@@ -3,4 +3,53 @@ bookCollapseSection: true
3
3
weight : 5
4
4
---
5
5
6
- # Recsys Syllabus
6
+ ---
7
+ weight: 2
8
+ title: Recsys Syllabus
9
+ ---
10
+ ** Books**
11
+
12
+ 1 . [ MMDM] ( http://www.mmds.org/ )
13
+ 2 . [ Practical Recommender Systems] ( https://www.manning.com/books/practical-recommender-systems )
14
+ 3 . [ Recommener Systems, Aggarwal] ( https://www.amazon.com/Recommender-Systems-Textbook-Charu-Aggarwal-ebook/dp/B01DK3GZDY )
15
+ 4 . [ Practical Recommender Systems] ( https://www.manning.com/books/practical-recommender-systems ) Falk
16
+
17
+ ** System design**
18
+ - [ Reading] ( https://eugeneyan.com/writing/system-design-for-discovery/ )
19
+ - Google [ Intro to Recsys Course] ( https://developers.google.com/machine-learning/recommendation )
20
+
21
+ ** Recsys Algorithms**
22
+ - Collaborative Filtering Reading:[ Amazon Paper] ( https://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf )
23
+ - Collaborative Filter [ Survey Paper] ( https://md.ekstrandom.net/pubs/cf-survey )
24
+ - Matrix Factorization - Reading: [ Netflix Prize paper] ( https://datajobs.com/data-science-repo/Recommender-Systems-%5BNetflix%5D.pdf )
25
+ - Content Filtering - [ Twitter Paper] ( https://link.springer.com/chapter/10.1007%2F978-3-642-20161-5_44 )
26
+ - Hybrid Recommenders: [ Collaborative + Content Based] ( https://aclanthology.org/W03-1103.pdf )
27
+
28
+ ** Methods**
29
+ - [ Personalization] ( https://eugeneyan.com/writing/patterns-for-personalization )
30
+ - [ Multiarmed Bandits] ( https://www.youtube.com/watch?v=rDjCfQJ_sYY&t=17s )
31
+ - Embeddings [ Overview] ( https://abhadury.com/articles/2020-03/embeddings-for-recommender-systems ) and [ Overview] ( https://drop.engineering/building-a-recommender-system-using-embeddings-de5a30e655aa )
32
+ - Random Walk - [ Pixie] ( https://cs.stanford.edu/people/jure/pubs/pixie-www18.pdf )
33
+ - Definitions of similarity/distance in personalized algos
34
+ - Candidate Generation Process
35
+ - Candidate Ranking Process
36
+
37
+ ** Recsys Evaluation Metrics:**
38
+ - [ Precision and Recall] ( )
39
+ - [ Overview] ( https://towardsdatascience.com/evaluation-metrics-for-recommender-systems-df56c6611093 )
40
+ - [ Overview] ( https://www.jmlr.org/papers/volume10/gunawardana09a/gunawardana09a.pdf )
41
+ - [ Overview] ( https://beta-recsys.readthedocs.io/en/latest/notes/evaluation.html )
42
+ - Precision/Recall/AUC
43
+
44
+ ** Deep Learning Recsys**
45
+
46
+ [ tbd] [ Softmax] ( https://developers.google.com/machine-learning/recommendation/dnn/softmax )
47
+
48
+ ** Recsys in Production**
49
+ - [ Spark ALS] ( https://spark.apache.org/docs/latest/ml-collaborative-filtering.html )
50
+ - [ Elasticsearch LTR] ( https://elasticsearch-learning-to-rank.readthedocs.io/en/latest/ )
51
+ - [ Netflix and Scala for ML] ( https://portal.klewel.com/watch/webcast/scala-days-2019/talk/12/ )
52
+ - [ Realtime Recs at Netflix] ( https://databricks.com/session/near-real-time-netflix-recommendations-using-apache-spark-streaming )
53
+ - Netflix [ Similariy] ( https://drive.google.com/file/d/1huRI4IimWVhF4tYLIoVqHHrTxKkV0imx/view )
54
+
55
+
0 commit comments