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42-naivebayes-modeling

In this notebook, we use Naive Bayes to perform modeling. Our general approach will be to use
hyperparameter tuning via cross-validation to identify the best performing hyperparameters, In another
notebook, we will investigate the performance of the model.

Note that prior to running this notebook, 10 and 40 must already have been run.

0.0.1 Useful packages
Hide

pacman: :p_load(glmnet, tictoc, vip, tidytext, doParallel, caret, naivebayes)
library(discrim)

Here, we define the specs for the feature engineering, the model, the generalized workflow, and the
parameters that we’ll tune using parameters selected from a max entropy grid. For the Naive Bayes
model, the general usemodels template code was not supported but using the naivebayes package
model allowed for easy 1:1 translation

Hide
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nb_recipe <-
recipe(formula = particle_class ~ ., data = train_data) %>%
update_role(id, img_id, starts_with('filter'), hash, new_role='no_model') %>%
step_zv(all_predictors()) %>%
step_normalize(all_predictors(), -all _nominal())

nb_spec <-
naive_Bayes(smoothness = tune(), Laplace = tune() ) %>%
set_mode("classification") %>%
set_engine("naivebayes")

nb_workflow <-
workflow() %>%
add_recipe(nb_recipe) %>%
add_model(nb_spec)

nb_parameters <- parameters(nb_spec)
nb_grid <- grid_max_entropy(nb_parameters, size=20)

1 Hyperparameter tuning (model
selection) via cross-validation

Hide

tic()
nb_tune <- nb_workflow %>%
tune_grid(resamples = cv_folds,
grid = nb_grid,
metrics = metric_set(accuracy, roc_auc, pr_auc, sens, yardstick::spec, pp
v, npv, f_meas),
control = control_grid(verbose = TRUE))
toc()

1.1 Cross-validation metric distributions

In this section, we’re going to take a little bit of a look at the individualized performance of the models
taking into each fold into account. This will satisfy our academic curiosity in terms of machine learning
and also provide some insight into the behaviors of the models. We’ll look more at the aggregated
measures in a moment.

We'll first decompress the tuning metrics a bit to get them into a more friendly form for processing.

Hide
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t#textract the cross validation metrics for the naive bayes model by fold (i.e., unsumma

rized)

nb_fold_metrics <- nb_tune %>%
dplyr::select(id, .metrics, .notes) %>%

unnest(.metrics)

head(nb_fold_metrics, 10)

id smoothn...
<chr> <dbl>
Fold1 1.4451107
Fold1 1.4451107
Fold1 1.4451107
Fold1 1.4451107
Fold1 1.4451107
Fold1 1.4451107
Fold1 1.4451107
Fold1 1.4451107
Fold1  0.5841239
Fold1  0.5841239

1-10 of 10 rows

Laplace
<dbl>

2.938294
2.938294
2.938294
2.938294
2.938294
2.938294
2.938294
2.938294
1.213577

1.213577

.metric
<chr>

accuracy
sens
spec
ppv

npv
f_meas
roc_auc
pr_auc
accuracy

sens

.estimator
<chr>

binary
binary
binary
binary
binary
binary
binary
binary
binary
binary

.estimate
<dbl>

0.8331920
0.4677207
0.8583341
0.1850886
0.9590845
0.2652223
0.7599228
0.2021701
0.8300543

0.4888011

Now, let’s visualize this generalized performance over all the models

nb_fold_metrics %>%

.config
<chr>

Preprocessor1_Model01
Preprocessor1_Model01
Preprocessor1_Model01
Preprocessor1_Model01
Preprocessor1_Model01
Preprocessor1_Model01
Preprocessor1_Model01
Preprocessor1_Model01
Preprocessor1_Model02

Preprocessor1_Model02

Hide

mutate(facet_val = if_else(.metric== 'roc_auc' | .metric=='pr_auc' | .metric=='f_mea

s', 'Aggregate metrics’,

ggplot(aes(x=.metric, y=.estimate, fill=id)) +

geom_boxplot(outlier.colour

= 'red', na.rm=TRUE) +

'Confusion matrix metrics')) %>%

facet_wrap(facet=".metric', scales='free', nrow=2) +
labs(title='Distribution of performance by 20 model candidates',
subtitle='By fold and metric’',

x="metric’',

y="metric distribution') +
scale_x_discrete(labels=NULL)

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html

3/14



4/8/2021

Distribution of performance by 20 model candidates

By fold and metric
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Here we can see some interesting fold-specific results. There tended to be a large distubution for Fold
2 and fold 3 performance while Fold 3 and 1 were consistently small in terms of distribution.

2 Identifying the “best” model

Now, let’s collect the metrics to see how the model did over all of the folds and all of the metrics in
order to identify the best model from these candidates. Note that this table looks similar to the prior
tibble; the main difference here is that the results are aggregated over the folds (hence the mean and

n columns).

tune_metrics <- nb_tune %>%
collect_metrics()

head(tune_metrics, 5)

smoothn...
<dbl>

1.445111
1.445111
1.445111
1.445111
1.445111

5 rows

Laplace
<dbl>

2.938294
2.938294
2.938294
2.938294

2.938294

.metric
<chr>

accuracy
f meas
npv

ppv

pr_auc

.estimator

<chr>
binary
binary
binary
binary

binary

mean
<dbl>

0.8379385
0.2760796
0.9563047
0.1984149

0.2291511

n std_err
<int> <dbl>
5 0.005161482
5 0.007684880
5 0.001109958
5 0.006786374
5 0.012395085

2.1 Basic performance overview
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.config
<chr>

Preprocessor1_
Preprocessor1_
Preprocessor1
Preprocessor1

Preprocessor1
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Let’s just look at the overall (fold-less) distribution of the metrics.

Hide
tune_metrics %>%
ggplot(aes(x=.metric, y=mean)) +
geom_boxplot(aes(fill=.metric), outlier.shape=NA, na.rm=TRUE) +
geom_jitter(na.rm=TRUE) +
facet_wrap(facets='.metric', nrow=2, scales='free') +
theme(legend.position = 'none') +
labs(title="Distribution of mean cv performance by 20 model candidates’,
subtitle="By metric’,
x="metric’,
y='mean cv metric') +
scale_x_discrete(labels=NULL)
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Here, we can see a relatively tight distribution for ppv and rather large distributions for spec, sense, and
npv. However, all of these have a very small scale for their axises so that may be entirely normal. One
additional observation is that for accuracy and pr_auc, there are several very high-performing outliers.
These will likely be our candidates for the “best” model but them being outliers is an interesting area to
be explored.

2.

2 Making sense of the hyperparameters and

their influence

Let’s visualize this so we can make some sort of sense out of it.
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tune_metrics %>%
mutate(.metric=fct_relevel(.metric, 'roc_auc', 'pr_auc', 'f_meas', 'accuracy', 'sen
s', 'spec')) %>%
ggplot(aes(x=Laplace, y=smoothness)) +
geom_point(aes(fill=mean), shape=22, size=6) +
scale_x_logl@(guide=guide_axis(angle=45)) +
facet_wrap(ncol=4, facet='.metric') +
scale_fill gradient2(low='red', mid='yellow', high="'green', midpoint=0.5) +
labs(title="Mean performance of mixture/penalty hyperparameter combinations',
subtitle='By performance metric',
x="'LaPlace"',
y="'smoothness"',
fill="mean cv value')

Mean performance of mixture/penalty hyperparameter combinations
By performance metric
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Here is a difficult-to-understand plot. The objective of this visualization is to begin to digest the
relationship between the two hyperparameters and the performance given a certain metric. Recall that
hyperparameter tuning evaluates all combinations of hyperparameters. These combos are shown as a
square on a particular “subplot” of a metric of interest. Then, there are 20 squares since there are 20
models. And, the arrangement of all the “intersection” squares is identical.

What is of interest here is the color of the squares. Red indicates that the performance is poor, and
green indicates that the performance is great. What is interesting here is that all of the squares within a
given graph typically had the same color no matter the value of our two hyperparameters. This may
suggest these hyperparameters don’t affect the cv value as much as the model itself does in terms of
classification.

2.3 Looking at all of the metrics together to
select a model

file:///C:/Users/markr/Documents/Mark/Spring 2021/Research/ancient-artifacts/html_results/42-naivebayes-modeling.nb.html 6/14



4/8/2021 42-naivebayes-modeling

One possible way of evaluating a good model might be to rank the model according to its performance
across all of the metrics. This allows us to get a bit away from the values themselves. However, we can

also look at the values themselves and investigate the relationship.

Hide

#calculate mean metrics and rank
mdl_overall <- tune_metrics %>%

group_by(.metric) %>%

mutate(metr_rank=rank(-mean, ties.method='average')) %>% #-mean so that rank increas
es (so, worse) with decreasing metric

group_by(.config, .add=FALSE) %>%

mutate(mean_rank = mean(metr_rank)) %>% #add mean rank

mutate(mean_value = -mean(mean, na.rm=TRUE)) %>% #add mean value

pivot_longer(cols=c(mean_rank, mean_value), names_to = 'agg perf_type', values_to='a
gg perf') %>%

group_by(agg_perf_type) %>%

filter(.metric=="pr_auc') #just pick one set of values; all these aggregated values
will be identical

#plot; note that there is manipulation of negatives for the directionality and absolut
e value
mdl_overall %>%
ggplot(aes(x=reorder_within(str_remove(.config, 'Preprocessorl_'), -agg perf, agg _pe
rf_type),
y=abs(agg_perf),
width=smoothness)) +
geom_col(aes(fill=-log(Laplace))) +
geom_label(aes(label=round(abs(agg_perf),3)), label.r=unit(0.0, "lines"), label.size
=0, size=3) +
facet_wrap(~agg_perf_type, ncol=2, scales='free') +
scale_x_reordered() +
coord_flip() +
labs(title="'General model performance over all metrics by mean overall rank',
subtitle="Bar appearance shows parameters (width=smoothness, color=LaPlace)’,
y="'Mean over all metrics',
x="'Model name')
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General model performance over all metrics by mean overall rank
Bar appearance shows parameters (width=smoothness, color=LaFlace)
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Here, the height of each bar represents smoothness while the color represents the Laplace parameter.
Overall, we see skinnier bars, or those with a lower smoothness, perform better than those with a
higher smoothness. Additionally, the visual color does not immediately seem to correlate with model
performance with the Laplace.

2.4 Selecting the best model

With this information in mind as well as more help from tidymodels, we can then select the “best”
model. One way to do this is to simply choose according to some metric. We’ll decide to use pr_auc
here just because our training data is so imbalanced.

Hide
eval_metric <- 'pr_auc’
#show best parameters in terms of pr_auc
nb_tune %>% show_best(eval_metric)
smoothn... Laplace .metric .estimator mean n std_err .config
<dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
0.5347266 0.1248664 pr_auc binary 0.2410878 5 0.01209749 Preprocessor1 |
0.5841239 1.2135775 pr_auc binary 0.2403545 5 0.01224681 Preprocessori_|
0.6182274 1.8503048 pr_auc binary 0.2398425 5 0.01207038 Preprocessor1 |
0.5802238 2.7163315 pr_auc binary 0.2396525 5 0.01220565 Preprocessor1 |
0.7585256 2.2693194 pr_auc binary 0.2359066 5 0.01224579 Preprocessor1 |
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5 rows

We find here that this is exactly in line with our previous assessment of overall model performance.
Laplace does not seem to have much of an affect on the mean while the lower smoothness levels are

very critical.
Hide
#select best parameters
best_nb_params <- nb_tune %>%
select_best(eval_metric)
#show selected parameters
best_nb_params
smoothness Laplace .config
<dbl> <dbl> <chr>
0.5347266 0.1248664 Preprocessor1_Model14

1 row
We can see that Model 14 (best in overall rank and mean metric performance) predictably had the
highest pr_auc.
Having identified the best hyperparameters, we can create the final fit on all of the training data:

Hide

#finalize workflow with model hyperparameters
nb_final_wf <- nb_workflow %>%

finalize workflow(best_nb_params)
nb_final_wf
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Preprocessor: Recipe
Model: naive_Bayes()

2 Recipe Steps

* step_zv()
* step_normalize()

Naive Bayes Model Specification (classification)

Main Arguments:
smoothness = 0.534726615762338
Laplace = 0.124866351485252

Computational engine: naivebayes

#using final workflow, fit on training data
nb_final_fit <- nb_final_wf %>%
fit(data = train_data)

Hide

4 Selected Model Performance Evaluation

4.1 Cross validation metrics from best model

Let’s first evaluate the performance using the cross-validation metrics from before. However, here, we’ll

only look at the best model.

Hide
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#get best glmnet metrics
best_nb_fold _metrics <- nb_fold _metrics %>%
filter(.config==best_nb_params$.config[[1]])

#plot
best_nb_fold _metrics %>%
mutate(facet_val = if_else(.metric== 'roc_auc' | .metric=='pr_auc' | .metric=='f_mea

s', 'Aggregate metrics', 'Confusion matrix metrics')) %>%
ggplot(aes(x=.metric, y=.estimate, fill=.metric)) +
geom_boxplot(outlier.shape = NA, na.rm=TRUE) +
geom_jitter(aes(x=.metric, y=.estimate), na.rm=TRUE) +
facet_grid(cols=vars(facet_val), scales='free') + #just to get on separate plots
labs(title="Distribution of cross validation metrics for best hyperparameter set’,
subtitle='By metric’',
x="metric',
y="metric estimate') +
theme(legend.position = "none"

Distribution of cross validation metrics for best hyperparameter set
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We see very high values for accuracy, npv, and spec, all of which point to this model being one of the
“outliers” we discussed earlier.

4.2 Performance on training data as a whole

Here, we look at the confusion matrix for the entire training set as well as computations from the
confusion matrix.

Hide
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#get prediction class and probabilities
hp_training_preds <-
predict(nb_final_fit, train_data) %>%
bind_cols(predict(nb_final_fit, train_data, type = "prob")) %>%
bind_cols(train_data %>%
dplyr::select(particle_class))

#tcalculate confusion matrix
train_conf <- hp_training preds %>%
conf_mat(particle_class, .pred_class)

#tget summary info
t1 <- train_conf %>%
summary () %>%
dplyr::select(-.estimator) %>%
gridExtra::tableGrob(rows=NULL, theme=gridExtra::ttheme_default(base_size=10))

#plot cmat info
cm <- train_conf %>%
autoplot(type="heatmap') +

labs(title="'Confusion matrix for training data')

gridExtra::grid.arrange(cm, t1, ncol=2)

Confusion matrix for training data

.metric .estimate
accuracy 0.8374124
kap 02126274
exp - 1936 7597 SENs 04840000
spec 08631343
c ppv 0.2046944

o
o npv 0.9583039

®
o mce 02378704
J_index 03471343
site - 2064 bal_accuracy 0.6735672
detection_prevalence 01604166
precision 0.2046944
recall 0.4840000
' ' f meas 0.2877099

exp site
Truth

Here we see there were roughly 7,500 particles that we truly site particles that were classified as lithic
samples. The overall accuracy remains around 83.7% and precision at 20%.

5 Explaining the model
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5.1 Variable imporance

What parameters are contributing most strongly to the classification? Do we see evidence of data
snooping? Let’s take a look!

Scaled coefficient magnitudes of gimnet
Smoothness: 5.3473e-01 Mixture: 0.12487

transparency -
compactness -
roundness -
I_t_ratio-
t_|_aspect_ratio-
ellipticity -
ellipse_ratio -
f_length -
sphericity -
circularity -
e_length -
|_w_ratio-
w_|_ratio -
fiber_length -
perimetder-

c_hull_perimeter -
angularity -
concavity -
solidity -
convexity -

extent-
c_hull_surface_area -
c_hull_area -
fiber_width -
surface_area-
da-

area-

volume -
t_w_ratio-
w_t_ratio -
e_thickness -
curvature -
f_width -
krumbein_rnd -
f_thickness -

variable

sieve -
e_width -

i
0.4
scaled absolute importance

=2
=
=
[
=1
=
=2
w

Here we can clearly see a common thread through many of the models. The Naive bayes model also
weighted transparency incredibly high followed by the typical compactness, roundness, and |_t_ratio
which were also common candidates for high importance variables.

6 Save markdown file

Lastly, we'll just make sure to save this markdown file into the repo so that it may be easily accessed
and viewed by everyone. To successfully use this, make sure you have saved your notebook and
the .nb.html has been regenerated!!

Hide

fs::file_copy('42-naivebayes-modeling.nb.html', './html_results/42-naivebayes-modelin
g.nb.html', overwrite=TRUE)
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