
Contracts vulnerabilities

Vulnerabilities list

Contracts vulnerabilities 1
Vulnerabilities list 1
Involved contracts and level of the bugs 1
Vulnerabilities 1

1. depositServiceDonationsETH function (services state) 1
2. depositServiceDonationsETH function (OLAS incentives) 2
3. Checkpoint function - event 3
4. getLastIDF function 3
5. epochLen 4
6. deposit method 4
7. checkpoint method - cross-year 5
8. Treasury Fund Token Management 5

Involved contracts and level of the bugs
The present document describes issues affecting Tokenomics contracts

Vulnerabilities

1. depositServiceDonationsETH function (services state)

Severity: Low

The following function is implemented in the Treasury contract:

function depositServiceDonationsETH(uint256[] memory serviceIds, uint256[]
memory amounts) external payable

This service donating function calls another function from the Tokenomics contract that
ultimately results in calling the internal function _trackServiceDonations(). The latter one
checks whether agent and component Ids of each of the passed service Id exist, and if
not, reverts with the ServiceNeverDeployed() error. The error arises from the fact that the
service was never deployed, and its underlying component and agent Ids were not



assigned (the assignment of underlying component and/or agent Ids to a service happens
during the deployment of the service itself).

However, after a specific service is deployed at least once and then terminated, it can be
updated and re-deployed again. In particular, the service can be updated with a different
set of agent Ids, making the donation distribution setup invalid for the following reason. If
this updated service receives a donation before it is re-deployed, the donation will be
distributed between its old component and agent Ids owners and not the new ones.

Therefore, donating to an updated service before its redeployment can affect the correct
distribution of rewards in the Tokenomics contract. We recommend not to donate when a
service is not in the Deployed or TerminatedBonded state (e.g. any service with
serviceIds[i] not in Deployed or TerminatedBonded state must not be passed as input
parameters to the function depositServiceDonationsETH). The state of the service can
be easily checked via the ServiceRegistry contract view function getService(uint256

serviceId).

2. depositServiceDonationsETH function (OLAS incentives)

Severity: Informative

The following function is implemented in the Treasury contract:

function depositServiceDonationsETH(uint256[] memory serviceIds, uint256[]
memory amounts) external payable

If a DAO member, holding the veOLAS threshold1, uses this method to donate ETH to a
specific service, or if the service owner is a DAO member holding the veOLAS threshold2,
the owners of the agents and components referenced in that service are entitled to
receive a share of the donation and OLAS tokens generated through inflation.

While the current approach encourages service registration and donations through the
utilization of all available OLAS each epoch, this might be utilized in a counter-intended
way by malicious donators or malicious service-owners. If a donator (or the
service-owner) owns all the underlying components and agents, meets the sufficient
veOLAS requirement, and makes only a small donation to their service, they could accrue

2 Currently, the threshold for participation is set at 10000 veOLAS, and adjustments to this
threshold can be made through a governance voting process.

1 Currently, the threshold for participation is set at 10000 veOLAS, and adjustments to this
threshold can be made through a governance voting process.



a significant number of OLAS tokens through inflation top-ups at a low cost. This
behavior may yield considerable gains initially but becomes less profitable as more major
players utilize the protocol, leading to more donations being distributed among multiple
services and stakeholders.

3. Checkpoint function - event

Severity: Informative

The following function is implemented in the Tokenomics contract:

function checkpoint() external returns (bool)

The purpose of this function is to record the global data and update tokenomics
parameters and/or fractions when changeTokenomicsParameters() and/or
changeIncentiveFractions() methods are called.

When the epoch following the settled epoch has a year change, the function performs an
incorrect calculation of top-ups for the event emit. Specifically, the emitted top-ups value
is overwritten with the one calculated for the next epoch. This issue is considered
informative because the amount of top-ups to be allocated (and further minted) is
calculated correctly; the problem lies only with the emitted amount.
By addressing this issue, the Tokenomics contract will provide accurate information
regarding the allocation of top-ups.

4. getLastIDF function
Severity: Informative

The following function is implemented in the Tokenomics contract and used in
GenericBondCalculator contract:

function getLastIDF() external view returns (uint256 idf)

This function retrieves the inverse discount factor �IDF� from the epoch just prior to the
latest checkpoint, expressed as a multiple of 1e18. The calculation of IDF pertains to the
current epoch and draws from the outcomes of the previous epoch. It's worth noting that
if the function were modified to output getIDF(epochCounter) instead of
getIDF(epochCounter-1�, the getLastIDF�� function would have more prominently
represented the performance results from the most recent epoch.



In absence of redeploying a new contract, we recall that getLastIDF gives more
prominently information associated with performance in the second to latest settled
epoch, hence we suggest using getIDF(epochCounter) to check the performance
prominently represented the results from the most recent settled epoch.

5. epochLen

Severity: Low

With the current tokenomics implementation, the method
changeTokenomicsParameters() enables the selection of the epochLen parameter,
allowing any value between MIN_EPOCH_LENGTH and one year.

However, if epochLen is set precisely to one year, a potential problem arises in the
checkpoint() method. This issue comes from the fact that the checkpoint can only
succeed if called after the expiration of epochLen from the previous checkpoint, but not
later than one year. Given the discrete nature of block time, achieving a one-year time
difference from the previous checkpoint call is highly improbable.

To address this concern without the need for contract redeployment, it is recommended
to avoid setting epochLen to one year. Specifically, it is suggested to choose a value
slightly below one year, such as one year minus one day in block time. This adjustment
ensures the successful execution of the checkpoint() method within the constraints of
block time, mitigating the potential issue described above.

6. deposit method

Severity: High

In the depository contracts, the following method is implemented:

function deposit(uint256 productId, uint256 tokenAmount) external

This method allows users to deposit tokens, acquiring OLAS tokens at a discounted rate.
A potential concern can arise ten years after OLAS token launch in the case of an epoch
crossing into year intervals. In this scenario, a portion of OLAS becomes mintable only in
the eleventh year, as a result of the 1 billion fixed supply constraint for the initial ten years.

The creation of bonding programs with payouts leading to exceeding the total OLAS
supply mintable before ten years and the bonder’s depositing the full amount expecting



these payouts lead to a silent return in the OLAS mint() method and not a revert. This
results in successful product deposit and a consequent loss of OLAS payouts for bonders.

To address this, a more specific check for epoch crossing year intervals can be integrated
into the tokenomics checkpoint() method. In the absence of redeploying a new
contract, it is recommended to carefully propose the creation of bonding programs at the
end of the tenth year. These programs should be structured ensuring that the payouts are
designed to keep the total amount of OLAS minted below 1 billion OLAS before the
ten-year mark. This precautionary measure prevents eventual lost OLAS payouts.

7. checkpoint method - cross-year

Severity: Informative

In the tokenomics contracts, the following method is implemented:

function checkpoint() external

This method allows users to deposit tokens, acquiring OLAS tokens at a discounted rate.
A potential concern may arise in the event of an epoch crossing into year intervals, where
a portion of OLAS larger than the year inflation limit becomes mintable.

The creation of bonding programs with payouts leading to an excess of the total OLAS
mintable before the specified year and the bonder depositing the full amount may result
in an amount of minted OLAS exceeding the year inflation limit. It's crucial to note that, at
most, only the amount reserved for the remaining time of the epoch from the following
year can be minted.

To address this, a more specific check for epoch crossing year intervals can be integrated
into the tokenomics checkpoint() method. In the absence of redeploying a new
contract, it is recommended to carefully propose the creation of bonding programs for
epoch-crossing years. These programs should be structured to ensure that the payouts
are designed in a manner that keeps the total amount of OLAS minted below the year
inflation limit.

8. Treasury Fund Token Management



Severity: Informative

By design, within the Treasury contract, there is currently no mechanism in place to
facilitate the removal of tokens other than ETH that have not been added to the Treasury
through the treasury depositTokenForOLAS�� method.

Therefore, we strongly recommend refraining from transferring funds directly to the
Treasury contract that does not adhere to the established tokenomics logic. This
precautionary measure will help prevent potential freezing of funds within the Treasury
contract


