
Autonolas Tokenomics

A brief overview of the tokenomics model 1
Main tokenomics objectives 2
OLAS token 2

Functionalities enabled by OLAS 2
OLAS inflation model 2

Main tokenomics primitive 3
How the staking model for agents and component code is incentivized 3
How and when the bonding mechanism is incentivized 5

Product function 6
How interest rate and discount factor are regulated 7
Bonding respects the OLAS inflation schedule 7

Tokenomics smart contract 8
High-level description 8
Technical description 9

Depository.sol 9
GenericBondCalculator.sol 13
Treasury.sol 14
Dispenser.sol 20
DonatorBlacklist.sol 21
TokenomicsConstants.sol 22
TokenomicsProxy.sol 23
Tokenomics.sol 24

A brief overview of the tokenomics model
The goal of this tokenomics is to enable the rise of a sustainable ecosystem of
Autonomous Services.

Autonomous services are capable of complex processing and can provide any level of
desired centralization or decentralization. When operated by groups with open
participation, these are extremely reliable and robust. In Autonolas, autonomous services
are implemented as Agent Services which primarily run off-chain but can be also
connected to a settlement layer (i.e. a programmable blockchain). These services are
made up of software agents which in turn are made up of software components.

https://www.autonolas.network/education-articles/1
https://www.autonolas.network/education-articles/2

Main tokenomics objectives

Reaching its goal, the main objectives of tokenomics are the following:

● To incentivize the development and composability of software agents and
software components.

● To grow the Autonolas protocol’s capital in the form of protocol-owned liquidity
�POL� when there is a high potential output of software development. In such a
way capital will not exceed software code production and its usefulness.

● To enable the protocol to own its productive services and accrue donations from
them.

OLAS token

The protocol coordinates the goals described above through a tradable utility token,
OLAS, that will provide access to the core functionalities of the Autonolas project. The
token follows the ERC20 standard and is deployed on the Ethereum mainnet.

The token has an inflationary model to account for the economic primitives enabled by
Autonolas tokenomics, e.g., bonding mechanism and OLAS top-up to boost developers'
incentives (cf. tokenomics primitive).

Functionalities enabled by OLAS
We summarize the main functionalities enabled by OLAS as follows:

1. OLAS can be locked for veOLAS to participate in the Autonolas DAO governance,
thus shaping the protocol and its tokenomics

2. OLAS can be locked for veOLAS for permissionless access to a service whitelist that
unlocks code owners’ top-ups

3. OLAS can be used to acquire (on a third-party DEX� LP-tokens that are required for
the bonding mechanism. This will enable protocol-owned liquidity and therefore
support the protocol’s long-term growth.

OLAS inflation model
The number of OLAS tokens is capped at 1bn for the first 10 years and the maximum
token inflation per annum is capped at 2% thereafter. Upon launch, an allocation of

- 32.65% of the tokens will be sold to founding members of the DAO;
- 10% of the tokens are earmarked for future private and public sales;
- 10% of the tokens will be allocated to the Autonolas DAO treasury; and
- 47.35% may be used to incentivize developers’ top-ups for useful code and

bonders, autonomously provisioned by the protocol over the initial 10 years.

Main tokenomics primitive
Tokenomics primitives that are primarily leveraged to accomplish the above objectives:

1. Staking model for agent and component code
Developers of agent and component code can register their code on-chain by
using Autonolas registries. The code existing off-chain will be uniquely represented
on-chain by means of NFTs. The developer can accrue incentives proportional to
their code contribution.

2. Bonding mechanism. The protocol can grow its own liquidity by incentivizing
liquidity providers to sell their own liquidity pairs (with one of the tokens in the pair
being the protocol token, e.g. OLAS�ETH� to the protocol for OLAS at a discount

3. Protocol-owned services �PoSes). The PoSes are autonomous services, owned
by a DAO, operated by the ecosystem, and implemented by developers around the
world. This novel primitive enables the DAO that manages the PoSe to own
productive autonomous services and derive donations from them.

How the staking model for agents and component code is
incentivized

Before proceeding with the next two sections, it is important to give the following
definition. The term epoch can either be defined as any consecutive period of m blocks or
similarly as a certain number of consecutive seconds len. Note that the number of block
m or similarly the number of seconds len are tunable values that can be set by the DAO
governance and have a fixed minimum.

1. Developers stake agents and/or components on-chain
2. Service owners use staked agents and components to create autonomous

services. Then they register their service on-chain using Autonolas registries

3. A signal of appreciation for a specific autonomous service can be shown by
sending a donation to the protocol for that service.
Specifically, to signal appreciation to a registered service , an Ether donation
can be sent to Autonolas protocol (using the depositServiceDonationsETH
method, see methods in Treasury.sol) for the registered service .

4. With a share of accrued donations, the protocol will reward the staked agents
and/or components that facilitated such donations.
Specifically, assuming that during an epoch,

1. the registered services are appreciated with donations
2. the number of staked components (respectively agents) referenced in the

service is denoted with (respectively)
3. the staked component (agent) is referenced in the registered services

,
4. (respectively) is the share of the donations aimed to

reward the staked referenced components (respectively agents)

then the protocol will reward component with the following amount

�1�

(respectively agent

�2�

)

5. Moreover, when the service owners or donors own a certain threshold of veOLAS
(e.g. they have locked a certain amount of OLAS for a certain period of time), they
are considered whitelisted. The protocol will also distribute a share of the OLAS
inflation to staked components (resp. agents) referenced in the whitelisted
services.
Specifically, assuming that during an epoch,

a. the registered services are appreciated with donations
b. the number of staked components (respectively agents) referenced in the

service is denoted with (respectively)
c. the staked component (agent) is referenced in the registered

whitelisted services ,
d. the whitelisted services are ,

https://www.codecogs.com/eqnedit.php?latex=s_j#0
https://www.codecogs.com/eqnedit.php?latex=r_j#0
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L240
https://www.codecogs.com/eqnedit.php?latex=s_j#0
https://www.codecogs.com/eqnedit.php?latex=s_j#0
https://www.codecogs.com/eqnedit.php?latex=r_j#0
https://www.codecogs.com/eqnedit.php?latex=s_j#0
https://www.codecogs.com/eqnedit.php?latex=Ncomp(s_j)#0
https://www.codecogs.com/eqnedit.php?latex=Nagents(s_j)#0
https://www.codecogs.com/eqnedit.php?latex=c_i#0
https://www.codecogs.com/eqnedit.php?latex=a_i#0
https://www.codecogs.com/eqnedit.php?latex=s_%7Bj%2Ci%7D#0
https://www.codecogs.com/eqnedit.php?latex=j%3D1%2C...%2Cl_i#0
https://www.codecogs.com/eqnedit.php?latex=Fcomps#0
https://www.codecogs.com/eqnedit.php?latex=Fagents#0
https://www.codecogs.com/eqnedit.php?latex=c_i#0
https://www.codecogs.com/eqnedit.php?latex=a_i#0
https://www.codecogs.com/eqnedit.php?latex=s_j#0
https://www.codecogs.com/eqnedit.php?latex=r_j#0
https://www.codecogs.com/eqnedit.php?latex=s_j#0
https://www.codecogs.com/eqnedit.php?latex=Ncomp(s_j)#0
https://www.codecogs.com/eqnedit.php?latex=Nagents(s_j)#0
https://www.codecogs.com/eqnedit.php?latex=c_i#0
https://www.codecogs.com/eqnedit.php?latex=a_i#0
https://www.codecogs.com/eqnedit.php?latex=s_%7Bj%2Ci%7D#0
https://www.codecogs.com/eqnedit.php?latex=j%3D1%2C...%2Cl_i#0
https://www.codecogs.com/eqnedit.php?latex=s_k#0
https://www.codecogs.com/eqnedit.php?latex=k%3D1%2C...%2Cw#0

5. (respectively) is the share of the epoch inflation that
the protocol aims to distribute to the staked components (respectively
agents) referenced in whitelisted services

then the protocol will distribute to the component with the following amount of
OLAS

�3�

(respectively to agent

�4�

).

How and when the bonding mechanism is incentivized
In a nutshell, the bonding mechanism can be summarized as follows.
An investor with an enabled Uniswap V2 LP-pair asset (e.g. OLAS�DAI, or OLAS�USDC, or
OLAS�ETH� can deposit his assets via the Autonolas depository smart contract at time t.
Then at time t+tv, where tv is the vesting time, the investor receives OLAS at a discount
relative to the price quoted on the relevant DEX.

So, assume that an investor wants to bond certain numbers of his shares of an enabled
Uniswap V2 LP-pair at a time t whose price is priceShares on a relative DEX. Then at time
t+tv the bonder receives the following number of OLAS whose price at time t is

�1+epsilon(t))* priceShares
The value epsilon(t) can be defined as the interest rate on purchased bonds with price
priceShares and DF(t)=1/(1+epsilon(t)) is defined as the discount factor.

Therefore when one aims to incentivize the growth of bond demand, the interest
epsilon(t) can be set to a large value and DF(t) to a small one. Vice versa when aimed to
discourage the bond demand the epsilon(t) can be set to a very small value and DF(t) to a
large one would.

https://www.codecogs.com/eqnedit.php?latex=TopUpC#0
https://www.codecogs.com/eqnedit.php?latex=TopUpA#0
https://www.codecogs.com/eqnedit.php?latex=c_i#0
https://www.codecogs.com/eqnedit.php?latex=a_i#0

Currently, the protocol aims to incentive bonding when there is a large potential output of
code (agents/components) production in the ecosystem. In particular, a production
function (cf. subsection below) is used to measure the potential code production during
one epoch and, in turn, to establish the interest rate and so the discount factor which a
bonder can receive on purchased bonds.

Product function
The potential code production is measured using a production function. In Economics,
a production function relates outputs of a production process to inputs of production. So
it is a mathematical function that relates to the amount of output that can be obtained
from a given number of inputs. Generally, these inputs are capital and labor.
In our case
Output = valuable code (staked agents and components) to enable services that, in turn,

can provide donations to the protocol.

Production process = creation of components and agents

Inputs

● is the capital (right now, intended as the Ethers that becomes owned by𝐾(𝑛)

the protocol) accrued by the protocol during the -th epoch𝑛

● is the number of valuable developers that is the stakers of useful code𝐷(𝑛)

(e.g. agents or components code referenced in appreciated services, cf.

section above to see how the signal of appreciation is intended) during the -th𝑛

epoch.

Then, the production function is computed as

 𝑓(𝐾(𝑛), 𝐷(𝑛)) = 𝑑(𝑛) * (𝑘(𝑛) * 𝐾(𝑛) + 𝐷(𝑛)),

where

- is the (average) number of valuable developers that can be funded by the𝑘(𝑛)

protocol with one unit of capital (currently, one unit of capital is intended to be one

Ether) during one epoch

- is the (average) number of units of useful code that can be built by a𝑑(𝑛)

developer during one epoch (currently one unit of code is intended to be either

one component or two agents).

Specifically, outputs the number of units of useful code that can be𝑓(𝐾(𝑛), 𝐷(𝑛))

produced during one epoch with as input capital and as input number of𝐾(𝑛) 𝐷(𝑛)

developers.

In particular, this means that when and are large enough, then there is potential𝐾(𝑛) 𝐷(𝑛)

large production of useful code, while when and approaches zero, there is𝐾(𝑛) 𝐷(𝑛)

scarce potential of useful code production.

How interest rate and discount factor are regulated
As mentioned earlier, the protocol aims to incentive bonding when there is a large
potential output of code (agents/components) production in the ecosystem.

Let epsilon be the maximum possible interest rate on a bond that the DAO governance
wants to give.
Since when is large there is high production of useful code, then bonding𝑓(𝐾(𝑛), 𝐷(𝑛))
should be incentivized, and the interest rate for bonding during the (n+1)-th epoch
maximum interest rate is set equal to epsilon.
While, when is small and in particular / 100 is smaller than the𝑓(𝐾(𝑛), 𝐷(𝑛)) 𝑓(𝐾(𝑛), 𝐷(𝑛))
epsilon rate, there is potentially low production of useful code, so the bonding should be
disincentivized, and the interest rate on the bonding during the (n+1)-the epoch is set
equal to / 100𝑓(𝐾(𝑛), 𝐷(𝑛))

Bonding respects the OLAS inflation schedule

There is an inflation schedule that dictates how much OLAS can mint per epoch at
a maximum. Since bonding implies minting new OLAS tokens, we need to take
into account that during an epoch we have a maximum amount that can be
bonded.

Tokenomics smart contract

High-level description
A high-level description of Autonolas tokenomics smart contract architecture follows.

Tokenomics.sol

This smart contract contains the logic of the mathematical model. Specifically, it contains
the logic required to calculate the incentives for components and agents' code in terms of
their usefulness in the ecosystem and the logic to regulate the discount factor of the
bonding mechanism in terms of the potential code production.

TokenomicsProxy.sol

This smart contract stores the data and uses the logic of the tokenomics contract by
means of the delegatecall() function. Specifically, this is the single contract for
storage that is considered to be immutable for a long time. The tokenomics
implementation is just stacked up to it via the deployed tokenomics version address.

Depository.sol

This contract implements the logic behind the bonding mechanism: create or close bond
programs for specific LP pairs, allow users to deposit their LP pairs, and accrue the
matured OLAS at discount in exchange for their deposited pairs.

GenericBondCalculator.sol

This contract is primarily implemented to calculate the amount of OLAS that a bonder will
receive in exchange for their deposited LP assets1.

Treasury.sol

This contract contains the logic for the management of the Autonolas protocol Treasury.
It provides the means to donate to the protocol, withdraw assets from the treasury, drain
assets in other protocol contracts, and mint OLAS.

1 Note that the system is immune to price oracle attacks because the calculation made
here and used in another contract is based only on DAO inputs assigned when a bonding
program is opened and on a discount factor that uses internal parameters accumulated
with the tokenomics contract.

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/TokenomicsProxy.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.solhttps://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Depository.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/GenericBondCalculator.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol

Dispenser

This contract allows agent/component developers to claim their incentives (e.g. the

incentives autonomously assigned by the protocol to reward useful code).

DonatorBlacklist.sol

This contract allows managing an address blacklist. This is necessary to filter the donator

addresses and allow the protocol to only accept donations from non-blacklisted

addresses.

TokenomicsConstants.sol

Abstract contract that contains constants related to tokenomics such as the OLAS annual

supply cap and inflation amount for ten years.

Technical description

Depository.sol

Ownable smart contract with managers Treasury and Tokenomics contracts. Other than

having the functions to update owner, managers, and the BondCalculator contract, the

Depository contract has the following methods.

1. Create function allows the contract owner to start a bonding program.

Input parameters to correctly add for creating the program:

a. token: Uniswap v2 LP token address enabled by the Treasury

b. priceLP: LP token price with 18 decimals and non-zero at which an LP

share is priced during the bonding program

c. supply: OLAS supply (non-zero and beyond the limit fixed by the

tokenomics to fund bonding programs and not overflowing the contract
limit) that will be reserved to fund OLAS for this bonding program

d. vesting: the vesting time (bigger or equal to the minimal vesting value) in

seconds that a bonder has to wait before being able to withdraw OLAS

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Dispenser.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/DonatorBlacklist.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/TokenomicsConstants.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Depository.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Depository.sol#L180

Whether the inputs parameters are correct and the function caller is the contract

owner,

- the bonding program with a new productId is created and will mature

after the vesting time

- the Product information, e.g. priceLP, token, supply, maturity

are pushed in the mapBondProducts[productId] mapping

- the event CreateProduct(token, productId, supply) is emitted

2. Close function allows the contract owner to terminate a set of bonding programs:

a. productIds: array of bonding program identifiers to be terminated

When the function caller is the contract owner

- If the OLAS supply reserved for each productIds[i] of bonding

program was not completely used, it is again accounted for in the supply

reserved by the tokenomics for the bonding mechanism

- Each bonding program productIds[i] will be closed

- The relative information in mapBondProducts[productIds[i]] will be

deleted

- The events CloseProduct(token, productIds[i]) are emitted

3. Deposit function allows a user to purchase OLAS at a discount by creating a bond

in exchange for a deposit of the user's LP-share (of an Uniswap v2 LP token) via

an open bonding program previously created with token as input address.

Input parameters to correctly add for a successful bond creation:

a. productId: open bonding program identification for bond creation

b. tokenAmount: (non-zero) share of LP token of the user's balance sold to

the protocol for OLAS

Whether the user calling the function has priory approved the treasury for

spending the tokenAmount (e.g. has successfully

approved(Treasury.address, tokenAmount)), the input parameters are

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Depository.sol#L180
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Depository.sol#L272

correct and the OLAS payout is beyond the supply limit allowed for the bonding

program productId

- the bonding program supply is updated,

- a bond with bondId is created

- The Bond information, e.g. user’s address, payout, maturity,

productId are pushed in the mapUserBond[bondId] mapping

- The tokenomics contract function depositTokenForOLAS is called to

deposit the tokenAmount in the protocol treasury

- the event CreateBond(token, productId, payout, tokenAmount)

is emitted

4. Redeem function allows a bonder owner to accrue the OLAS payout arising from its

matured bonds.

Input parameters to correctly redeem OLAS�

a. bondIds: bonder’s bonds matured (e.g. function called after vesting time)

Whether the input parameters are correct, the bonds exist, the function caller is

the bonds owner, and the payout is not zero

- the payout is transferred to the function caller

- the relative information in mapUserBond[bondId[i]]will be deleted

- the relative information in mapUserBond[bondId[i]]will be deleted

5. getProducts function allows a user to get information on all (not-closed yet)

bonding programs.

Input parameter to correctly receive the information.

a. active: true for having the information on all the active products and

false otherwise

If the input is true the function will return the array of active bonding programs

identifiers productIds and if the input is false the function will return the array

of inactive bonding programs identifiers productIds

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Depository.sol#L326
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Depository.sol#L375

6. isActiveProduct function allows a user to get information on the status of a

bonding program.

Input parameters to correctly receive the information:

a. productId: identifier of a bonding program

Whether the input parameter is an existing bonding program then the function will

return

- true whether programs identifiers productId is still active e.g. has

non-zero OLAS supply left

- false whether programs identifiers productId is not active e.g. has zero

OLAS supply left

7. getBonds function allows a user to get information on matured or unmatured

(non-redeemed) bonds and the total OLAS payout of a certain account.

Input parameters to correctly receive the information:

a. account: non-zero address of a bonder

b. matured: true or false to get information of non-redeemed but matured

account’s bonds or non-redeemed and unmatured account’s bonds.

Whether the input parameters are correct the function will show the (non-zero)

array of (matured or not) bondIds that the account has and the total OLAS

payout account can accrue when he redeems.

8. getBondStatus function allows a user to get information on the maturity and the

payout of a single bondId.

Input parameters to correctly receive the information:

a. bondId: identifier of the (pending, e.g. non-zero) bond

Whether the input parameters are correct the function will show the (non-zero)

OLAS payout for the bondId and will show true if it is matured (and can be then

redeemed) and false otherwise.

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Depository.sol#L411
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Depository.sol#L422
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Depository.sol#L467

9. getCurrentPriceLP function allows a user to get information on the amount of

OLAS tokens a user can receive by removing one LP share from the pool of

Uniswap V2 LP pair with the address token.

When the address token is a correct and existing Uniswap V2 LP pair address the

function will return the amount of OLAS tokens a user can receive by removing one

of the LP shares.

GenericBondCalculator.sol

Smart contract for calculating the OLAS payout for the bonding programs. It has the

following methods. Among others, this contact uses some methods from the interface

IUniswapV2Pair.sol.

1. calculatePayoutOLAS function calculates the amount of OLAS payout depositing

an amount equal to tokenAmount into an active bonding program created with

input parameter priceLP.

Input parameters

a. tokenAmount: LP token shares

b. priceLP: the price of an LP share

First, totalTokenValue=mulDiv(priceLP,tokenAmount)is made in such a

way it is possible to check for an overflow of totalTokenValue and not of each

of the multipliers. If this totalTokenValue does not overflow and the call is

made during the e-th epoch, the getLastIDF() is accrued from the tokenomics

contract. This provides the inverse of the discount factor calculated by the

tokenomics at the end of the (e-1)-th epoch using data accrued during such an

epoch. Then the following calculation is made

amountDF =(getLastIDF() * totalTokenValue) / 1e36;

The division is due to the fact that the results in output require the same decimals

of tokenAmount and both getLastIDF(), priceLP are multiplied by 18

decimals.

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Depository.sol#L478
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/GenericBondCalculator.sol
https://github.com/Uniswap/v2-core/blob/master/contracts/interfaces/IUniswapV2Pair.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/GenericBondCalculator.sol#L38

Once the above calculation is done, the function will return

amountOLAS=amountDF. The latter is equal to the OLAS payout that is possible

to receive by depositing an amount of tokenAmount share of Uniswap LP-pair to

an active bonding program created using such LP-pair and pricing each of the

shares by priceLP.

2. getCurrentPriceLP function gives information on the amount of OLAS that can be

received by removing one LP share from a liquidity pool whose UniswapV2 LP-pair

is OLAS and token Y and address token.

The input is

a. token: Uniswap v2 LP token address (e.g. OLAS�ETH�.

Whether the input correctly is a pool with one of the tokens being OLAS, the

function uses IUniswapV2Pair.sol methods

- totalSupply() of LP tokens in the pool

- getReserves() of the OLAS reserve and token Y reserve in the pool.

Then it outputs

(OLAS_reserve*1e18) / totalSupply;

which is the amount of OLAS it is possible to receive by removing one LP share

from the Uniswap v2 pool with the address token.

Treasury.sol

Ownable smart contract with managers Tokenomics, Depository, and Dispenser

contracts. Other than having the functions to update the owner and managers, Treasury

has the following methods.

1. receive is the fallback payable function executed whenever the contract receives

plain Ether without data. Provided that at least minAcceptedETH is sent, this

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/GenericBondCalculator.sol#L63
https://github.com/Uniswap/v2-core/blob/master/contracts/interfaces/IUniswapV2Pair.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L111

function allows the contract to receive msg.value Ether, add msg.value to the

balance of the contract, and sum msg.value to the ETHOwned public variable.

Whenever the contract correctly receives msg.value Ether the following event is

emitted ReceiveETH(msg.sender, msg.value).

2. changeMinAcceptedETH function that allows the contract owner to change

minAcceptedETH which is the minimal amount of Ether that can be sent to the

contract via the execution of the receive fallback payable function.

The input to correctly execute the function is

a. _minAcceptedETH: a value (non-zero and smaller than 2^96�

If correctly executed

- the event MinAcceptedETHUpdated(_minAcceptedETH) is emitted
- the receive fallback function will be triggered when an amount of Ether

larger than minAcceptedETH is sent to the contract.

3. depositTokenForOLAS function allows the Depository contract to deposit an asset

in exchange for OLAS.

Input parameters for the correct function execution:

a. account: address making a deposit of a share of LP-pair with address

token

b. tokenAmount: share of the LP-pair that account wants to deposit in an

active bonding contract

c. token: address of the Uniswap LP-pair used in the active bonding

program

d. olasMintAmount: payout in OLAS that account can receive after the

bond matures.

Whether the input parameters are correct, this function is called by the depository

contract, the allowance(account, Treasury.address)is larger or equal to

tokenAmount, and the transfer of tokenAmount from account to Treasury

successfully happens:

- the tokenAmount is summed to the treasury LP-reserve of the token

accounted for in the mapping mapTokenReserves[token]

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L174
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L110
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L110
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L204

- olasMintAmount of OLAS is minted for the Depository contract

- the event DepositTokenFromAccount(account, token,

tokenAmount, olasMintAmount) is emitted.

4. depositServiceDonationsETH function allows anyone to deposit Ether donations

for services.

Input parameters for the correct function execution:

b. serviceIds: array of service identifiers serviceIds for which the donor

wants to signal appreciation via Ether donation

c. amounts: array of corresponding Ether quantities to allocate for each

service with identifiers in serviceIds (e.g. amounts[i] assigned for

serviceIds[i]).

Provided that at least minAcceptedETH is sent, the reentrancyGuard passes,

the arrays serviceIds and amounts have the same length, amounts[i] is

always non-zero, the sum of the amounts[i] is equal to the amount msg.value

sent, and there is no value overflow

- the sum of the amounts[i] is summed and accounted for in the

ETHFromServices public variable

- the trackServiceDonation method in the Tokenomics contract is called

(in such a way that Tokenomics contract can correctly track donations)

- the event DonateToServicesETH(msg.sender, msg.value) is

emitted.

5. withdraw function allows the contract owner to transfer to the address to, a

tokenAmount from the Treasury reserve of the LP-asset or Ether with address

token.

Input parameters for the correct function execution:

a. to: address different from the Treasury one

b. tokenAmount:non-zero amount to withdraw from the treasury reserve

c. token: address of the one of Treasury owned LP-asset or of the Treasury

owned Ether

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L250
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L308

Provided that the function caller is the contract owner, the asset (whether an

LP-pair) with address token was enabled by the Treasury and at least

tokenAmount are owned by treasury

- the reserve owned by the treasury is updated,

- the asset is transferred to the address to

- transfer happens and if it is successfully true is returned and one of the

following is emitted:

- Withdraw(ETH_TOKEN_ADDRESS), tokenAmount)when token

is Ether address

- Withdraw(token, tokenAmount) when token is an enabled

LP-pair address

6. withdrawToAccount function allows the Dispenser contract to transfer to the

address account, the amounts accountReward and accountTopUps.

Input parameters for the correct function execution:

d. account: an address

e. accountReward: the amount of Ether to withdraw from the Treasury (

accounted for in the treasury services endpoint donation

(ETHFromServices)

f. accountTopUps: the amount of OLAS that will be minted

Note that, this function can be only called by the dispenser contract in order to

allow code-NFTs owners to accrue the rewards and the top-ups amount that the

tokenomics assigned for their staked NFTs. The check on the correct allocation of

OLAS amount accountTopUps is made by the tokenomics contract, so the

inflation schedule is correctly respected. While on the treasury side, it is checked

that accountReward amount of Ether is really accumulated in ETHFromServices

Treasury endpoint.

Provided that the function is called by the dispenser contract, the contract isn’t

paused, and the check on accountReward passed then

- ETHFromServices is updated

- the Ether and/or OLAS are transferred to the address account

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L382

- after a successful transfer, whether accountTopUps are correctly minted

the event TransferToDispenserOLAS(accountTopUps)is emitted and

true is returned.

-

7. rebalanceTreasury function allows the Tokenomics contract to rebalance

treasuryRewards for a specific epoch.

Input parameters for the correct function execution:

a. treasuryRewards: amount of Ether reserved by the tokenomics to the

treasury

Whether the function call is done by the Tokenomics contract and the Treasury

contract is not paused the function returns

- true when

- treasuryRewards is zero (e.g. no Ether are allocated to the

treasury by the tokenomics)

- treasuryRewards is not-zero and less or equal than the Ether in

the ETHFromServices endpoint. The information that

treasuryRewards Ethers are now in possession of the Treasury is

pushed in the ETHOwend public variable.

- false when treasuryRewards is non-zero and larger than

ETHFromServices.

8. drainServicesSlashedFunds function allows the contract owner to drain slashed

funds from the service registry.

Input parameters for the correct function execution:

a. amount: amount of slashed Ether in the service registry contract.

Whether the function call is done by the contract owner, and the Treasury contract

is not paused the function returns

- true when

- treasuryRewards is zero (e.g. no Ether are allocated to the

treasury by the tokenomics)

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L422
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L460

- treasuryRewards is not-zero and less or equal than the Ether in

the ETHFromServices endpoint. The information that

treasuryRewards Ethers are now in possession of the Treasury is

pushed in the ETHOwend public variable.

- false when treasuryRewards is non-zero and larger than

ETHFromServices.

9. enableToken function allows the contract owner to enable Treasury to receive an

asset with an address token.

Input parameters for the correct function execution:

a. token: non-zero address

Provided that the function is called by the contract owner and the token isn’t the

zero and not yet approved

- the information that such an asset is enabled is pushed in the map
mapEnabledTokens[token]=true

- the event EnableTokens(token)is emitted.

This function is essential to enable the creation of bonding programs accepting

deposits for Uniswap v2 LP pair with address token.

10. disableToken function allows the contract owner to disable the Treasury to receive

an asset with an address token.

Input parameters for the correct function execution:

a. token: address of an asset (previously approved)

Provided that the function is called by the contract owner, the token was

previously approved, and there is zero amount of such an asset in the treasury

- the information that such an asset is disabled is pushed in the map
mapEnabledTokens[token]=false

- the event DisableTokens(token)is emitted.

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L481
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L501

11. isEnabled function allows checking whether an asset with an address token is

enabled/disabled.

Input parameters for the correct function execution:

a. token: address of an asset

The method return

- true whether the asset with address token is enabled

- false whether the asset with address token is disabled

12. pause method has no input parameter and allows the contract owner to pause

some contract interaction (e.g. withdrawToAccount, rebalanceTreasury). The

event PauseTreasury is emitted when the contract owner calls this method.

13. unpause method has no input parameter and allows the contract owner to

unpause some contract interaction (e.g. withdrawToAccount, rebalanceTreasury).

The event UnpauseTreasury is emitted when the contract owner calls this

method.

Dispenser.sol

Ownable smart contract with managers Tokenomics and Treasury contracts. Other than

having the functions to update the owner and managers, Dispenser has the following

method.

1. claimOwnerIncentives function allows owners of code NFTs owners to claim their

incentives.

Input parameters for the correct function execution:

a. unitTypes: array of unitType for which the rewards are claimed

b. unitIds: array of code NFT identifiers corresponding to the unitType

for which rewards are claimed.

Note that, unitTypes[i] can be either:

● 0 e.g. it represents a component

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L520
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L525
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L369
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L454
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L536
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L369
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Treasury.sol#L454
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Dispenser.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Dispenser.sol#L82

● 1 e.g. it represents an agent.

Moreover, unitIds[i] is the identifier of the NFT uniquely representing on the

Autonolar registries the code with unit type unitIds[i].

If the reentrancyGuard passes the following steps happen

- a call to the Tokenomics method accountOwnerIncentives is made.

Specifically, msg.sender that made a call to this function will be the input

account for the tokenomics method accountOwnerIncentives. The

latter returns the amount of reward (in Ether) and topUp (in OLAS� that the

msg.sender should receive.

- Whether reward+topUp is bigger than zero the contract calls the Treasury

method withdrawToAccount(msg.sender, reward,topUp)which will

transfer to msg.sender an amount of reward Ether and topUp OLAS. If

this method execution and in particular the transfer is successful, true is

returned.

- When the withdrawToAccount returns true, the method

claimOwnerIncentives is correctly executed and returned

(reward,topUp).

- When the withdrawToAccount returned false, the method

claimOwnerIncentives is reverted.

DonatorBlacklist.sol

Ownable smart contract with the following methods.

1. setDonatorsStatuses function allows the contract owner to control addresses in

order to prevent any donation to some addresses.

Input parameters for the correct function execution:

a. accounts: array of addresses for which the contract owner what to

change the blacklisted statuses

b. statuses: array of bool values that the contract owner what to assign

to the corresponding address in accounts.

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/DonatorBlacklist.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/DonatorBlacklist.sol#L55

Specifically, statuses[i] has to be set to true to blacklist accounts[i] and

prevent donations from it. While statuses[i] has to be set to false to remove

accounts[i] from the blacklist and accept donations from it.

Whether the method is called by the contract owner, accounts and statuses

have the same length, and no-zero address is in the array accounts

- the information on the blacklisted status of each of the accounts[i] is

pushed to the map

- the following events are emitted
DonatorBlacklistStatus(accounts[i], statuses[i])

- True is returned.

2. isDonatorBlacklisted function allows checking the blacklist status of the address

account.

Input parameter:

a. Account: address for which one wants to check the status

The function shows

- true if the address account is blacklisted

- false if the address account isn’t blacklisted.

TokenomicsConstants.sol

Abstract contract smart containing the public constant of the tokenomics implementation

version: VERSION = "1.0.0" and the following public pure function.

1. getSupplyCapForYear function that returns the annual supplyCap for the year

numYears.

Input parameter

a. numYears: year (starting from zero)

When numYears

- is strictly smaller than 10, the corresponding supplyCap for that year

numYears is returned.

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/DonatorBlacklist.sol#L81
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/TokenomicsConstants.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/TokenomicsConstants.sol#L30

- is larger or equal to 10, the corresponding supplyCap for that year

numYears is returned after that it is calculated taking into an annual

maximum inflation of 2%.

2. getInflationForYear function that returns the annual inflationAmount for the

year numYears.

Input parameter

a. numYears: year (starting from zero)

When numYears

- is strictly smaller than 10, the corresponding inflationAmount (e.g. the

new number of OLAS minted with respect to the old supply) for that year

numYears is returned.

- is larger or equal to 10, the corresponding inflationAmount for the year

numYears

TokenomicsProxy.sol

This smart contract stores the data and uses the logic of the tokenomics contract by

means of delegatecall(). The implementation contract (e.g tokenomics (logic)

contract) is just stacked up to it via the deployed tokenomics version address. This

allows a proxy implementation to follow the Universal Upgradeable Proxy Standard

(UUPS) EIP-1822 standard. Specifically, this is the single contract for storage that is

considered to be immutable for a long time and contains the following functions.

1. constructor

Input parameters

a. tokenomics: address of the first tokenomics contract implementation

b. tokenomicsData: callable data with parameters of the

initializeTokenomics() function from the Tokenomics contract plus

the function name and arguments itself

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/TokenomicsConstants.sol#L66
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/TokenomicsProxy.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.solhttps://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol
https://eips.ethereum.org/EIPS/eip-1822
https://eips.ethereum.org/EIPS/eip-1822
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/TokenomicsProxy.sol#L23

The contract is correctly deployed when tokenomicsData does not have zero

length and its storage is correctly initialized with the arguments of the

tokenomics contract.

2. fallback

The proposed fallback follows the common pattern described in

https://eips.ethereum.org/EIPS/eip-1822 and stores the address of the tokenomics

(logic) contract at the defined storage position.

Tokenomics.sol

Ownable smart contract managed by Treasury, Depository, and Dispenser contracts.

Other than having the functions to update the owner, managers, Autonolas registries

contract (to register code NFTs), and the DonatorBlacklist, the contract has the following

methods.

1. initializeTokenomics function

Input parameters

a. _olas: address of the OLAS token contract

b. _treasury: address of the Treasury contract

c. _depository: address of the Depository contract

d. _ve: address of the veOLAS token contract

e. _epochLen: length of the epoch

f. _componentRegisty: address of the component registry contract

g. _agentRegisty: address of the agent registry contract

h. _serviceRegisty: address of the service registry contract

i. _donatorBlacklist: address of the donor blacklist contract

Whether none of the input addresses is zero, the _epochLen isn’t smaller than a

minimum value and isn’t larger than one year in seconds, and the call of this

initializer does not happen more than one year later than the launch of the OLAS,

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/TokenomicsProxy.sol#L45
https://eips.ethereum.org/EIPS/eip-1822
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L261

the function is successfully executed. Note that the initialization can be made only

once.

The first time that this function is successfully called, the following is done:

- Initial storage variables are initialized, specifically owner = msg.sender,

_locked = 1, epsilonRate = 1e17, veOLASThreshold =

5_000e18.

- Other passed input parameters are assigned, specifically, olas = _olas,

treasury = _treasury, depository = _depository, dispenser

= _dispenser, ve = _ve, epochLen = uint32(_epochLen),

componentRegistry = _componentRegistry, agentRegistry =

_agentRegistry, serviceRegistry = _serviceRegistry,

donatorBlacklist = _donatorBlacklist

- it calculates the inflation per second for the launch year of the OLAS token

(e.g. year zero).

- the block timestamp of the initializer function call is set as the end time of

the zero epoch and the starting time of the first epoch.

- the epoch counter epochConuter is set to one (so epoch counter stats

from one)

- the initial parameter devPerCapital e.g. the developers that can be

funded with a unit of capital is set to 1e18

- the initial inverse of the discount factor idf (e.g. 1+the interest rate) is set

to 1e18

- the numerator of the fraction’s reward (in ETH� reserved for all the

components tp.unitPoints[0].rewardUnitFraction is set to 66 and

that reserved for all the agents

tp.unitPoints[1].rewardUnitFraction is set to 34

- a unit of valuable code is measured as agentWeight agents or

componentWeight components. Specifically, the initial parameter of

agentWeight is set to 1e18 and componentWeight is set to 2e18

- the numerator of the maximum amount of the OLAS inflation reserved for

bonding _maxBondFraction is set to 49

- the numerator of the fraction of the OLAS inflation reserved for staking

incentives of components tp.unitPoints[0].topUpUnitFraction is

set to 34 and the one reserved for the agents

tp.unitPoints[1].rewardUnitFraction is set to 17.

2. tokenomicsImplementation function has no input parameter and allows to return of

the contract address of the tokenomics implementation

3. changeTokenomicsImplementation function allows the contract owner to change

the address of the tokenomics contract implementation.

Input parameter

a. implementation: address of the new tokenomics logic contract.

If the function is called by the owner,

- the implementation contract with the new address is stored under the

designed storage slot of the tokenomics Proxy contract

- the event TokenomicsImplementationUpdated(implementation)is

emitted.

4. changeTokenomicsParameters function allows the contract owner to change

several tokenomics parameters.

Input parameter

a. _devsPerCapital: (larger than MIN_PARAM_VALUE) number of valuable

developers that can be paid per unit of capital per epoch

b. _epsilonRate: value (larger than zero and smaller than 17e18� of the

maximum interest rate that bonders can have on their bonds

c. _epochLen: the value (larger than or equal to MIN_EPOCH_LENGTH and

smaller than or equal to ONE_YEAR) of the length of one epoch in seconds

d. _veOLASThreshold: the number (non-zero) of veOLAS that service

owners or donators need to be whitelisted

e. componentWeight: the number (larger than MIN_PARAM_VALUE) of

components corresponding to one unit of code

f. agentWeight: the number (larger than MIN_PARAM_VALUE) of agents

corresponding to one unit of code

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L373
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L383
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L496

If the inputs are correctly chosen e.g. what is in the parentheses above is verified

and the caller of the function is the contract owner

- it is set a flag signaling that tokenomics parameters are requested to be

updated. This flag is used in such a way that the parameters will be

updated at checkpoint and can be used from epoch number eCounter+1

- The event is emitted at the epoch number
TokenomicsParametersUpdateRequested(epochCounter +

1,_devsPerCapital, _epsilonRate, _epochLen,

_veOLASThreshold, _componentWeight, _agentWeight).

Note that if one of the inputs is provided with a value not verifying what is in the

parenthesis, no change to such a parameter is made.

5. changeIncentiveFractions function allows the contract owner to change the share

of donations accrued by the protocol reserved to component/agent rewards, or

the share of the OLAS inflation reserved for bonding, or component/agent top-ups.

Input parameters

a. _rewardComponentFraction: fraction‘s numerator of donations accrued

by the protocol reserved to component rewards (e.g.

_rewardComponentFraction/100*donations is the share of donations

reserved for components)

b. _rewardAgentFraction: fraction‘s numerator of total epoch donations

accrued by the protocol reserved to component rewards (e.g.

_rewardAgentFraction/100*epochDonations is the share of the epoch

donations reserved for components)

c. _maxBondFraction: fraction‘s numerator of the epoch OLAS inflation

reserved for the bonding mechanism (e.g.

_maxBondFraction/100*epochOLASinflation is the share of inflation for

the epoch reserved for bonding)

d. _topUpComponentFraction: fraction‘s numerator of epoch OLAS

inflation reserved for the component top-up (e.g.

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L561

_topUpComponentFraction/100*epochOLASinflation is the share of

inflation for the epoch reserved for component top-ups)

e. _topUpAgentFraction: fraction‘s numerator of epoch OLAS inflation

reserved for the agent top-up (e.g.

_topUpAgentFraction/100*epochOLASinflation is the share of inflation

for the epoch reserved for agent top-ups)

If the caller of the function is the contract owner and the inputs are correctly

chosen, e.g. _rewardAgentFraction+_rewardComponentFraction and

_maxBondFraction+_topUpComponentFraction+_topUpAgentFraction

are smaller than or equal to 100

- in eCounter is stored the number of the next epoch at which the fractions

can be updated

- it is set a flag signaling that tokenomics fractions are requested to be

updated with the new input values. This flag is used in such a way the

parameters will be updated at the checkpoint and can be used from epoch

number eCounter+1

- The event is emitted at the epoch number
IncentiveFractionsUpdateRequested(eCounter,rewardAgentFrac

tion,_rewardComponentFraction,_maxBondFraction,_topUpCompo

nentFraction,_topUpAgentFraction).

6. reserveAmountForBondProgram function allows the depository contract to reserve

a certain amount of the OLAS inflation for new bonding programs.

Input parameter

a. amount: an amount of the OLAS that will be reserved when a new bonding

program is created.

If the input amount does not exceed the amount of the OLAS inflation schedule

reserved for the bonding mechanism which is accounted for in the eBond variable)

and the caller of the method is the Depository contract,

- the reserved amount of OLAS for the next bonding programs is updated,

e.g. eBond-=amount

- the event EffectiveBondUpdated(eBond)is emitted.

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L608

7. refundBondProgram function allows the depository contract to refund a certain

unused amount of the OLAS from closed bonding programs.

Input parameter

a. amount: an amount of the OLAS that was unused when some bonding

programs are closed.

If eBond=effectiveBond+amount is smaller than 2^96, where amount is the

input parameter and effectiveBond is the amount of the OLAS inflation

schedule reserved for the bonding mechanism, and the caller of the method is the

Depository contract,

- the reserved amount of OLAS for the next bonding programs is updated,

e.g. eBond=effectiveBond+amount

- the event EffectiveBondUpdated(eBond)is emitted.

8. _finalizeIncentivesForUnitId function allows finalizing the incentives for a specified

agent or component Id.

Note that, in terms of the formulas described in the section How the staking model

for agents and component code is incentivized, what the algorithm does is

A. multiply = rewardUnitFraction/100 (resp.) times the

pending relative rewards per component (resp. agent) unit which is the

summand of equation �1� (resp. �2�)

B. multiply = totUpsUnitFraction/(100*sumUnitTopUpsOLAS)

(resp) times the pending relative topUps per component

(resp. agent) unit which is the right-hand side summand of equation �3�

(resp. �4�)

Input parameters

a. epochNum: the epoch to finalize the incentive for

b. unitType: type of the unit for which the incentive is finalized

c. unitId: identified of the unit for which the incentive is finalized

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L629
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L649
https://www.codecogs.com/eqnedit.php?latex=Fcomps#0
https://www.codecogs.com/eqnedit.php?latex=Fagents#0

The finalization described in A. is made there is no zero pending relative reward

per the unitId with type unitType.

Similarly, the finalization described in B. is made when there is no zero pending

relative top-up per the unitId with type unitType.

9. _trackServiceDonations function allows recording the donations which signal the

appreciation for some services into the corresponding data structure.

Input parameters

a. serviceIds: the array of service identifiers for which appreciation is

signaled with a donation

b. amounts: the array of donations amounts sent to signal appreciation to the

services with identifiers serviceIds

c. curEpoch: number of the current epoch

First it is checked which of the unitFraction (for both rewards and top-ups) is

non-zero to identify the units for which the incentives should be accounted for.

The first part has an algorithm that calculates

- the pending rewards and the pending tops (when eligible for top-ups) per

each of the components referenced in one of the services with identifier
serviceIds.

In terms of formulas described in the section How the staking model for

agents and component code is incentivized, the summand in equation �1� is

computed. Moreover, when eligible for top-ups, the summand on the

right-hand side of equation �3� and the sumUnitTopUpsOLAS which is the

summand at the denominator of the left-hand side factor of equation �3� are

computed.

- Similarly, the pending rewards and the pending tops (when eligible for

top-ups) per each of the agents referenced in one of the services with

identifier serviceIds.

In terms of formulas described in the section How the staking model for

agents and component code is incentivized, the summand in equation �2� is

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L685

computed. Moreover, when eligible for top-ups, the summand on the

right-hand side of equation �4� and the sumUnitTopUpsOLAS which is the

summand at the denominator of the left-hand side factor of equation �4� are

computed.

Then, the second and final part has an algorithm that records the new

component/agent code staked and referenced in appreciated services during the

current epoch and the new owners of such component/agents.

10. trackServiceDonations function allows the treasury contract to track and record

the donations received as a signal the appreciation for some services into the

corresponding data structure.

Input parameters

a. donator: the address that sends a donation for the services with

identifiers in serviceIds

b. serviceIds: the array of service identifiers for which appreciation is

signaled with a donation

c. amounts: the array of donations amounts sent to signal appreciation to the

services with identifiers serviceIds

d. donationETH: overall donations in Ether received

If the caller of the function is the treasury, the donator blacklist is enabled, and the

address of donator isn’t blacklisted

- the current epoch number is accounted in curEpoch

- the information that new amount donationETH has to be added to the

endpoint of total donations received for the services is pushed in the map

mapEpochTokenomics[curEpoch] e.g. donationETH is summed to the

previous Ether amount accounted in
mapEpochTokenomics[curEpoch].epochPoint.totalDonationsETH

- a call to the following internal function is made
_trackServiceDonations(serviceIds, amounts, curEpoch).

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L784

11. _calculateIDF function allows the calculation of the inverse discount factor, e.g.

�1+interest_rate) (cf. section How and when the bonding mechanism is

incentivized).

Input parameters

a. treasuryRewards: the share of donations given to the treasury

b. numNewComponents: number of the new components staked and

referenced in appreciated services in the current epoch

c. numNewAgnts: number of the new agents staked and referenced in

appreciated services in the current epoch

d. numNewOwners: number of new stakers of components/agents referenced

in appreciated services in the current epoch.

The method calculates

fKD = 𝑓(𝐾(𝑛), 𝐷(𝑛))/100 = 𝑑(𝑛)/100 * (𝑘(𝑛) * 𝐾(𝑛) + 𝐷(𝑛))

(where is the chosen Product function) using𝑓

- treasuryRewards in place of the input 𝐾(𝑛)

- numNewOwners in place of the input 𝐷(𝑛)

- devsPerCapital in place of 𝑘(𝑛)

- codeUnits/denominator in place of 𝑑(𝑛)/100

This method will output

- idf = 1e18 + fKD when there is a small production of code, e.g.

is checked to be smaller than epsilonRate𝑓(𝐾(𝑛), 𝐷(𝑛))/100

- idf = 1e18 + epsilonRate when there is a large production of code,

e.g. is checked to be larger than epsilonRate𝑓(𝐾(𝑛), 𝐷(𝑛))/100

where epsilonRate is the maximum possible interest rate on a bond that the

DAO governance wants to give.

12. checkpoint function allows recording of the global data and updating tokenomics

parameters and/or fractions when changeTokenomicsParameters and/or

changeIncentiveFractions method are called.

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L824
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L873
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L498
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L570

Firstly, it gets the (non-zero) address implementation which is the tokenomics

logic contract written in the PROXY_TOKENOMICS address slot.

If this method is called more than one year later or less than the epoch’s length

since the last checkpoint, the function fails and returns false.

Otherwise, the following is done

- the donations accrued by the protocol are split (using the given fractions

for the treasury and the agents/components rewards) between

treasuryRewards, componentRewards, agentRewards.

- the inflation per epoch is computed and in particular, if the year change in

the middle of an epoch it is necessary to adjust the inflation number to

account for the year change (in particular getInflationForYear method

of the TokenomicsConstants abstract contract is used in this case).

- the inflation per epoch is then split (using the given fractions for bonding

and agents/components top-ups) between bonding and agents/component

top-ups.

- If there is a flag signaling that the changeIncentiveFractions method was

called, the fraction is updated with the newly requested fractions, and the

event IncentiveFractionsUpdated(eCounter+1) is emitted. If there is

no flag, the older fractions are used.

- If there is a flag signaling that the changeTokenomicsParameters method

was called, the parameters are updated with the newly requested one

(when correctly chosen), and the event

TokenomicsParametersUpdated(eCounter + 1 is emitted. If there is

no flag, the old

- The max bond value is adjusted if the next epoch is going to be the year

change epoch and the effective bond will be computed

- The inverse of the discount factor IDF is updated when the protocol

accrues some donations and IDF is set to its default value 1e18 otherwise.

- Whether there are no rewards for the treasury or when a share of the

received Ether donations is accounted for the treasury rewards and the

rebalanceTreasury method of the Treasury contract is correctly

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L570
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L498

executed the event EpochSettled(eCounter, incentives[1],

accountRewards, accountTopUps)is emitted and a new epoch starts.

Note that, when there are rewards for the treasury but the

rebalanceTreasury method is not successfully executed, the checkpoint

is reverted and the new epoch does not start.

- True is returned when the checkpoint is correctly executed.

13. accountOwnerIncentives function allows the dispenser contract to get the

calculated incentives for the owner of staked code.

Input parameters

a. account: the address of the owner of each unit of code

(agents/components) with identifiers in unitIds

b. unitTypes: array of unit types (agent or component) for which the

incentives are accounted

c. unitIds: array of unit identifiers for which the incentives are accounted

for.

If the caller of the method is the dispenser contract, the length of unitTypes

and unitIds coincides, the value unitTypes[i] correctly corresponds to either

an agent unit (e.g. 1� or component unit (e.g. 0�, unitIds are given in strictly

ascending order and none of them is bigger than the total number of units staked

in the Autonolas registries, and the account is the owner of all the unit with

identifiers in unitIds the following happens

- eCounter accounts for the current epoch

- lastEpoch accounts for the last epoch in which the incentives were

accumulated

- when the pending incentives were not yet finalized then the tokenomics

method _finalizeIncentivesForUnitId(lastEpoch,

unitTypes[i], unitIds[i])is called in order to finalize the incentives

and in the map

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L1073

mapUnitIncentives[unitTypes[i]][unitIds[i]].lastEpoch it is

pushed the information that incentives were finalized

- reward accounts for accumulated rewards

- topUp accounts for accumulated top-ups

- the information that such rewards and top-ups balances were accrued is

pushed in the map mapUnitIncentives[unitTypes[i]][unitIds[i]]

by setting

mapUnitIncentives[unitTypes[i]][unitIds[i]].reward=0 and

mapUnitIncentives[unitTypes[i]][unitIds[i]].topUp=0

14. getOwnerIncentives function allows having information on the incentives of the for

staked code.

Input parameters

a. account: the address of the owner of each unit of code

(agents/components) with identifiers in unitIds

b. unitTypes: array of unit types (agent or component) for which the the

information of incentives is requested

c. unitIds: array of unit identifiers for which the information of incentives is

requested.

If the length of unitTypes and unitIds coincides, the value unitTypes[i]

correctly corresponds to either an agent unit (e.g. 1� or component unit (e.g. 0�,

unitIds are given in strictly ascending order and none of them is bigger than the

total number of units staked in the Autonolas registries one of the following

happens

- the account is the owner of all the unit with identifiers in unitIds and

the pending incentives were already finalized the accumulated rewards

reward and accumulated top-ups topUp are returned

- the account is the owner of all the units with identifiers in unitIds and

the pending incentives were not finalized yet these are finalized and the

accumulated rewards reward and accumulated top-ups topUp are

returned.

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L1148

- the account is not the owner of one of the units with identifiers in

unitIds and the call of the function is reverted.

15. getInflationPerEpoch function has no input parameter and allows getting

information on the inflation for the last epoch.

16. getUnitPoint function allows getting the tokenomics point information for a specific

epoch and a specific unitType.

Input parameters

a. epoch: number of the epoch for with the point is requested (no larger than

the current epoch number)
b. unitType: type of the unit for which the point is requested (e.g. 0 for

component type and 1 for agent type).
Whether the parameters are correctly added a non-zero map

mapEpochTokenomics[epoch].unitPoints[unitType] is returned.

17. getIDF function allows getting the inverse of the discount factor IDF (with 18

decimals) for a specific epoch.

Input parameter

a. epoch: number of the epoch for with the value is requested

It is returned

- mapEpochTokenomics[epoch].epochPoints.idf when non-zero

- 1e18 e.g. the default value of idf otherwise.

In particular, even if the epoch is larger than the current one, a non-zero value is

returned.

18. getLastIDF function has no input parameter and allows getting the inverse of the

discount factor IDF (with 18 decimals) for the last epoch.

https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L1225
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L1233
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L1240
https://github.com/valory-xyz/autonolas-tokenomics/blob/main/contracts/Tokenomics.sol#L1250

