Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/regexp/x64/regexp-macro-assembler-x64.h"
#include "src/codegen/code-desc.h"
#include "src/codegen/macro-assembler.h"
#include "src/heap/factory.h"
#include "src/logging/log.h"
#include "src/objects/code-inl.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/regexp/regexp-stack.h"
namespace v8 {
namespace internal {
/*
* This assembler uses the following register assignment convention
* - rdx : Currently loaded character(s) as Latin1 or UC16. Must be loaded
* using LoadCurrentCharacter before using any of the dispatch methods.
* Temporarily stores the index of capture start after a matching pass
* for a global regexp.
* - rdi : Current position in input, as negative offset from end of string.
* Please notice that this is the byte offset, not the character
* offset! Is always a 32-bit signed (negative) offset, but must be
* maintained sign-extended to 64 bits, since it is used as index.
* - rsi : End of input (points to byte after last character in input),
* so that rsi+rdi points to the current character.
* - rbp : Frame pointer. Used to access arguments, local variables and
* RegExp registers.
* - rsp : Points to tip of C stack.
* - rcx : Points to tip of backtrack stack. The backtrack stack contains
* only 32-bit values. Most are offsets from some base (e.g., character
* positions from end of string or code location from Code pointer).
* - r8 : Code object pointer. Used to convert between absolute and
* code-object-relative addresses.
*
* The registers rax, rbx, r9 and r11 are free to use for computations.
* If changed to use r12+, they should be saved as callee-save registers.
* The macro assembler special register r13 (kRootRegister) isn't special
* during execution of RegExp code (it doesn't hold the value assumed when
* creating JS code), so Root related macro operations can be used.
*
* Each call to a C++ method should retain these registers.
*
* The stack will have the following content, in some order, indexable from the
* frame pointer (see, e.g., kDirectCall):
* - Address regexp (address of the JSRegExp object; unused in native
* code, passed to match signature of interpreter)
* - Isolate* isolate (address of the current isolate)
* - direct_call (if 1, direct call from JavaScript code, if 0 call
* through the runtime system)
* - capture array size (may fit multiple sets of matches)
* - int* capture_array (int[num_saved_registers_], for output).
* - end of input (address of end of string)
* - start of input (address of first character in string)
* - start index (character index of start)
* - String input_string (input string)
* - return address
* - backup of callee save registers (rbx, possibly rsi and rdi).
* - success counter (only useful for global regexp to count matches)
* - Offset of location before start of input (effectively character
* string start - 1). Used to initialize capture registers to a
* non-position.
* - At start of string (if 1, we are starting at the start of the
* string, otherwise 0)
* - register 0 rbp[-n] (Only positions must be stored in the first
* - register 1 rbp[-n-8] num_saved_registers_ registers)
* - ...
*
* The first num_saved_registers_ registers are initialized to point to
* "character -1" in the string (i.e., char_size() bytes before the first
* character of the string). The remaining registers starts out uninitialized.
*
* The argument values must be provided by the calling code by calling the
* code's entry address cast to a function pointer with the following signature:
* int (*match)(String input_string,
* int start_index,
* Address start,
* Address end,
* int* capture_output_array,
* int num_capture_registers,
* bool direct_call = false,
* Isolate* isolate,
* Address regexp);
*/
#define __ ACCESS_MASM((&masm_))
const int RegExpMacroAssemblerX64::kRegExpCodeSize;
RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone,
Mode mode,
int registers_to_save)
: NativeRegExpMacroAssembler(isolate, zone),
masm_(isolate, CodeObjectRequired::kYes,
NewAssemblerBuffer(kRegExpCodeSize)),
no_root_array_scope_(&masm_),
code_relative_fixup_positions_(zone),
mode_(mode),
num_registers_(registers_to_save),
num_saved_registers_(registers_to_save),
entry_label_(),
start_label_(),
success_label_(),
backtrack_label_(),
exit_label_() {
DCHECK_EQ(0, registers_to_save % 2);
__ jmp(&entry_label_); // We'll write the entry code when we know more.
__ bind(&start_label_); // And then continue from here.
}
RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
// Unuse labels in case we throw away the assembler without calling GetCode.
entry_label_.Unuse();
start_label_.Unuse();
success_label_.Unuse();
backtrack_label_.Unuse();
exit_label_.Unuse();
check_preempt_label_.Unuse();
stack_overflow_label_.Unuse();
fallback_label_.Unuse();
}
int RegExpMacroAssemblerX64::stack_limit_slack() {
return RegExpStack::kStackLimitSlack;
}
void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
if (by != 0) {
__ addq(rdi, Immediate(by * char_size()));
}
}
void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
DCHECK_LE(0, reg);
DCHECK_GT(num_registers_, reg);
if (by != 0) {
__ addq(register_location(reg), Immediate(by));
}
}
void RegExpMacroAssemblerX64::Backtrack() {
CheckPreemption();
if (has_backtrack_limit()) {
Label next;
__ incq(Operand(rbp, kBacktrackCount));
__ cmpq(Operand(rbp, kBacktrackCount), Immediate(backtrack_limit()));
__ j(not_equal, &next);
// Backtrack limit exceeded.
if (can_fallback()) {
__ jmp(&fallback_label_);
} else {
// Can't fallback, so we treat it as a failed match.
Fail();
}
__ bind(&next);
}
// Pop Code offset from backtrack stack, add Code and jump to location.
Pop(rbx);
__ addq(rbx, code_object_pointer());
__ jmp(rbx);
}
void RegExpMacroAssemblerX64::Bind(Label* label) {
__ bind(label);
}
void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
__ cmpl(current_character(), Immediate(c));
BranchOrBacktrack(equal, on_equal);
}
void RegExpMacroAssemblerX64::CheckCharacterGT(base::uc16 limit,
Label* on_greater) {
__ cmpl(current_character(), Immediate(limit));
BranchOrBacktrack(greater, on_greater);
}
void RegExpMacroAssemblerX64::CheckAtStart(int cp_offset, Label* on_at_start) {
__ leaq(rax, Operand(rdi, -char_size() + cp_offset * char_size()));
__ cmpq(rax, Operand(rbp, kStringStartMinusOne));
BranchOrBacktrack(equal, on_at_start);
}
void RegExpMacroAssemblerX64::CheckNotAtStart(int cp_offset,
Label* on_not_at_start) {
__ leaq(rax, Operand(rdi, -char_size() + cp_offset * char_size()));
__ cmpq(rax, Operand(rbp, kStringStartMinusOne));
BranchOrBacktrack(not_equal, on_not_at_start);
}
void RegExpMacroAssemblerX64::CheckCharacterLT(base::uc16 limit,
Label* on_less) {
__ cmpl(current_character(), Immediate(limit));
BranchOrBacktrack(less, on_less);
}
void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
Label fallthrough;
__ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
__ j(not_equal, &fallthrough);
Drop();
BranchOrBacktrack(no_condition, on_equal);
__ bind(&fallthrough);
}
// Push (pop) caller-saved registers used by irregexp.
void RegExpMacroAssemblerX64::PushCallerSavedRegisters() {
#ifndef V8_TARGET_OS_WIN
// Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
__ pushq(rsi);
__ pushq(rdi);
#endif
__ pushq(rcx);
}
void RegExpMacroAssemblerX64::PopCallerSavedRegisters() {
__ popq(rcx);
#ifndef V8_TARGET_OS_WIN
__ popq(rdi);
__ popq(rsi);
#endif
}
void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
Label fallthrough;
ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture
ReadPositionFromRegister(rbx, start_reg + 1); // Offset of end of capture
__ subq(rbx, rdx); // Length of capture.
// -----------------------
// rdx = Start offset of capture.
// rbx = Length of capture
// At this point, the capture registers are either both set or both cleared.
// If the capture length is zero, then the capture is either empty or cleared.
// Fall through in both cases.
__ j(equal, &fallthrough);
// -----------------------
// rdx - Start of capture
// rbx - length of capture
// Check that there are sufficient characters left in the input.
if (read_backward) {
__ movl(rax, Operand(rbp, kStringStartMinusOne));
__ addl(rax, rbx);
__ cmpl(rdi, rax);
BranchOrBacktrack(less_equal, on_no_match);
} else {
__ movl(rax, rdi);
__ addl(rax, rbx);
BranchOrBacktrack(greater, on_no_match);
}
if (mode_ == LATIN1) {
Label loop_increment;
if (on_no_match == nullptr) {
on_no_match = &backtrack_label_;
}
__ leaq(r9, Operand(rsi, rdx, times_1, 0));
__ leaq(r11, Operand(rsi, rdi, times_1, 0));
if (read_backward) {
__ subq(r11, rbx); // Offset by length when matching backwards.
}
__ addq(rbx, r9); // End of capture
// ---------------------
// r11 - current input character address
// r9 - current capture character address
// rbx - end of capture
Label loop;
__ bind(&loop);
__ movzxbl(rdx, Operand(r9, 0));
__ movzxbl(rax, Operand(r11, 0));
// al - input character
// dl - capture character
__ cmpb(rax, rdx);
__ j(equal, &loop_increment);
// Mismatch, try case-insensitive match (converting letters to lower-case).
// I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
// a match.
__ orq(rax, Immediate(0x20)); // Convert match character to lower-case.
__ orq(rdx, Immediate(0x20)); // Convert capture character to lower-case.
__ cmpb(rax, rdx);
__ j(not_equal, on_no_match); // Definitely not equal.
__ subb(rax, Immediate('a'));
__ cmpb(rax, Immediate('z' - 'a'));
__ j(below_equal, &loop_increment); // In range 'a'-'z'.
// Latin-1: Check for values in range [224,254] but not 247.
__ subb(rax, Immediate(224 - 'a'));
__ cmpb(rax, Immediate(254 - 224));
__ j(above, on_no_match); // Weren't Latin-1 letters.
__ cmpb(rax, Immediate(247 - 224)); // Check for 247.
__ j(equal, on_no_match);
__ bind(&loop_increment);
// Increment pointers into match and capture strings.
__ addq(r11, Immediate(1));
__ addq(r9, Immediate(1));
// Compare to end of capture, and loop if not done.
__ cmpq(r9, rbx);
__ j(below, &loop);
// Compute new value of character position after the matched part.
__ movq(rdi, r11);
__ subq(rdi, rsi);
if (read_backward) {
// Subtract match length if we matched backward.
__ addq(rdi, register_location(start_reg));
__ subq(rdi, register_location(start_reg + 1));
}
} else {
DCHECK(mode_ == UC16);
PushCallerSavedRegisters();
static const int num_arguments = 4;
__ PrepareCallCFunction(num_arguments);
// Put arguments into parameter registers. Parameters are
// Address byte_offset1 - Address captured substring's start.
// Address byte_offset2 - Address of current character position.
// size_t byte_length - length of capture in bytes(!)
// Isolate* isolate.
#ifdef V8_TARGET_OS_WIN
DCHECK(rcx == arg_reg_1);
DCHECK(rdx == arg_reg_2);
// Compute and set byte_offset1 (start of capture).
__ leaq(rcx, Operand(rsi, rdx, times_1, 0));
// Set byte_offset2.
__ leaq(rdx, Operand(rsi, rdi, times_1, 0));
if (read_backward) {
__ subq(rdx, rbx);
}
#else // AMD64 calling convention
DCHECK(rdi == arg_reg_1);
DCHECK(rsi == arg_reg_2);
// Compute byte_offset2 (current position = rsi+rdi).
__ leaq(rax, Operand(rsi, rdi, times_1, 0));
// Compute and set byte_offset1 (start of capture).
__ leaq(rdi, Operand(rsi, rdx, times_1, 0));
// Set byte_offset2.
__ movq(rsi, rax);
if (read_backward) {
__ subq(rsi, rbx);
}
#endif // V8_TARGET_OS_WIN
// Set byte_length.
__ movq(arg_reg_3, rbx);
// Isolate.
__ LoadAddress(arg_reg_4, ExternalReference::isolate_address(isolate()));
{
AllowExternalCallThatCantCauseGC scope(&masm_);
ExternalReference compare =
unicode
? ExternalReference::re_case_insensitive_compare_unicode()
: ExternalReference::re_case_insensitive_compare_non_unicode();
__ CallCFunction(compare, num_arguments);
}
// Restore original values before reacting on result value.
__ Move(code_object_pointer(), masm_.CodeObject());
PopCallerSavedRegisters();
// Check if function returned non-zero for success or zero for failure.
__ testq(rax, rax);
BranchOrBacktrack(zero, on_no_match);
// On success, advance position by length of capture.
// Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
if (read_backward) {
__ subq(rdi, rbx);
} else {
__ addq(rdi, rbx);
}
}
__ bind(&fallthrough);
}
void RegExpMacroAssemblerX64::CheckNotBackReference(int start_reg,
bool read_backward,
Label* on_no_match) {
Label fallthrough;
// Find length of back-referenced capture.
ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture
ReadPositionFromRegister(rax, start_reg + 1); // Offset of end of capture
__ subq(rax, rdx); // Length to check.
// At this point, the capture registers are either both set or both cleared.
// If the capture length is zero, then the capture is either empty or cleared.
// Fall through in both cases.
__ j(equal, &fallthrough);
// -----------------------
// rdx - Start of capture
// rax - length of capture
// Check that there are sufficient characters left in the input.
if (read_backward) {
__ movl(rbx, Operand(rbp, kStringStartMinusOne));
__ addl(rbx, rax);
__ cmpl(rdi, rbx);
BranchOrBacktrack(less_equal, on_no_match);
} else {
__ movl(rbx, rdi);
__ addl(rbx, rax);
BranchOrBacktrack(greater, on_no_match);
}
// Compute pointers to match string and capture string
__ leaq(rbx, Operand(rsi, rdi, times_1, 0)); // Start of match.
if (read_backward) {
__ subq(rbx, rax); // Offset by length when matching backwards.
}
__ addq(rdx, rsi); // Start of capture.
__ leaq(r9, Operand(rdx, rax, times_1, 0)); // End of capture
// -----------------------
// rbx - current capture character address.
// rbx - current input character address .
// r9 - end of input to match (capture length after rbx).
Label loop;
__ bind(&loop);
if (mode_ == LATIN1) {
__ movzxbl(rax, Operand(rdx, 0));
__ cmpb(rax, Operand(rbx, 0));
} else {
DCHECK(mode_ == UC16);
__ movzxwl(rax, Operand(rdx, 0));
__ cmpw(rax, Operand(rbx, 0));
}
BranchOrBacktrack(not_equal, on_no_match);
// Increment pointers into capture and match string.
__ addq(rbx, Immediate(char_size()));
__ addq(rdx, Immediate(char_size()));
// Check if we have reached end of match area.
__ cmpq(rdx, r9);
__ j(below, &loop);
// Success.
// Set current character position to position after match.
__ movq(rdi, rbx);
__ subq(rdi, rsi);
if (read_backward) {
// Subtract match length if we matched backward.
__ addq(rdi, register_location(start_reg));
__ subq(rdi, register_location(start_reg + 1));
}
__ bind(&fallthrough);
}
void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
Label* on_not_equal) {
__ cmpl(current_character(), Immediate(c));
BranchOrBacktrack(not_equal, on_not_equal);
}
void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_equal) {
if (c == 0) {
__ testl(current_character(), Immediate(mask));
} else {
__ Move(rax, mask);
__ andq(rax, current_character());
__ cmpl(rax, Immediate(c));
}
BranchOrBacktrack(equal, on_equal);
}
void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_not_equal) {
if (c == 0) {
__ testl(current_character(), Immediate(mask));
} else {
__ Move(rax, mask);
__ andq(rax, current_character());
__ cmpl(rax, Immediate(c));
}
BranchOrBacktrack(not_equal, on_not_equal);
}
void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
base::uc16 c, base::uc16 minus, base::uc16 mask, Label* on_not_equal) {
DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
__ leal(rax, Operand(current_character(), -minus));
__ andl(rax, Immediate(mask));
__ cmpl(rax, Immediate(c));
BranchOrBacktrack(not_equal, on_not_equal);
}
void RegExpMacroAssemblerX64::CheckCharacterInRange(base::uc16 from,
base::uc16 to,
Label* on_in_range) {
__ leal(rax, Operand(current_character(), -from));
__ cmpl(rax, Immediate(to - from));
BranchOrBacktrack(below_equal, on_in_range);
}
void RegExpMacroAssemblerX64::CheckCharacterNotInRange(base::uc16 from,
base::uc16 to,
Label* on_not_in_range) {
__ leal(rax, Operand(current_character(), -from));
__ cmpl(rax, Immediate(to - from));
BranchOrBacktrack(above, on_not_in_range);
}
void RegExpMacroAssemblerX64::CallIsCharacterInRangeArray(
const ZoneList<CharacterRange>* ranges) {
PushCallerSavedRegisters();
static const int kNumArguments = 3;
__ PrepareCallCFunction(kNumArguments);
__ Move(arg_reg_1, current_character());
__ Move(arg_reg_2, GetOrAddRangeArray(ranges));
__ LoadAddress(arg_reg_3, ExternalReference::isolate_address(isolate()));
{
// We have a frame (set up in GetCode), but the assembler doesn't know.
FrameScope scope(&masm_, StackFrame::MANUAL);
__ CallCFunction(ExternalReference::re_is_character_in_range_array(),
kNumArguments);
}
PopCallerSavedRegisters();
__ Move(code_object_pointer(), masm_.CodeObject());
}
bool RegExpMacroAssemblerX64::CheckCharacterInRangeArray(
const ZoneList<CharacterRange>* ranges, Label* on_in_range) {
CallIsCharacterInRangeArray(ranges);
__ testq(rax, rax);
BranchOrBacktrack(not_zero, on_in_range);
return true;
}
bool RegExpMacroAssemblerX64::CheckCharacterNotInRangeArray(
const ZoneList<CharacterRange>* ranges, Label* on_not_in_range) {
CallIsCharacterInRangeArray(ranges);
__ testq(rax, rax);
BranchOrBacktrack(zero, on_not_in_range);
return true;
}
void RegExpMacroAssemblerX64::CheckBitInTable(
Handle<ByteArray> table,
Label* on_bit_set) {
__ Move(rax, table);
Register index = current_character();
if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
__ movq(rbx, current_character());
__ andq(rbx, Immediate(kTableMask));
index = rbx;
}
__ cmpb(FieldOperand(rax, index, times_1, ByteArray::kHeaderSize),
Immediate(0));
BranchOrBacktrack(not_equal, on_bit_set);
}
bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(
StandardCharacterSet type, Label* on_no_match) {
// Range checks (c in min..max) are generally implemented by an unsigned
// (c - min) <= (max - min) check, using the sequence:
// leal(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
// cmpl(rax, Immediate(max - min))
// TODO(jgruber): No custom implementation (yet): s(UC16), S(UC16).
switch (type) {
case StandardCharacterSet::kWhitespace:
// Match space-characters.
if (mode_ == LATIN1) {
// One byte space characters are '\t'..'\r', ' ' and \u00a0.
Label success;
__ cmpl(current_character(), Immediate(' '));
__ j(equal, &success, Label::kNear);
// Check range 0x09..0x0D.
__ leal(rax, Operand(current_character(), -'\t'));
__ cmpl(rax, Immediate('\r' - '\t'));
__ j(below_equal, &success, Label::kNear);
// \u00a0 (NBSP).
__ cmpl(rax, Immediate(0x00A0 - '\t'));
BranchOrBacktrack(not_equal, on_no_match);
__ bind(&success);
return true;
}
return false;
case StandardCharacterSet::kNotWhitespace:
// The emitted code for generic character classes is good enough.
return false;
case StandardCharacterSet::kDigit:
// Match ASCII digits ('0'..'9').
__ leal(rax, Operand(current_character(), -'0'));
__ cmpl(rax, Immediate('9' - '0'));
BranchOrBacktrack(above, on_no_match);
return true;
case StandardCharacterSet::kNotDigit:
// Match non ASCII-digits.
__ leal(rax, Operand(current_character(), -'0'));
__ cmpl(rax, Immediate('9' - '0'));
BranchOrBacktrack(below_equal, on_no_match);
return true;
case StandardCharacterSet::kNotLineTerminator: {
// Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
__ movl(rax, current_character());
__ xorl(rax, Immediate(0x01));
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
__ subl(rax, Immediate(0x0B));
__ cmpl(rax, Immediate(0x0C - 0x0B));
BranchOrBacktrack(below_equal, on_no_match);
if (mode_ == UC16) {
// Compare original value to 0x2028 and 0x2029, using the already
// computed (current_char ^ 0x01 - 0x0B). I.e., check for
// 0x201D (0x2028 - 0x0B) or 0x201E.
__ subl(rax, Immediate(0x2028 - 0x0B));
__ cmpl(rax, Immediate(0x2029 - 0x2028));
BranchOrBacktrack(below_equal, on_no_match);
}
return true;
}
case StandardCharacterSet::kLineTerminator: {
// Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
__ movl(rax, current_character());
__ xorl(rax, Immediate(0x01));
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
__ subl(rax, Immediate(0x0B));
__ cmpl(rax, Immediate(0x0C - 0x0B));
if (mode_ == LATIN1) {
BranchOrBacktrack(above, on_no_match);
} else {
Label done;
BranchOrBacktrack(below_equal, &done);
// Compare original value to 0x2028 and 0x2029, using the already
// computed (current_char ^ 0x01 - 0x0B). I.e., check for
// 0x201D (0x2028 - 0x0B) or 0x201E.
__ subl(rax, Immediate(0x2028 - 0x0B));
__ cmpl(rax, Immediate(0x2029 - 0x2028));
BranchOrBacktrack(above, on_no_match);
__ bind(&done);
}
return true;
}
case StandardCharacterSet::kWord: {
if (mode_ != LATIN1) {
// Table is 256 entries, so all Latin1 characters can be tested.
__ cmpl(current_character(), Immediate('z'));
BranchOrBacktrack(above, on_no_match);
}
__ Move(rbx, ExternalReference::re_word_character_map());
DCHECK_EQ(0,
word_character_map[0]); // Character '\0' is not a word char.
__ testb(Operand(rbx, current_character(), times_1, 0),
current_character());
BranchOrBacktrack(zero, on_no_match);
return true;
}
case StandardCharacterSet::kNotWord: {
Label done;
if (mode_ != LATIN1) {
// Table is 256 entries, so all Latin1 characters can be tested.
__ cmpl(current_character(), Immediate('z'));
__ j(above, &done);
}
__ Move(rbx, ExternalReference::re_word_character_map());
DCHECK_EQ(0,
word_character_map[0]); // Character '\0' is not a word char.
__ testb(Operand(rbx, current_character(), times_1, 0),
current_character());
BranchOrBacktrack(not_zero, on_no_match);
if (mode_ != LATIN1) {
__ bind(&done);
}
return true;
}
case StandardCharacterSet::kEverything:
// Match any character.
return true;
}
}
void RegExpMacroAssemblerX64::Fail() {
STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero.
if (!global()) {
__ Move(rax, FAILURE);
}
__ jmp(&exit_label_);
}
void RegExpMacroAssemblerX64::LoadRegExpStackPointerFromMemory(Register dst) {
ExternalReference ref =
ExternalReference::address_of_regexp_stack_stack_pointer(isolate());
__ movq(dst, __ ExternalReferenceAsOperand(ref, dst));
}
void RegExpMacroAssemblerX64::StoreRegExpStackPointerToMemory(
Register src, Register scratch) {
ExternalReference ref =
ExternalReference::address_of_regexp_stack_stack_pointer(isolate());
__ movq(__ ExternalReferenceAsOperand(ref, scratch), src);
}
void RegExpMacroAssemblerX64::PushRegExpBasePointer(Register stack_pointer,
Register scratch) {
ExternalReference ref =
ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
__ movq(scratch, __ ExternalReferenceAsOperand(ref, scratch));
__ subq(scratch, stack_pointer);
__ movq(Operand(rbp, kRegExpStackBasePointer), scratch);
}
void RegExpMacroAssemblerX64::PopRegExpBasePointer(Register stack_pointer_out,
Register scratch) {
ExternalReference ref =
ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
__ movq(scratch, Operand(rbp, kRegExpStackBasePointer));
__ movq(stack_pointer_out,
__ ExternalReferenceAsOperand(ref, stack_pointer_out));
__ subq(stack_pointer_out, scratch);
StoreRegExpStackPointerToMemory(stack_pointer_out, scratch);
}
Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
Label return_rax;
// Finalize code - write the entry point code now we know how many registers
// we need.
__ bind(&entry_label_);
// Tell the system that we have a stack frame. Because the type is MANUAL, no
// physical frame is generated.
FrameScope scope(&masm_, StackFrame::MANUAL);
// Actually emit code to start a new stack frame.
__ pushq(rbp);
__ movq(rbp, rsp);
// Save parameters and callee-save registers. Order here should correspond
// to order of kBackup_ebx etc.
#ifdef V8_TARGET_OS_WIN
// MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
// Store register parameters in pre-allocated stack slots.
__ movq(Operand(rbp, kInputString), arg_reg_1);
__ movq(Operand(rbp, kStartIndex), arg_reg_2); // Passed as int32 in edx.
__ movq(Operand(rbp, kInputStart), arg_reg_3);
__ movq(Operand(rbp, kInputEnd), arg_reg_4);
STATIC_ASSERT(kNumCalleeSaveRegisters == 3);
__ pushq(rsi);
__ pushq(rdi);
__ pushq(rbx);
#else
// GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
// Push register parameters on stack for reference.
DCHECK_EQ(kInputString, -1 * kSystemPointerSize);
DCHECK_EQ(kStartIndex, -2 * kSystemPointerSize);
DCHECK_EQ(kInputStart, -3 * kSystemPointerSize);
DCHECK_EQ(kInputEnd, -4 * kSystemPointerSize);
DCHECK_EQ(kRegisterOutput, -5 * kSystemPointerSize);
DCHECK_EQ(kNumOutputRegisters, -6 * kSystemPointerSize);
__ pushq(arg_reg_1);
__ pushq(arg_reg_2);
__ pushq(arg_reg_3);
__ pushq(arg_reg_4);
__ pushq(r8);
__ pushq(r9);
STATIC_ASSERT(kNumCalleeSaveRegisters == 1);
__ pushq(rbx);
#endif
STATIC_ASSERT(kSuccessfulCaptures ==
kLastCalleeSaveRegister - kSystemPointerSize);
__ Push(Immediate(0)); // Number of successful matches in a global regexp.
STATIC_ASSERT(kStringStartMinusOne ==
kSuccessfulCaptures - kSystemPointerSize);
__ Push(Immediate(0)); // Make room for "string start - 1" constant.
STATIC_ASSERT(kBacktrackCount == kStringStartMinusOne - kSystemPointerSize);
__ Push(Immediate(0)); // The backtrack counter.
STATIC_ASSERT(kRegExpStackBasePointer ==
kBacktrackCount - kSystemPointerSize);
__ Push(Immediate(0)); // The regexp stack base ptr.
// Initialize backtrack stack pointer. It must not be clobbered from here on.
// Note the backtrack_stackpointer is *not* callee-saved.
STATIC_ASSERT(backtrack_stackpointer() == rcx);
LoadRegExpStackPointerFromMemory(backtrack_stackpointer());
// Store the regexp base pointer - we'll later restore it / write it to
// memory when returning from this irregexp code object.
PushRegExpBasePointer(backtrack_stackpointer(), kScratchRegister);
{
// Check if we have space on the stack for registers.
Label stack_limit_hit, stack_ok;
ExternalReference stack_limit =
ExternalReference::address_of_jslimit(isolate());
__ movq(r9, rsp);
__ Move(kScratchRegister, stack_limit);
__ subq(r9, Operand(kScratchRegister, 0));
// Handle it if the stack pointer is already below the stack limit.
__ j(below_equal, &stack_limit_hit);
// Check if there is room for the variable number of registers above
// the stack limit.
__ cmpq(r9, Immediate(num_registers_ * kSystemPointerSize));
__ j(above_equal, &stack_ok);
// Exit with OutOfMemory exception. There is not enough space on the stack
// for our working registers.
__ Move(rax, EXCEPTION);
__ jmp(&return_rax);
__ bind(&stack_limit_hit);
__ Move(code_object_pointer(), masm_.CodeObject());
__ pushq(backtrack_stackpointer());
CallCheckStackGuardState(); // Preserves no registers beside rbp and rsp.
__ popq(backtrack_stackpointer());
__ testq(rax, rax);
// If returned value is non-zero, we exit with the returned value as result.
__ j(not_zero, &return_rax);
__ bind(&stack_ok);
}
// Allocate space on stack for registers.
__ AllocateStackSpace(num_registers_ * kSystemPointerSize);
// Load string length.
__ movq(rsi, Operand(rbp, kInputEnd));
// Load input position.
__ movq(rdi, Operand(rbp, kInputStart));
// Set up rdi to be negative offset from string end.
__ subq(rdi, rsi);
// Set rax to address of char before start of the string
// (effectively string position -1).
__ movq(rbx, Operand(rbp, kStartIndex));
__ negq(rbx);
if (mode_ == UC16) {
__ leaq(rax, Operand(rdi, rbx, times_2, -char_size()));
} else {
__ leaq(rax, Operand(rdi, rbx, times_1, -char_size()));
}
// Store this value in a local variable, for use when clearing
// position registers.
__ movq(Operand(rbp, kStringStartMinusOne), rax);
// Initialize code object pointer.
__ Move(code_object_pointer(), masm_.CodeObject());
Label load_char_start_regexp; // Execution restarts here for global regexps.
{
Label start_regexp;
// Load newline if index is at start, previous character otherwise.
__ cmpl(Operand(rbp, kStartIndex), Immediate(0));
__ j(not_equal, &load_char_start_regexp, Label::kNear);
__ Move(current_character(), '\n');
__ jmp(&start_regexp, Label::kNear);
// Global regexp restarts matching here.
__ bind(&load_char_start_regexp);
// Load previous char as initial value of current character register.
LoadCurrentCharacterUnchecked(-1, 1);
__ bind(&start_regexp);
}
// Initialize on-stack registers.
if (num_saved_registers_ > 0) {
// Fill saved registers with initial value = start offset - 1
// Fill in stack push order, to avoid accessing across an unwritten
// page (a problem on Windows).
if (num_saved_registers_ > 8) {
__ Move(r9, kRegisterZero);
Label init_loop;
__ bind(&init_loop);
__ movq(Operand(rbp, r9, times_1, 0), rax);
__ subq(r9, Immediate(kSystemPointerSize));
__ cmpq(r9, Immediate(kRegisterZero -
num_saved_registers_ * kSystemPointerSize));
__ j(greater, &init_loop);
} else { // Unroll the loop.
for (int i = 0; i < num_saved_registers_; i++) {
__ movq(register_location(i), rax);
}
}
}
__ jmp(&start_label_);
// Exit code:
if (success_label_.is_linked()) {
// Save captures when successful.
__ bind(&success_label_);
if (num_saved_registers_ > 0) {
// copy captures to output
__ movq(rdx, Operand(rbp, kStartIndex));
__ movq(rbx, Operand(rbp, kRegisterOutput));
__ movq(rcx, Operand(rbp, kInputEnd));
__ subq(rcx, Operand(rbp, kInputStart));
if (mode_ == UC16) {
__ leaq(rcx, Operand(rcx, rdx, times_2, 0));
} else {
__ addq(rcx, rdx);
}
for (int i = 0; i < num_saved_registers_; i++) {
__ movq(rax, register_location(i));
if (i == 0 && global_with_zero_length_check()) {
// Keep capture start in rdx for the zero-length check later.
__ movq(rdx, rax);
}
__ addq(rax, rcx); // Convert to index from start, not end.
if (mode_ == UC16) {
__ sarq(rax, Immediate(1)); // Convert byte index to character index.
}
__ movl(Operand(rbx, i * kIntSize), rax);
}
}
if (global()) {
// Restart matching if the regular expression is flagged as global.
// Increment success counter.
__ incq(Operand(rbp, kSuccessfulCaptures));
// Capture results have been stored, so the number of remaining global
// output registers is reduced by the number of stored captures.
__ movsxlq(rcx, Operand(rbp, kNumOutputRegisters));
__ subq(rcx, Immediate(num_saved_registers_));
// Check whether we have enough room for another set of capture results.
__ cmpq(rcx, Immediate(num_saved_registers_));
__ j(less, &exit_label_);
__ movq(Operand(rbp, kNumOutputRegisters), rcx);
// Advance the location for output.
__ addq(Operand(rbp, kRegisterOutput),
Immediate(num_saved_registers_ * kIntSize));
// Prepare rax to initialize registers with its value in the next run.
__ movq(rax, Operand(rbp, kStringStartMinusOne));
// Restore the original regexp stack pointer value (effectively, pop the
// stored base pointer).
PopRegExpBasePointer(backtrack_stackpointer(), kScratchRegister);
if (global_with_zero_length_check()) {
// Special case for zero-length matches.
// rdx: capture start index
__ cmpq(rdi, rdx);
// Not a zero-length match, restart.
__ j(not_equal, &load_char_start_regexp);
// rdi (offset from the end) is zero if we already reached the end.
__ testq(rdi, rdi);
__ j(zero, &exit_label_, Label::kNear);
// Advance current position after a zero-length match.
Label advance;
__ bind(&advance);
if (mode_ == UC16) {
__ addq(rdi, Immediate(2));
} else {
__ incq(rdi);
}
if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
}
__ jmp(&load_char_start_regexp);
} else {
__ Move(rax, SUCCESS);
}
}
__ bind(&exit_label_);
if (global()) {
// Return the number of successful captures.
__ movq(rax, Operand(rbp, kSuccessfulCaptures));
}
__ bind(&return_rax);
// Restore the original regexp stack pointer value (effectively, pop the
// stored base pointer).
PopRegExpBasePointer(backtrack_stackpointer(), kScratchRegister);
#ifdef V8_TARGET_OS_WIN
// Restore callee save registers.
__ leaq(rsp, Operand(rbp, kLastCalleeSaveRegister));
STATIC_ASSERT(kNumCalleeSaveRegisters == 3);
__ popq(rbx);
__ popq(rdi);
__ popq(rsi);
// Stack now at rbp.
#else
// Restore callee save register.
STATIC_ASSERT(kNumCalleeSaveRegisters == 1);
__ movq(rbx, Operand(rbp, kBackup_rbx));
// Skip rsp to rbp.
__ movq(rsp, rbp);
#endif
// Exit function frame, restore previous one.
__ popq(rbp);
__ ret(0);
// Backtrack code (branch target for conditional backtracks).
if (backtrack_label_.is_linked()) {
__ bind(&backtrack_label_);
Backtrack();
}
Label exit_with_exception;
// Preempt-code
if (check_preempt_label_.is_linked()) {
SafeCallTarget(&check_preempt_label_);
__ pushq(rdi);
StoreRegExpStackPointerToMemory(backtrack_stackpointer(), kScratchRegister);
CallCheckStackGuardState();
__ testq(rax, rax);
// If returning non-zero, we should end execution with the given
// result as return value.
__ j(not_zero, &return_rax);
// Restore registers.
__ Move(code_object_pointer(), masm_.CodeObject());
__ popq(rdi);
LoadRegExpStackPointerFromMemory(backtrack_stackpointer());
// String might have moved: Reload esi from frame.
__ movq(rsi, Operand(rbp, kInputEnd));
SafeReturn();
}
// Backtrack stack overflow code.
if (stack_overflow_label_.is_linked()) {
SafeCallTarget(&stack_overflow_label_);
// Reached if the backtrack-stack limit has been hit.
PushCallerSavedRegisters();
// Call GrowStack(isolate).
StoreRegExpStackPointerToMemory(backtrack_stackpointer(), kScratchRegister);
static constexpr int kNumArguments = 1;
__ PrepareCallCFunction(kNumArguments);
__ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate()));
ExternalReference grow_stack = ExternalReference::re_grow_stack();
__ CallCFunction(grow_stack, kNumArguments);
// If nullptr is returned, we have failed to grow the stack, and must exit
// with a stack-overflow exception.
__ testq(rax, rax);
__ j(equal, &exit_with_exception);
PopCallerSavedRegisters();
// Otherwise use return value as new stack pointer.
__ movq(backtrack_stackpointer(), rax);
// Restore saved registers and continue.
__ Move(code_object_pointer(), masm_.CodeObject());
SafeReturn();
}
if (exit_with_exception.is_linked()) {
// If any of the code above needed to exit with an exception.
__ bind(&exit_with_exception);
// Exit with Result EXCEPTION(-1) to signal thrown exception.
__ Move(rax, EXCEPTION);
__ jmp(&return_rax);
}
if (fallback_label_.is_linked()) {
__ bind(&fallback_label_);
__ Move(rax, FALLBACK_TO_EXPERIMENTAL);
__ jmp(&return_rax);
}
FixupCodeRelativePositions();
CodeDesc code_desc;
Isolate* isolate = this->isolate();
masm_.GetCode(isolate, &code_desc);
Handle<Code> code = Factory::CodeBuilder(isolate, code_desc, CodeKind::REGEXP)
.set_self_reference(masm_.CodeObject())
.Build();
PROFILE(isolate,
RegExpCodeCreateEvent(Handle<AbstractCode>::cast(code), source));
return Handle<HeapObject>::cast(code);
}
void RegExpMacroAssemblerX64::GoTo(Label* to) {
BranchOrBacktrack(no_condition, to);
}
void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
int comparand,
Label* if_ge) {
__ cmpq(register_location(reg), Immediate(comparand));
BranchOrBacktrack(greater_equal, if_ge);
}
void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
int comparand,
Label* if_lt) {
__ cmpq(register_location(reg), Immediate(comparand));
BranchOrBacktrack(less, if_lt);
}
void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
Label* if_eq) {
__ cmpq(rdi, register_location(reg));
BranchOrBacktrack(equal, if_eq);
}
RegExpMacroAssembler::IrregexpImplementation
RegExpMacroAssemblerX64::Implementation() {
return kX64Implementation;
}
void RegExpMacroAssemblerX64::PopCurrentPosition() {
Pop(rdi);
}
void RegExpMacroAssemblerX64::PopRegister(int register_index) {
Pop(rax);
__ movq(register_location(register_index), rax);
}
void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
Push(label);
CheckStackLimit();
}
void RegExpMacroAssemblerX64::PushCurrentPosition() {
Push(rdi);
}
void RegExpMacroAssemblerX64::PushRegister(int register_index,
StackCheckFlag check_stack_limit) {
__ movq(rax, register_location(register_index));
Push(rax);
if (check_stack_limit) CheckStackLimit();
}
void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
__ movq(rdi, register_location(reg));
}
void RegExpMacroAssemblerX64::ReadPositionFromRegister(Register dst, int reg) {
__ movq(dst, register_location(reg));
}
// Preserves a position-independent representation of the stack pointer in reg:
// reg = top - sp.
void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
ExternalReference stack_top_address =
ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
__ movq(rax, __ ExternalReferenceAsOperand(stack_top_address, rax));
__ subq(rax, backtrack_stackpointer());
__ movq(register_location(reg), rax);
}
void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
ExternalReference stack_top_address =
ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
__ movq(backtrack_stackpointer(),
__ ExternalReferenceAsOperand(stack_top_address,
backtrack_stackpointer()));
__ subq(backtrack_stackpointer(), register_location(reg));
}
void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
Label after_position;
__ cmpq(rdi, Immediate(-by * char_size()));
__ j(greater_equal, &after_position, Label::kNear);
__ Move(rdi, -by * char_size());
// On RegExp code entry (where this operation is used), the character before
// the current position is expected to be already loaded.
// We have advanced the position, so it's safe to read backwards.
LoadCurrentCharacterUnchecked(-1, 1);
__ bind(&after_position);
}
void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
__ movq(register_location(register_index), Immediate(to));
}
bool RegExpMacroAssemblerX64::Succeed() {
__ jmp(&success_label_);
return global();
}
void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
int cp_offset) {
if (cp_offset == 0) {
__ movq(register_location(reg), rdi);
} else {
__ leaq(rax, Operand(rdi, cp_offset * char_size()));
__ movq(register_location(reg), rax);
}
}
void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
DCHECK(reg_from <= reg_to);
__ movq(rax, Operand(rbp, kStringStartMinusOne));
for (int reg = reg_from; reg <= reg_to; reg++) {
__ movq(register_location(reg), rax);
}
}
// Private methods:
void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
// This function call preserves no register values. Caller should
// store anything volatile in a C call or overwritten by this function.
static const int num_arguments = 3;
__ PrepareCallCFunction(num_arguments);
#ifdef V8_TARGET_OS_WIN
// Second argument: Code of self. (Do this before overwriting r8).
__ movq(rdx, code_object_pointer());
// Third argument: RegExp code frame pointer.
__ movq(r8, rbp);
// First argument: Next address on the stack (will be address of
// return address).
__ leaq(rcx, Operand(rsp, -kSystemPointerSize));
#else
// Third argument: RegExp code frame pointer.
__ movq(rdx, rbp);
// Second argument: Code of self.
__ movq(rsi, code_object_pointer());
// First argument: Next address on the stack (will be address of
// return address).
__ leaq(rdi, Operand(rsp, -kSystemPointerSize));
#endif
ExternalReference stack_check =
ExternalReference::re_check_stack_guard_state();
__ CallCFunction(stack_check, num_arguments);
}
// Helper function for reading a value out of a stack frame.
template <typename T>
static T& frame_entry(Address re_frame, int frame_offset) {
return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
}
template <typename T>
static T* frame_entry_address(Address re_frame, int frame_offset) {
return reinterpret_cast<T*>(re_frame + frame_offset);
}
int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
Address raw_code,
Address re_frame) {
Code re_code = Code::cast(Object(raw_code));
return NativeRegExpMacroAssembler::CheckStackGuardState(
frame_entry<Isolate*>(re_frame, kIsolate),
frame_entry<int>(re_frame, kStartIndex),
static_cast<RegExp::CallOrigin>(frame_entry<int>(re_frame, kDirectCall)),
return_address, re_code,
frame_entry_address<Address>(re_frame, kInputString),
frame_entry_address<const byte*>(re_frame, kInputStart),
frame_entry_address<const byte*>(re_frame, kInputEnd));
}
Operand RegExpMacroAssemblerX64::register_location(int register_index) {
DCHECK(register_index < (1<<30));
if (num_registers_ <= register_index) {
num_registers_ = register_index + 1;
}
return Operand(rbp, kRegisterZero - register_index * kSystemPointerSize);
}
void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
Label* on_outside_input) {
if (cp_offset >= 0) {
__ cmpl(rdi, Immediate(-cp_offset * char_size()));
BranchOrBacktrack(greater_equal, on_outside_input);
} else {
__ leaq(rax, Operand(rdi, cp_offset * char_size()));
__ cmpq(rax, Operand(rbp, kStringStartMinusOne));
BranchOrBacktrack(less_equal, on_outside_input);
}
}
void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
Label* to) {
if (condition < 0) { // No condition
if (to == nullptr) {
Backtrack();
return;
}
__ jmp(to);
return;
}
if (to == nullptr) {
__ j(condition, &backtrack_label_);
return;
}
__ j(condition, to);
}
void RegExpMacroAssemblerX64::SafeCall(Label* to) {
__ call(to);
}
void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
__ bind(label);
__ subq(Operand(rsp, 0), code_object_pointer());
}
void RegExpMacroAssemblerX64::SafeReturn() {
__ addq(Operand(rsp, 0), code_object_pointer());
__ ret(0);
}
void RegExpMacroAssemblerX64::Push(Register source) {
DCHECK(source != backtrack_stackpointer());
// Notice: This updates flags, unlike normal Push.
__ subq(backtrack_stackpointer(), Immediate(kIntSize));
__ movl(Operand(backtrack_stackpointer(), 0), source);
}
void RegExpMacroAssemblerX64::Push(Immediate value) {
// Notice: This updates flags, unlike normal Push.
__ subq(backtrack_stackpointer(), Immediate(kIntSize));
__ movl(Operand(backtrack_stackpointer(), 0), value);
}
void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
for (int position : code_relative_fixup_positions_) {
// The position succeeds a relative label offset from position.
// Patch the relative offset to be relative to the Code object pointer
// instead.
int patch_position = position - kIntSize;
int offset = masm_.long_at(patch_position);
masm_.long_at_put(patch_position,
offset
+ position
+ Code::kHeaderSize
- kHeapObjectTag);
}
code_relative_fixup_positions_.Rewind(0);
}
void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
__ subq(backtrack_stackpointer(), Immediate(kIntSize));
__ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
MarkPositionForCodeRelativeFixup();
}
void RegExpMacroAssemblerX64::Pop(Register target) {
DCHECK(target != backtrack_stackpointer());
__ movsxlq(target, Operand(backtrack_stackpointer(), 0));
// Notice: This updates flags, unlike normal Pop.
__ addq(backtrack_stackpointer(), Immediate(kIntSize));
}
void RegExpMacroAssemblerX64::Drop() {
__ addq(backtrack_stackpointer(), Immediate(kIntSize));
}
void RegExpMacroAssemblerX64::CheckPreemption() {
// Check for preemption.
Label no_preempt;
ExternalReference stack_limit =
ExternalReference::address_of_jslimit(isolate());
__ load_rax(stack_limit);
__ cmpq(rsp, rax);
__ j(above, &no_preempt);
SafeCall(&check_preempt_label_);
__ bind(&no_preempt);
}
void RegExpMacroAssemblerX64::CheckStackLimit() {
Label no_stack_overflow;
ExternalReference stack_limit =
ExternalReference::address_of_regexp_stack_limit_address(isolate());
__ load_rax(stack_limit);
__ cmpq(backtrack_stackpointer(), rax);
__ j(above, &no_stack_overflow);
SafeCall(&stack_overflow_label_);
__ bind(&no_stack_overflow);
}
void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
int characters) {
if (mode_ == LATIN1) {
if (characters == 4) {
__ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
} else if (characters == 2) {
__ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
} else {
DCHECK_EQ(1, characters);
__ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
}
} else {
DCHECK(mode_ == UC16);
if (characters == 2) {
__ movl(current_character(),
Operand(rsi, rdi, times_1, cp_offset * sizeof(base::uc16)));
} else {
DCHECK_EQ(1, characters);
__ movzxwl(current_character(),
Operand(rsi, rdi, times_1, cp_offset * sizeof(base::uc16)));
}
}
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64