A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.
Switch branches/tags
Clone or download
Pull request Compare This branch is 98 commits ahead, 25 commits behind drivendata:master.
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.github
astropy-helpers @ 86f1159
docs
hooks
tests
{{ cookiecutter.repo_name }}
.gitattributes
.gitignore
.gitmodules
.rtd-environment.yml
CHANGES.rst
LICENSE
README.md
ah_bootstrap.py
cookiecutter.json
readthedocs.yml
requirements.txt
setup.cfg

README.md

Cookiecutter Data Science

A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.

Project homepage

Requirements to use the cookiecutter template:


  • Python 2.7 or 3.5
  • Cookiecutter Python package >= 1.4.0: This can be installed with pip by or conda depending on how you manage your Python packages:
$ pip install cookiecutter

or

$ conda config --add channels conda-forge
$ conda install cookiecutter

To start a new project, run:


cookiecutter https://github.com/vcalderon2009/cookiecutter-data-science

Or if you want the default project scheme from DrivenData, run:

cookiecutter https://github.com/drivendata/cookiecutter-data-science

Depending on what kind of folder structure you want, you might want to choose from the different types.

asciicast

The resulting directory structure


The directory structure of your new project looks like this:

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.testrun.org

Contributing

We welcome contributions! See the docs for guidelines.

Installing development requirements


pip install -r requirements.txt

Running the tests


py.test tests