalBackingStoreBytes(ExternalBackingStoreType type) {
return external_backing_store_bytes_[type];
}
// Some callers rely on the fact that this can operate on both
// tagged and aligned object addresses.
inline uint32_t AddressToMarkbitIndex(Address addr) const {
return static_cast<uint32_t>(addr - this->address()) >> kTaggedSizeLog2;
}
inline Address MarkbitIndexToAddress(uint32_t index) const {
return this->address() + (index << kTaggedSizeLog2);
}
bool NeverEvacuate() { return IsFlagSet(NEVER_EVACUATE); }
void MarkNeverEvacuate() { SetFlag(NEVER_EVACUATE); }
bool CanAllocate() {
return !IsEvacuationCandidate() && !IsFlagSet(NEVER_ALLOCATE_ON_PAGE);
}
template <AccessMode access_mode = AccessMode::NON_ATOMIC>
bool IsEvacuationCandidate() {
DCHECK(!(IsFlagSet<access_mode>(NEVER_EVACUATE) &&
IsFlagSet<access_mode>(EVACUATION_CANDIDATE)));
return IsFlagSet<access_mode>(EVACUATION_CANDIDATE);
}
template <AccessMode access_mode = AccessMode::NON_ATOMIC>
bool ShouldSkipEvacuationSlotRecording() {
uintptr_t flags = GetFlags<access_mode>();
return ((flags & kSkipEvacuationSlotsRecordingMask) != 0) &&
((flags & COMPACTION_WAS_ABORTED) == 0);
}
Executability executable() {
return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
}
bool IsFromPage() const { return IsFlagSet(FROM_PAGE); }
bool IsToPage() const { return IsFlagSet(TO_PAGE); }
bool IsLargePage() const { return IsFlagSet(LARGE_PAGE); }
bool InYoungGeneration() const {
return (GetFlags() & kIsInYoungGenerationMask) != 0;
}
bool InNewSpace() const { return InYoungGeneration() && !IsLargePage(); }
bool InNewLargeObjectSpace() const {
return InYoungGeneration() && IsLargePage();
}
bool InOldSpace() const;
V8_EXPORT_PRIVATE bool InLargeObjectSpace() const;
// Gets the chunk's owner or null if the space has been detached.
Space* owner() const { return owner_; }
void set_owner(Space* space) { owner_ = space; }
bool IsWritable() const {
// If this is a read-only space chunk but heap_ is non-null, it has not yet
// been sealed and can be written to.
return !InReadOnlySpace() || heap_ != nullptr;
}
// Gets the chunk's allocation space, potentially dealing with a null owner_
// (like read-only chunks have).
inline AllocationSpace owner_identity() const;
// Emits a memory barrier. For TSAN builds the other thread needs to perform
// MemoryChunk::synchronized_heap() to simulate the barrier.
void InitializationMemoryFence();
V8_EXPORT_PRIVATE void SetReadable();
V8_EXPORT_PRIVATE void SetReadAndExecutable();
V8_EXPORT_PRIVATE void SetReadAndWritable();
void SetDefaultCodePermissions() {
if (FLAG_jitless) {
SetReadable();
} else {
SetReadAndExecutable();
}
}
base::ListNode<MemoryChunk>& list_node() { return list_node_; }
CodeObjectRegistry* GetCodeObjectRegistry() { return code_object_registry_; }
FreeList* free_list() { return owner()->free_list(); }
PossiblyEmptyBuckets* possibly_empty_buckets() {
return &possibly_empty_buckets_;
}
protected:
static MemoryChunk* Initialize(Heap* heap, Address base, size_t size,
Address area_start, Address area_end,
Executability executable, Space* owner,
VirtualMemory reservation);
// Release all memory allocated by the chunk. Should be called when memory
// chunk is about to be freed.
void ReleaseAllAllocatedMemory();
// Release memory allocated by the chunk, except that which is needed by
// read-only space chunks.
void ReleaseAllocatedMemoryNeededForWritableChunk();
// Sets the requested page permissions only if the write unprotect counter
// has reached 0.
void DecrementWriteUnprotectCounterAndMaybeSetPermissions(
PageAllocator::Permission permission);
VirtualMemory* reserved_memory() { return &reservation_; }
template <AccessMode mode>
ConcurrentBitmap<mode>* marking_bitmap() const {
return reinterpret_cast<ConcurrentBitmap<mode>*>(marking_bitmap_);
}
template <AccessMode mode>
ConcurrentBitmap<mode>* young_generation_bitmap() const {
return reinterpret_cast<ConcurrentBitmap<mode>*>(young_generation_bitmap_);
}
// If the chunk needs to remember its memory reservation, it is stored here.
VirtualMemory reservation_;
// The space owning this memory chunk.
std::atomic<Space*> owner_;
// Used by the incremental marker to keep track of the scanning progress in
// large objects that have a progress bar and are scanned in increments.
std::atomic<size_t> progress_bar_;
// Count of bytes marked black on page.
intptr_t live_byte_count_;
// A single slot set for small pages (of size kPageSize) or an array of slot
// set for large pages. In the latter case the number of entries in the array
// is ceil(size() / kPageSize).
SlotSet* sweeping_slot_set_;
TypedSlotSet* typed_slot_set_[NUMBER_OF_REMEMBERED_SET_TYPES];
InvalidatedSlots* invalidated_slots_[NUMBER_OF_REMEMBERED_SET_TYPES];
// Assuming the initial allocation on a page is sequential,
// count highest number of bytes ever allocated on the page.
std::atomic<intptr_t> high_water_mark_;
base::Mutex* mutex_;
std::atomic<ConcurrentSweepingState> concurrent_sweeping_;
base::Mutex* page_protection_change_mutex_;
// This field is only relevant for code pages. It depicts the number of
// times a component requested this page to be read+writeable. The
// counter is decremented when a component resets to read+executable.
// If Value() == 0 => The memory is read and executable.
// If Value() >= 1 => The Memory is read and writable (and maybe executable).
// The maximum value is limited by {kMaxWriteUnprotectCounter} to prevent
// excessive nesting of scopes.
// All executable MemoryChunks are allocated rw based on the assumption that
// they will be used immediatelly for an allocation. They are initialized
// with the number of open CodeSpaceMemoryModificationScopes. The caller
// that triggers the page allocation is responsible for decrementing the
// counter.
uintptr_t write_unprotect_counter_;
// Byte allocated on the page, which includes all objects on the page
// and the linear allocation area.
size_t allocated_bytes_;
// Tracks off-heap memory used by this memory chunk.
std::atomic<size_t> external_backing_store_bytes_[kNumTypes];
// Freed memory that was not added to the free list.
size_t wasted_memory_;
base::ListNode<MemoryChunk> list_node_;
FreeListCategory** categories_;
LocalArrayBufferTracker* local_tracker_;
std::atomic<intptr_t> young_generation_live_byte_count_;
Bitmap* young_generation_bitmap_;
CodeObjectRegistry* code_object_registry_;
PossiblyEmptyBuckets possibly_empty_buckets_;
private:
void InitializeReservedMemory() { reservation_.Reset(); }
friend class ConcurrentMarkingState;
friend class MajorMarkingState;
friend class MajorAtomicMarkingState;
friend class MajorNonAtomicMarkingState;
friend class MemoryAllocator;
friend class MinorMarkingState;
friend class MinorNonAtomicMarkingState;
friend class PagedSpace;
};
STATIC_ASSERT(sizeof(std::atomic<intptr_t>) == kSystemPointerSize);
// -----------------------------------------------------------------------------
// A page is a memory chunk of a size 256K. Large object pages may be larger.
//
// The only way to get a page pointer is by calling factory methods:
// Page* p = Page::FromAddress(addr); or
// Page* p = Page::FromAllocationAreaAddress(address);
class Page : public MemoryChunk {
public:
static const intptr_t kCopyAllFlags = ~0;
// Page flags copied from from-space to to-space when flipping semispaces.
static const intptr_t kCopyOnFlipFlagsMask =
static_cast<intptr_t>(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING) |
static_cast<intptr_t>(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING) |
static_cast<intptr_t>(MemoryChunk::INCREMENTAL_MARKING);
// Returns the page containing a given address. The address ranges
// from [page_addr .. page_addr + kPageSize[. This only works if the object
// is in fact in a page.
static Page* FromAddress(Address addr) {
return reinterpret_cast<Page*>(addr & ~kPageAlignmentMask);
}
static Page* FromHeapObject(HeapObject o) {
return reinterpret_cast<Page*>(o.ptr() & ~kAlignmentMask);
}
// Returns the page containing the address provided. The address can
// potentially point righter after the page. To be also safe for tagged values
// we subtract a hole word. The valid address ranges from
// [page_addr + area_start_ .. page_addr + kPageSize + kTaggedSize].
static Page* FromAllocationAreaAddress(Address address) {
return Page::FromAddress(address - kTaggedSize);
}
// Checks if address1 and address2 are on the same new space page.
static bool OnSamePage(Address address1, Address address2) {
return Page::FromAddress(address1) == Page::FromAddress(address2);
}
// Checks whether an address is page aligned.
static bool IsAlignedToPageSize(Address addr) {
return (addr & kPageAlignmentMask) == 0;
}
static Page* ConvertNewToOld(Page* old_page);
inline void MarkNeverAllocateForTesting();
inline void MarkEvacuationCandidate();
inline void ClearEvacuationCandidate();
Page* next_page() { return static_cast<Page*>(list_node_.next()); }
Page* prev_page() { return static_cast<Page*>(list_node_.prev()); }
template <typename Callback>
inline void ForAllFreeListCategories(Callback callback) {
for (int i = kFirstCategory; i < free_list()->number_of_categories(); i++) {
callback(categories_[i]);
}
}
// Returns the offset of a given address to this page.
inline size_t Offset(Address a) { return static_cast<size_t>(a - address()); }
// Returns the address for a given offset to the this page.
Address OffsetToAddress(size_t offset) {
Address address_in_page = address() + offset;
DCHECK_GE(address_in_page, area_start());
DCHECK_LT(address_in_page, area_end());
return address_in_page;
}
void AllocateLocalTracker();
inline LocalArrayBufferTracker* local_tracker() { return local_tracker_; }
bool contains_array_buffers();
size_t AvailableInFreeList();
size_t AvailableInFreeListFromAllocatedBytes() {
DCHECK_GE(area_size(), wasted_memory() + allocated_bytes());
return area_size() - wasted_memory() - allocated_bytes();
}
FreeListCategory* free_list_category(FreeListCategoryType type) {
return categories_[type];
}
size_t wasted_memory() { return wasted_memory_; }
void add_wasted_memory(size_t waste) { wasted_memory_ += waste; }
size_t allocated_bytes() { return allocated_bytes_; }
void IncreaseAllocatedBytes(size_t bytes) {
DCHECK_LE(bytes, area_size());
allocated_bytes_ += bytes;
}
void DecreaseAllocatedBytes(size_t bytes) {
DCHECK_LE(bytes, area_size());
DCHECK_GE(allocated_bytes(), bytes);
allocated_bytes_ -= bytes;
}
void ResetAllocationStatistics();
size_t ShrinkToHighWaterMark();
V8_EXPORT_PRIVATE void CreateBlackArea(Address start, Address end);
void DestroyBlackArea(Address start, Address end);
void InitializeFreeListCategories();
void AllocateFreeListCategories();
void ReleaseFreeListCategories();
void MoveOldToNewRememberedSetForSweeping();
void MergeOldToNewRememberedSets();
private:
friend class MemoryAllocator;
};
class ReadOnlyPage : public Page {
public:
// Clears any pointers in the header that point out of the page that would
// otherwise make the header non-relocatable.
void MakeHeaderRelocatable();
private:
friend class ReadOnlySpace;
};
class LargePage : public MemoryChunk {
public:
// A limit to guarantee that we do not overflow typed slot offset in
// the old to old remembered set.
// Note that this limit is higher than what assembler already imposes on
// x64 and ia32 architectures.
static const int kMaxCodePageSize = 512 * MB;
static LargePage* FromHeapObject(HeapObject o) {
return static_cast<LargePage*>(MemoryChunk::FromHeapObject(o));
}
inline HeapObject GetObject();
inline LargePage* next_page() {
return static_cast<LargePage*>(list_node_.next());
}
// Uncommit memory that is not in use anymore by the object. If the object
// cannot be shrunk 0 is returned.
Address GetAddressToShrink(Address object_address, size_t object_size);
void ClearOutOfLiveRangeSlots(Address free_start);
private:
static LargePage* Initialize(Heap* heap, MemoryChunk* chunk,
Executability executable);
friend class MemoryAllocator;
};
// Validate our estimates on the header size.
STATIC_ASSERT(sizeof(BasicMemoryChunk) <= BasicMemoryChunk::kHeaderSize);
STATIC_ASSERT(sizeof(MemoryChunk) <= MemoryChunk::kHeaderSize);
STATIC_ASSERT(sizeof(LargePage) <= MemoryChunk::kHeaderSize);
STATIC_ASSERT(sizeof(Page) <= MemoryChunk::kHeaderSize);
// The process-wide singleton that keeps track of code range regions with the
// intention to reuse free code range regions as a workaround for CFG memory
// leaks (see crbug.com/870054).
class CodeRangeAddressHint {
public:
// Returns the most recently freed code range start address for the given
// size. If there is no such entry, then a random address is returned.
V8_EXPORT_PRIVATE Address GetAddressHint(size_t code_range_size);
V8_EXPORT_PRIVATE void NotifyFreedCodeRange(Address code_range_start,
size_t code_range_size);
private:
base::Mutex mutex_;
// A map from code range size to an array of recently freed code range
// addresses. There should be O(1) different code range sizes.
// The length of each array is limited by the peak number of code ranges,
// which should be also O(1).
std::unordered_map<size_t, std::vector<Address>> recently_freed_;
};
// ----------------------------------------------------------------------------
// A space acquires chunks of memory from the operating system. The memory
// allocator allocates and deallocates pages for the paged heap spaces and large
// pages for large object space.
class MemoryAllocator {
public:
// Unmapper takes care of concurrently unmapping and uncommitting memory
// chunks.
class Unmapper {
public:
class UnmapFreeMemoryTask;
Unmapper(Heap* heap, MemoryAllocator* allocator)
: heap_(heap),
allocator_(allocator),
pending_unmapping_tasks_semaphore_(0),
pending_unmapping_tasks_(0),
active_unmapping_tasks_(0) {
chunks_[kRegular].reserve(kReservedQueueingSlots);
chunks_[kPooled].reserve(kReservedQueueingSlots);
}
void AddMemoryChunkSafe(MemoryChunk* chunk) {
if (!chunk->IsLargePage() && chunk->executable() != EXECUTABLE) {
AddMemoryChunkSafe<kRegular>(chunk);
} else {
AddMemoryChunkSafe<kNonRegular>(chunk);
}
}
MemoryChunk* TryGetPooledMemoryChunkSafe() {
// Procedure:
// (1) Try to get a chunk that was declared as pooled and already has
// been uncommitted.
// (2) Try to steal any memory chunk of kPageSize that would've been
// unmapped.
MemoryChunk* chunk = GetMemoryChunkSafe<kPooled>();
if (chunk == nullptr) {
chunk = GetMemoryChunkSafe<kRegular>();
if (chunk != nullptr) {
// For stolen chunks we need to manually free any allocated memory.
chunk->ReleaseAllAllocatedMemory();
}
}
return chunk;
}
V8_EXPORT_PRIVATE void FreeQueuedChunks();
void CancelAndWaitForPendingTasks();
void PrepareForGC();
V8_EXPORT_PRIVATE void EnsureUnmappingCompleted();
V8_EXPORT_PRIVATE void TearDown();
size_t NumberOfCommittedChunks();
V8_EXPORT_PRIVATE int NumberOfChunks();
size_t CommittedBufferedMemory();
private:
static const int kReservedQueueingSlots = 64;
static const int kMaxUnmapperTasks = 4;
enum ChunkQueueType {
kRegular, // Pages of kPageSize that do not live in a CodeRange and
// can thus be used for stealing.
kNonRegular, // Large chunks and executable chunks.
kPooled, // Pooled chunks, already uncommited and ready for reuse.
kNumberOfChunkQueues,
};
enum class FreeMode {
kUncommitPooled,
kReleasePooled,
};
template <ChunkQueueType type>
void AddMemoryChunkSafe(MemoryChunk* chunk) {
base::MutexGuard guard(&mutex_);
chunks_[type].push_back(chunk);
}
template <ChunkQueueType type>
MemoryChunk* GetMemoryChunkSafe() {
base::MutexGuard guard(&mutex_);
if (chunks_[type].empty()) return nullptr;
MemoryChunk* chunk = chunks_[type].back();
chunks_[type].pop_back();
return chunk;
}
bool MakeRoomForNewTasks();
template <FreeMode mode>
void PerformFreeMemoryOnQueuedChunks();
void PerformFreeMemoryOnQueuedNonRegularChunks();
Heap* const heap_;
MemoryAllocator* const allocator_;
base::Mutex mutex_;
std::vector<MemoryChunk*> chunks_[kNumberOfChunkQueues];
CancelableTaskManager::Id task_ids_[kMaxUnmapperTasks];
base::Semaphore pending_unmapping_tasks_semaphore_;
intptr_t pending_unmapping_tasks_;
std::atomic<intptr_t> active_unmapping_tasks_;
friend class MemoryAllocator;
};
enum AllocationMode {
kRegular,
kPooled,
};
enum FreeMode {
kFull,
kAlreadyPooled,
kPreFreeAndQueue,
kPooledAndQueue,
};
V8_EXPORT_PRIVATE static intptr_t GetCommitPageSize();
// Computes the memory area of discardable memory within a given memory area
// [addr, addr+size) and returns the result as base::AddressRegion. If the
// memory is not discardable base::AddressRegion is an empty region.
V8_EXPORT_PRIVATE static base::AddressRegion ComputeDiscardMemoryArea(
Address addr, size_t size);
V8_EXPORT_PRIVATE MemoryAllocator(Isolate* isolate, size_t max_capacity,
size_t code_range_size);
V8_EXPORT_PRIVATE void TearDown();
// Allocates a Page from the allocator. AllocationMode is used to indicate
// whether pooled allocation, which only works for MemoryChunk::kPageSize,
// should be tried first.
template <MemoryAllocator::AllocationMode alloc_mode = kRegular,
typename SpaceType>
EXPORT_TEMPLATE_DECLARE(V8_EXPORT_PRIVATE)
Page* AllocatePage(size_t size, SpaceType* owner, Executability executable);
LargePage* AllocateLargePage(size_t size, LargeObjectSpace* owner,
Executability executable);
template <MemoryAllocator::FreeMode mode = kFull>
EXPORT_TEMPLATE_DECLARE(V8_EXPORT_PRIVATE)
void Free(MemoryChunk* chunk);
// Returns allocated spaces in bytes.
size_t Size() { return size_; }
// Returns allocated executable spaces in bytes.
size_t SizeExecutable() { return size_executable_; }
// Returns the maximum available bytes of heaps.
size_t Available() {
const size_t size = Size();
return capacity_ < size ? 0 : capacity_ - size;
}
// Returns an indication of whether a pointer is in a space that has
// been allocated by this MemoryAllocator.
V8_INLINE bool IsOutsideAllocatedSpace(Address address) {
return address < lowest_ever_allocated_ ||
address >= highest_ever_allocated_;
}
// Returns a MemoryChunk in which the memory region from commit_area_size to
// reserve_area_size of the chunk area is reserved but not committed, it
// could be committed later by calling MemoryChunk::CommitArea.
V8_EXPORT_PRIVATE MemoryChunk* AllocateChunk(size_t reserve_area_size,
size_t commit_area_size,
Executability executable,
Space* space);
Address AllocateAlignedMemory(size_t reserve_size, size_t commit_size,
size_t alignment, Executability executable,
void* hint, VirtualMemory* controller);
void FreeMemory(v8::PageAllocator* page_allocator, Address addr, size_t size);
// Partially release |bytes_to_free| bytes starting at |start_free|. Note that
// internally memory is freed from |start_free| to the end of the reservation.
// Additional memory beyond the page is not accounted though, so
// |bytes_to_free| is computed by the caller.
void PartialFreeMemory(MemoryChunk* chunk, Address start_free,
size_t bytes_to_free, Address new_area_end);
// Checks if an allocated MemoryChunk was intended to be used for executable
// memory.
bool IsMemoryChunkExecutable(MemoryChunk* chunk) {
return executable_memory_.find(chunk) != executable_memory_.end();
}
// Commit memory region owned by given reservation object. Returns true if
// it succeeded and false otherwise.
bool CommitMemory(VirtualMemory* reservation);
// Uncommit memory region owned by given reservation object. Returns true if
// it succeeded and false otherwise.
bool UncommitMemory(VirtualMemory* reservation);
// Zaps a contiguous block of memory [start..(start+size)[ with
// a given zap value.
void ZapBlock(Address start, size_t size, uintptr_t zap_value);
V8_WARN_UNUSED_RESULT bool CommitExecutableMemory(VirtualMemory* vm,
Address start,
size_t commit_size,
size_t reserved_size);
// Page allocator instance for allocating non-executable pages.
// Guaranteed to be a valid pointer.
v8::PageAllocator* data_page_allocator() { return data_page_allocator_; }
// Page allocator instance for allocating executable pages.
// Guaranteed to be a valid pointer.
v8::PageAllocator* code_page_allocator() { return code_page_allocator_; }
// Returns page allocator suitable for allocating pages with requested
// executability.
v8::PageAllocator* page_allocator(Executability executable) {
return executable == EXECUTABLE ? code_page_allocator_
: data_page_allocator_;
}
// A region of memory that may contain executable code including reserved
// OS page with read-write access in the beginning.
const base::AddressRegion& code_range() const {
// |code_range_| >= |optional RW pages| + |code_page_allocator_instance_|
DCHECK_IMPLIES(!code_range_.is_empty(), code_page_allocator_instance_);
DCHECK_IMPLIES(!code_range_.is_empty(),
code_range_.contains(code_page_allocator_instance_->begin(),
code_page_allocator_instance_->size()));
return code_range_;
}
Unmapper* unmapper() { return &unmapper_; }
// Performs all necessary bookkeeping to free the memory, but does not free
// it.
void UnregisterMemory(MemoryChunk* chunk);
private:
void InitializeCodePageAllocator(v8::PageAllocator* page_allocator,
size_t requested);
// PreFreeMemory logically frees the object, i.e., it unregisters the memory,
// logs a delete event and adds the chunk to remembered unmapped pages.
void PreFreeMemory(MemoryChunk* chunk);
// PerformFreeMemory can be called concurrently when PreFree was executed
// before.
void PerformFreeMemory(MemoryChunk* chunk);
// See AllocatePage for public interface. Note that currently we only support
// pools for NOT_EXECUTABLE pages of size MemoryChunk::kPageSize.
template <typename SpaceType>
MemoryChunk* AllocatePagePooled(SpaceType* owner);
// Initializes pages in a chunk. Returns the first page address.
// This function and GetChunkId() are provided for the mark-compact
// collector to rebuild page headers in the from space, which is
// used as a marking stack and its page headers are destroyed.
Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk,
PagedSpace* owner);
void UpdateAllocatedSpaceLimits(Address low, Address high) {
// The use of atomic primitives does not guarantee correctness (wrt.
// desired semantics) by default. The loop here ensures that we update the
// values only if they did not change in between.
Address ptr = lowest_ever_allocated_.load(std::memory_order_relaxed);
while ((low < ptr) && !lowest_ever_allocated_.compare_exchange_weak(
ptr, low, std::memory_order_acq_rel)) {
}
ptr = highest_ever_allocated_.load(std::memory_order_relaxed);
while ((high > ptr) && !highest_ever_allocated_.compare_exchange_weak(
ptr, high, std::memory_order_acq_rel)) {
}
}
void RegisterExecutableMemoryChunk(MemoryChunk* chunk) {
DCHECK(chunk->IsFlagSet(MemoryChunk::IS_EXECUTABLE));
DCHECK_EQ(executable_memory_.find(chunk), executable_memory_.end());
executable_memory_.insert(chunk);
}
void UnregisterExecutableMemoryChunk(MemoryChunk* chunk) {
DCHECK_NE(executable_memory_.find(chunk), executable_memory_.end());
executable_memory_.erase(chunk);
chunk->heap()->UnregisterUnprotectedMemoryChunk(chunk);
}
Isolate* isolate_;
// This object controls virtual space reserved for V8 heap instance.
// Depending on the configuration it may contain the following:
// - no reservation (on 32-bit architectures)
// - code range reservation used by bounded code page allocator (on 64-bit
// architectures without pointers compression in V8 heap)
// - data + code range reservation (on 64-bit architectures with pointers
// compression in V8 heap)
VirtualMemory heap_reservation_;
// Page allocator used for allocating data pages. Depending on the
// configuration it may be a page allocator instance provided by v8::Platform
// or a BoundedPageAllocator (when pointer compression is enabled).
v8::PageAllocator* data_page_allocator_;
// Page allocator used for allocating code pages. Depending on the
// configuration it may be a page allocator instance provided by v8::Platform
// or a BoundedPageAllocator (when pointer compression is enabled or
// on those 64-bit architectures where pc-relative 32-bit displacement
// can be used for call and jump instructions).
v8::PageAllocator* code_page_allocator_;
// A part of the |heap_reservation_| that may contain executable code
// including reserved page with read-write access in the beginning.
// See details below.
base::AddressRegion code_range_;
// This unique pointer owns the instance of bounded code allocator
// that controls executable pages allocation. It does not control the
// optionally existing page in the beginning of the |code_range_|.
// So, summarizing all above, the following conditions hold:
// 1) |heap_reservation_| >= |code_range_|
// 2) |code_range_| >= |optional RW pages| + |code_page_allocator_instance_|.
// 3) |heap_reservation_| is AllocatePageSize()-aligned
// 4) |code_page_allocator_instance_| is MemoryChunk::kAlignment-aligned
// 5) |code_range_| is CommitPageSize()-aligned
std::unique_ptr<base::BoundedPageAllocator> code_page_allocator_instance_;
// Maximum space size in bytes.
size_t capacity_;
// Allocated space size in bytes.
std::atomic<size_t> size_;
// Allocated executable space size in bytes.
std::atomic<size_t> size_executable_;
// We keep the lowest and highest addresses allocated as a quick way
// of determining that pointers are outside the heap. The estimate is
// conservative, i.e. not all addresses in 'allocated' space are allocated
// to our heap. The range is [lowest, highest[, inclusive on the low end
// and exclusive on the high end.
std::atomic<Address> lowest_ever_allocated_;
std::atomic<Address> highest_ever_allocated_;
VirtualMemory last_chunk_;
Unmapper unmapper_;
// Data structure to remember allocated executable memory chunks.
std::unordered_set<MemoryChunk*> executable_memory_;
friend class heap::TestCodePageAllocatorScope;
DISALLOW_IMPLICIT_CONSTRUCTORS(MemoryAllocator);
};
extern template EXPORT_TEMPLATE_DECLARE(V8_EXPORT_PRIVATE)
Page* MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, PagedSpace>(
size_t size, PagedSpace* owner, Executability executable);
extern template EXPORT_TEMPLATE_DECLARE(V8_EXPORT_PRIVATE)
Page* MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, SemiSpace>(
size_t size, SemiSpace* owner, Executability executable);
extern template EXPORT_TEMPLATE_DECLARE(V8_EXPORT_PRIVATE)
Page* MemoryAllocator::AllocatePage<MemoryAllocator::kPooled, SemiSpace>(
size_t size, SemiSpace* owner, Executability executable);
extern template EXPORT_TEMPLATE_DECLARE(
V8_EXPORT_PRIVATE) void MemoryAllocator::
Free<MemoryAllocator::kFull>(MemoryChunk* chunk);
extern template EXPORT_TEMPLATE_DECLARE(
V8_EXPORT_PRIVATE) void MemoryAllocator::
Free<MemoryAllocator::kAlreadyPooled>(MemoryChunk* chunk);
extern template EXPORT_TEMPLATE_DECLARE(
V8_EXPORT_PRIVATE) void MemoryAllocator::
Free<MemoryAllocator::kPreFreeAndQueue>(MemoryChunk* chunk);
extern template EXPORT_TEMPLATE_DECLARE(
V8_EXPORT_PRIVATE) void MemoryAllocator::
Free<MemoryAllocator::kPooledAndQueue>(MemoryChunk* chunk);
// -----------------------------------------------------------------------------
// Interface for heap object iterator to be implemented by all object space
// object iterators.
class V8_EXPORT_PRIVATE ObjectIterator : public Malloced {
public:
virtual ~ObjectIterator() = default;
virtual HeapObject Next() = 0;
};
template <class PAGE_TYPE>
class PageIteratorImpl
: public base::iterator<std::forward_iterator_tag, PAGE_TYPE> {
public:
explicit PageIteratorImpl(PAGE_TYPE* p) : p_(p) {}
PageIteratorImpl(const PageIteratorImpl<PAGE_TYPE>& other) : p_(other.p_) {}
PAGE_TYPE* operator*() { return p_; }
bool operator==(const PageIteratorImpl<PAGE_TYPE>& rhs) {
return rhs.p_ == p_;
}
bool operator!=(const PageIteratorImpl<PAGE_TYPE>& rhs) {
return rhs.p_ != p_;
}
inline PageIteratorImpl<PAGE_TYPE>& operator++();
inline PageIteratorImpl<PAGE_TYPE> operator++(int);
private:
PAGE_TYPE* p_;
};
using PageIterator = PageIteratorImpl<Page>;
using LargePageIterator = PageIteratorImpl<LargePage>;
class PageRange {
public:
using iterator = PageIterator;
PageRange(Page* begin, Page* end) : begin_(begin), end_(end) {}
explicit PageRange(Page* page) : PageRange(page, page->next_page()) {}
inline PageRange(Address start, Address limit);
iterator begin() { return iterator(begin_); }
iterator end() { return iterator(end_); }
private:
Page* begin_;
Page* end_;
};
// -----------------------------------------------------------------------------
// Heap object iterator in new/old/map spaces.
//
// A PagedSpaceObjectIterator iterates objects from the bottom of the given
// space to its top or from the bottom of the given page to its top.
//
// If objects are allocated in the page during iteration the iterator may
// or may not iterate over those objects. The caller must create a new
// iterator in order to be sure to visit these new objects.
class V8_EXPORT_PRIVATE PagedSpaceObjectIterator : public ObjectIterator {
public:
// Creates a new object iterator in a given space.
PagedSpaceObjectIterator(Heap* heap, PagedSpace* space);
PagedSpaceObjectIterator(Heap* heap, PagedSpace* space, Page* page);
// Creates a new object iterator in a given off-thread space.
explicit PagedSpaceObjectIterator(OffThreadSpace* space);
// Advance to the next object, skipping free spaces and other fillers and
// skipping the special garbage section of which there is one per space.
// Returns nullptr when the iteration has ended.
inline HeapObject Next() override;
private:
// Fast (inlined) path of next().
inline HeapObject FromCurrentPage();
// Slow path of next(), goes into the next page. Returns false if the
// iteration has ended.
bool AdvanceToNextPage();
Address cur_addr_; // Current iteration point.
Address cur_end_; // End iteration point.
PagedSpace* space_;
PageRange page_range_;
PageRange::iterator current_page_;
};
// -----------------------------------------------------------------------------
// A space has a circular list of pages. The next page can be accessed via
// Page::next_page() call.
// An abstraction of allocation and relocation pointers in a page-structured
// space.
class LinearAllocationArea {
public:
LinearAllocationArea() : top_(kNullAddress), limit_(kNullAddress) {}
LinearAllocationArea(Address top, Address limit) : top_(top), limit_(limit) {}
void Reset(Address top, Address limit) {
set_top(top);
set_limit(limit);
}
V8_INLINE void set_top(Address top) {
SLOW_DCHECK(top == kNullAddress || (top & kHeapObjectTagMask) == 0);
top_ = top;
}
V8_INLINE Address top() const {
SLOW_DCHECK(top_ == kNullAddress || (top_ & kHeapObjectTagMask) == 0);
return top_;
}
Address* top_address() { return &top_; }
V8_INLINE void set_limit(Address limit) { limit_ = limit; }
V8_INLINE Address limit() const { return limit_; }
Address* limit_address() { return &limit_; }
#ifdef DEBUG
bool VerifyPagedAllocation() {
return (Page::FromAllocationAreaAddress(top_) ==
Page::FromAllocationAreaAddress(limit_)) &&
(top_ <= limit_);
}
#endif
private:
// Current allocation top.
Address top_;
// Current allocation limit.
Address limit_;
};
// An abstraction of the accounting statistics of a page-structured space.
//
// The stats are only set by functions that ensure they stay balanced. These
// functions increase or decrease one of the non-capacity stats in conjunction
// with capacity, or else they always balance increases and decreases to the
// non-capacity stats.
class AllocationStats {
public:
AllocationStats() { Clear(); }
// Zero out all the allocation statistics (i.e., no capacity).
void Clear() {
capacity_ = 0;
max_capacity_ = 0;
ClearSize();
}
void ClearSize() {
size_ = 0;
#ifdef DEBUG
allocated_on_page_.clear();
#endif
}
// Accessors for the allocation statistics.
size_t Capacity() { return capacity_; }
size_t MaxCapacity() { return max_capacity_; }
size_t Size() { return size_; }
#ifdef DEBUG
size_t AllocatedOnPage(Page* page) { return allocated_on_page_[page]; }
#endif
void IncreaseAllocatedBytes(size_t bytes, Page* page) {
DCHECK_GE(size_ + bytes, size_);
size_ += bytes;
#ifdef DEBUG
allocated_on_page_[page] += bytes;
#endif
}
void DecreaseAllocatedBytes(size_t bytes, Page* page) {
DCHECK_GE(size_, bytes);
size_ -= bytes;
#ifdef DEBUG
DCHECK_GE(allocated_on_page_[page], bytes);
allocated_on_page_[page] -= bytes;
#endif
}
void DecreaseCapacity(size_t bytes) {
DCHECK_GE(capacity_, bytes);
DCHECK_GE(capacity_ - bytes, size_);
capacity_ -= bytes;
}
void IncreaseCapacity(size_t bytes) {
DCHECK_GE(capacity_ + bytes, capacity_);
capacity_ += bytes;
if (capacity_ > max_capacity_) {
max_capacity_ = capacity_;
}
}
private:
// |capacity_|: The number of object-area bytes (i.e., not including page
// bookkeeping structures) currently in the space.
// During evacuation capacity of the main spaces is accessed from multiple
// threads to check the old generation hard limit.
std::atomic<size_t> capacity_;
// |max_capacity_|: The maximum capacity ever observed.
size_t max_capacity_;
// |size_|: The number of allocated bytes.
size_t size_;
#ifdef DEBUG
std::unordered_map<Page*, size_t, Page::Hasher> allocated_on_page_;
#endif
};
// The free list is organized in categories as follows:
// kMinBlockSize-10 words (tiniest): The tiniest blocks are only used for
// allocation, when categories >= small do not have entries anymore.
// 11-31 words (tiny): The tiny blocks are only used for allocation, when
// categories >= small do not have entries anymore.
// 32-255 words (small): Used for allocating free space between 1-31 words in
// size.
// 256-2047 words (medium): Used for allocating free space between 32-255 words
// in size.
// 1048-16383 words (large): Used for allocating free space between 256-2047
// words in size.
// At least 16384 words (huge): This list is for objects of 2048 words or
// larger. Empty pages are also added to this list.
class V8_EXPORT_PRIVATE FreeListLegacy : public FreeList {
public:
size_t GuaranteedAllocatable(size_t maximum_freed) override {
if (maximum_freed <= kTiniestListMax) {
// Since we are not iterating over all list entries, we cannot guarantee
// that we can find the maximum freed block in that free list.
return 0;
} else if (maximum_freed <= kTinyListMax) {
return kTinyAllocationMax;
} else if (maximum_freed <= kSmallListMax) {
return kSmallAllocationMax;
} else if (maximum_freed <= kMediumListMax) {
return kMediumAllocationMax;
} else if (maximum_freed <= kLargeListMax) {
return kLargeAllocationMax;
}
return maximum_freed;
}
inline Page* GetPageForSize(size_t size_in_bytes) override;
FreeListLegacy();
~FreeListLegacy();
V8_WARN_UNUSED_RESULT FreeSpace Allocate(size_t size_in_bytes,
size_t* node_size,
AllocationOrigin origin) override;
private:
enum { kTiniest, kTiny, kSmall, kMedium, kLarge, kHuge };
static const size_t kMinBlockSize = 3 * kTaggedSize;
// This is a conservative upper bound. The actual maximum block size takes
// padding and alignment of data and code pages into account.
static const size_t kMaxBlockSize = Page::kPageSize;
static const size_t kTiniestListMax = 0xa * kTaggedSize;
static const size_t kTinyListMax = 0x1f * kTaggedSize;
static const size_t kSmallListMax = 0xff * kTaggedSize;
static const size_t kMediumListMax = 0x7ff * kTaggedSize;
static const size_t kLargeListMax = 0x1fff * kTaggedSize;
static const size_t kTinyAllocationMax = kTiniestListMax;
static const size_t kSmallAllocationMax = kTinyListMax;
static const size_t kMediumAllocationMax = kSmallListMax;
static const size_t kLargeAllocationMax = kMediumListMax;
FreeListCategoryType SelectFreeListCategoryType(
size_t size_in_bytes) override {
if (size_in_bytes <= kTiniestListMax) {
return kTiniest;
} else if (size_in_bytes <= kTinyListMax) {
return kTiny;
} else if (size_in_bytes <= kSmallListMax) {
return kSmall;
} else if (size_in_bytes <= kMediumListMax) {
return kMedium;
} else if (size_in_bytes <= kLargeListMax) {
return kLarge;
}
return kHuge;
}
// Returns the category to be used to allocate |size_in_bytes| in the fast
// path. The tiny categories are not used for fast allocation.
FreeListCategoryType SelectFastAllocationFreeListCategoryType(
size_t size_in_bytes) {
if (size_in_bytes <= kSmallAllocationMax) {
return kSmall;
} else if (size_in_bytes <= kMediumAllocationMax) {
return kMedium;
} else if (size_in_bytes <= kLargeAllocationMax) {
return kLarge;
}
return kHuge;
}
friend class FreeListCategory;
friend class heap::HeapTester;
};
// Inspired by FreeListLegacy.
// Only has 3 categories: Medium, Large and Huge.
// Any block that would have belong to tiniest, tiny or small in FreeListLegacy
// is considered wasted.
// Allocation is done only in Huge, Medium and Large (in that order),
// using a first-fit strategy (only the first block of each freelist is ever
// considered though). Performances is supposed to be better than
// FreeListLegacy, but memory usage should be higher (because fragmentation will
// probably be higher).
class V8_EXPORT_PRIVATE FreeListFastAlloc : public FreeList {
public:
size_t GuaranteedAllocatable(size_t maximum_freed) override {
if (maximum_freed <= kMediumListMax) {
// Since we are not iterating over all list entries, we cannot guarantee
// that we can find the maximum freed block in that free list.
return 0;
} else if (maximum_freed <= kLargeListMax) {
return kLargeAllocationMax;
}
return kHugeAllocationMax;
}
inline Page* GetPageForSize(size_t size_in_bytes) override;
FreeListFastAlloc();
~FreeListFastAlloc();
V8_WARN_UNUSED_RESULT FreeSpace Allocate(size_t size_in_bytes,
size_t* node_size,
AllocationOrigin origin) override;
private:
enum { kMedium, kLarge, kHuge };
static const size_t kMinBlockSize = 0xff * kTaggedSize;
// This is a conservative upper bound. The actual maximum block size takes
// padding and alignment of data and code pages into account.
static const size_t kMaxBlockSize = Page::kPageSize;
static const size_t kMediumListMax = 0x7ff * kTaggedSize;
static const size_t kLargeListMax = 0x1fff * kTaggedSize;
static const size_t kMediumAllocationMax = kMinBlockSize;
static const size_t kLargeAllocationMax = kMediumListMax;
static const size_t kHugeAllocationMax = kLargeListMax;
// Returns the category used to hold an object of size |size_in_bytes|.
FreeListCategoryType SelectFreeListCategoryType(
size_t size_in_bytes) override {
if (size_in_bytes <= kMediumListMax) {
return kMedium;
} else if (size_in_bytes <= kLargeListMax) {
return kLarge;
}
return kHuge;
}
};
// Use 24 Freelists: on per 16 bytes between 24 and 256, and then a few ones for
// larger sizes. See the variable |categories_min| for the size of each
// Freelist. Allocation is done using a best-fit strategy (considering only the
// first element of each category though).
// Performances are expected to be worst than FreeListLegacy, but memory
// consumption should be lower (since fragmentation should be lower).
class V8_EXPORT_PRIVATE FreeListMany : public FreeList {
public:
size_t GuaranteedAllocatable(size_t maximum_freed) override;
Page* GetPageForSize(size_t size_in_bytes) override;
FreeListMany();
~FreeListMany();
V8_WARN_UNUSED_RESULT FreeSpace Allocate(size_t size_in_bytes,
size_t* node_size,
AllocationOrigin origin) override;
protected:
static const size_t kMinBlockSize = 3 * kTaggedSize;
// This is a conservative upper bound. The actual maximum block size takes
// padding and alignment of data and code pages into account.
static const size_t kMaxBlockSize = Page::kPageSize;
// Largest size for which categories are still precise, and for which we can
// therefore compute the category in constant time.
static const size_t kPreciseCategoryMaxSize = 256;
// Categories boundaries generated with:
// perl -E '
// @cat = (24, map {$_*16} 2..16, 48, 64);
// while ($cat[-1] <= 32768) {
// push @cat, $cat[-1]*2
// }
// say join ", ", @cat;
// say "\n", scalar @cat'
static const int kNumberOfCategories = 24;
static constexpr unsigned int categories_min[kNumberOfCategories] = {
24, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192,
208, 224, 240, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536};
// Return the smallest category that could hold |size_in_bytes| bytes.
FreeListCategoryType SelectFreeListCategoryType(
size_t size_in_bytes) override {
if (size_in_bytes <= kPreciseCategoryMaxSize) {
if (size_in_bytes < categories_min[1]) return 0;
return static_cast<FreeListCategoryType>(size_in_bytes >> 4) - 1;
}
for (int cat = (kPreciseCategoryMaxSize >> 4) - 1; cat < last_category_;
cat++) {
if (size_in_bytes < categories_min[cat + 1]) {
return cat;
}
}
return last_category_;
}
FRIEND_TEST(SpacesTest, FreeListManySelectFreeListCategoryType);
FRIEND_TEST(SpacesTest, FreeListManyGuaranteedAllocatable);
};
// Same as FreeListMany but uses a cache to know which categories are empty.
// The cache (|next_nonempty_category|) is maintained in a way such that for
// each category c, next_nonempty_category[c] contains the first non-empty
// category greater or equal to c, that may hold an object of size c.
// Allocation is done using the same strategy as FreeListMany (ie, best fit).
class V8_EXPORT_PRIVATE FreeListManyCached : public FreeListMany {
public:
FreeListManyCached();
V8_WARN_UNUSED_RESULT FreeSpace Allocate(size_t size_in_bytes,
size_t* node_size,
AllocationOrigin origin) override;
size_t Free(Address start, size_t size_in_bytes, FreeMode mode) override;
void Reset() override;
bool AddCategory(FreeListCategory* category) override;
void RemoveCategory(FreeListCategory* category) override;
protected:
// Updates the cache after adding something in the category |cat|.
void UpdateCacheAfterAddition(FreeListCategoryType cat) {
for (int i = cat; i >= kFirstCategory && next_nonempty_category[i] > cat;
i--) {
next_nonempty_category[i] = cat;
}
}
// Updates the cache after emptying category |cat|.
void UpdateCacheAfterRemoval(FreeListCategoryType cat) {
for (int i = cat; i >= kFirstCategory && next_nonempty_category[i] == cat;
i--) {
next_nonempty_category[i] = next_nonempty_category[cat + 1];
}
}
#ifdef DEBUG
void CheckCacheIntegrity() {
for (int i = 0; i <= last_category_; i++) {
DCHECK(next_nonempty_category[i] == last_category_ + 1 ||
categories_[next_nonempty_category[i]] != nullptr);
for (int j = i; j < next_nonempty_category[i]; j++) {
DCHECK(categories_[j] == nullptr);
}
}
}
#endif
// The cache is overallocated by one so that the last element is always
// defined, and when updating the cache, we can always use cache[i+1] as long
// as i is < kNumberOfCategories.
int next_nonempty_category[kNumberOfCategories + 1];
private:
void ResetCache() {
for (int i = 0; i < kNumberOfCategories; i++) {
next_nonempty_category[i] = kNumberOfCategories;
}
// Setting the after-last element as well, as explained in the cache's
// declaration.
next_nonempty_category[kNumberOfCategories] = kNumberOfCategories;
}
};
// Same as FreeListManyCached but uses a fast path.
// The fast path overallocates by at least 1.85k bytes. The idea of this 1.85k
// is: we want the fast path to always overallocate, even for larger
// categories. Therefore, we have two choices: either overallocate by
// "size_in_bytes * something" or overallocate by "size_in_bytes +
// something". We choose the later, as the former will tend to overallocate too
// much for larger objects. The 1.85k (= 2048 - 128) has been chosen such that
// for tiny objects (size <= 128 bytes), the first category considered is the
// 36th (which holds objects of 2k to 3k), while for larger objects, the first
// category considered will be one that guarantees a 1.85k+ bytes
// overallocation. Using 2k rather than 1.85k would have resulted in either a
// more complex logic for SelectFastAllocationFreeListCategoryType, or the 36th
// category (2k to 3k) not being used; both of which are undesirable.
// A secondary fast path is used for tiny objects (size <= 128), in order to
// consider categories from 256 to 2048 bytes for them.
// Note that this class uses a precise GetPageForSize (inherited from
// FreeListMany), which makes its fast path less fast in the Scavenger. This is
// done on purpose, since this class's only purpose is to be used by
// FreeListManyCachedOrigin, which is precise for the scavenger.
class V8_EXPORT_PRIVATE FreeListManyCachedFastPath : public FreeListManyCached {
public:
V8_WARN_UNUSED_RESULT FreeSpace Allocate(size_t size_in_bytes,
size_t* node_size,
AllocationOrigin origin) override;
protected:
// Objects in the 18th category are at least 2048 bytes
static const FreeListCategoryType kFastPathFirstCategory = 18;
static const size_t kFastPathStart = 2048;
static const size_t kTinyObjectMaxSize = 128;
static const size_t kFastPathOffset = kFastPathStart - kTinyObjectMaxSize;
// Objects in the 15th category are at least 256 bytes
static const FreeListCategoryType kFastPathFallBackTiny = 15;
STATIC_ASSERT(categories_min[kFastPathFirstCategory] == kFastPathStart);
STATIC_ASSERT(categories_min[kFastPathFallBackTiny] ==
kTinyObjectMaxSize * 2);
FreeListCategoryType SelectFastAllocationFreeListCategoryType(
size_t size_in_bytes) {
DCHECK(size_in_bytes < kMaxBlockSize);
if (size_in_bytes >= categories_min[last_category_]) return last_category_;
size_in_bytes += kFastPathOffset;
for (int cat = kFastPathFirstCategory; cat < last_category_; cat++) {
if (size_in_bytes <= categories_min[cat]) {
return cat;
}
}
return last_category_;
}
FRIEND_TEST(
SpacesTest,
FreeListManyCachedFastPathSelectFastAllocationFreeListCategoryType);
};
// Uses FreeListManyCached if in the GC; FreeListManyCachedFastPath otherwise.
// The reasonning behind this FreeList is the following: the GC runs in
// parallel, and therefore, more expensive allocations there are less
// noticeable. On the other hand, the generated code and runtime need to be very
// fast. Therefore, the strategy for the former is one that is not very
// efficient, but reduces fragmentation (FreeListManyCached), while the strategy
// for the later is one that is very efficient, but introduces some
// fragmentation (FreeListManyCachedFastPath).
class V8_EXPORT_PRIVATE FreeListManyCachedOrigin
: public FreeListManyCachedFastPath {
public:
V8_WARN_UNUSED_RESULT FreeSpace Allocate(size_t size_in_bytes,
size_t* node_size,
AllocationOrigin origin) override;
};
// FreeList for maps: since maps are all the same size, uses a single freelist.
class V8_EXPORT_PRIVATE FreeListMap : public FreeList {
public:
size_t GuaranteedAllocatable(size_t maximum_freed) override;
Page* GetPageForSize(size_t size_in_bytes) override;
FreeListMap();
~FreeListMap();
V8_WARN_UNUSED_RESULT FreeSpace Allocate(size_t size_in_bytes,
size_t* node_size,
AllocationOrigin origin) override;
private:
static const size_t kMinBlockSize = Map::kSize;
static const size_t kMaxBlockSize = Page::kPageSize;
static const FreeListCategoryType kOnlyCategory = 0;
FreeListCategoryType SelectFreeListCategoryType(
size_t size_in_bytes) override {
return kOnlyCategory;
}
};
// LocalAllocationBuffer represents a linear allocation area that is created
// from a given {AllocationResult} and can be used to allocate memory without
// synchronization.
//
// The buffer is properly closed upon destruction and reassignment.
// Example:
// {
// AllocationResult result = ...;
// LocalAllocationBuffer a(heap, result, size);
// LocalAllocationBuffer b = a;
// CHECK(!a.IsValid());
// CHECK(b.IsValid());
// // {a} is invalid now and cannot be used for further allocations.
// }
// // Since {b} went out of scope, the LAB is closed, resulting in creating a
// // filler object for the remaining area.
class LocalAllocationBuffer {
public:
// Indicates that a buffer cannot be used for allocations anymore. Can result
// from either reassigning a buffer, or trying to construct it from an
// invalid {AllocationResult}.
static LocalAllocationBuffer InvalidBuffer() {
return LocalAllocationBuffer(
nullptr, LinearAllocationArea(kNullAddress, kNullAddress));
}
// Creates a new LAB from a given {AllocationResult}. Results in
// InvalidBuffer if the result indicates a retry.
static inline LocalAllocationBuffer FromResult(Heap* heap,
AllocationResult result,
intptr_t size);
~LocalAllocationBuffer() { Close(); }
// Convert to C++11 move-semantics once allowed by the style guide.
LocalAllocationBuffer(const LocalAllocationBuffer& other) V8_NOEXCEPT;
LocalAllocationBuffer& operator=(const LocalAllocationBuffer& other)
V8_NOEXCEPT;
V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawAligned(
int size_in_bytes, AllocationAlignment alignment);
inline bool IsValid() { return allocation_info_.top() != kNullAddress; }
// Try to merge LABs, which is only possible when they are adjacent in memory.
// Returns true if the merge was successful, false otherwise.
inline bool TryMerge(LocalAllocationBuffer* other);
inline bool TryFreeLast(HeapObject object, int object_size);
// Close a LAB, effectively invalidating it. Returns the unused area.
V8_EXPORT_PRIVATE LinearAllocationArea Close();
private:
V8_EXPORT_PRIVATE LocalAllocationBuffer(
Heap* heap, LinearAllocationArea allocation_info) V8_NOEXCEPT;
Heap* heap_;
LinearAllocationArea allocation_info_;
};
class SpaceWithLinearArea : public Space {
public:
SpaceWithLinearArea(Heap* heap, AllocationSpace id, FreeList* free_list)
: Space(heap, id, free_list), top_on_previous_step_(0) {
allocation_info_.Reset(kNullAddress, kNullAddress);
}
virtual bool SupportsInlineAllocation() = 0;
// Returns the allocation pointer in this space.
Address top() { return allocation_info_.top(); }
Address limit() { return allocation_info_.limit(); }
// The allocation top address.
Address* allocation_top_address() { return allocation_info_.top_address(); }
// The allocation limit address.
Address* allocation_limit_address() {
return allocation_info_.limit_address();
}
V8_EXPORT_PRIVATE void AddAllocationObserver(
AllocationObserver* observer) override;
V8_EXPORT_PRIVATE void RemoveAllocationObserver(
AllocationObserver* observer) override;
V8_EXPORT_PRIVATE void ResumeAllocationObservers() override;
V8_EXPORT_PRIVATE void PauseAllocationObservers() override;
// When allocation observers are active we may use a lower limit to allow the
// observers to 'interrupt' earlier than the natural limit. Given a linear
// area bounded by [start, end), this function computes the limit to use to
// allow proper observation based on existing observers. min_size specifies
// the minimum size that the limited area should have.
Address ComputeLimit(Address start, Address end, size_t min_size);
V8_EXPORT_PRIVATE virtual void UpdateInlineAllocationLimit(
size_t min_size) = 0;
V8_EXPORT_PRIVATE void UpdateAllocationOrigins(AllocationOrigin origin);
void PrintAllocationsOrigins();
protected:
// If we are doing inline allocation in steps, this method performs the 'step'
// operation. top is the memory address of the bump pointer at the last
// inline allocation (i.e. it determines the numbers of bytes actually
// allocated since the last step.) top_for_next_step is the address of the
// bump pointer where the next byte is going to be allocated from. top and
// top_for_next_step may be different when we cross a page boundary or reset
// the space.
// TODO(ofrobots): clarify the precise difference between this and
// Space::AllocationStep.
void InlineAllocationStep(Address top, Address top_for_next_step,
Address soon_object, size_t size);
V8_EXPORT_PRIVATE void StartNextInlineAllocationStep() override;
// TODO(ofrobots): make these private after refactoring is complete.
LinearAllocationArea allocation_info_;
Address top_on_previous_step_;
size_t allocations_origins_[static_cast<int>(
AllocationOrigin::kNumberOfAllocationOrigins)] = {0};
};
class V8_EXPORT_PRIVATE PagedSpace
: NON_EXPORTED_BASE(public SpaceWithLinearArea) {
public:
using iterator = PageIterator;
static const size_t kCompactionMemoryWanted = 500 * KB;
// Creates a space with an id.
PagedSpace(Heap* heap, AllocationSpace id, Executability executable,
FreeList* free_list,
LocalSpaceKind local_space_kind = LocalSpaceKind::kNone);
~PagedSpace() override { TearDown(); }
// Checks whether an object/address is in this space.
inline bool Contains(Address a);
inline bool Contains(Object o);
bool ContainsSlow(Address addr);
// Does the space need executable memory?
Executability executable() { return executable_; }
// Prepares for a mark-compact GC.
void PrepareForMarkCompact();
// Current capacity without growing (Size() + Available()).
size_t Capacity() { return accounting_stats_.Capacity(); }
// Approximate amount of physical memory committed for this space.
size_t CommittedPhysicalMemory() override;
// Sets the capacity, the available space and the wasted space to zero.
// The stats are rebuilt during sweeping by adding each page to the
// capacity and the size when it is encountered. As free spaces are
// discovered during the sweeping they are subtracted from the size and added
// to the available and wasted totals. The free list is cleared as well.
void ClearAllocatorState() {
accounting_stats_.ClearSize();
free_list_->Reset();
}
// Available bytes without growing. These are the bytes on the free list.
// The bytes in the linear allocation area are not included in this total
// because updating the stats would slow down allocation. New pages are
// immediately added to the free list so they show up here.
size_t Available() override { return free_list_->Available(); }
// Allocated bytes in this space. Garbage bytes that were not found due to
// concurrent sweeping are counted as being allocated! The bytes in the
// current linear allocation area (between top and limit) are also counted
// here.
size_t Size() override { return accounting_stats_.Size(); }
// As size, but the bytes in lazily swept pages are estimated and the bytes
// in the current linear allocation area are not included.
size_t SizeOfObjects() override;
// Wasted bytes in this space. These are just the bytes that were thrown away
// due to being too small to use for allocation.
virtual size_t Waste() { return free_list_->wasted_bytes(); }
// Allocate the requested number of bytes in the space if possible, return a
// failure object if not.
V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawUnaligned(
int size_in_bytes, AllocationOrigin origin = AllocationOrigin::kRuntime);
// Allocate the requested number of bytes in the space double aligned if
// possible, return a failure object if not.
V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawAligned(
int size_in_bytes, AllocationAlignment alignment,
AllocationOrigin origin = AllocationOrigin::kRuntime);
// Allocate the requested number of bytes in the space and consider allocation
// alignment if needed.
V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRaw(
int size_in_bytes, AllocationAlignment alignment,
AllocationOrigin origin = AllocationOrigin::kRuntime);
size_t Free(Address start, size_t size_in_bytes, SpaceAccountingMode mode) {
if (size_in_bytes == 0) return 0;
heap()->CreateFillerObjectAt(start, static_cast<int>(size_in_bytes),
ClearRecordedSlots::kNo);
if (mode == SpaceAccountingMode::kSpaceAccounted) {
return AccountedFree(start, size_in_bytes);
} else {
return UnaccountedFree(start, size_in_bytes);
}
}
// Give a block of memory to the space's free list. It might be added to
// the free list or accounted as waste.
// If add_to_freelist is false then just accounting stats are updated and
// no attempt to add area to free list is made.
size_t AccountedFree(Address start, size_t size_in_bytes) {
size_t wasted = free_list_->Free(start, size_in_bytes, kLinkCategory);
Page* page = Page::FromAddress(start);
accounting_stats_.DecreaseAllocatedBytes(size_in_bytes, page);
DCHECK_GE(size_in_bytes, wasted);
return size_in_bytes - wasted;
}
size_t UnaccountedFree(Address start, size_t size_in_bytes) {
size_t wasted = free_list_->Free(start, size_in_bytes, kDoNotLinkCategory);
DCHECK_GE(size_in_bytes, wasted);
return size_in_bytes - wasted;
}
inline bool TryFreeLast(HeapObject object, int object_size);
void ResetFreeList();
// Empty space linear allocation area, returning unused area to free list.
void FreeLinearAllocationArea();
void MarkLinearAllocationAreaBlack();
void UnmarkLinearAllocationArea();
void DecreaseAllocatedBytes(size_t bytes, Page* page) {
accounting_stats_.DecreaseAllocatedBytes(bytes, page);
}
void IncreaseAllocatedBytes(size_t bytes, Page* page) {
accounting_stats_.IncreaseAllocatedBytes(bytes, page);
}
void DecreaseCapacity(size_t bytes) {
accounting_stats_.DecreaseCapacity(bytes);
}
void IncreaseCapacity(size_t bytes) {
accounting_stats_.IncreaseCapacity(bytes);
}
void RefineAllocatedBytesAfterSweeping(Page* page);
Page* InitializePage(MemoryChunk* chunk);
void ReleasePage(Page* page);
// Adds the page to this space and returns the number of bytes added to the
// free list of the space.
size_t AddPage(Page* page);
void RemovePage(Page* page);
// Remove a page if it has at least |size_in_bytes| bytes available that can
// be used for allocation.
Page* RemovePageSafe(int size_in_bytes);
void SetReadable();
void SetReadAndExecutable();
void SetReadAndWritable();
void SetDefaultCodePermissions() {
if (FLAG_jitless) {
SetReadable();
} else {
SetReadAndExecutable();
}
}
#ifdef VERIFY_HEAP
// Verify integrity of this space.
virtual void Verify(Isolate* isolate, ObjectVisitor* visitor);
void VerifyLiveBytes();
// Overridden by subclasses to verify space-specific object
// properties (e.g., only maps or free-list nodes are in map space).
virtual void VerifyObject(HeapObject obj) {}
#endif
#ifdef DEBUG
void VerifyCountersAfterSweeping(Heap* heap);
void VerifyCountersBeforeConcurrentSweeping();
// Print meta info and objects in this space.
void Print() override;
// Report code object related statistics
static void ReportCodeStatistics(Isolate* isolate);
static void ResetCodeStatistics(Isolate* isolate);
#endif
bool CanExpand(size_t size);
// Returns the number of total pages in this space.
int CountTotalPages();
// Return size of allocatable area on a page in this space.
inline int AreaSize() { return static_cast<int>(area_size_); }
bool is_local_space() { return local_space_kind_ != LocalSpaceKind::kNone; }
bool is_off_thread_space() {
return local_space_kind_ == LocalSpaceKind::kOffThreadSpace;
}
bool is_compaction_space() {
return base::IsInRange(local_space_kind_,
LocalSpaceKind::kFirstCompactionSpace,
LocalSpaceKind::kLastCompactionSpace);
}
LocalSpaceKind local_space_kind() { return local_space_kind_; }
// Merges {other} into the current space. Note that this modifies {other},
// e.g., removes its bump pointer area and resets statistics.
void MergeLocalSpace(LocalSpace* other);
// Refills the free list from the corresponding free list filled by the
// sweeper.
virtual void RefillFreeList();
base::Mutex* mutex() { return &space_mutex_; }
inline void UnlinkFreeListCategories(Page* page);
inline size_t RelinkFreeListCategories(Page* page);
Page* first_page() { return reinterpret_cast<Page*>(Space::first_page()); }
iterator begin() { return iterator(first_page()); }
iterator end() { return iterator(nullptr); }
// Shrink immortal immovable pages of the space to be exactly the size needed
// using the high water mark.
void ShrinkImmortalImmovablePages();
size_t ShrinkPageToHighWaterMark(Page* page);
std::unique_ptr<ObjectIterator> GetObjectIterator(Heap* heap) override;
void SetLinearAllocationArea(Address top, Address limit);
private:
// Set space linear allocation area.
void SetTopAndLimit(Address top, Address limit) {
DCHECK(top == limit ||
Page::FromAddress(top) == Page::FromAddress(limit - 1));
MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
allocation_info_.Reset(top, limit);
}
void DecreaseLimit(Address new_limit);
void UpdateInlineAllocationLimit(size_t min_size) override;
bool SupportsInlineAllocation() override {
return identity() == OLD_SPACE && !is_local_space();
}
protected:
// PagedSpaces that should be included in snapshots have different, i.e.,
// smaller, initial pages.
virtual bool snapshotable() { return true; }
bool HasPages() { return first_page() != nullptr; }
// Cleans up the space, frees all pages in this space except those belonging
// to the initial chunk, uncommits addresses in the initial chunk.
void TearDown();
// Expands the space by allocating a fixed number of pages. Returns false if
// it cannot allocate requested number of pages from OS, or if the hard heap
// size limit has been hit.
bool Expand();
// Sets up a linear allocation area that fits the given number of bytes.
// Returns false if there is not enough space and the caller has to retry
// after collecting garbage.
inline bool EnsureLinearAllocationArea(int size_in_bytes,
AllocationOrigin origin);
// Allocates an object from the linear allocation area. Assumes that the
// linear allocation area is large enought to fit the object.
inline HeapObject AllocateLinearly(int size_in_bytes);
// Tries to allocate an aligned object from the linear allocation area.
// Returns nullptr if the linear allocation area does not fit the object.
// Otherwise, returns the object pointer and writes the allocation size
// (object size + alignment filler size) to the size_in_bytes.
inline HeapObject TryAllocateLinearlyAligned(int* size_in_bytes,
AllocationAlignment alignment);
V8_WARN_UNUSED_RESULT bool RefillLinearAllocationAreaFromFreeList(
size_t size_in_bytes, AllocationOrigin origin);
// If sweeping is still in progress try to sweep unswept pages. If that is
// not successful, wait for the sweeper threads and retry free-list
// allocation. Returns false if there is not enough space and the caller
// has to retry after collecting garbage.
V8_WARN_UNUSED_RESULT bool EnsureSweptAndRetryAllocation(
int size_in_bytes, AllocationOrigin origin);
V8_WARN_UNUSED_RESULT bool SweepAndRetryAllocation(int required_freed_bytes,
int max_pages,
int size_in_bytes,
AllocationOrigin origin);
// Slow path of AllocateRaw. This function is space-dependent. Returns false
// if there is not enough space and the caller has to retry after
// collecting garbage.
V8_WARN_UNUSED_RESULT virtual bool SlowRefillLinearAllocationArea(
int size_in_bytes, AllocationOrigin origin);
// Implementation of SlowAllocateRaw. Returns false if there is not enough
// space and the caller has to retry after collecting garbage.
V8_WARN_UNUSED_RESULT bool RawSlowRefillLinearAllocationArea(
int size_in_bytes, AllocationOrigin origin);
Executability executable_;
LocalSpaceKind local_space_kind_;
size_t area_size_;
// Accounting information for this space.
AllocationStats accounting_stats_;
// Mutex guarding any concurrent access to the space.
base::Mutex space_mutex_;
friend class IncrementalMarking;
friend class MarkCompactCollector;
// Used in cctest.
friend class heap::HeapTester;
};
enum SemiSpaceId { kFromSpace = 0, kToSpace = 1 };
// -----------------------------------------------------------------------------
// SemiSpace in young generation
//
// A SemiSpace is a contiguous chunk of memory holding page-like memory chunks.
// The mark-compact collector uses the memory of the first page in the from
// space as a marking stack when tracing live objects.
class SemiSpace : public Space {
public:
using iterator = PageIterator;
static void Swap(SemiSpace* from, SemiSpace* to);
SemiSpace(Heap* heap, SemiSpaceId semispace)
: Space(heap, NEW_SPACE, new NoFreeList()),
current_capacity_(0),
maximum_capacity_(0),
minimum_capacity_(0),
age_mark_(kNullAddress),
committed_(false),
id_(semispace),
current_page_(nullptr),
pages_used_(0) {}
inline bool Contains(HeapObject o);
inline bool Contains(Object o);
inline bool ContainsSlow(Address a);
void SetUp(size_t initial_capacity, size_t maximum_capacity);
void TearDown();
bool Commit();
bool Uncommit();
bool is_committed() { return committed_; }
// Grow the semispace to the new capacity. The new capacity requested must
// be larger than the current capacity and less than the maximum capacity.
bool GrowTo(size_t new_capacity);
// Shrinks the semispace to the new capacity. The new capacity requested
// must be more than the amount of used memory in the semispace and less
// than the current capacity.
bool ShrinkTo(size_t new_capacity);
bool EnsureCurrentCapacity();
Address space_end() { return memory_chunk_list_.back()->area_end(); }
// Returns the start address of the first page of the space.
Address space_start() {
DCHECK_NE(memory_chunk_list_.front(), nullptr);
return memory_chunk_list_.front()->area_start();
}
Page* current_page() { return current_page_; }
int pages_used() { return pages_used_; }
// Returns the start address of the current page of the space.
Address page_low() { return current_page_->area_start(); }
// Returns one past the end address of the current page of the space.
Address page_high() { return current_page_->area_end(); }
bool AdvancePage() {
Page* next_page = current_page_->next_page();
// We cannot expand if we reached the maximum number of pages already. Note
// that we need to account for the next page already for this check as we
// could potentially fill the whole page after advancing.
const bool reached_max_pages = (pages_used_ + 1) == max_pages();
if (next_page == nullptr || reached_max_pages) {
return false;
}
current_page_ = next_page;
pages_used_++;
return true;
}
// Resets the space to using the first page.
void Reset();
void RemovePage(Page* page);
void PrependPage(Page* page);
Page* InitializePage(MemoryChunk* chunk);
// Age mark accessors.
Address age_mark() { return age_mark_; }
void set_age_mark(Address mark);
// Returns the current capacity of the semispace.
size_t current_capacity() { return current_capacity_; }
// Returns the maximum capacity of the semispace.
size_t maximum_capacity() { return maximum_capacity_; }
// Returns the initial capacity of the semispace.
size_t minimum_capacity() { return minimum_capacity_; }
SemiSpaceId id() { return id_; }
// Approximate amount of physical memory committed for this space.
size_t CommittedPhysicalMemory() override;
// If we don't have these here then SemiSpace will be abstract. However
// they should never be called:
size_t Size() override { UNREACHABLE(); }
size_t SizeOfObjects() override { return Size(); }
size_t Available() override { UNREACHABLE(); }
Page* first_page() { return reinterpret_cast<Page*>(Space::first_page()); }
Page* last_page() { return reinterpret_cast<Page*>(Space::last_page()); }
iterator begin() { return iterator(first_page()); }
iterator end() { return iterator(nullptr); }
std::unique_ptr<ObjectIterator> GetObjectIterator(Heap* heap) override;
#ifdef DEBUG
V8_EXPORT_PRIVATE void Print() override;
// Validate a range of of addresses in a SemiSpace.
// The "from" address must be on a page prior to the "to" address,
// in the linked page order, or it must be earlier on the same page.
static void AssertValidRange(Address from, Address to);
#else
// Do nothing.
inline static void AssertValidRange(Address from, Address to) {}
#endif
#ifdef VERIFY_HEAP
virtual void Verify();
#endif
private:
void RewindPages(int num_pages);
inline int max_pages() {
return static_cast<int>(current_capacity_ / Page::kPageSize);
}
// Copies the flags into the masked positions on all pages in the space.
void FixPagesFlags(intptr_t flags, intptr_t flag_mask);
// The currently committed space capacity.
size_t current_capacity_;
// The maximum capacity that can be used by this space. A space cannot grow
// beyond that size.
size_t maximum_capacity_;
// The minimum capacity for the space. A space cannot shrink below this size.
size_t minimum_capacity_;
// Used to govern object promotion during mark-compact collection.
Address age_mark_;
bool committed_;
SemiSpaceId id_;
Page* current_page_;
int pages_used_;
friend class NewSpace;
friend class SemiSpaceObjectIterator;
};
// A SemiSpaceObjectIterator is an ObjectIterator that iterates over the active
// semispace of the heap's new space. It iterates over the objects in the
// semispace from a given start address (defaulting to the bottom of the
// semispace) to the top of the semispace. New objects allocated after the
// iterator is created are not iterated.
class SemiSpaceObjectIterator : public ObjectIterator {
public:
// Create an iterator over the allocated objects in the given to-space.
explicit SemiSpaceObjectIterator(NewSpace* space);
inline HeapObject Next() override;
private:
void Initialize(Address start, Address end);
// The current iteration point.
Address current_;
// The end of iteration.
Address limit_;
};
// -----------------------------------------------------------------------------
// The young generation space.
//
// The new space consists of a contiguous pair of semispaces. It simply
// forwards most functions to the appropriate semispace.
class V8_EXPORT_PRIVATE NewSpace
: NON_EXPORTED_BASE(public SpaceWithLinearArea) {
public:
using iterator = PageIterator;
NewSpace(Heap* heap, v8::PageAllocator* page_allocator,
size_t initial_semispace_capacity, size_t max_semispace_capacity);
~NewSpace() override { TearDown(); }
inline bool ContainsSlow(Address a);
inline bool Contains(Object o);
inline bool Contains(HeapObject o);
// Tears down the space. Heap memory was not allocated by the space, so it
// is not deallocated here.
void TearDown();
// Flip the pair of spaces.
void Flip();
// Grow the capacity of the semispaces. Assumes that they are not at
// their maximum capacity.
void Grow();
// Shrink the capacity of the semispaces.
void Shrink();
// Return the allocated bytes in the active semispace.
size_t Size() final {
DCHECK_GE(top(), to_space_.page_low());
return to_space_.pages_used() *
MemoryChunkLayout::AllocatableMemoryInDataPage() +
static_cast<size_t>(top() - to_space_.page_low());
}
size_t SizeOfObjects() final { return Size(); }
// Return the allocatable capacity of a semispace.
size_t Capacity() {
SLOW_DCHECK(to_space_.current_capacity() == from_space_.current_capacity());
return (to_space_.current_capacity() / Page::kPageSize) *
MemoryChunkLayout::AllocatableMemoryInDataPage();
}
// Return the current size of a semispace, allocatable and non-allocatable
// memory.
size_t TotalCapacity() {
DCHECK(to_space_.current_capacity() == from_space_.current_capacity());
return to_space_.current_capacity();
}
// Committed memory for NewSpace is the committed memory of both semi-spaces
// combined.
size_t CommittedMemory() final {
return from_space_.CommittedMemory() + to_space_.CommittedMemory();
}
size_t MaximumCommittedMemory() final {
return from_space_.MaximumCommittedMemory() +
to_space_.MaximumCommittedMemory();
}
// Approximate amount of physical memory committed for this space.
size_t CommittedPhysicalMemory() final;
// Return the available bytes without growing.
size_t Available() final {
DCHECK_GE(Capacity(), Size());
return Capacity() - Size();
}
size_t ExternalBackingStoreBytes(ExternalBackingStoreType type) const final {
if (V8_ARRAY_BUFFER_EXTENSION_BOOL &&
type == ExternalBackingStoreType::kArrayBuffer)
return heap()->YoungArrayBufferBytes();
DCHECK_EQ(0, from_space_.ExternalBackingStoreBytes(type));
return to_space_.ExternalBackingStoreBytes(type);
}
size_t ExternalBackingStoreBytes() {
size_t result = 0;
for (int i = 0; i < ExternalBackingStoreType::kNumTypes; i++) {
result +=
ExternalBackingStoreBytes(static_cast<ExternalBackingStoreType>(i));
}
return result;
}
size_t AllocatedSinceLastGC() {
const Address age_mark = to_space_.age_mark();
DCHECK_NE(age_mark, kNullAddress);
DCHECK_NE(top(), kNullAddress);
Page* const age_mark_page = Page::FromAllocationAreaAddress(age_mark);
Page* const last_page = Page::FromAllocationAreaAddress(top());
Page* current_page = age_mark_page;
size_t allocated = 0;
if (current_page != last_page) {
DCHECK_EQ(current_page, age_mark_page);
DCHECK_GE(age_mark_page->area_end(), age_mark);
allocated += age_mark_page->area_end() - age_mark;
current_page = current_page->next_page();
} else {
DCHECK_GE(top(), age_mark);
return top() - age_mark;
}
while (current_page != last_page) {
DCHECK_NE(current_page, age_mark_page);
allocated += MemoryChunkLayout::AllocatableMemoryInDataPage();
current_page = current_page->next_page();
}
DCHECK_GE(top(), current_page->area_start());
allocated += top() - current_page->area_start();
DCHECK_LE(allocated, Size());
return allocated;
}
void MovePageFromSpaceToSpace(Page* page) {
DCHECK(page->IsFromPage());
from_space_.RemovePage(page);
to_space_.PrependPage(page);
}
bool Rebalance();
// Return the maximum capacity of a semispace.
size_t MaximumCapacity() {
DCHECK(to_space_.maximum_capacity() == from_space_.maximum_capacity());
return to_space_.maximum_capacity();
}
bool IsAtMaximumCapacity() { return TotalCapacity() == MaximumCapacity(); }
// Returns the initial capacity of a semispace.
size_t InitialTotalCapacity() {
DCHECK(to_space_.minimum_capacity() == from_space_.minimum_capacity());
return to_space_.minimum_capacity();
}
void ResetOriginalTop() {
DCHECK_GE(top(), original_top_);
DCHECK_LE(top(), original_limit_);
original_top_.store(top(), std::memory_order_release);
}
Address original_top_acquire() {
return original_top_.load(std::memory_order_acquire);
}
Address original_limit_relaxed() {
return original_limit_.load(std::memory_order_relaxed);
}
// Return the address of the first allocatable address in the active
// semispace. This may be the address where the first object resides.
Address first_allocatable_address() { return to_space_.space_start(); }
// Get the age mark of the inactive semispace.
Address age_mark() { return from_space_.age_mark(); }
// Set the age mark in the active semispace.
void set_age_mark(Address mark) { to_space_.set_age_mark(mark); }
V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult
AllocateRawAligned(int size_in_bytes, AllocationAlignment alignment,
AllocationOrigin origin = AllocationOrigin::kRuntime);
V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult AllocateRawUnaligned(
int size_in_bytes, AllocationOrigin origin = AllocationOrigin::kRuntime);
V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult
AllocateRaw(int size_in_bytes, AllocationAlignment alignment,
AllocationOrigin origin = AllocationOrigin::kRuntime);
V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawSynchronized(
int size_in_bytes, AllocationAlignment alignment,
AllocationOrigin origin = AllocationOrigin::kRuntime);
// Reset the allocation pointer to the beginning of the active semispace.
void ResetLinearAllocationArea();
// When inline allocation stepping is active, either because of incremental
// marking, idle scavenge, or allocation statistics gathering, we 'interrupt'
// inline allocation every once in a while. This is done by setting
// allocation_info_.limit to be lower than the actual limit and and increasing
// it in steps to guarantee that the observers are notified periodically.
void UpdateInlineAllocationLimit(size_t size_in_bytes) override;
inline bool ToSpaceContainsSlow(Address a);
inline bool ToSpaceContains(Object o);
inline bool FromSpaceContains(Object o);
// Try to switch the active semispace to a new, empty, page.
// Returns false if this isn't possible or reasonable (i.e., there
// are no pages, or the current page is already empty), or true
// if successful.
bool AddFreshPage();
bool AddFreshPageSynchronized();
#ifdef VERIFY_HEAP
// Verify the active semispace.
virtual void Verify(Isolate* isolate);