
4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 1/14

1.1 Cross-validation metric distributions

2 Identifying the “best” model

3 Training fit

4 Selected Model Performance Evaluation

5 Explaining the model

6 Save markdown file

42-naivebayes-modeling
In this notebook, we use Naive Bayes to perform modeling. Our general approach will be to use
hyperparameter tuning via cross-validation to identify the best performing hyperparameters, In another
notebook, we will investigate the performance of the model.

Note that prior to running this notebook, 10 and 40 must already have been run.

0.0.1 Useful packages

pacman::p_load(glmnet, tictoc, vip, tidytext, doParallel, caret, naivebayes)
library(discrim)

Here, we define the specs for the feature engineering, the model, the generalized workflow, and the
parameters that we’ll tune using parameters selected from a max entropy grid. For the Naive Bayes
model, the general usemodels template code was not supported but using the naivebayes package
model allowed for easy 1:1 translation

Code

Hide

Hide

1 Hyperparameter tuning (model selection) via cross-validation

4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 2/14

nb_recipe <-
 recipe(formula = particle_class ~ ., data = train_data) %>%
 update_role(id, img_id, starts_with('filter'), hash, new_role='no_model') %>%
 step_zv(all_predictors()) %>%
 step_normalize(all_predictors(), -all_nominal())

nb_spec <-
 naive_Bayes(smoothness = tune(), Laplace = tune()) %>%
 set_mode("classification") %>%
 set_engine("naivebayes")

nb_workflow <-
 workflow() %>%
 add_recipe(nb_recipe) %>%
 add_model(nb_spec)

nb_parameters <- parameters(nb_spec)
nb_grid <- grid_max_entropy(nb_parameters, size=20)

1 Hyperparameter tuning (model
selection) via cross-validation

tic()
nb_tune <- nb_workflow %>%
 tune_grid(resamples = cv_folds,
 grid = nb_grid,
 metrics = metric_set(accuracy, roc_auc, pr_auc, sens, yardstick::spec, pp
v, npv, f_meas),
 control = control_grid(verbose = TRUE))
toc()

1.1 Cross-validation metric distributions
In this section, we’re going to take a little bit of a look at the individualized performance of the models
taking into each fold into account. This will satisfy our academic curiosity in terms of machine learning
and also provide some insight into the behaviors of the models. We’ll look more at the aggregated
measures in a moment.

We’ll first decompress the tuning metrics a bit to get them into a more friendly form for processing.

Hide

Hide

4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 3/14

#extract the cross validation metrics for the naive bayes model by fold (i.e., unsumma
rized)
nb_fold_metrics <- nb_tune %>%
 dplyr::select(id, .metrics, .notes) %>%
 unnest(.metrics)

head(nb_fold_metrics, 10)

Now, let’s visualize this generalized performance over all the models

nb_fold_metrics %>%
 mutate(facet_val = if_else(.metric== 'roc_auc' | .metric=='pr_auc' | .metric=='f_mea
s', 'Aggregate metrics', 'Confusion matrix metrics')) %>%
 ggplot(aes(x=.metric, y=.estimate, fill=id)) +
 geom_boxplot(outlier.colour = 'red', na.rm=TRUE) +
 facet_wrap(facet='.metric', scales='free', nrow=2) +
 labs(title='Distribution of performance by 20 model candidates',
 subtitle='By fold and metric',
 x='metric',
 y='metric distribution') +
 scale_x_discrete(labels=NULL)

id
<chr>

smoothn…
<dbl>

Laplace
<dbl>

.metric
<chr>

.estimator
<chr>

.estimate
<dbl>

.config
<chr>

Fold1 1.4451107 2.938294 accuracy binary 0.8331920 Preprocessor1_Model01

Fold1 1.4451107 2.938294 sens binary 0.4677207 Preprocessor1_Model01

Fold1 1.4451107 2.938294 spec binary 0.8583341 Preprocessor1_Model01

Fold1 1.4451107 2.938294 ppv binary 0.1850886 Preprocessor1_Model01

Fold1 1.4451107 2.938294 npv binary 0.9590845 Preprocessor1_Model01

Fold1 1.4451107 2.938294 f_meas binary 0.2652223 Preprocessor1_Model01

Fold1 1.4451107 2.938294 roc_auc binary 0.7599228 Preprocessor1_Model01

Fold1 1.4451107 2.938294 pr_auc binary 0.2021701 Preprocessor1_Model01

Fold1 0.5841239 1.213577 accuracy binary 0.8300543 Preprocessor1_Model02

Fold1 0.5841239 1.213577 sens binary 0.4888011 Preprocessor1_Model02

1-10 of 10 rows

Hide

4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 4/14

Here we can see some interesting fold-specific results. There tended to be a large distubution for Fold
2 and fold 3 performance while Fold 3 and 1 were consistently small in terms of distribution.

2 Identifying the “best” model
Now, let’s collect the metrics to see how the model did over all of the folds and all of the metrics in
order to identify the best model from these candidates. Note that this table looks similar to the prior
tibble; the main difference here is that the results are aggregated over the folds (hence the mean and
n columns).

tune_metrics <- nb_tune %>%
 collect_metrics()

head(tune_metrics, 5)

2.1 Basic performance overview

smoothn…
<dbl>

Laplace
<dbl>

.metric
<chr>

.estimator
<chr>

mean
<dbl>

n
<int>

std_err
<dbl>

.config
<chr>

1.445111 2.938294 accuracy binary 0.8379385 5 0.005161482 Preprocessor1_

1.445111 2.938294 f_meas binary 0.2760796 5 0.007684880 Preprocessor1_

1.445111 2.938294 npv binary 0.9563047 5 0.001109958 Preprocessor1_

1.445111 2.938294 ppv binary 0.1984149 5 0.006786374 Preprocessor1_

1.445111 2.938294 pr_auc binary 0.2291511 5 0.012395085 Preprocessor1_

5 rows

Hide

4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 5/14

Let’s just look at the overall (fold-less) distribution of the metrics.

tune_metrics %>%
 ggplot(aes(x=.metric, y=mean)) +
 geom_boxplot(aes(fill=.metric), outlier.shape=NA, na.rm=TRUE) +
 geom_jitter(na.rm=TRUE) +
 facet_wrap(facets='.metric', nrow=2, scales='free') +
 theme(legend.position = 'none') +
 labs(title='Distribution of mean cv performance by 20 model candidates',
 subtitle='By metric',
 x='metric',
 y='mean cv metric') +
 scale_x_discrete(labels=NULL)

Here, we can see a relatively tight distribution for ppv and rather large distributions for spec, sense, and
npv. However, all of these have a very small scale for their axises so that may be entirely normal. One
additional observation is that for accuracy and pr_auc, there are several very high-performing outliers.
These will likely be our candidates for the “best” model but them being outliers is an interesting area to
be explored.

2.2 Making sense of the hyperparameters and
their influence
Let’s visualize this so we can make some sort of sense out of it.

Hide

Hide

4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 6/14

tune_metrics %>%
 mutate(.metric=fct_relevel(.metric, 'roc_auc', 'pr_auc', 'f_meas', 'accuracy', 'sen
s', 'spec')) %>%
 ggplot(aes(x=Laplace, y=smoothness)) +
 geom_point(aes(fill=mean), shape=22, size=6) +
 scale_x_log10(guide=guide_axis(angle=45)) +
 facet_wrap(ncol=4, facet='.metric') +
 scale_fill_gradient2(low='red', mid='yellow', high='green', midpoint=0.5) +
 labs(title='Mean performance of mixture/penalty hyperparameter combinations',
 subtitle='By performance metric',
 x='LaPlace',
 y='smoothness',
 fill='mean cv value')

Here is a difficult-to-understand plot. The objective of this visualization is to begin to digest the
relationship between the two hyperparameters and the performance given a certain metric. Recall that
hyperparameter tuning evaluates all combinations of hyperparameters. These combos are shown as a
square on a particular “subplot” of a metric of interest. Then, there are 20 squares since there are 20
models. And, the arrangement of all the “intersection” squares is identical.

What is of interest here is the color of the squares. Red indicates that the performance is poor, and
green indicates that the performance is great. What is interesting here is that all of the squares within a
given graph typically had the same color no matter the value of our two hyperparameters. This may
suggest these hyperparameters don’t affect the cv value as much as the model itself does in terms of
classification.

2.3 Looking at all of the metrics together to
select a model

4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 7/14

One possible way of evaluating a good model might be to rank the model according to its performance
across all of the metrics. This allows us to get a bit away from the values themselves. However, we can
also look at the values themselves and investigate the relationship.

#calculate mean metrics and rank
mdl_overall <- tune_metrics %>%
 group_by(.metric) %>%
 mutate(metr_rank=rank(-mean, ties.method='average')) %>% #-mean so that rank increas
es (so, worse) with decreasing metric
 group_by(.config, .add=FALSE) %>%
 mutate(mean_rank = mean(metr_rank)) %>% #add mean rank
 mutate(mean_value = -mean(mean, na.rm=TRUE)) %>% #add mean value
 pivot_longer(cols=c(mean_rank, mean_value), names_to = 'agg_perf_type', values_to='a
gg_perf') %>%
 group_by(agg_perf_type) %>%
 filter(.metric=='pr_auc') #just pick one set of values; all these aggregated values
 will be identical

#plot; note that there is manipulation of negatives for the directionality and absolut
e value
mdl_overall %>%
 ggplot(aes(x=reorder_within(str_remove(.config, 'Preprocessor1_'), -agg_perf, agg_pe
rf_type),
 y=abs(agg_perf),
 width=smoothness)) +
 geom_col(aes(fill=-log(Laplace))) +
 geom_label(aes(label=round(abs(agg_perf),3)), label.r=unit(0.0, "lines"), label.size
=0, size=3) +
 facet_wrap(~agg_perf_type, ncol=2, scales='free') +
 scale_x_reordered() +
 coord_flip() +
 labs(title='General model performance over all metrics by mean overall rank',
 subtitle='Bar appearance shows parameters (width=smoothness, color=LaPlace)',
 y='Mean over all metrics',
 x='Model name')

Hide

4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 8/14

Here, the height of each bar represents smoothness while the color represents the Laplace parameter.
Overall, we see skinnier bars, or those with a lower smoothness, perform better than those with a
higher smoothness. Additionally, the visual color does not immediately seem to correlate with model
performance with the Laplace.

2.4 Selecting the best model
With this information in mind as well as more help from tidymodels, we can then select the “best”
model. One way to do this is to simply choose according to some metric. We’ll decide to use pr_auc
here just because our training data is so imbalanced.

eval_metric <- 'pr_auc'

#show best parameters in terms of pr_auc
nb_tune %>% show_best(eval_metric)

smoothn…
<dbl>

Laplace
<dbl>

.metric
<chr>

.estimator
<chr>

mean
<dbl>

n
<int>

std_err
<dbl>

.config
<chr>

0.5347266 0.1248664 pr_auc binary 0.2410878 5 0.01209749 Preprocessor1_M

0.5841239 1.2135775 pr_auc binary 0.2403545 5 0.01224681 Preprocessor1_M

0.6182274 1.8503048 pr_auc binary 0.2398425 5 0.01207038 Preprocessor1_M

0.5802238 2.7163315 pr_auc binary 0.2396525 5 0.01220565 Preprocessor1_M

0.7585256 2.2693194 pr_auc binary 0.2359066 5 0.01224579 Preprocessor1_M

Hide

4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 9/14

We find here that this is exactly in line with our previous assessment of overall model performance.
Laplace does not seem to have much of an affect on the mean while the lower smoothness levels are
very critical.

#select best parameters
best_nb_params <- nb_tune %>%
 select_best(eval_metric)

#show selected parameters
best_nb_params

smoothness
<dbl>

Laplace
<dbl>

.config
<chr>

0.5347266 0.1248664 Preprocessor1_Model14

1 row

We can see that Model 14 (best in overall rank and mean metric performance) predictably had the
highest pr_auc .

3 Training fit
Having identified the best hyperparameters, we can create the final fit on all of the training data:

#finalize workflow with model hyperparameters
nb_final_wf <- nb_workflow %>%
 finalize_workflow(best_nb_params)
nb_final_wf

5 rows

Hide

Hide

4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 10/14

== Workflow ==
===
Preprocessor: Recipe
Model: naive_Bayes()

-- Preprocessor --

2 Recipe Steps

* step_zv()
* step_normalize()

-- Model ---

Naive Bayes Model Specification (classification)

Main Arguments:
 smoothness = 0.534726615762338
 Laplace = 0.124866351485252

Computational engine: naivebayes

#using final workflow, fit on training data
nb_final_fit <- nb_final_wf %>%
 fit(data = train_data)

4 Selected Model Performance Evaluation
4.1 Cross validation metrics from best model
Let’s first evaluate the performance using the cross-validation metrics from before. However, here, we’ll
only look at the best model.

Hide

Hide

4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 11/14

#get best glmnet metrics
best_nb_fold_metrics <- nb_fold_metrics %>%
 filter(.config==best_nb_params$.config[[1]])

#plot
best_nb_fold_metrics %>%
 mutate(facet_val = if_else(.metric== 'roc_auc' | .metric=='pr_auc' | .metric=='f_mea
s', 'Aggregate metrics', 'Confusion matrix metrics')) %>%
 ggplot(aes(x=.metric, y=.estimate, fill=.metric)) +
 geom_boxplot(outlier.shape = NA, na.rm=TRUE) +
 geom_jitter(aes(x=.metric, y=.estimate), na.rm=TRUE) +
 facet_grid(cols=vars(facet_val), scales='free') + #just to get on separate plots
 labs(title='Distribution of cross validation metrics for best hyperparameter set',
 subtitle='By metric',
 x='metric',
 y='metric estimate') +
 theme(legend.position = "none")

We see very high values for accuracy, npv, and spec, all of which point to this model being one of the
“outliers” we discussed earlier.

4.2 Performance on training data as a whole
Here, we look at the confusion matrix for the entire training set as well as computations from the
confusion matrix.

Hide

4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 12/14

#get prediction class and probabilities
hp_training_preds <-
 predict(nb_final_fit, train_data) %>%
 bind_cols(predict(nb_final_fit, train_data, type = "prob")) %>%
 bind_cols(train_data %>%
 dplyr::select(particle_class))

#calculate confusion matrix
train_conf <- hp_training_preds %>%
 conf_mat(particle_class, .pred_class)

#get summary info
t1 <- train_conf %>%
 summary() %>%
 dplyr::select(-.estimator) %>%
 gridExtra::tableGrob(rows=NULL, theme=gridExtra::ttheme_default(base_size=10))

#plot cmat info
cm <- train_conf %>%
 autoplot(type='heatmap') +
 labs(title='Confusion matrix for training data')

gridExtra::grid.arrange(cm, t1, ncol=2)

Here we see there were roughly 7,500 particles that we truly site particles that were classified as lithic
samples. The overall accuracy remains around 83.7% and precision at 20%.

5 Explaining the model

4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 13/14

5.1 Variable imporance
What parameters are contributing most strongly to the classification? Do we see evidence of data
snooping? Let’s take a look!

Here we can clearly see a common thread through many of the models. The Naive bayes model also
weighted transparency incredibly high followed by the typical compactness, roundness, and l_t_ratio
which were also common candidates for high importance variables.

6 Save markdown file
Lastly, we’ll just make sure to save this markdown file into the repo so that it may be easily accessed
and viewed by everyone. To successfully use this, make sure you have saved your notebook and
the .nb.html has been regenerated!!

fs::file_copy('42-naivebayes-modeling.nb.html', './html_results/42-naivebayes-modelin
g.nb.html', overwrite=TRUE)

Hide

4/8/2021 42-naivebayes-modeling

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 14/14

