$$
\sin \left(\frac{V}{2}\right)=\frac{\text { min_dist }_{- \text {dist }}^{\text {height_2_screen }}}{\text { nen }}
$$

$$
\text { min_dist }=\text { height_2_screen } * \sin \left(\frac{V}{2}\right)
$$

$$
\tan \left(\frac{\text { vis_angle }}{2}\right)=\frac{\text { min_dist }}{0.5 * \text { stim_param }}
$$

$$
\frac{\text { vis_angle }}{2}=\operatorname{atan}\left(\frac{\text { min_dist }}{0.5 * \text { stim_param }}\right)
$$

2020-07-18 Some observations by VBB:

- Please check my math against yours! I am hopeful that I didn't make any errors here. Let me know if I've made incorrect assumptions about what your variables represent.
- I think height_2_screen may be calculated incorrectly. I don't see how it can be a function of tan(vertex_angle). The calculations need to be done using either (vertex_angle/2) or with $\left(90-\frac{V}{2}\right)$ as done on this page.
- I don't think calculating a width_2_screen helps, or at least I think it's confusing the issue of how to calculate min_dist right now.
- See next page for some concerns about vis_angle relative to stim_param.

$$
\text { Vertex angle }=V
$$

What happens when the stimulus is not centered around
min_dist?

Across all three drawings, only stim_param is moving. The bird's position relative to the screen is identical. It seems unreliable to gauge how min_dist and vis_angle relate. But maybe I am missing the point??

Maybe the thing to do ultimately (or in addition) is to use min_dist to calculate how spatial frequency information is modulated?

