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1 Purpose

The objective of this experimental study is to investigate the effectiveness of
domain randomization in closed-loop control for soft robots. The study aims to
assess whether the control strategies learned in a simulated environment with
randomized parameters are robust to sim-to-real shift and able to accurately
control a real manipulator. The experiments are based on the previous work
presented in [1].

2 Materials

2.1 Requested

• Trunk robot

– Silicone cable-driven continuum deformable manipulator, as described
in [2].

∗ Conical shape.

∗ Actuated by eight cables passing through its silicone body. Four
cables are attached to the middle of the trunk-robot and actuate
the proximal part, while the other four go through its entire
length, actuating the distal part.

· Each action corresponds to a cable displacement of ±5mm.

∗ Tracked using 21 points along each trunk cable: starting from
the base, one point at the beginning and at the end of each of
the 11 parts, without sensing the farthest tip (see Fig. 1).

· Note: this state space configuration matches what was used
in the simulation model of our previous work [1]. If required
for real experiments, it can be adjusted to accommodate the
feasibility of the physical prototype.
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∗ Details (indicatively):

· Length: 200 mm

· Mass: 0.42 kg

· Poisson’s ratio: 0.45

· Young’s Modulus: 4500 kg/(mm · s)

Figure 1: Initial configuration of the TrunkPush task during the simulation.
The trunk, starting from an horizontal position, can be tracked by 21 points
along each cable, here shown by different colors.

• Cube

– Rigid cube, used for the manipulation task described in the Trunk-
Push task section.

– Position and orientation can be tracked using an arbitrary set of
markers asymmetrically placed on the upper face of the cube, as-
suming that the cube will not turn upside down (see Fig. 2 for an
example representation).

– Details (indicatively):

∗ Shape (l × w × h): 50 mm × 50 mm × 50 mm

∗ Mass: 0.05 kg

• Motion capture system

– e.g., OptiTrack, Vicon

– Needed to track the pose of the system objects (i.e., the robot, the
cube, the goal point), as required by the state space of each task.
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Figure 2: Exemplificative markers used to track the position and orientation of
the cube with a motion capture system (e.g., OptiTrack).

2.2 Provided

• approx. 25 policies per task learned following the baselines presented in
[1]:

– approx. 5 policies for RF-DROPO (our method)

– approx. 5 policies for BayesSim [3]

– approx. 10 policies for UDR (Uniform Domain Randomization)

– approx. 5 policies for NPDR [4] (added for the Journal Extension)

3 Experimental design

Regarding Adaptive Domain Randomization (ADR) methods - such as RF-
DROPO, BayesSim, NPDR - each experimental pipeline consists in 4 different
phases:

1. Data collection: A fixed dataset D = {s0, a0, s1, ..., sT−1, aT−1, sT }
{(st, at)}t=100

t=1 with real target domain state-action transitions shall be
made available to run the inference phase. Such data may be collected of-
fline (i.e., before the optimization phase) with any desirable strategy, such
as kinesthetic teaching, human demonstrations, motor babbling or hard-
coded policies. It is important to collect trajectories which well describe
all the dynamics (e.g., for the TrunkPush task, it is needed to collect in-
teractions between the trunk and the cube). The same dataset is used
for all seeds and all methods of the inference training. Note that
no reward computation in the real-world is needed, as the inference phase
relies on state-action transition pairs only.

2. Dynamics parameter inference: estimation of the dynamics probability
distribution pϕ(ξ). Given the previous collected dataset D, the inference
phase is done separately, without any real-world interaction.

3. Policy Training : The converged distribution p∗ϕ(ξ) obtained through the
inference phase is used to train a policy πθ(a|s) entirely in simulation using
Domain Randomization for the given task.
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4. Real world evaluation: The optimal policy π∗
θ(a|s) learned in simulation is

transferred and used in the real-world for the final evaluation on the real
prototype, assessing the Sim-to-Real transfer.

Therefore, for these methods each experiment requires two phases of
real-world interaction (step 1. and 4.), one for the data collection and another
one for the policy evaluation. An overview of the experimental paradigm is
illustrated in Fig. 3.

Figure 3: Experimental Paradigm

On the other hand, Static Domain Randomization methods, such as UDR,
only require the final evaluation in the real world (step 4.), since the
dynamics distributions are not inferred but statically fixed.

3.1 TrunkReach task

• Note: this task must be considered as a test case example, useful to assess
the quality of the sim-to-real transfer in an easier scenario, if resources
and time are enough. The most of the effort should be focused on the
TrunkPush task – see Sec. 3.2.

• The robot should reach a point randomly located in space (i.e., a goal
point) using the robot’s endpoint, as depicted in Fig. 4-a.

• Action space: 16 discrete possible actions, consisting in contracting or
extending each of the eight cables by one unit – see Sec. 4.1 for more
details on the action unit.

• State space: 66 element array S = [pt, pg]

– pt: 63 element array representing 21 positional 3D key points along
the robot. The points are computed taking 21 · 4 points along the
four longest trunk cables, which are then averaged to compute the
center point of 21 cross sections along the body.
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– pg: 3D position of the goal point.

• Experiments required:

– approx. 5 evaluation rollouts for each policy.

– During the evaluation, the robot is asked to reach 27 different fixed
goals, which are chosen by design as a three-dimensional grid of points
contained inside the training box, specifically ranged in the space
bounds xeval

g = [−20, 20] mm, yevalg = [−35, 5] mm, zevalg = [120, 145]
mm.

– Results must be reported in terms of l2-norm distance [mm] between
the final position of the trunk’s tip and the target goal.

3.2 TrunkPush task

• The robot aims to push a rigid cube to a designated target location, as
depicted in Fig. 4-b.

• Action space: 16 discrete possible actions, consisting in contracting or
extending each of the eight cables by one unit – see Sec. 4.1 for more
details on the action unit.

• State space: 73 element array S = [pt, pg, pc]

– pt: 63 element array representing 21 positional 3D key points along
the robot. The points are computed taking 21 · 4 points along the
four longest trunk cables, which are then averaged to compute the
center point of 21 cross sections along the body.

– pg: 3D position of the goal point.

– pc: 3D position and orientation of the cube (given by 7 DOFs: the
translation of the rigid [xc, yc, zc] and the quaternion for the rotation
[rxc

, ryc
, rzc , rwc

]).

• Experiments required:

– approx. 5 evaluation rollouts for each policy.

– During the evaluation, a specific fixed target goal is set to pevalg =
[100.0,−100.0, 50.0] mm.

– Results must be reported in terms of l2-norm distance [mm] between
the final position of the cube (i.e., of its center of mass) and the
target goal considering xz-axis only.

• Details:

– Floor position: yf = −100 mm

– Initial cube position (simulation): [xc, yc, zc] = [0.0,−60.0, 100.0]mm

– Initial cube position (real-world): [xc, yc, zc] = [0.0,−100.0, 100.0]mm

– Initial cube orientation: [axc
, ayc

, azc ] = [0, 0, 0]◦

– Initial trunk position: horizontal (see Fig. 1)
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Figure 4: TrunkReach and TrunkPush setups. a) Purple dots define the box of
possible goal locations sampled at training time, green dots are 27 fixed target
locations for evaluation, with the red dot being the current goal. b) Green dot
is the desired target location for the box center of mass.

4 Additional simulation details

• The origin of the Cartesian reference system [xo, yo, zo] is set to the center
of the base of the trunk.

• Friction coefficient: 0.3 (used in simultation, not necessarily the same in
the real world).

• Episode length: T = 100 policy timesteps (5 s).

• Policy query frequency: 20 Hz.

• Low-level control frequency: 100 Hz.

• Simulated sizes:

– Trunk’s length = 195mm

– Shorter cables length = 91mm

– Longer cables length = 185mm

4.1 Simulated actuation unit length and repetition

• Each cable is embedded in the elastic trunk. The cable is free to slide
through the material. When the displacement is controlled (for example,
with a servo motor), the simulation will solve for the force that is required
to obtain that displacement.

– For each action, a displacement ±1 is imposed to a certain cable: the
displacement (±1mm) is added to the actual value of the displace-
ment.

• Simulation step: apply an action and execute scale factor simulation
steps of dt s.

– The simulation step is equal to: dt · scale factor
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∗ dt = 0.01s

∗ scale factor = 5

– Therefore, the same displacement value is applied throughout scale factor
simulation cycles.

∗ i.e., ±5mm for each simulated action

4.2 Further details

• Physics Engine used: SOFA [5].

• Software toolkit used for managing Reinforcement Learning algorithms:
SofaGym [6].

• All the policies provided are learned using Proximal Policy Optimization
(PPO) as a Reinforcement Learning algorithm. The implementation of
the algorithms is based on Stable-Baselines3 (SB3) [7].
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