
www.it-ebooks.info

http://www.it-ebooks.info

What Readers Are Saying About Lean from the Trenches

FANTASTIC! I know it’s going to make a big dent in the world of software develop-

ment. It’s easily the most important book I have seen in the past year!

➤ Mary Poppendieck, Author of the Lean Software Development series

I read the whole thing end to end. In a word, FANTASTIC! Grounded, real, funny,

easy to read, smooth flow, good balance between theory and practice.

➤ Kent Beck

Awesome. Kudos to you for documenting the everyday sort of decision making

that has to happen for a big project to be successful. I hope it becomes a bench-

mark against which many more projects are judged.

➤ Ward Cunningham

I could not stop reading Lean from the Trenches. This book shows me that a big

project can be run in a lean and agile way. For people in the trenches of large

enterprises, stories like this make a huge difference.

➤ Yves Hanoulle, Change Artist at PairCoaching.net

www.it-ebooks.info

http://www.it-ebooks.info

An excellent peek into a pragmatic application of the best of the agile processes

in a real-world scenario. If you ever wondered “Am I doing it right?” then this book

may just provide you with the answer. Every technical team lead interested in

seeing how an agile process actually works should buy this now!

➤ Colin Yates, Principle Engineer, QFI Consulting LLP, UK

It rocks. Finally, a nonpuritan, pragmatic, successful case study with real, usable

ideas.

➤ Simon Cromarty, The Agile Pirate

I really enjoyed this immensely pragmatic and readable look at a real project

organized on agile and lean principles. The emphasis on real-life experiences

rather than theory was refreshing and engaging. I will definitely recommend this

book to friends and will use its insights in my own professional engagements.

➤ Kevin Beam, Independent Software Developer, Lambda42, LLC

 www.it-ebooks.info

http://www.it-ebooks.info

Lean from the Trenches
Managing Large-Scale Projects with Kanban

Henrik Kniberg

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

 www.it-ebooks.info

http://www.it-ebooks.info

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in

initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,

Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-

marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes

no responsibility for errors or omissions, or for damages that may result from the use of

information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create

better software and have more fun. For more information, as well as the latest Pragmatic

titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Kay Keppler (editor)

Potomac Indexing, LLC (indexer)

Kim Wimpsett (copyeditor)

David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2011 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-934356-85-2

Printed on acid-free paper.

Book version: P1.0—December, 2011

 www.it-ebooks.info

http://pragprog.com
http://www.it-ebooks.info

Contents

Foreword xi

Preface xiii

Part I — How We Work

1. About the Project 3

1.1 Timeline 5

1.2 How We Sliced the Elephant 6

1.3 How We Involved the Customer 7

2. Structuring the Teams 9

3. Attending the Daily Cocktail Party 13

3.1 First Tier: Feature Team Daily Stand-up 14

3.2 Second Tier: Sync Meetings per Specialty 15

3.3 Third Tier: Project Sync Meeting 16

4. The Project Board 19

4.1 Our Cadences 22

4.2 How We Handle Urgent Issues and Impediments 23

5. Scaling the Kanban Boards 27

6. Tracking the High-Level Goal 31

7. Defining Ready and Done 35

7.1 Ready for Development 36

7.2 Ready for System Test 37

7.3 How This Improved Collaboration 38

 www.it-ebooks.info

http://www.it-ebooks.info

8. Handling Tech Stories 39

8.1 Example 1: System Test Bottleneck 40

8.2 Example 2: Day Before the Release 41

8.3 Example 3: The 7-Meter Class 42

9. Handling Bugs 45

Continuous System Test 459.1

9.2 Fix the Bugs Immediately! 46

9.3 Why We Limit the Number of Bugs in the Bug Tracker 47

9.4 Visualizing Bugs 48

9.5 Preventing Recurring Bugs 50

10. Continuously Improving the Process 53

10.1 Team Retrospectives 54

10.2 Process Improvement Workshops 54

10.3 Managing the Rate of Change 62

11. Managing Work in Progress 65

11.1 Using WIP Limits 69

11.2 Why WIP Limits Apply Only to Features 70

12. Capturing and Using Process Metrics 73

Velocity (Features per Week) 7312.1

12.2 Why We Don’t Use Story Points 75

12.3 Cycle Time (Weeks per Feature) 76

12.4 Cumulative Flow 81

12.5 Process Cycle Efficiency 83

13. Planning the Sprint and Release 85

Backlog Grooming 8513.1

13.2 Selecting the Top Ten Features 86

13.3 Why We Moved Backlog Grooming Out of the Sprint

Planning Meeting 86

13.4 Planning the Release 87

14. How We Do Version Control 89

14.1 No Junk on the Trunk 90

14.2 Team Branches 91

14.3 System Test Branch 92

15. Why We Use Only Physical Kanban Boards 95

Contents • vii

 www.it-ebooks.info

http://www.it-ebooks.info

16. What We Learned 99

Know Your Goal 9916.1

16.2 Experiment 99

16.3 Embrace Failure 99

16.4 Solve Real Problems 100

16.5 Have Dedicated Change Agents 100

16.6 Involve People 100

Part II — A Closer Look at the Techniques

17. Agile and Lean in a Nutshell 103

Agile in a Nutshell 10417.1

17.2 Lean in a Nutshell 106

17.3 Scrum in a Nutshell 109

17.4 XP in a Nutshell 111

17.5 Kanban in a Nutshell 112

18. Reducing the Test Automation Backlog 117

What to Do About It 11718.1

18.2 How to Improve Test Coverage a Little Bit Each

Iteration 118

18.3 Step 1: List Your Test Cases 118

18.4 Step 2: Classify Each Test 119

18.5 Step 3: Sort the List in Priority Order 120

18.6 Step 4: Automate a Few Tests Each Iteration 122

18.7 Does This Solve the Problem? 123

19. Sizing the Backlog with Planning Poker 125

19.1 Estimating Without Planning Poker 125

19.2 Estimating with Planning Poker 127

19.3 Special Cards 128

20. Cause-Effect Diagrams 131

Solve Problems, Not Symptoms 13120.1

20.2 The Lean Problem-Solving Approach: A3 Thinking 132

20.3 How to Use Cause-Effect Diagrams 133

20.4 Example 1: Long Release Cycle 134

20.5 Example 2: Defects Released to Production 138

20.6 Example 3: Lack of Pair Programming 140

20.7 Example 4: Lots of Problems 144

Contents • viii

 www.it-ebooks.info

http://www.it-ebooks.info

20.8 Practical Issues: How to Create and Maintain the

Diagrams 145

20.9 Pitfalls 146

20.10 Why Use Cause-Effect Diagrams? 147

21. Final Words 149

A1. Glossary: How We Avoid Buzzword Bingo 151

Index 153

ix • Contents

 www.it-ebooks.info

http://www.it-ebooks.info

Foreword

We who give project advice are faced with a mighty temptation. The teams

who engage us are looking for direction, hope, ideas, energy, and guidance

(and sometimes someone to blame, but that’s a different topic). We are called

in because we have been in a variety of situations, some more functional and

some less. We try to help our clients move toward “more functional.” However,

we are often as baffled as they about what to do next.

The temptation I am referring to is the temptation to begin speaking beyond

our experience, to meet the client’s need for certainty by manufacturing a

certainty we ourselves do not feel. Left untreated, this results in dogma,

revealed by words like “must,” “always,” and “everybody.”

One beauty of this book’s story is its complete lack of dogma. It is a story. A

story of a project that had real troubles and addressed them with a small set

of easily understood practices. Applying those practices required wisdom,

patience, and persistence, which is why you can’t just copy the story to fix

your project.

The other reason you can’t just copy the story is because it isn’t written as a

general prescription. It is a particular team in a particular culture with a

particular client. You are going to have to work to apply it to your situation,

but that’s good, because you are in any case going to have to work to encour-

age any change.

There are general principles at work here. I’ve been fortunate enough to work

with Henrik a bit, and he told me he really has only one trick: make all the

important information visible in one place and then decide what to do together.

If that’s his only trick (and I have my doubts), it’s a good one.

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Society has learned to distrust us for our big, complicated, and ultimately

futile public software projects. This is the story of a public service project that

managed to serve the public. What it takes to regain the public’s trust

is teamwork, transparency, and early and frequent releases. Oops, I just

succumbed to that temptation I just warned you about. You’d better just read

the story and learn your own lessons.

Kent Beck

September 2011

xii • Foreword

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Preface

Many of us have heard about Lean software development, Kanban, and other

trendy buzzwords. But what does this stuff actually look like in practice? And

how does it scale to a 60-person project developing a really complex system?

I can’t tell you how to do it, since every context is different. But I will tell you

how we’ve been doing it (basically a Scrum-XP-Kanban hybrid), and maybe

some of our solutions and lessons learned can be valuable in your context.

Who This Book Is For

This book is primarily written for team leads, managers, coaches, and other

change agents within software development organizations.

However, some parts will probably be useful to anyone interested in software

development, Lean product development, or collaboration techniques in gen-

eral—regardless of role or industry.

For those who want to comment, go to the book’s main page,1 and from there

you can reach the forum and errata pages. I welcome your comments!

How to Read This Book

This book is divided in two parts, each subdivided into several short chapters.

Part I, “How We Work,” is a case study showing how Kanban and Lean prin-

ciples were applied in a large project for the Swedish police. The first chapter

describes what the project was about, and the subsequent chapters describe

specific challenges (such as scaling), how we dealt with those challenges, and

what we learned along the way.

Part II, “A Closer Look at the Techniques,” starts with a high-level introduction

to Agile and Lean and then expands on some of the practices mentioned in

Part I, such as cause-effect diagrams.

1. http://pragprog.com/book/hklean/lean-from-the-trenches

 www.it-ebooks.info

http://pragprog.com/book/hklean/lean-from-the-trenches
http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

I suggest you read Part I end to end, since that is the heart of this book, and

the chapters build upon each other. Then you can cherry-pick from Part II,

since those chapters are independent.

New to Agile or Lean?

If you are new to Agile or Lean, don’t worry. This book is all about practice,

not theory. I’ll simply show you what we’ve been doing, and you’ll pick up

most of the theory along the way.

If you prefer to start with a high-level overview of Agile and Lean and the

associated methods Scrum, XP, and Kanban, then go ahead and jump to

Chapter 17, Agile and Lean in a Nutshell, on page 103.

Disclaimer

I don’t claim that our way of working is perfectly Lean. Lean is a direction,

not a place. It’s all about continuous improvement. Lean has no clear defini-

tion, but many of the practices that we apply are based on the principles of

Lean product development that Mary Poppendieck, David Anderson, and Don

Reinertsen teach. And these practices, by the way, happen to match Agile

principles quite well on most counts.

Another thing—you will see this project from my perspective, a part-time

coach during six months of this project. My goal is not to present a 100 percent

complete picture; I’ll just give you a general idea of what we’ve been doing

and what we’ve learned so far.

Acknowledgments

Many people have contributed to this book—thanks to you all! I’d especially

like to thank Håkan Rydman for being the internal change agent and getting

me into this project, and Tomas Alsterlund for providing strong management

support and keeping us focused on the project goal.

And I’d also like to call out the following people:

Christian Stuart and the rest of the RPS management team for entrusting

me to coach this project and allowing us to spread the word about what we’ve

been doing.

All project participants for putting their hearts into this project and helping

to drive the change process. I was amazed by the skill, creativity, and energy

of this project team!

Mary and Tom Poppendieck for years of personal mentorship and cotraining

in Lean software development and for encouraging me to write this book.

xiv • Preface

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

They also kindly contributed most of the content in Section 17.2, Lean in a

Nutshell, on page 106.

My editor, Kay Keppler. I’ve never worked with an editor before, and I was

surprised about how valuable this was. Kay not only improved the book, she

helped me become a better writer!

All reviewers: Gunnar Ahlberg, Kevin Beam, Kent Beck, Pawel Brodzinski,

Ward Cunningham, Doug Daniels, Chad Dumler-Montplaisir, Yves Hanoulle,

Michael Hunter, Andy Keffalas, Maurice Kelly, Sebastian Lang, Rasmus

Larsson, Mary Poppendieck, Sam Rose, Daniel Teng, Nancy Van Schooender-

woert, Joshua White, and Colin Yates.

Martie Smith and Emma Mattsson for donating some great photographs.

Finally, my wife, Sophia, for granting me focus and flow (not easy with four

small kids in the house…) so that I could finish the first draft of this book

within days instead of months.

Henrik Kniberg

mailto:henrik.kniberg@crisp.se

Stockholm, October 2011

Acknowledgments • xv

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Part I

How We Work

Let’s climb into the trenches and take a look at

what this project is about and how things get done.

 www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1

About the Project

RPS (“rikspolisstyrelsen”) is the Swedish national police authority, and the

product we have built is a new digital investigation system called PUST

(“Polisens mobila Utrednings STöd”). The basic idea is to equip every police

car with a small laptop, a mobile Internet connection, and a web application

that allows officers to handle all the investigation work quickly.

Suppose an officer catches a drunk driver. In the past, the officer would have

had to capture all the information on paper, drive to the station, file a report,

and then hand the case over to another investigator for further work. This

would take a month or so.

With PUST, the officer captures all the information directly on the laptop,

which is online and integrated directly with all relevant systems. The case is

closed within a few days or even hours.

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

The system was rolled out nationwide in April 2011 and garnered quite a lot

of media attention. The product has been featured in major newspapers, on

TV, and on the radio, and so far the response has been very positive.1

Petty crimes are now processed, on average, six times faster,2 and the police

can spend more time in the field and less time at the station. More crimes

can be resolved and with higher quality, which is likely to improve crime

statistics over the long term. Staying in the field is also more motivating for

the officers. Police like to do police work, not paperwork!

Furthermore, the project itself has gone well. We’ve had surprisingly few

support issues and bug reports, compared to past projects of similar complex-

ity and scale. PUST is a complicated system because it has to do the following:

• Integrate with a huge number of legacy systems

• Be very user friendly since police will be using the system in real time

while doing interrogations

• Be highly secure

• Comply with a lot of complicated laws and regulations

This project was very important to RPS. In fact, the Minister for Justice had

declared publicly that the primary focus of the Swedish police was to become

more effective and reduce the processing time for investigations. The high

stakes, complex technology, and aggressive timeline made it clear that we

probably couldn’t pull off this project using traditional methods. We were

1. www.dn.se/nyheter/sverige/polisen-utreder-betydligt-snabbare-med-ny-metod

2. www.polisen.se/sv/Aktuellt/Nyheter/Gemensam/2011/april-juni/Snabbare-

brottsutredningar-med-PUST/

4 • Chapter 1. About the Project

 www.it-ebooks.info

http://www.dn.se/nyheter/sverige/polisen-utreder-betydligt-snabbare-med-ny-metod
http://www.polisen.se/sv/Aktuellt/Nyheter/Gemensam/2011/april-juni/Snabbare-brottsutredningar-med-PUST/
http://www.polisen.se/sv/Aktuellt/Nyheter/Gemensam/2011/april-juni/Snabbare-brottsutredningar-med-PUST/
http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

therefore allowed to explore new and more effective ways of working, which

is what this book is about.

PUST is part of a cultural change within RPS, a nationwide Lean initiative

throughout the whole organization. So, it made a lot of sense to start applying

Lean principles to the development process itself too!

1.1 Timeline

The goal of the project was to make the PUST system available to all police

in Sweden by early 2011. Development started around September 2009. The

first release to production (a pilot) happened one year later, followed by a series

of bimonthly follow-up releases.

Q3 Q4 Q3 Q4 Q1 Q2 Q1 Q2

2009 2010 2011

1.0 1.1 1.2 1.3 1.4 1.5

Project Launch

10 People

30 People 60+ People

First Pilot
Release

Nationwide
Release

...

The project size was initially about ten people in Q3 2009, scaled to about

thirty people in mid-2010, and then doubled to sixty-plus people in Q4 2010.

The key milestones were 1.0 (the first pilot release to real users) and 1.4 (the

nationwide release). The system will, of course, continue to evolve over many

years, so 1.4 is by no means the last release.

One year to first release might seem like a long time to Agile folks, but com-

pared to other government projects of similar scope and complexity, this was

extremely short! Some of these types of projects have taken up to seven years

until first release! Release to production every second month is also quite an

unusual concept. Many government organizations release only once or twice

per year. We’re hoping to reduce this even further to a monthly release cycle.

All these factors—the short release cycles and the aggressive scaling—drove

the need to evolve the organization and development process quickly.

And that’s how I got involved as coach.

I was on the project from December 2010 to June 2011, working roughly two

to three days per week. My main focus was on putting Lean and Agile princi-

ples into practice and helping the teams evolve just the right process for their

Timeline • 5

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Joe asks:

Why Release Often? Isn’t That Expensive?

Well, yes, each release does carry a fixed cost. But the release is the moment of truth

—the only time that we really learn about how our product fits the user’s needs! The

longer we wait between releases, the more bugs and incorrect assumptions we will

embed in the code. Also, with smaller and more frequent releases, the pain and risk

for each release is reduced.

context. That’s what the rest of this book is about—what we did, what

problems we encountered, how we dealt with them, and what we learned. It

was a challenging but fun journey!

One thing to keep in mind, though...

This book is basically a snapshot of how our process looked in June 2011.

One of the most important characteristics of a Lean process is that it keeps

evolving. Sometimes we find better solutions. Sometimes a seemingly great

solution yesterday causes a new problem today. Sometimes our environment

and circumstances change, forcing us to adapt.

So, by the time you read this book, the project may well look very different.

1.2 How We Sliced the Elephant

The key to minimizing risk in large projects is to find a way to “slice the ele-

phant,” that is, find a way to release the system in small increments instead

of saving up for a big-bang release at the end. Ideally, each increment should

independently add value to the users and knowledge to the teams.

We sliced this elephant across two dimensions: geographic location and type

of crime.

1.0

1.2

1.3 1.4

1.5

Region

Östergötland,
Uppsala, etc

Crime Types

(Weapon
Possession,
Drunk Driving,
Shoplifting, etc)

Integrations

1.1

...etc...

6 • Chapter 1. About the Project

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

• Release 1.0-1.2: Pilot releases to only one region—Östergötland—support-

ing only a small number of common crime types such as drunk driving

and weapon possession. Other crime types were handled the old manual

way. For each subsequent release we improved the stability and added

more crime types.

• Release 1.3: Expanded the release to a second region—Uppsala.

• Release 1.4: Expanded the release to the rest of Sweden. This was the

“main” release.

• Release 1.5: Additional crime types added, with new integrations to various

systems such as tracking of confiscated goods.

In addition to the bimonthly feature releases, we made small “patch” releases

every few weeks to provide bug fixes and minor improvements to existing

functionality.

1.3 How We Involved the Customer

PUST was an in-house project; the customer, users, and developers were all

part of the Swedish police organization.

PUST Project

Customer

Acceptance Test
User Group

On-Site
User

Pilot Users

One person acted as the main “customer” (or “buyer”) to the project. She had

a list of features at a pretty high level. We called them feature areas, which

roughly equates to what agile folks would call epics. This list was used for

high-level scheduling and release planning.

How We Involved the Customer • 7

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

In addition to the customer, there was an on-site user in the building with

the development teams. The on-site users were there to give detailed feedback,

see demos, answer questions from developers, and so on. Initially we had

on-site users only once per week or so, but during later stages we had on-site

users almost every day, through a rotating schedule.

A week before each release we had an acceptance test group come in, typically

ten or so police officers, investigators, and other real users. This group would

spend a couple of days trying the latest release candidate and giving feedback.

Usually the system worked quite well by the time it reached acceptance test,

so we rarely had any nasty surprises coming up at that point.

As soon as the first release was out the door, we had a group of pilot users

in Östergötland (a region in southern part of Sweden) hard at work, giving us

a continuous stream of feedback on our efforts.

8 • Chapter 1. About the Project

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 2

Structuring the Teams

One of the key challenges in software projects is how to organize people into

decently sized teams and then how to coordinate between multiple teams.

As we scaled from thirty to sixty-plus people, we started running into serious

communication and coordination difficulties—typical symptoms of growth

pain. Fortunately, we were all located on the same floor; everybody in the

project was within at most thirty seconds’ walking distance from each other.

As a result, we could quite easily experiment with how to organize the project.

In fact, collocation may well have been the most important success factor of

this project.

We gradually evolved the team structure to something like this:

Three
Feature Teams

System Test
Team

Requirements
Analyst

Team

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

We have five teams: one requirements team, three feature development teams,

and one system test team. Some people are outside of the team structure to

handle specialist functions and coordination functions. This includes the

project manager, project administrator, configuration manager, e-learning

specialist, performance test expert, development manager, coach, and so on.

The three feature teams are basically Scrum teams; that is, each team is

collocated, cross-functional, self-organized, and capable of developing and

testing a whole feature. For more info on Scrum, see Section 17.3, Scrum in

a Nutshell, on page 109.

The requirements analyst team is essentially a virtual team, so instead of

sitting together as a team, they are spread around to ensure that everyone

on the project has close access to a requirements analyst. Within this team

are essentially three subroles:

• Some analysts are embedded in one of the feature teams and follow that

team’s features all the way through development into test, answering

questions and clarifying the requirements along the way.

• Some analysts focus on the “big picture” and aren’t embedded in any

feature team. They look further into the future to define high-level feature

areas.

• The rest of the members of the analyst team are flexible and move between

the two other subroles depending on where they are needed most at the

moment.

The test team follows a similar virtual team structure, with corresponding

subroles:

• Some testers are embedded in a feature team and help that team get their

software tested and debugged at a feature level.

• Some testers are “big-picture” testers and focus on doing high-level system

tests and integration tests on release candidates as they come out. The

person coordinating that work is informally called the system test general.

• The rest of the test team members are flexible and move between the

other two roles as needed.

In the past, the teams were organized by specialty. We had a distinct require-

ments team, a distinct test team, and distinct development teams that did

not have embedded testers or analysts. That didn’t scale very well, because

as more people were added to the project, communication problems developed.

Teams tended to communicate with other teams through documents rather

10 • Chapter 2. Structuring the Teams

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

than talking, and they tended to blame problems on each other. Teams also

tended to focus on getting their part of the work done instead of the whole

product. For example, a requirements analyst would consider his work for a

feature “done” when the requirements document had been written and signed

off, instead of staying with that feature all the way through to production.

The level of collaboration improved dramatically as we evolved to a more

Scrum-like structure, with cross-functional teams of analysts, testers, and

developers sitting together. We didn’t go “all the way,” though; we kept some

analysts and testers outside of the feature teams so they could focus on the

“big picture” instead of individual features. This scaled quite nicely and gave

us a good balance between short-term feature focus and long-term product

focus.

Chapter 2. Structuring the Teams • 11

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 3

Attending the Daily Cocktail Party

If you walk into this project on any day before 10:15 a.m., it will feel like

walking into a cocktail party! People are everywhere, standing in small groups

and communicating.

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

You’ll see groups standing in semicircles in front of boards, engaged in con-

versation, and moving sticky notes around. You’ll see people moving between

teams, debates going on, and decisions being made. Suddenly a group will

break apart, and some individuals will move to another group to continue

the conversation. New groups sometimes form in the hall to follow up on some

side conversation.

By 10:15 the daily cocktail party is over, and most people are back at their

desks.

This may look chaotic at first glance, but in fact, it’s highly structured.

3.1 First Tier: Feature Team Daily Stand-up

First up are the feature team daily stand-ups.

Feature Team 1 Feature Team 2 Feature Team 3

9:30 – 9:45 9:15 – 9:30 9:30 – 9:45

Two of the teams meet at 9:30, and one of the team meets at 9:15 (each team

decides their own meeting time). Everyone on the team stands up in a rough

semicircle in front of their task board, discussing the work they are going to

do today and any problems and issues that need to be addressed.

Sally: I’m going to chase that darned memory leak today.

Jeff: You probably need to upgrade the profiler tool first. I had problems with that

last week.

Sally: OK, thanks for the heads-up. I’ll come get you if I get stuck.

Some teams use the Scrum formula (answering “What did I do yesterday,”

“What am I doing today,” and “What is blocking me”), and others are more

informal about it. These meetings usually take ten to fifteen minutes and are

facilitated by a team leader (which equates pretty much to Scrum master).

14 • Chapter 3. Attending the Daily Cocktail Party

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

3.2 Second Tier: Sync Meetings per Specialty

At precisely 9:45, a second set of daily stand-ups takes place, during which

the members of each specialty (requirements analysis, test, development)

meet separately to synchronize their work across all feature teams.

Test
Sync

Requirements
Sync

Dev
Sync

All the testers gather in front of a test status board and discuss how to make

best use of their time today. The embedded testers have just completed the

daily stand-up within their feature team, so they have fresh information about

what is going on within each team.

Tom: Today we need to focus on usability issues in system test. Any help is

appreciated.

Lisa: I’ll join you in an hour or so. My team is finishing a logging feature. After

that, they can probably do without me for the rest of the day.

At the same time, the requirements analysts are having their own sync

meeting, including the embedded analysts who just came out of their feature

team stand-up meeting with fresh information.

Jim: The folks on my team seem confused about the new usability guidelines.

John: My team too!

Maria: Oh, maybe that’s why system test has become a bottleneck again. They

seem to be struggling with inconsistent user interface design. Any proposals?

Jim: Let’s set up a workshop and discuss the new guidelines.

Maria: OK, I’ll bring up this at the project sync meeting right after this. We’ll find

a good time today and try to get at least one developer and tester from each team

to join.

At the same time, the team leads from each feature team, plus the development

manager are having their dev sync meeting. The team leads just came out of

their feature team stand-up meeting with fresh information.

report erratum • discuss

Second Tier: Sync Meetings per Specialty • 15

Download from Wow! eBook <www.wowebook.com> www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Jeff: My team is finishing off the logging feature (points to a card on the wall).

We’ll probably get started with the database migration this afternoon.

Sam: Wait, does that mean we need to update the build scripts?

Jeff: Yeah. It’s easy, though. Ask Lisa if you need help. At the team stand-up, she

said she didn’t have much to do today.

The test sync meeting takes place in front of a test status board, while the

requirements sync and dev sync meetings take place in front of the project

board (see Chapter 4, The Project Board, on page 19). These three meetings

take place in parallel just a few meters from each other, which makes it a bit

noisy and chaotic, but the collaboration is very effective. If anybody from one

team needs info from another, they can just walk over a few meters to the

other meeting and ask a question.

Some people (such as the project manager and I) float around between the

meetings, absorbing what is going on and trying to get a feel for which high-

level issues need to be resolved. Sometimes we stay outside the meetings,

and sometimes we get pulled into a discussion.

3.3 Third Tier: Project Sync Meeting

Finally, at precisely 10 a.m., the project sync meeting takes place in front of

the project board.

Project Sync

The people at this meeting are informally referred to as the cross-team (or

tvärgrupp in Swedish)—a cross-section of the whole project. In our case, that

equates to one person from each specialty and one person from each feature

team, plus a few other folks such as the project manager, configuration

manager, and myself.

The project sync meeting is where we look at the big picture, focusing on the

flow of functionality from analysis to production: Which team is doing what

today? What is blocking our flow right now? Where is the bottleneck, and

how can we alleviate it? Where will the bottleneck be next? Are we on track

with respect to the release plan? Does anybody not know what to do today?

16 • Chapter 3. Attending the Daily Cocktail Party

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

This not only gives us a great bird’s-eye perspective of what is going on, it

lets us solve problems quickly, especially collaboration issues between teams.

If “us” and “them” work together every day, then sooner or later “us” and

“them” become just “us.”

That’s it. A total of seven stand-up meetings every day, organized into three

layers. Each meeting is timeboxed to fifteen minutes, each meeting has a core

set of participants who show every day, and each meeting is public, so anybody

can visit any meeting if they want to learn what is going on or have something

to contribute. And it’s all over by 10:15 a.m.

If some important topic comes up during a daily and can’t be resolved within

fifteen minutes, we schedule a follow-up meeting with the people needed to

resolve that issue. Some of the most interesting and valuable discussions

take place right after the project sync meeting, as people stand in small

clusters dealing with stuff that came up during the daily stand-ups.

This structure of daily meetings was something that we gradually evolved

into. When we started doing the “daily cocktail party” (which, by the way, is

my term, not an official term we use in the project), I was a bit concerned

that people might think we were having too many meetings. That turned out

not to be the case. On the contrary, the team members insist that these

meetings are highly valuable, and I can see that the energy level is usually

high and problems get solved.

Most people need to go to only one meeting. Some individuals need to go to

two meetings. The team lead of a feature team goes to his team stand-up as

well as the dev sync meeting. The embedded tester in a feature team goes to

the team stand-up as well as the test sync meeting, and so on. This is a very

effective way of “linking” communication channels and making sure that im-

portant knowledge, information, and decisions propagate quickly throughout

the entire project.

Many problems that would otherwise result in the creation of documents and

process rules are resolved directly at these morning meetings. One concrete

example is deciding which team is to develop which feature; another example

is deciding whether to spend our time developing customer-facing functional-

ity today or spend it implementing customer-invisible improvements to the

technical infrastructure. Instead of setting up policy rules for this, the teams

simply talk about this during the daily meetings and make decisions on-the-

fly based on the current situation. This is the key to staying agile in a big

project and not getting bogged down in bureaucracy.

report erratum • discuss

Third Tier: Project Sync Meeting • 17

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 4

The Project Board

The project board is the communication hub of the project. Ours is a several-

meter-long whiteboard showing all key project features flowing through the

pipeline from requirements, development, and system test, all the way into

production.

If you are into Kanban, you’ll recognize this as a Kanban system, which means

that we track the flow of value from idea to production and that we limit the

amount of work in progress at each step of the process. For more on Kanban,

see Section 17.5, Kanban in a Nutshell, on page 112.

Here’s a summary of what the columns mean:

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Next Ten

Features
Ideas Features Development System

Test

User

Acceptance

Test

FLOW

Production

The leftmost column is where ideas come in. These are high level-feature areas.

Each feature area is written down on an epic card. One example is “confisca-

tion,” which represents a whole series of features related to the confiscation

of items from suspects.

The epic card sooner or later gets pulled into the second column (analysis

ongoing), where it gets analyzed and split into user stories at a feature level.

These are written down on feature cards in the third column. The third column

corresponds roughly to a Scrum product backlog, except that it isn’t strictly

ordered. Most of the feature cards are written in user story format: “As X, I

want Y so that Z.” For example, “As investigator, I want to filter by region

when I search for an address so that I can find the address quickly.”

When an epic has been analyzed (that is, broken into features), the epic card

is thrown away and replaced by a handful of more detailed feature cards in

the third column. So, the epic cards never make it past the second column,

and the feature cards are born in the third column.

Feature cards are the main “unit of currency” on the board.

The top ten features are selected and pulled into the “Next Ten Features”

column. This usually happens at a biweekly meeting that corresponds

roughly to a Scrum sprint planning meeting (we even call it that). See Chapter

13, Planning the Sprint and Release, on page 85 for more info on how the top

ten are selected.

The three feature teams continuously pull cards from the “Next Ten Features”

column into their own “Dev in Progress” column when they have capacity,

and into the “Ready for System Test” column when the feature is developed

and tested at a feature level.

20 • Chapter 4. The Project Board

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

The test team regularly flushes the “Ready for System Test” column and pulls

all those cards into the “System Test in Progress” column (and creates a cor-

responding system test branch in the version control system; see Chapter

14, How We Do Version Control, on page 89). Once system test is done, the

test team releases to an acceptance test environment, moves the cards to the

“Ready for Acceptance Test” column, and then starts another round of system

tests on whatever features have been completed since. This was a big cultural

shift—the move from “big system test at the end of the release cycle” to

“continuous system test” (but with some batching).

Every second month (roughly), a bunch of real users show up and spend a

couple of days doing acceptance testing (basically just trying the system out

and giving feedback), so we move the cards to “Acceptance Test in Progress.”

When they’re done testing and any final bugs have been found and fixed, the

cards move to “Ready for Production.” Shortly thereafter (when the system

has been released), they move to the last column, “In Production.” The cards

sit there for a few weeks (so we can celebrate that something got into produc-

tion) but are then removed to make space for new cards flowing in.

To the casual observer glancing at the board, this system might look like a

waterfall process: requirements analysis→development→system test→accep-

tance test→production. There’s a big difference, though. In a waterfall model,

the requirements are all completed before development starts, and development

is completed before testing starts. In a Kanban system, these phases are all

going on in parallel. While one set of features is being acceptance-tested by

users, another set of features is being system tested, a third set of features

is being developed, and a fourth set of features is being analyzed and broken

into user stories. It’s a continuous flow of value from idea to production.

Well, it’s semicontinuous, I should say. In our case it’s a more or less contin-

uous flow of value from idea to “Ready for Acceptance Test.” New features are

released to production roughly every second month and acceptance-tested

in conjunction with that, so features sit around in “Ready for Acceptance

Test” for a few weeks. Although I hope we can improve this in the future, it’s

turned out to be not much of a problem. Since we have on-site users giving

us feedback during development, we’ve found that by the time a feature

reaches “Ready for Acceptance Test,” it pretty much works as expected, and

few serious problems are found after that stage.

report erratum • discuss

Chapter 4. The Project Board • 21

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Using Kanban to Discover Scrum

This seems to be a general pattern: I see many Kanban teams that gradually discover

(or sometimes rediscover) the value of many of the Scrum practices. In fact, sometimes

Kanban teams start doing Kanban because they didn’t like Scrum and then later

discover that Scrum was actually pretty good and their problems had been exposed

by Scrum, not caused by it. Their real problem was that they had been doing Scrum

too much “by the book” instead of inspecting and adapting it to their context.

More on that in my other book Kanban and Scrum: Making the Most of Both [KS09].

4.1 Our Cadences

A cadence is something that happens over and over at regular intervals,

forming a rhythm or heartbeat in the project. Here is a summary of our

cadences:

week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8

Planning (2w)

Retrospectives (2w)

Release (2m)

Demo & Systest (Continuous)

• Retrospectives happen every second week (every week for some teams).

That’s where we look for ways to improve the process.

• Planning happens every second week (approximately). That’s where we

decide which features to focus on next.

• Demo and system test is done in a continuous fashion, as features get

done.

• Release to production is done approximately every second month

We’ve been evolving more and more toward a Scrum-like model. Initially,

retrospectives were held twice as often as planning meetings; now they happen

every second week, one day after each other. Demo and reviews are done

continuously now, but we’re considering doing a high-level product demo/

review every second week. And guess what—doing retrospectives, planning,

and demos together in the same cadence is basically the definition of a Scrum

sprint.

22 • Chapter 4. The Project Board

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

This evolution toward a more Scrum-like model was not really intentional. It

was just the result of a series of process improvements triggered by real-life

problems.

4.2 How We Handle Urgent Issues and Impediments

A traffic system metaphor is very useful when dealing with Kanban boards.

Think of the board as a series of roads, with each card representing a car

trying to move across the board from left to right.

We want to optimize the flow; therefore, we don’t want to fill up the board.

We all know what happens to a traffic system when it is 100 percent full—the

traffic system slows to a halt.

We need space, or slack, to absorb variation and enable fast flow.

t t di

How We Handle Urgent Issues and Impediments • 23

D l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Having slack in the system not only enables fast flow, it also enables escala-

tion. On our board we use police car magnets (of course!) to mark items that

are urgent and need special treatment to move through the system faster.

Police Car
= Urgent

We also mark impediments (“road blocks”) using pink stickies.

Feature
Blocked

General
Impediments

24 • Chapter 4. The Project Board

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

If a specific feature is blocked (for example, because we don’t have access to

a third-party system needed to test that feature), we put a pink sticky on that

feature, describing the problem and the date that it started. A section on the

right side—Top Three Impediments—also shows more general problems that

aren’t tied to any specific feature (such as a build environment not working).

At the daily meetings we focus on removing these blockers. Just as with a

traffic system, a blocker that stays around for too long will cause ripple effects

throughout the whole system. Plus, nothing will flow faster than the bottleneck

section of the road, so we focus all efforts on resolving these bottlenecks.

Here’s an example of a blocker being dealt with at the daily project sync

meeting:

As polic
I need t
So that

Can’t tes
t!

Waiting f
or

barcode
 reader

Jim
March 12

2011-03-01

Eric: So, what’s the status of this blocked item? Jim?

Jim: Still no barcode reader. It was supposed to be delivered last week; I have

no idea when we will get it, so I can’t really test my code.

Eric: Hmmm. Do we just wait and hold our breath, or is there anything else we

can do?

Tracee: I worked with barcode readers in my last project; maybe we still have

some lying around?

Jim: It’s probably not the right model, but I can start testing on that. It’s a start.

Eric: OK, and in the meantime I’ll escalate the problem and put some heat on the

supplier. Do you need anything else?

Jim: No, I think this is the best we can do for this issue for today.

The next day, if the problem hasn’t been resolved, the pink sticky note will

still be up there as a reminder to follow up on this issue. The date on the

sticky indicates how long it has been up there, and the name indicates who

is focusing on solving the issue (so we know who to ask about it).

t t di

How We Handle Urgent Issues and Impediments • 25

D l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Eric: I see the barcode issue is still up as a blocker....

Jim: Yeah. Tracee and I tried her reader, but it wasn’t compatible so we couldn’t

test on it at all.

Eric: Too bad. Well, I talked to the supplier yesterday and couldn’t get a clear

commitment. I also talked to the customer and mentioned the problem. To my sur-

prise, they said the barcode feature isn’t really that important for this release and

that we could skip it if it’s causing trouble.

Jim: Great! Then I’ll start working on another feature instead.

Eric: And I’ll start looking for a new supplier, so we’re ready when this feature

pops up in the future.

The project board is probably the single most important communication arti-

fact in the project. It provides a high-level picture of what is going on in the

project and illustrates flow and bottlenecks in real time.

But how can a physical board like this work in practice with sixty-plus people

on the project? Coming up next: scaling the Kanban boards.

26 • Chapter 4. The Project Board

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 5

Scaling the Kanban Boards

The speed of a project is largely determined by how well everyone understands

what’s going on. If everyone knows where we are right now and where we’re

going, it’s much easier for everyone to move in the same direction.

As we approached staff levels of sixty people, this became a challenge. Each

team had its own team board showing what was going on within the team,

covering which features are in progress and who’s working on which task

related to that feature. However, we were missing the big picture. What’s going

in the whole project? Where’s the bottleneck right now? Which new features

are coming down the pipeline? Which features will be finished in time for the

release?

That’s why we created the project board. It’s a way to keep track of the big

picture by showing project features as they move from requirements to devel-

opment, to system test, and into production.

Flow

This board had a strong effect on the culture of the organization. Now we

could see! And we all had the same picture!

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

The collaboration between teams improved dramatically since each team

could see how their actions influenced (and sometimes disrupted) the overall

flow of features into production.

However, we didn’t want to remove the team boards, since they were great

for visualizing the daily task-level work going on within each team and helping

team members stay in sync with each other. And we didn’t want to put all

that detailed team-local information on the project board; it would get too

cluttered, and we would lose the overview. So, we decided to have a two-layer

system of boards—one shared project board plus three team boards.

The development columns on the project board were split into three horizontal

swim lanes, one for each feature team:

Next Ten
Features

Development
in Progress

Ready for
System Test

System Test
in Progress

Each feature flows from “Next Ten Features” into one of the three feature

teams. When that team has developed the feature and tested it at the feature

level, it goes to “Ready for System Test.” When the system test team finishes

its previously ongoing round of system tests, they pull all new cards from

each feature team’s “Ready for System Test” into the combined “System Test

in Progress” column and start a new round of system testing. See Section

9.1, Continuous System Test, on page 45 for more information on how we test.

Whenever a feature team pulls in a card from “Next Ten Features” to “Devel-

opment in Progress,” they clone that feature card and put it on their own

team-internal board.

28 • Chapter 5. Scaling the Kanban Boards

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Feature Team 1 Feature Team 2 Feature Team 3

Next Ten
Features

Development
in Progress

Ready for
System Test

The feature team then breaks the work into tasks and writes those down as

sticky notes tied to that feature. This is typically done in conjunction with an

analysis meeting, where requirements analysts, testers, and developers col-

laborate to sketch out the design of this feature and identify the key tasks

involved. Each task normally starts with a concrete verb, for example “write

the GUI code” or “set up the DB tables” or “design the protocol.”

So, the project board contains feature cards, and each feature team has their

own board with the features they are working on plus the associated task

breakdown. Imagine that you “double-click” a feature on the project board

and “zoom in” to the corresponding team board to see which tasks are involved

in that feature and who is working on what task.

Most feature teams also have avatar magnets to indicate who is working on

which task. Your avatar says everything about your personality...

t t di

Chapter 5. Scaling the Kanban Boards • 29

D l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

As you can see in the pictures, each team has their own board layout. We

have not tried to standardize this. Instead, we let each team find whatever

board structure works best for them. Most teams do have work-in-progress

limits (see WIP limits; Chapter 11, Managing Work in Progress, on page 65)

and a definition of “done” (see Chapter 7, Defining Ready and Done, on page

35) and avatar magnets on their boards.

This two-tier system of physical Kanban boards turned out to work very well,

although there was some initial confusion about how to keep everything in

sync. It’s clear that the boards have become a point of gravity in the project;

teams naturally gather around their board whenever they need to synchronize

work or solve problems. Most team members focus on their team-level board,

while team leads and managers focus on both the team-level board and the

project-level board.

As time passes, more and more team members have started showing interest

in the project-level board, which is a good indicator that people are focusing

on the big picture rather than just on their own work.

However, if we really want people to focus, we need something more: a clearly

defined high-level goal.

30 • Chapter 5. Scaling the Kanban Boards

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 6

Tracking the High-Level Goal

People are more likely to focus on the high-level goal if they know what it is.

I know, that sounds rather obvious. But yet in many organizations I’ve worked

with, managers think that everyone knows the high-level goal, and then it

turns out that each person has a different answer when we ask them what

that goal is.

Our high-level project goal is usually posted right on the Kanban board. For

example, during Q1 2011 we had the goal “Deliver on April 5 a version with

no important defects that is releasable to the whole country.” A milestone

along that path was to deliver to two new regions on March 14.

High-Level
Goal

Milestone

When we reach a goal, we write a new goal statement for the next release.

The goal statement acts as a guiding light. Sometimes we need to make difficult

trade-offs, and having a clear, high-level goal helps everyone stay in sync

about what’s important for the next release.

Once every week or two we do a reality check. Typically the project manager

asks at the project sync meeting, “Do you believe we’ll reach this goal?”

Everybody writes down a number from one to five (sometimes we just hold

up fingers).

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

• 5 = Definitely

• 4 = Probably

• 3 = Barely

• 2 = Probably not

• 1 = Forget it

Here’s an example:

This chart shows three rounds of votes. During the first week (leftmost column

of votes), there was low confidence in the goal; the next week, confidence

increased; and the week after that, it was all 5s!

Whenever we start seeing 2s and 1s, we reevaluate the goal and discuss what

needs to change to improve our confidence. These are typical actions:

• Remove an impediment (“Let’s buy a new build server to replace the broken

one!”)

• Help a bottleneck (“Let’s all do testing today!”)

32 • Chapter 6. Tracking the High-Level Goal

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

• Reduce scope (“If we remove feature X from this release, we can still reach

the goal!”)

• Adjust the goal (“This goal is no longer realistic; let’s define a new goal

that we actually believe in!”)

• Work harder (“Who can come in on Saturday?”)

Any of the first four are preferable to the last, since the root cause of the

problem is usually not that we aren’t working hard. In fact, sometimes the

root cause of the problem is that we are working too hard and not taking time

to think.

The votes are mostly based on gut feel but also to a certain extent on visible

information, including the cards on the board, metrics such as cycle time

and velocity (see Chapter 12, Capturing and Using Process Metrics, on page

73), and charts such as this feature burn-up:

Number of
Features

Delivered to

Acceptance

Test

(Cumulative)

Week Number

The x-axis shows the week, and the y-axis shows the total number of features

that have been completed by that week. This is a nice visualization of the

system growing over time.

The two dotted lines poking out to the right are trend lines, showing one

optimistic and one pessimistic projection of how many features will be finished

in time for the next release. We’re still just guessing, of course, but the

guesses are based on empirical data and not just, well, guesses.

Armed with this data, we can make a simple and realistic release plan that

doesn’t try to hide the uncertainty:

t t di

Chapter 6. Tracking the High-Level Goal • 33

D l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

All of These

Will Be Done

Some of These

Will Be Done,

But Not All

None of These

Will Be Done

As we get closer to the release date, we get more and more confident about

which features will be done and which won’t, so the uncertainty (the middle

section) decreases.

By the way, we don’t use any fancy project management tool to generate these

charts. We use a simple spreadsheet.

Anyway, this type of continuous reality check is a very simple and useful

technique to detect and avoid death marches (projects where everyone knows

they’re going to fail but still keep marching dutifully). If people can agree on

a goal that they believe in, this has an immensely positive effect on self-orga-

nization and collaboration. Conversely, if people don’t understand the goal

or don’t believe the goal is achievable, they will unconsciously disassociate

themselves from the business goal and focus on personal goals such as “have

fun coding” or “just get my part of the work done and go home.”

I can strongly recommend having a clear goal and periodic reality check, no

matter what type of project you are involved in. The cost of doing this is very

low, and the benefit is very high!

34 • Chapter 6. Tracking the High-Level Goal

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 7

Defining Ready and Done

It’s important to be very clear about what the columns on the board mean.

Especially in big projects, the more people involved, the greater the risk of

confusion, and the greater the cost of confusion.

The blue text at the top of most columns on our project board is the definition

of done for that column (which also means definition of ready for the subse-

quent column). The two most important definitions for us are definition of

ready for development and definition of ready for system test, since that’s

where we used to have the most problems.

Definition of
”Ready for

Development”

Definition of
”Ready for

System Test”

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

7.1 Ready for Development

The “Ready for Development” column essentially means “Here’s a bunch of

features that we’ve broken down and estimated and clarified, but we haven’t

yet decided which of these we are going to develop and in which order.” So,

this corresponds roughly to a Scrum product backlog. For a feature to be

ready for development, it must have the following characteristics:

• It must have an ID. The ID is used as a key when you’re looking up more

information about this feature, in case there are any associated use case

specifications or other documents. These documents are accessible on

the project wiki by clicking the corresponding ID.

• It must have a contact person. The contact person is typically the require-

ments analyst who has the most domain knowledge about this feature.

• It must be valuable to customers. When breaking down epics into deliver-

able stories, we want to make sure we haven’t lost the customer value

along the way. The requirements analysts have the final say on this matter.

• It must be estimated by the team. The estimates are normally done by a

small group consisting of a tester, a developer, and a requirements analyst

playing Planning Poker (see Chapter 19, Sizing the Backlog with Planning

Poker, on page 125). We use T-shirt sizes (small, medium, large). These are

size estimates, not time estimates. But to make the estimation process

easier, we use this as a rough guideline:

• Small means “Under perfect conditions this will take less than one

week of elapsed time to get to ‘Ready For Acceptance Test.’” Perfect

conditions means that we have exactly the right people working only

on this feature with no disruptions.

• Medium means one to two weeks (again, under perfect conditions).

• Large means more than two weeks. Large features have to be broken

down further before they are allowed into development.

• It must have an acceptance test scenario written on the backside of the

card. This is a concrete set of steps describing the most typical test

scenario. Here’s an example:

“Joe Cop logs in, looks up case #235, and closes it. He then looks up case

#235 again and sees that it’s closed.”

36 • Chapter 7. Defining Ready and Done

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

7.2 Ready for System Test

“Ready for System Test” means that the feature team has done everything

they can think of to ensure that this feature works and doesn’t have any

important defects. They have, however, focused on testing the feature itself,

not the whole release that it would be part of.

For a long time system test was a bottleneck, and one of the major reasons

for that was the high number of unnecessary defects passing into system

test. By “unnecessary defects,” I mean feature-level defects that could have

been found way before putting it all together into a system test. So, our defi-

nition of ready for system test is there to keep the quality bar high and catch

those pesky bugs early. It’s also there to give the feature team a sense of

responsibility for quality and to give them permission to spend the necessary

time to ensure that a feature really works, before delivering it to system test

and moving on to the next feature.

So, here is our definition of ready for system test:

• Acceptance test automated: This means that some kind of end-to-end

feature-level acceptance test or integration test has been automated. We

used to use Selenium for that (which runs tests directly against the web

interface), but we eventually moved to Concordion. The Selenium tests

were just too brittle for our Ajax-riddled web interface, and Concordion

fit better with our move toward Specification By Example.1

• Regression tests pass: All automated tests for previously existing features

pass. Sometimes a new feature breaks an old feature, so we have to make

sure that all old tests are run on a regular basis.

• Demonstrated: The team has demonstrated this feature to the rest of the

team, the on-site user, the requirements analyst, the system tester, and

the usability expert. This helps us catch usability issues early so they

don’t show up in system test or (even worse) user acceptance test.

• Clear check-in comments: When checking in code related to this feature,

the check-in comment should be tagged with the ID of this feature, plus

an easily understandable comment about what was done. This provides

a minimum level of traceability (big projects always seem to fuss about

traceability...).

1. www.specificationbyexample.com

t t di

Ready for System Test • 37

D l d f W ! B k b k
www.it-ebooks.info

http://www.specificationbyexample.com
http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

• Tested in the development environment: Each team has a dedicated test

environment, and this feature should be tested there (to avoid the “Hey,

it works on my machine” syndrome).

• Merged to trunk: Code for this feature should be on the trunk, and any

merge conflicts should be resolved. This is the basis of the stable trunk

model we use (see Chapter 14, How We Do Version Control, on page 89).

7.3 How This Improved Collaboration

These two policy statements—definition of ready for development and definition

of ready for system test—have significantly improved collaboration between

the teams. This improvement stood out clearly when I did a short survey to

check what people thought about all the process changes so far.

In the past, when we just started doing Kanban, each specialty team focused

mostly on “their” part of the project board. The requirements analysts looked

only at the left part of the project board and considered themselves “done”

with a feature when a requirements document had been written. The develop-

ers looked only at the middle of the board, and the testers looked only at the

right. The testers weren’t involved in writing the requirements, so once a

feature reached test, there was often confusion about how it was supposed

to work. People spent a lot of effort arguing about the level of detail needed

in the requirements documents.

These were just old habits. But the project board helped everyone see the

problem, which is the first and most critical step toward solving it!

The collaboration problems gradually disappeared (well, significantly declined

at least) within a few weeks after everyone had agreed on the definitions. The

definition of ready for development can be achieved only if all specialties work

together to estimate features, to break them into small enough deliverables

without losing too much customer value, and to agree on acceptance tests.

Similarly, the definition of ready for system test can be achieved only if all

specialties work together to run feature-level tests (both automated tests and

manual exploratory tests) to determine whether this feature is good enough

to release.

This clear need for continuous collaboration is what made the test team and

requirements team agree to “lend” specialists to each feature team, thus

making each feature team truly cross-functional (and much more effective)!

In general, writing a definition of ready at the top of each key column is one

of those simple techniques that is useful in any kind of Kanban system.

38 • Chapter 7. Defining Ready and Done

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 8

Handling Tech Stories

Tech stories are things that need to get done but that are uninteresting to the

customer, such as upgrading a database, cleaning out unused code, refactor-

ing a messy design, or catching up on test automation for old features. We

call these internal improvements, but in retrospect, tech stories is probably a

better term, since we’re talking about stuff to be done with the product, not

process improvements.

Tech stories are born in the “Ready for Development” section of the project

board and enter development through a “Next Five Tech Stories” section (right

below “Next Ten Features”). These are essentially two parallel input queues

to development.

Next Five
Tech Stories

Next Ten
Features

Ready for
Development

As you can see, there are quite a lot of cards under “Ready for Development,”

a mixed bag of features and tech stories. We don’t waste time trying to put

all those in priority order. Instead, we do a form of “just in time” prioritization

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

by continuously identifying the next ten features and next five tech stories.

This provides just enough of a work buffer to keep the feature teams from

running out of things to work on.

When a feature team has capacity to start something new, they either pull a

feature from “Next Ten Features” or pull a tech story from “Next Five Tech

Stories.” We have no static rule defining the correct balance between these

two. Instead, we continuously discuss and adjust the balance during the

daily stand-up meetings.

Tech stories are distinguished from features by a green spot in the corner of

the card. This lets us distinguish between the two even after they have been

pulled into development, so the project board reveals how we are balancing

our time between features and tech stories.

Usually features dominate, but here are some examples of situations that

caused us to focus mostly on tech stories for a while:

8.1 Example 1: System Test Bottleneck

System testing had become an obvious bottleneck, so there was clearly no

point developing new features and adding to the bottleneck. Once this became

clear, the developers focused on implementing tech stories that would make

system test easier—mostly test automation stuff. In fact, the test manager

40 • Chapter 8. Handling Tech Stories

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

was tasked with creating a test automation backlog, prioritizing it, and feeding

it to the developers via “Top Five Tech Stories.” The testers became customers!

For more information on this technique, see Chapter 18, Reducing the Test

Automation Backlog, on page 117.

Test
Automation

Backlog

No New
Features

Test
Bottleneck

8.2 Example 2: Day Before the Release

It was the day before a major release, and the team wanted to get that release

out the door before starting a bunch of new features. So, they focused on

last-minute bug fixing. If they didn’t have any bugs to fix at the moment, they

worked on tech stories—typically things that we had wanted to do for a long

time but had never gotten around to, such as removing unused code, catching

up on refactoring, and learning new tools.

As you see from the board, lots of tech stories (green spots) are in progress.

t t di

Example 2: Day Before the Release • 41

D l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Everyone
Doing

Tech Stories

8.3 Example 3: The 7-Meter Class

Here’s a cool way to make a business case for a tech story. One of the classes

in our code base was getting way out of control and needed some significant

refactoring, but there was some resistance to spending time on that. So, one

of the team leads printed out the whole class and laid it across the conference

table! It was more than 7 meters long (23 feet)!

Looking at that monstrous printout, everyone clearly saw that we needed a

tech story to fix that class immediately! No argument needed. This also illus-

trated the consequence of being in a hurry and not paying enough attention

to design.

We had some fun speculating about future developments along this theme.

How about if we estimate features in code-meters and measure velocity in

code-meters per day? We could even separate ideal code-meters (how long

the code would be if we kept it really clean), with actual code-meters. Subtract

those two, and you get technical debt—in meters! We could even draw a line

in the floor to symbolize how much technical debt we have (“Hey look, we

42 • Chapter 8. Handling Tech Stories

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

On a Side Note...

I’ve never seen a project of this scale with so little drama in conjunction with releases!

Almost disappointing....

Where is the customary panic and rush and all-night crunching the day before the

release? Where is the subsequent onslaught of support issues and panicky hot fixing

the day after the release? I came in the day after the most important release (the

nationwide release that was the focal point of the whole project), and there was

barely any sign that anything significant had happened.

The reason for this was that the releases were well-rehearsed, because of the setup

with on-site users and pilot releases. Of course, we’d had some problems with the

earlier pilot releases—but that’s why we do pilots, right?

Anyway, remember to celebrate releases—even when you get good at it and they’re

not as exciting anymore.

have 23 meters of debt!”). Or maybe we would have to use code-miles for

that....

Um, OK, I’ll stop now.

Anyway, now that we’ve started talking about code quality, let’s talk about

bugs.

t t di

Example 3: The 7-Meter Class • 43

D l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 9

Handling Bugs

Before we moved to Kanban, we handled bugs the traditional way. The testers

would find bugs during system test at the end of the development cycle and

log them in the bug tracker. The bug tracker contained hundreds of bugs,

and a change control board met every week to analyze, prioritize, and assign

bugs to developers. This was a pretty boring and ineffective process for every-

one involved (and everyone was involved...).

9.1 Continuous System Test

The Kanban system helped us see that we needed to do system test continu-

ously (well, regularly at least), instead of saving it until the end. The test team

resisted this initially, since system test takes time and it felt inefficient to do

it more than once in the release cycle. But that is an illusion. It may seem

more effective to do test only at the end, but if we include bug-fixing time in

the equation, it is significantly less effective.

Here’s what testing at the end typically looks like in a two-month release cycle:

Test Fix %&@#!

Release

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8

And here is what it typically looks like if we do it more often:

Release

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

We can’t test the whole system until the end, since the system isn’t done

until then. But we can still run partial system tests much earlier, based on

whatever features are done at the time. And we can still do a full system test

at the end. That final system test may take as long as before, but the bug-

fixing time is dramatically reduced—and that’s the big part! The bug-fixing

time is reduced because we’ve already found and fixed many of the bugs

earlier and because the bugs we do find at the end will tend to be newer bugs

and therefore easier for the developers to find and fix. We also accelerate

learning by finding bugs early.

So, let’s put these two pictures together and graphically compare the testing

and fixing time in both scenarios:

%&@#! Test At End:

Test Fix

Test Fix Time
Saved!

Test Continuously:

This is a very important picture. Look at it again, especially if you are a tester.

Yes, your testing time increases in the second scenario. But the total time

decreases!

Of course, another key element in this is test automation. We can never

automate away all testing, but since we are doing system test over and over

again, we want to automate as much as we possibly can!

9.2 Fix the Bugs Immediately!

Now when testers find a bug, they don’t log it in the bug tracker. Instead,

they write it down on a pink sticky note (like any other impediment) and go

talk to the developers. In most cases, they know roughly who to go to, since

each team has an embedded tester who works with the developers every day.

Otherwise, they ask the team leads and find the right person to fix the bug

(typically someone who has been working in that part of the code).

The developer and tester sit together and fix the bug on the spot, or the devel-

oper fixes the bug on his own and then gets back to the tester immediately.

The point is, no more handoffs, no more delays, and no more communicating

through the bug tracker. This is more effective for many reasons:

• Finding and fixing bugs earlier is more effective than finding and fixing

bugs later.

46 • Chapter 9. Handling Bugs

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Joe asks:

Do You Really Just Ignore Bugs That Don’t Make

Top Thirty?

Well, OK, we sometimes log it in the bug tracker with status deferred, which is the

equivalent of saying “Yes, we know about this but probably won’t get around to fixing

it.” We do this mostly because it hurts a tester’s soul to find a bug and then just ignore

it. Even though it probably will never be fixed, most people seem to feel some sort of

psychological comfort in writing it down. Plus it might be useful for data mining

purposes—for example, to generate statistics showing which parts of the system are

most bug-riddled.

But basically, deferred bugs are outside of the top-thirty list, so deferred is for all

practical purposes equivalent to a garbage can or a basement full of stuff that we

don’t need but don’t have the heart to throw away right now.

• Face-to-face communication is more effective than written communication

(because of the higher bandwidth).

• Everybody learns more, as developers and testers learn about each other’s

work.

• Less time is wasted managing long lists of old bugs.

Sometimes a bug is not important enough to fix immediately—for example,

if it is only a minor annoyance to the users and implementing other features

is more important than fixing this minor annoyance. In this case, well, yes,

the tester will log the bug in the bug tracker. Unless it’s full, of course.

What? Full? How can a bug tracker get full?

9.3 Why We Limit the Number of Bugs in the Bug Tracker

Before we moved to Kanban, we had hundreds of issues in the bug tracker.

Now we have a hard limit of thirty.

If a bug is found, the first question is “Is this a blocker?” Blocker in this case

means “The feature won’t be releasable with this bug” or “This bug is more

important to fix than building additional features.” Write it on a pink sticky

note and fix it now, like any other impediment. Don’t put it in a queue.

If the bug is not a blocker, however, we have a decision to make: “Is this bug

more important than any of the other top thirty bugs in the bug tracker?” If

so, then that other bug is removed from the top thirty list to make room for

this one. If not, then we ignore the new bug.

t t di

Why We Limit the Number of Bugs in the Bug Tracker • 47

D l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

That way, the bug tracker continuously keeps us focused on the most impor-

tant bugs and doesn’t become an administrative burden.

Here’s a summary of the workflow:

Bug found!

Blocker?
Write sticky-note,

find developer,
fix now!

More important
than any of
the current

top thirty?

Replace one of
the other

top thirty bugs

with this one.

Ignore
it.

No

Yes

Yes

No

By limiting the size of the bug database, we no longer need long, boring change

control board meetings to manage looooong lists of bugs that will probably

never be fixed. The meetings still happen, but they’re much shorter and more

effective since they focus only on the edge cases—bugs that need to be dis-

cussed before they can be prioritized.

9.4 Visualizing Bugs

Of the top thirty bugs, we also identify the top five. Those go up on cards on

the project board. So, that’s a third input queue to development. “Next Ten

Features,” “Next Five Tech Stories,” and “Next Five Bugs.”

Next Five
Tech Stories

Next Ten
Features

Next Five
Bugs

48 • Chapter 9. Handling Bugs

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Bugs cards are written with red marker, so they are easily distinguished from

features and tech stories.

The bugs that come in through the “Next Five Bugs” queue were not important

enough to be a pink sticky note and get fixed immediately but were important

enough to go on the “Next Five Bugs” list (typically after spending some time

in the top thirty list in the bug tracker). So, it will be fixed soon, but just not

at this moment.

When the team has capacity (typically right after finishing a feature), they

will discuss whether to grab one of the next ten features, one of the next five

tech stories, or one of next five bugs.

Limiting the size of the bug tracker builds trust. The bug list is short, but the

stuff in there actually does get fixed, rather than sitting around for months

without anything happening. If a bug is unlikely to be fixed (because it didn’t

make top thirty), we are honest about that from start, instead of building up

false expectations.

Right behind
the 739
other

issues…

No worries,
sir, your issue
is on our list!

That’s the idea. Or something like that.

One improvement area we still face is that we still haven’t found a clean,

consistent way to visualize bugs. We’re still experimenting a lot with this. The

testers like to have a clear picture of which bugs are currently being fixed,

so they have set up a separate board for this. The advantage of that system

has to be balanced against the disadvantage of having yet another board to

keep track of. Where does the bug sticky note go—on the bug board, the

project board, or the team board? Or should we be duplicating bug sticky

notes? What about really small bugs, things that just take a few minutes to

fix, how do we avoid creating too much administrative overhead for these?

Lots of questions, lots of experimentation....

So, basically we’ve come a long way and found a solution that enables us to

find and fix bugs quickly, improve collaboration between developers and

t t di

Visualizing Bugs • 49

D l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

testers, avoid collecting long lists of stale bugs in the bug tracker, and avoid

long boring change control board meetings. But we’re still trying to figure out

the visualization issue and experimenting with how to get just the right level

of detail on the boards.

9.5 Preventing Recurring Bugs

Some types of bugs keep coming back. Often they’re simple things, such as

labels in the user interface being misaligned or misspelled. The important

question is how the bugs get into the system in the first place—what under-

lying process problem is causing the technical problem?

To aid in fixing this problem (instead of just complaining about it), the testers

have a section on their board called recurring bugs. Remember that I said

bugs are written on pink stickies and treated like any impediment? Well,

when the testers feel that a specific bug gives them a strong feeling of déjà

vu, they post that under recurring bugs on their board. This is limited to a

handful.

(You’ve noticed the theme by now, right? Limit all queues!)

Recurring Bugs

Once in a while one of the feature teams will have a defect prevention meeting,

where they take one of the recurring bugs and do a root-cause analysis. How

did that bug get into the code? What systemic problems are causing us to

repeatedly create this type of bug, and what can we do about it? Sometimes

it has to do with the tools used, sometimes with the policies and rules, and

sometimes with cultural issues.

For tricky cases, we draw a cause-effect diagram to identify the consequences

and root causes of this bug and use that to generate concrete proposals for

how to avoid this type of bug in the future. Here is an example:

50 • Chapter 9. Handling Bugs

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

The bug they were analyzing had to do with certain transactions that had

gotten lost when communicating with another system. The team came up

with four proposals to reduce these types of bugs in the future:

• Remove unnecessary code in one specific module.

• Set up routines to ensure more time for refactoring.

• Focus more on face-to-face communication and less on documentation.

• Work more closely with testers during development to spread competence.

Cause-effect diagrams are a great way to do root-cause analysis, especially

when you start finding vicious loops such as the following:

Diana: Why did we create this bug?

Phil: Because we didn’t test properly.

Diana: Why didn’t we test properly?’

Phil: Because we were stressed.

Diana: Why were we stressed?

Phil: Because we were behind on the release plan.

Diana: Why were we behind on the release plan?

Phil: Because of bugs in the previous release...

Pretty vicious, huh?

Jerry Weinberg puts it nicely: “Things are the way they are because they got

that way.”

t t di

Preventing Recurring Bugs • 51

D l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Or here’s another one (don’t know who said it first): “If all you ever do is all

you’ve ever done, then all you’ll ever get is all you ever got.”

Anyway, if you want to learn more about cause-effect diagrams, check out

Chapter 20, Cause-Effect Diagrams, on page 131.

If you do cause-effect analysis on your bugs, you’ll find that bugs aren’t really

a problem; they are a symptom. Bugs in your product are a symptom of bugs

in your process. If you focus on fixing your process, you’ll dramatically reduce

the number of new bugs in your product. It’s just like if you focus on fire

prevention, you’ll reduce the need for fire fighting.

So, in the next chapter, I’ll show you how we continuously improve our devel-

opment process.

52 • Chapter 9. Handling Bugs

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 10

Continuously Improving the Process

Our process was by no means designed up front. I would never have been

able to figure all this out, especially not alone. And even if I could, there would

be no buy-in from the project participants, so any process designed up front

would never have reached further than the document it was written on.

Our process was discovered rather than designed. The first thing I did was

put in place a process improvement engine. Well, I didn’t use those words,

but that is in effect what it was. The basic formula is as follows:

• Clarity: Have physical boards in prominent locations that show everyone

what is going on. And have a clear goal for the delivery that everyone can

understand.

• Communication: Do process improvement workshops on a regular basis

(weekly or biweekly), both locally within each team and at the cross-team

level.

• Data: Track some simple metrics that show us whether our process is

improving. We measure velocity and cycle time (see Chapter 12, Capturing

and Using Process Metrics, on page 73).

The strategy is pretty simple: it’s based on the assumption that people inher-

ently want to succeed with their projects and that people inherently like to

solve problems and improve their way of working. So, create an environment

that enables and encourages these behaviors.

If everyone knows where we are going and where we are right now and if we

have the right communication forums in place, then chances are people will

self-organize to move in the right direction and continuously figure out ways

of getting there faster.

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

This mind-set of motivating people to do evolutionary process improvement

is the basis of both Agile and Lean.

10.1 Team Retrospectives

Our process improvement workshops are basically Scrum-style sprint retro-

spectives. By convention, the feature teams use the term retrospective for

their process improvement workshops, and the cross-team uses the term

process improvement workshop, so we’ll stick to that terminology here.

Each team has a retrospective every week or two, and the length varies from

thirty minutes to two hours. Some teams just stand at their taskboard and

do the retrospective; some go off to a separate room. Once we even went to a

local pub. Usually the team lead facilitates the meeting, but sometimes they

pull in someone else (like me).

Bringing in a team-external facilitator from time to time is usually a good idea

because that gives the team some variation in how the retrospective is run

and provides the team lead with insights about different ways to run retro-

spectives. And it allows the team lead to participate fully instead of facilitating.

One simple and cheap way to get an external facilitator is for team lead A to

facilitate the retrospective of team B, and vice versa.

How the retrospectives are run can vary a great deal, but the goal is the same

in every case: reflect on what is working well and what isn’t, and decide what

to change.

Typical changes include the following:

• Check in code more often.

• Change the time of the daily meeting or how the meeting is run.

• Update the code conventions.

• Identify a new team-internal role such as “build führer” (keeps the build

clean) or “goal keeper” (protects the team from disruptions).

Another important function of the team-level retrospectives is to identify

escalation points, that is, problems and improvement proposals that affect

more than just this team and need to be solved together with the other teams.

These are noted by the team leads and brought to the higher-level process

improvement workshops.

10.2 Process Improvement Workshops

The process improvement workshop is basically a scrum of scrums type of

retrospective, with one person from each team and each specialty (the same

54 • Chapter 10. Continuously Improving the Process

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

“cross-team” that meets at the project board at 10 a.m. every day). This is

the most effective place to trigger larger changes, such as those that affect

multiple teams, and to follow up on the result of previous changes.

The stated purpose of this meeting is to clarify and improve our way of working.

One of my most important tasks as coach was to set up and facilitate these

process improvement workshops until they became part of the culture.

Initially we did these every Thursday at 1 p.m. Having it on Thursdays at 1

p.m. was mostly a coincidence—that was the least congested time for everyone

involved. After a month or so, we reduced it to a biweekly meeting, every

second Thursday at 1 p.m. The reason we did it so often in the beginning was

because of the growth pain and confusion we were experiencing. We needed

to quickly improve collaboration between the different specialties, and that

meant lots of experimentation.

Having the process improvement workshop every week was rather intense,

though; we barely had time to execute the changes from one meeting to the

next. The positive side was that the frequent workshops drove us to implement

change quickly, because it is embarrassing to sit down at the next process

improvement workshop and say, “Well, dang, we never actually got around

to implementing that change.” Also, because the workshops were held every

week, we had to keep them short and focused, which forced us to prioritize

only the most important changes and take small steps in our change process.

Come to think of it, the meetings weren’t really that short. We started with

sixty minutes and had to increase to ninety minutes because we kept running

over. That’s a pretty long time for a meeting that happens every week. And

the changes we made were rather significant, not really baby steps at all.

Looking back, I can’t say whether that was a good thing or not. We did need

to change things quickly (if nothing else, because of the Big Scary Deadline

looming around the corner). But the rate of change also caused confusion,

especially for the majority of the people who weren’t in the cross-team and

who saw lots of change happening without always being given a chance to

understand or discuss the change.

Once the most important problems were solved, we could slow down the rate

of change to a more comfortable level, so we made the workshops biweekly

instead. This felt more humane. Now we could spend ninety minutes without

feeling as stressed (since it wasn’t every week), and it was easier to implement

a change and see results before the next meeting.

When doing process improvement workshops, I take care to move away all

tables and create a ring of chairs in the center of the room near a whiteboard.

t t di

Process Improvement Workshops • 55

D l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

This arrangement has a noticeable effect on the level of collaboration and focus

in the room. Everyone is facing each other without any barriers between them

and without distractions such as papers and computers on the table.

Each process improvement workshop follows the same basic structure, which

roughly corresponds to the meeting structure defined in Diana Larsen and

Esther Derby’s book Agile Retrospectives: Making Good Teams Great [DL06].

At a high level, here’s the process:

1. Set the stage: Open up the meeting and set the theme and focus.

2. Gather data: Go through what has happened since the last meeting,

including victories and pain points. If we have a theme, go through con-

crete data relevant to that theme.

3. Generate insights: Discuss the data and what it means to us, focus on

the most important pain points, and identify concrete options to alleviate

them.

4. Decide what to do: Make decisions about which changes to implement.

5. Close the meeting: Decide who is going to do what and what will happen

by next meeting.

I start by doing a quick round-robin of some sort to get everyone talking—for

example, “What is your feeling right now, using one word?” or “What is the

most important thing you hope to get out of this meeting?”

56 • Chapter 10. Continuously Improving the Process

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

I then remind everyone of the purpose of the meeting and mention what the

focus of today’s meeting is. Sometimes we have a specific focus (such as

motivation, metrics, collaboration, test automation, or whatever). Sometimes

we have no specific focus other than the general goal of improving our way

of working.

Next we summarize key events that have occurred since last meeting and

follow up on any decisions and actions from that meeting.

We then quickly summarize what is working well and generally positive devel-

opments during the past few weeks. Sometimes I have the participants write

sticky notes and put them up on the wall; other times they just talk and I

write on the whiteboard. Noticing and celebrating improvement is important

to fuel further improvement.

Next we quickly summarize the current pain points and challenges. If there

are many (which there usually are), we do some kind of prioritization, typically

using dot voting or similar techniques. Dot voting means each person in the

room gets three dots to spread out across all the items, based on perceived

importance.

Here is an example that shows two columns of sticky notes: “Victories” and

“Challenges.”

t t di

Process Improvement Workshops • 57

D l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Digression:

Any Lean enthusiasts of the more fundamentalist type reading this book might
point an accusing finger now and say, “Yuck, that’s all subjective, touchy-feely
stuff! Process improvement must be driven by quantitative, objective data and
reports!”

Well, I don’t agree. Complex product development of this sort is a creative process
done by creative people, and the most important currency is motivation. In this
context, gut feel beats hard metrics. If something feels like an important problem,
it most likely is an important problem, whether or not we have metrics to prove
it. And the nice thing about gut feel is that it often is a leading indicator of a
problem that’s about to occur, while hard metrics often show a problem only after

it has occurred.

So yes, we use hard metrics (see Chapter 12, Capturing and Using Process Metrics,
on page 73), and sometimes those metrics will trigger the necessary gut-feel real-
ization that there is a problem (the proverbial “Oh shit!” moment). But we use
metrics primarily to support process improvement, not to drive it.

Anyway, where were we? Oh yes, so we list the pain points and prioritize

them, and we choose one or two of the most important to focus on for this

meeting. Then we break out into groups of two or three to discuss and analyze

the problem and possible solutions.

Sometimes the solution is fairly simple and obvious. For more complex or

recurring problems, we do a root-cause analysis using cause-effect diagrams

and similar techniques (see Chapter 20, Cause-Effect Diagrams, on page 131),

propose some research that will bring useful metrics to the next process

improvement workshop, or plan a separate problem-solving workshop to be

done with a small focus team.

The breakout discussions usually result in several concrete proposals, or

options, which I list on the whiteboard. The default option is always the status

quo (“Don’t change anything”), a reminder of what will happen if we don’t

agree on any other option by the end of this meeting.

For each option (including the status quo option), we brainstorm the most

obvious advantages and disadvantages. Quite often this quick analysis

clearly reveals which option is best, so we agree on implementing that option.

For less obvious choices, we do a quick thumb vote to check how people feel

about each option.

58 • Chapter 10. Continuously Improving the Process

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

“I like this option.”

“This option isn’t great but acceptable.” Or “I don’t have a strong

opinion and will go with the group.” Or “I can’t make up my

mind right now.”

“This option sucks, and I will not support it.”

Sometimes we use “fist of five” instead, which is pretty much the same thing

but more granular. Instead of just thumb up, sideways, or down, each person

holds up one to five fingers.

“This is a great option!”

“This is a pretty good option.”

“This option is not great but acceptable.” Or “I don’t have a

strong opinion and will go with the group.” Or “I can’t make up

my mind right now.”

“I don’t like this option and I won’t support it. But I may be

convinced.”

“Over my dead body!”

t t di

Process Improvement Workshops • 59

D l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

The important thing with both of these techniques is that thumb sideways,

or three fingers, is the consensus threshold. Any option that has that level

of support (or higher) from every person in the workshop is good to go. Every-

body doesn’t have to like that option, but everyone will accept and support it.

That’s what consensus means.

This type of consensus voting usually reveals the best option quite clearly. If

there are many options and the result is not clear, we start by crossing out

any unacceptable options—that is, options that have any votes of one or two

fingers or thumb down. Those options don’t have group consensus—they are

essentially vetoed. Then we look at the remaining options and pick the one

that seems to have the strongest support. Again, status quo is the default if

we can’t agree on any other option.

In the rare case that we have two options with equally strong support, we

pick one at random, pick the easiest one, or do a quick tie-breaker vote

(“Given a choice between options D and E, which one would you prefer?”). As

facilitator of the meeting, I usually decide on the decision process in each

case, to avoid getting into time-consuming meta-discussions about how to

decide on the decision process (always a risk with smart people). It is up to

the meeting participants to protest if they don’t like the chosen decision

process.

All this consensus-building stuff might sound inefficient, but it is actually

quick and effective in most cases. And in the few cases where it isn’t quick,

that usually means some deeper analysis needs to happen.

Making process improvement decisions means making changes. And since

we are dealing with people, change means risk of resistance, especially from

people who aren’t at the meeting where the decision was made. By aiming for

100 percent consensus for each change (that is, 100 percent of the people

present at the workshop), we dramatically reduce the risk of resistance and

thereby dramatically increase the likelihood that the change will work. So,

the few extra minutes spent on consensus building pays off in a big way.

We timebox the meeting strictly, typically to ninety minutes (including a vitally

important five-minute break). During the last ten minutes or so we summarize

the decisions that we made (list them on the whiteboard) and identify concrete

actions—who is going to do what and when.

Here’s an example:

60 • Chapter 10. Continuously Improving the Process

t t diD l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

At this meeting we made many decisions (more than usual). The first two

were as follows:

• Try the concept of “sprint planning meetings,” where the different special-

ties collaborate to refine and break down user stories and decide which

ones to pull into the “Next Ten Features” column on the board. There’s

more about that in Chapter 13, Planning the Sprint and Release, on page

85. If it works well, we’ll continue doing sprint planning meetings, probably

biweekly (and indeed, it did work out well).

• Each team has a clearly defined “bug contact,” the person who testers go

to when they find a bug and don’t know who should fix it. Team leads are

the default bug contact if nobody else is defined.

These changes were easy to make, since they were aimed at solving real-life

problems that people were experiencing right now. They were not theoretical

solutions to theoretical problems.

Remember that the stated purpose of the meeting is to clarify and improve

our way of working. Sometimes we don’t change anything; instead, we just

clarify our current process—that is, resolve some source of confusion and

t t di

Process Improvement Workshops • 61

D l d f W ! B k b k
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

provide a clear description that everyone at the meeting can relay to their

teams. One example was when we needed to clarify what we meant by accep-

tance test vs. system test vs. feature test.

10.3 Managing the Rate of Change

Each weekly process improvement workshop caused a flurry of change,

mostly changes for the better. However, after a while, we realized that we were

changing too much, too fast.

This was an interesting problem. In most organizations I’ve worked with, the

problem is that there is too little process change—everyone is stuck in their

current ineffective process. Here we had reached the opposite problem. We

were making lots of changes, and it takes days or sometimes weeks for a

significant process change to ripple through a 60-person project. Many team

members got confused (and sometimes frustrated) when the cross-team intro-

duced new changes before the dust from previous changes had settled.

So, we introduced a little bit of bureaucracy to slow down the rate of change.

Whenever somebody wants to make a change that affects more than just his

own team, they write a process improvement proposal. This is a lightweight

version of the Lean A3 problem-solving process.1

The process improvement proposal template forces you to think about why

you want to make this change.

• “What problem are you trying to solve?”

• “Who is affected by this change?”

• “What steps are involved in executing this change?”

The answers to these questions are very helpful when determining the value

vs. the cost of doing this change. Figure 1, Example of a Process Improvement

Proposal, on page 63 shows a real-life example of a process improvement

proposal (translated to English):

This proposal was about keeping the features at a more customer-valuable

level. It also proposed that features estimated to be Large should not be pulled

into development at all, since they tend to swell and clog up the process.

Instead, they should be broken into smaller deliverables. And when that is

done, if the smaller features aren’t each independently valuable to the cus-

tomer, then a title should be written at the top of the card in bold blue text,

showing that several smaller features fit together into a bigger feature. This

helps keep these features together from a release perspective.

1. See www.crisp.se/lean/a3-template.

62 • Chapter 10. Continuously Improving the Process

t t diD l d f W ! B k b k
www.it-ebooks.info

http://www.crisp.se/lean/a3-template
http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Proposal: More Customer‐Valued Stories
Why? What Problem Are We Trying to Solve?

•  Hard to get an overview of the project board

from customer perspec7ve, many stories are

so small that they can’t be delivered.

DescripAon / FAQ

A story that goes into development must:

1.  Be size S or M

2.  Be as customer valuable as possible, as

long as we don’t break the size rule.

The requirements team ensures that each

card under ”Ready for Development” is a

customer‐valued story (regardless of size).

However, before it enters development it

must be S or M.

Ques7on: What happens if the story is L,

and must be delivered as a whole before it

is valuable to the customer?

•  Break it down to smaller stories (new

cards) which are size M, but with highest

possible customer value per story.

•  Visually group these stories by wri7ng

the name of the higher level feature in

big blue leSers at the top of each card.

Who Is Affected By The Change?

•  Requirements, development, and test teams.

What Are the Change ImplementaAon Steps?

•  Update Defini7on of Done for ”Ready for

Development”, add ”the story is valuable to

the customer”.

•  Go through the board & iden7fy stories that

are too small to be valuable. Combine these

into bigger stories (as long as they don’t

exceed Medium).

Remove
Confiscation

Confiscation

Example:
Register

Confiscation

Figure 1—Example of a Process Improvement Proposal

Proposals can come from anyone. Typically the person who wrote the proposal

shows up at the process improvement workshop to present the proposal and

answer questions. Our template essentially turns the proposal into a small

business case for a specific change, making it easier to prioritize and make

decisions.

The purpose of introducing this little template was to allow us to limit the

amount of change. So if we get four proposals, we might implement only one

or two of them, even if all four of the proposals were great. It is very difficult

not to implement a great process improvement proposal, but we realized that

we have to limit the amount of simultaneous process improvement initiatives.

If we don’t, we get too much confusion, which offsets the benefit of the process

improvement.

We’ve even considering having a separate process improvement board with

WIP limits, showing which changes are currently being implemented. That

could be useful for follow-up purposes too. But it would be yet another board

to find space for and keep up-to-date. Hmmmm...

report erratum • discuss

Managing the Rate of Change • 63

Download from Wow! eBook <www.wowebook.com>
www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

As you see, Kanban doesn’t provide many specific rules. It is up to you to

decide things like how many boards to use on a project. That’s the beauty

(and pain) of Kanban—it’s flexible, and you figure things out as you go along.

Just stick to this rule of thumb: “When in doubt, choose the simplest solution.”

64 • Chapter 10. Continuously Improving the Process

t t di

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 11

Managing Work in Progress

In any kind of workflow it is useful to distinguish work states and wait states.

When the mail carrier is carrying an envelope to your mailbox, that envelope

is in a work state (because something is happening to it). When it is in your

mailbox, the envelope is in a wait state (because nothing is happening to it).

The reason we need mailboxes is because you aren’t always there to receive

an envelope when the mail carrier arrives. Your mailbox is a buffer—a place

for things to hang around in while waiting for the next step in the process.

Now if you study the project board closely, you’ll see that only four of the

columns represent work in progress (WIP). The other six columns are buffers

(or queues), highlighted here:

Waiting for
Development

to Start

Waiting for
Analysis to

Start

Waiting to
Be Selected

Waiting to Be
Pulled into a

System Test

Release

B
u
ff
e
r

Buffer

Buffer

Buffer

Buffer

Buffer

Buffer

Buffer

B
u
ff
e
r

B
u
ff
e
r

Waiting for User
Acceptance Test

to Start

Waiting to Be
Released Into

Production

t t di

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

We highlight buffer columns by writing “Queue” in red next to the column

title.

It is very useful to distinguish buffer columns from WIP columns, since buffers

are clearly waste—the features in there are just sitting there waiting, right?

The larger the buffer, the longer things take!

Think of your mailbox again. The longer you let stuff accumulate in there,

the longer it takes for you to get around to reading any given letter. This

translates into waste. You’ll need a bigger mailbox, your friends will be frus-

trated because it takes forever to get a response from you, and your bills won’t

get paid on time.

Yet, sometimes we need a small buffer to ensure smooth flow between two

processes. For example, the rate at which features get developed doesn’t always

perfectly match the rate at which features get system-tested. This type of

buffering can be seen as a “necessary waste.”

Imagine a factory, where work items (such as envelopes) flow from left to right:

Work In

Progress

Work In

Progress Buffer

Unless the two machines happen to crank things out at exactly the same

rate, we need a buffer to absorb the variability.

As the process improves, however, the need for these buffers is reduced. By

clearly visualizing buffers on the board, we are more likely to keep asking

ourselves whether we really need all these buffers and what we can do to

reduce them.

Here is an example of an older version of the board, when we had yet another

buffer column called “Wait for Team to Start,” between requirements and

development. It is marked with an X here:

66 • Chapter 11. Managing Work in Progress

t t di

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Waiting for
Allocation to

Team

Waiting for
Analysis to

Start

Waiting to
Be Selected

Waiting to Be
Pulled into a

System Test

Release

B
u
ff
e
r

B
u
ff
e
r

Buffer

Buffer

Buffer

Buffer

Buffer

B
u
ff
e
r

B
u
ff
e
r

Waiting for User
Acceptance Test

to Start

Waiting to Be
Released into

Production

Wait for Team
to Start

Buffer

We had that buffer because the teams previously had a more Scrum-like

model with sprints (the Scrum word for an iteration). For every new sprint,

each team would do a sprint planning meeting and commit to a specific set

of features. Those were pulled into “Wait for Team to Start.” So, we had three

buffers between analysis and development:

• Features that have been identified through analysis but have not yet been

selected into the “Next Ten Features” list

• Features that are included in the “Next Ten Features” list but have not

yet been pulled in by a team

• Features that are in the current sprint of team X but have not yet been

started

Here’s a factory representation of these three buffers:

Ready for
Development

Next Ten
Features

In
sprint

Being
Developed

Being
Analyzed

t t di

Chapter 11. Managing Work in Progress • 67

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

We noticed that we were wasting too much time arguing over which feature

should be in which buffer. So, we simply removed the third queue and decided

that each team pulls features directly from the top-ten list instead of batching

features into sprints. This reduced turbulence and improved flow.

Ready for
Development

Next Ten
Features

Being
Developed

Being
Analyzed

This raises the question of specialization. If a team is working within a specific

feature area—for example, integration with system X—then it is most effective

for that team to implement all features that integrate with system X, since

they have knowledge of how system X works.

That doesn’t mean, however, that the team needs to pull in all X-related fea-

tures up front. Although this team may be the default choice for X-related

features, we don’t want to rule out the possibility of other teams helping out

if this team becomes a bottleneck.

So although each team pulls directly from the Next 10 list, they do it in an

intelligent way; the teams talk to each during the dev sync meeting and figure

out how to best use the current capacity of each team.

To aid in this process, we have team magnets on the project board. A team

can tag a feature in the Next 10 list (or earlier in the workflow) with their team

magnet, indicating that “This feature would be best done by our team.” That

way, people know who to talk to about that feature, and the other teams will

think twice before pulling in that feature.

68 • Chapter 11. Managing Work in Progress

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Team

Magnet

11.1 Using WIP Limits

At the top of each column on the board there is a red number. These are work

in progress limits (WIP limits), for example “Max Five Features per Team.”

The purpose of WIP limits is to avoid too much multitasking and overloading

a downstream process. If the testers have too much work to do, we don’t want

developers to keep building new features and adding to their work-

load—instead, they should focus on helping test. WIP limits act as an alert

signal to highlight the problem before it gets out of hand.

Using WIP Limits • 69

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

This can be likened to a printer. The WIP limit of a typical printer is one page

at a time. If that paper gets jammed, you want the printer to stop printing

immediately and alert you, right? No matter how urgent your printout is, you

don’t try to cram in more pages when there is a paper jam; that will only make

the problem worse.

We have WIP limits pretty much across the whole board, written in red text

at the top of each column or set of columns. The WIP limit of “Max Five Fea-

tures per Team” means that if a team is working on five features, they won’t

start working on a new feature until one of the others is done and in system

test.

See One Day in Kanban Land, on page 113 for a cartoon illustration of this

type of behavior.

11.2 Why WIP Limits Apply Only to Features

Our WIP limits apply only to feature cards. Tech stories and bug fixes aren’t

included in the WIP limit.

The reason bugs aren’t included in the WIP limit (yet) is because they often

are quite urgent and quite small. Besides, we don’t yet have a very consistent

way of handling bugs on the board. Sometimes bugs are on the board, and

sometimes they’re not, so we don’t want to create too many rules around this

just yet.

The reason tech stories aren’t included in the WIP limit is because, well, let

me try to explain....

One of the reasons for having WIP limits is to avoid overloading a downstream

process. Building a new feature will certainly add work to test, so if we build

features too fast, we will overload test.

Tech stories, however, often have the opposite effect: they offload the down-

stream bottleneck. Many of our tech stories are related to test automation

and infrastructure improvements, both of which improve quality and make

life easier for testers.

When system test becomes a bottleneck, the test team will focus on finishing

their current system test round, which means it will take a few days before

they can pull the next batch of cards from “Ready for System Test” to “System

Test Ongoing.” The WIP limit of five for each development team applies across

both columns, “Development in Progress” and “Ready for System Test.” The

consequence of this is that when system test becomes a bottleneck, the WIP

70 • Chapter 11. Managing Work in Progress

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

of the development teams will fill up, since the features that they have devel-

oped are still stuck on their tray until the system test team pulls them in.

So, what should the developers do when their WIP limit is full?

They should do anything that will assist or offload system test! In fact, at one

point when system test was badly bottlenecked, one of the testers posted this

as “question of the week” on the board to remind people to ask this question

every day at the project sync meeting. Very effective!

Question of the Week
How Can We Best Help

System Test Today?

One way to help test is for more people to do manual testing and bug fixing.

Another way is to develop more automated tests and improve the test infras-

tructure. Those things are represented as tech stories. That’s why we don’t

include tech stories in the WIP limit, because we want to encourage team

members to work on tech stories when the WIP limit is full.

During some periods the teams focused almost entirely on test automation,

with only green-dotted cards on the project board. This is a great example of

how Kanban boards with WIP limits facilitate self-organization and bottleneck

alleviation.

Why WIP Limits Apply Only to Features • 71

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Another reason WIP limits apply only to features is because that’s consistent

with how we use metrics. When measuring cycle time and calculating velocity,

we include only feature cards (for more on that, see Chapter 12, Capturing

and Using Process Metrics, on page 73). Basically, tech stories and bugs are

currently “under the radar” in terms of WIP limits and metrics. That may, of

course, change....

As for the “question of the week,” that concept turned out to be very useful.

Later we made the question more generic (since system test isn’t always the

bottleneck) and turned it into a prioritized what-do-I-do-today guide:

”What Do I Do Today?”
1: Finish an Ongoing Feature
2: …or Start a New Feature
(but only if you don’t slow down an

ongoing feature, directly or indirectly)

One of the consequences of WIP limits is that people sometimes don’t have

anything to do. Or more specifically, WIP limits sometimes constrain people

to do something different from what they would normally do (for example,

help test instead of developing a new feature). In that situation, the prioritized

what-do-I-do-today guide on the board is useful.

In fact, this little note captures the essence of WIP limits: focus on finishing

things rather than starting things!

So, how do we actually keep track of how good we are at finishing things?

That’s the topic of the next chapter.

72 • Chapter 11. Managing Work in Progress

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 12

Capturing and Using Process Metrics

Process metrics are useful to find out what needs to be improved and if our

changes are doing any good. They can also be useful for high-level release

planning.

We track two process metrics:

• Velocity (features per week)

• Cycle time (weeks per feature)

We capture these metrics entirely manually. It’s so easy that I’m surprised

not all projects do this.

12.1 Velocity (Features per Week)

For velocity (throughput), we just count, at the end of each week, how many

features have reached “Ready for Acceptance Test (This Week).” We write this

number down in a velocity log at the bottom of the board and then move those

cards down to “Ready for Acceptance Test (Past Weeks)” to show that they

have already been counted.

Ready for
Acceptance Test

(This Week)

Ready for
Acceptance Test

(Past Weeks)

Velocity per Week

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Here is a close-up of the velocity log at the bottom of the board:

Using this information, we generate a simple burn-up chart, showing the

cumulative number of features that have been completed per week.

Number of
Features
Delivered to
Acceptance
Test
(Cumulative)

Week Number

This information is useful in many ways. First, it’s used as a reality check

tool to make sure that the release plan is realistic, and second, it’s used as

a tool to predict approximately how many features will be done by a certain

date (see Chapter 6, Tracking the High-Level Goal, on page 31).

The burn-up chart is also used to highlight problems. For example, during

the first few weeks of measurements, the velocity was 0. The teams were

working very hard, but system test had become a bottleneck for various rea-

sons, so all the features were queuing up in front of the test team. Everyone

could see the cards piling up on the board, and everyone could see that the

velocity was 0 week after week. This created a sense of urgency and caused

developers to gradually focus more on helping test instead of just developing

new features and adding to the queue.

Finally, the burn-up chart is used to visualize process improvement. For

example, we could see that our average velocity (the slope of the curve) doubled

between Q1 and Q2. These types of visible results help motivate everyone to

keep improving the process.

74 • Chapter 12. Capturing and Using Process Metrics

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Q1

3 Features
per Week

Q2

6.5 Features
per Week Number of

Features

Delivered to

Acceptance

Test

(Cumulative)

Week Number

Note, though, that statistics like this need to be used with care. During the

weeks after creating this diagram, the curve flattened, since the team focused

on internal improvements and had a 0 velocity. A more realistic estimate is

that velocity increased by roughly 50 percent rather than doubled.

We’ve considered measuring the velocity of tech stories as well so we can

visualize how effort is distributed between customer needs and tech stories.

Combing these two velocities would give us our total capacity, which would

give us a smoother burn-up curve and make planning easier.

12.2 Why We Don’t Use Story Points

At this point you might be wondering how we can get away with just counting

the features. What about size? Shouldn’t we take size into account when

measuring velocity? If velocity doubled between Q1 and Q2, does that really

mean we became more productive? Or did we get more features done in Q2

only because those features were smaller?

Isn’t this type of simplistic velocity misleading?

In theory, yes. In practice, however, the feature sizes turned out to be quite

evenly distributed. I did a little experiment and assigned each feature a weight

based on estimated size, so Small = 1kg, Medium = 2kg, and Large = 3kg.

Most agile teams would call this a story point—that is, a relative estimate of

the effort involved in building that feature.

Here’s a useful metaphor. Suppose I’m loading bricks, and suppose I want

to measure velocity for this. My velocity turns out to be ten to fifteen bricks

per minute. That’s not a very exact number. But wait, the bricks have different

weights! What if we measure kg per minute, instead of bricks per minute?

Why We Don’t Use Story Points • 75

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

That might give us a smoother velocity and therefore make it easier to predict

how many bricks I will have loaded by the end of the day.

So, we measure each brick to find out what it weighs, and then we calculate

how many kg per minute I am loading, which turns out to be 20–30 kg per

minute. Um, wait, this was no more precise than the first number, which is

10–15 bricks per minute! X ± 50 percent in both cases! As long as the bricks

are roughly evenly distributed in size, there’s no point weighing each one to

calculate velocity. Just count the number of bricks instead.

This was exactly what happened in our case. I created a burn-up chart with

kg instead of number of features, and the shape was just as jagged as before.

The higher level of precision gave no added value, so estimating in story points

would have been a waste of time.

12.3 Cycle Time (Weeks per Feature)

The other thing we measure is cycle time (or flow time). Cycle time means how

long it takes for something to get done, or, more specifically in our case, “How

long did it take for feature X to move from “Next Ten Features” to “Ready for

Acceptance Test.”

Next Ten
Features

Ready for
Acceptance

Test
Cycle Time (Elapsed Days)

Cycle time is also very easy to measure. Every time a feature is selected to be

among the “Next Ten Features,” we write a start date on the card.

76 • Chapter 12. Capturing and Using Process Metrics

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Every time a feature reaches “Ready for Acceptance Test,” we note the finish

date and write down the elapsed days for that feature in a spreadsheet.

We then visualize this using a control chart, where the height of each bar

represents how long one specific feature took to cross the board.

Cycle
Time

(Elapsed
Days)

Feature ID

This graph is useful for predicting how long it will take for a feature to get

done. It’s also a great way to generate a sense of horrified awe, because most

people don’t realize how long things really take! It happens almost every time

a company starts visualizing this stuff.

Cycle Time (Weeks per Feature) • 77

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Joe asks:

Why Don’t You Measure Cycle Time All the Way

to Production?

Because of Powers Beyond Our Control, we release roughly every second month.

These dates are fairly fixed, and the last week or two before each release is an accep-

tance test phase where real users come in to try the system. Thus, whenever a feature

reaches “Ready for Acceptance Test,” it will be stuck there until the end of the release

cycle. These are the remains from our waterfall history....

We measure cycle time only up to “Ready for Acceptance Test” because that’s the

part of the workflow we can control (and hence optimize). Also, our experience was

that serious problems were rarely found in acceptance test. So, by measuring cycle

time up to “Ready for Acceptance Test,” we cover the riskiest part of the workflow,

which is good enough for us.

Quite typically, the elapsed time is five to ten times longer than the actual

worked time. So, it might take twenty days of calendar time to finish a feature

that is actually only three days of work. This discrepancy is usually caused

by things such as multitasking or the abundance of buffers and queues for

features to get stuck in while waiting for the next step in the process.

The good news is that once you understand your cycle time, it’s usually not

too hard to shorten it dramatically, using techniques such as limiting WIP

(see Chapter 11, Managing Work in Progress, on page 65). The following trend

line shows how our cycle time was cut in half within a few months:

Q1

6−14 Weeks
per Feature Q2

3−6 Weeks

per Feature
Cycle
Time
(Elapsed

Days)

Feature ID

Another interesting thing that we noticed was the lack of correlation between

feature size and cycle time. In the next diagram, the features are color-coded

based on their original estimate:

78 • Chapter 12. Capturing and Using Process Metrics

 www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

”Small” & ”Medium” Features
Take Roughly the Same

Amount of Time!

Large: 59 Days

Medium: 37 Days

Small: 31 Days

Average Cycle Time

Cycle
Time
(Elapsed

Days)

Feature ID

As you can see, some of the small features took as long as seven weeks, while

some large features took as little as two weeks. It turned out that size wasn’t

the main factor influencing cycle time; other factors such as focus and access

to key people were more important.

At one point we went through this data and, to guide the improvement efforts,

set challenging but realistic targets:

• More stable velocity: Velocity should be roughly the same every week

instead of unevenly distributed. This would give us fewer bottlenecks,

easier release planning, and smoother flow in general.

• Higher velocity: Our average was three; we set the target to five.

• Lower cycle time: Our average was six weeks (but shrinking fast); we set

the target to two.

As we defined these targets, an interesting insight dawned on us. Suppose

we reach the first two targets and get to a stable velocity of five features per

week. What would that mean for the third target of decreasing cycle time?

Our data (and photos) shows that, on any given day, typically thirty or so

features were on the project board in various buffers and WIP states.

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

Goal:

5 Features

Done per

Week

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

orem ipsum dolor
sit amet, co nse

ctetur

30 Features in Progress

That means, mathematically, that average cycle time will be six weeks!

report erratum • discuss

Cycle Time (Weeks per Feature) • 79

Download from Wow! eBook <www.wowebook.com> www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Suppose you are at a pizza restaurant and their delivery capacity is five pizzas

per hour. How long will you have to wait for your pizza?

Twelve minutes?

No, not if there are thirty other people in the restaurant, all waiting for their

pizza. In that case, the average wait time would be six hours!

30 Pizzas in Process

5 Pizzas Completed
per Hour

=
6 Hours
Average Wait Time
per Pizza

The same math applies to our feature development.

30 Features in Process

5 Features Completed
per Week

=
6 Weeks
Average Wait Time
per Feature

As…
I want…

So that…

This by the way is known as Little’s law1 in queuing theory. It is inescapable.

So, how do we improve cycle from six weeks to two weeks? Well, either increase

velocity by a factor of 3 (which would cost time and effort!) or reduce WIP by

a factor 3. Which do you think is cheaper? Exactly!

So, the teams reduced their WIP limit from ten to five features per team:

1. http://en.wikipedia.org/wiki/Little's_law

80 • Chapter 12. Capturing and Using Process Metrics

report erratum • discussDownload from Wow! eBook <www.wowebook.com> www.it-ebooks.info

http://en.wikipedia.org/wiki/Little's_law
http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

OK, that reduction isn’t by a factor of 3, but it’s still a significant reduction.

When reducing WIP, you need to take into account that, if you reduce it too

much, you’ll see other side effects such as having lots of people with nothing

to do. That in turn negatively impacts velocity and thereby increases cycle

time again. So, you have to find a balance.

The goal is to have a low enough WIP limit to keep people collaborating and

to expose problems—but not low enough to expose all problems at once (which

just causes frustration and unstable flow).

We haven’t reached the target of two weeks per feature yet, but that’s not

terribly important. The purpose of the target is to keep us moving in the right

direction. We’ve cut cycle time in half, and the act of reducing WIP was one

of the many things that helped us achieve this.

And it’s nice to have metrics to show us we’re moving in the right direction.

12.4 Cumulative Flow

The Kanban board shows us bottlenecks in real time, which is great, but it

does not show us historical trends.

Cumulative flow diagrams are a popular tool in Kanban circles to visualize

bottlenecks over time. Every day, count how many items are in each column.

Then visualize it in a diagram like this:

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of
Items in

Each Board
Column

Day

6 Days
Cycle Time

9 Items
WIP

Backlog

Dev

Test

Production

Each color represents one column on the board, and each tick on the x-axis

represents one day. The vertical stack shows how many items were in which

column on that day. Theoretically this will illustrate how bottlenecks move

report erratum • discuss

Cumulative Flow • 81

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

over time, where there are obstructions to flow, and how increased WIP

correlates to longer cycle time.

Great tool. In theory.

“In theory, theory and practice are the same. In practice, they are not.”

—Yogi Berra

In practice, this hasn’t worked for us so far. Here’s our cumulative flow

diagram:

It’s hard to draw any useful conclusions from this. And any conclusions we

might draw are likely to be wrong. For example, in the middle of the timeline

it looks like we suddenly removed a bunch of work, but what actually hap-

pened is that we decided to stop including tech stories in the count. In some

situations we parked some features on the side of the board because they

were essentially paused, and the person counting the stories on the board

every day didn’t include them. These stories then reappeared later.

Our cumulative flow diagram turned out to be very brittle in the sense that

it would become inaccurate and misleading whenever we made changes to

the structure of the board or deviated from the standard flow.

We are still dutifully collecting this data, though, mostly because I keep

hearing from other coaches and Lean folks that cumulative flow diagrams

are useful. It takes only a few minutes per day for one person, so who knows?

Maybe it will become useful some day....

82 • Chapter 12. Capturing and Using Process Metrics

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

12.5 Process Cycle Efficiency

We don’t measure process cycle efficiency, but I mention it here because it’s

one of those things we kind of wish we did measure. If our Kanban board was

mirrored in an electronic system, we would definitely measure process cycle

efficiency, but in our currently pure manual Kanban system, it would be too

fiddly.

Anyway, here’s what it means:

Touch Time

Elapsed Time
= Process Cycle

Efficiency (%)

Elapsed time means how many days the feature took to cross the project

board (= cycle time).

Touch time means how many days the feature was actually worked on (or

“touched”). In other words, it’s how many days that card spent in work in

progress columns, as opposed to queue/buffer columns.

This gives us very interesting data such as “Hey, feature X was only two days

of work but took twenty days to cross the board! That’s only 10 percent process

cycle efficiency!”

Most companies are in the 10–15 percent range unless they specifically opti-

mize for this. Trying to drive this number up is a great way to uncover and

eliminate waste.

report erratum • discuss

Process Cycle Efficiency • 83

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 13

Planning the Sprint and Release

The purpose of sprint planning meetings is to figure out what to do next. In

our case, that means deciding which features go into the “Next Ten Features”

column.

Our meetings aren’t really Scrum-by-the-book sprint planning meetings. In

Scrum, the team is supposed to commit to a specific set of features for the

next sprint. We don’t do that. We don’t even have sprints. All we want is to

agree on which features are next in line. Our velocity isn’t stable enough to

be able to predict how many features will get done in the short term.

The meeting has two parts: backlog grooming and top ten selection.

13.1 Backlog Grooming

Backlog grooming is all about getting features to the “Ready for Development”

state (see Chapter 7, Defining Ready and Done, on page 35).

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

We do this during the first half of the sprint planning meeting. The require-

ments team presents the next features to be developed (yes, the requirements

team fulfills the equivalent of the product owner role in Scrum, mostly because

they are closest to the customer and users).

Then we break the group into small cross-functional subgroups, typically

with one requirements analyst, one developer, and one tester in each. Each

subgroup takes a few feature cards, estimates them using Planning Poker

(see Chapter 19, Sizing the Backlog with Planning Poker, on page 125), and

writes S, M, or L on the card (representing Small/Medium/Large). If the card

is Large, they break it down further or decide to leave it out of “Next Ten

Features” for the time being (we don’t allow Large features into development).

They also discuss and agree on a suitable acceptance test and write it on the

backside.

13.2 Selecting the Top Ten Features

Now we look at the pile of features at hand and discuss which ones should

go into the “Next Ten Features” column on the project board (and, more

importantly, which ones shouldn’t). Usually the “Next Ten Features” list isn’t

empty to begin with—there may be two to three or so features already there.

In that case, we evaluate those features against the new ones. The theme of

the conversation is “Out of everything in the whole world that we might focus

on next, what are the top ten features?”

Several aspects influence this decision:

• Business value—which features will the customers be happiest to see?

• Knowledge—which features will generate knowledge (and thereby reduce

risk)?

• Resource utilization—we want a balance of feature areas so that each team

has stuff to work on.

• Dependencies—which features are best built together?

• Testability—which features are most logical to test together and should

therefore be developed in close proximity to each other?

13.3 Why We Moved Backlog Grooming Out of the Sprint Planning Meeting

After doing a few sprint planning meetings, we noticed that backlog grooming

took quite long, and sometimes the sprint planning meeting felt hurried as a

result. We wanted to keep the meeting timeboxed and focused.

86 • Chapter 13. Planning the Sprint and Release

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

So, recently we’ve started doing backlog grooming separately, before the sprint

planning meeting. Typically, a few days before the sprint planning meeting,

one of the requirements analysts will have an informal conversation with a

developer and a tester to discuss an upcoming feature. As a result of the

conversation, that feature would be broken down, estimated, and given an

acceptance test.

We still do some grooming during the sprint planning meeting, but we prefer

to do as much grooming as possible before the sprint planning meeting. I see

this trend in many other organizations, as well.

13.4 Planning the Release

We know our velocity: it used to be three features per week on average, and

now it’s four to five. This information is useful for long-term release planning.

We don’t know exactly what our velocity will be in the future, but it is probably

safe to assume that it will be in the range of three to five features per week,

on average.

So, if someone wants to know “How long will it will take implement this?”

(waving a list of feature areas) or “How much of this can we get done by

Christmas?” we can give a realistic answer—as long as we know the number

of features.

The problem is, for long-term planning we don’t know the number of features.

All we have is a bunch of vague ideas. We might call these epics or feature

areas. Some can be really, really huge!

As mentioned in Section 12.2, Why We Don't Use Story Points, on page 75,

we don’t estimate features in story points because it turned out that sizes

were fairly evenly distributed, so story points wouldn’t add value. However,

for long-term planning that logic doesn’t hold, since we are looking mostly at

epics rather than specific features. Although our velocity of three to five fea-

tures per week may include an occasional epic, it would be unrealistic to

expect us to complete three to five epics per week!

The solution is simple. Take each epic and estimate how many features it will

break into. This estimation (like all other estimation) requires effort from

requirements analysts, developers, and testers. The process is similar to esti-

mating in story points; we are just asking “How many features is this epic?”

instead of “How many story points?”

Once we have estimated the number of features for each epic, we can count

the total number of features and divide by our historic velocity of three to five

features per week. This gives us just enough information to be able to say

report erratum • discuss

Planning the Release • 87

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

something like, “We can probably build all of this in six to twelve months.”

It’s still only a rough estimate, but it’s based on real data.

As velocity stabilizes, we can make better and better predictions, so our answer

might become more precise: eight to ten months (as long as we don’t change

the team size too much).

This way of planning is not quite part of the culture yet; we still have a ten-

dency to fall back to the more traditional “estimate the hours of effort per

feature and then add it all up,” which takes a long time to calculate and often

results in an unrealistic plan (because it isn’t based on empirical data such

as velocity). But we’re getting there.

One thing we learned the hard way is that release planning in a multiteam

project is almost impossible without a well-oiled version control system. On

to the next chapter.

88 • Chapter 13. Planning the Sprint and Release

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 14

How We Do Version Control

Because we’ve been doing pretty rapid development of a complex system in

a multiteam scenario, we’ve had plenty of challenges to deal with. One lesson

we’ve learned is that we should have gotten our version control system in

shape before we scaled from thirty to sixty people. For long periods our version

control system had seriously broken trunks and branches. In fact, at one

point the teams even set up a dedicated Kanban board for all the problems

in the trunk!

To avoid this problem in the future, we decided to implement the mainline

model, a stable-trunk pattern described in my article “Agile Version Control

with Multiple Teams.”1 That change was a bumpy ride, but it certainly helped

us get things into order!

Here’s what we did.

1. http://www.infoq.com/articles/agile-version-control

report erratum • discusswww.it-ebooks.info

http://www.infoq.com/articles/agile-version-control
http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

14.1 No Junk on the Trunk

For a project of this size, it’s critically important to have a stable trunk at all

times. Stable in our case means ready for system test. This maps directly to

the project board column with the same name and the definition of ready for

system test that’s written above it (see Section 7.2, Ready for System Test,

on page 37).

Definition of
”Ready for

System Test”

When a feature has been developed, we thoroughly test it at the feature level

before checking it in to the trunk and before moving the card to the “Ready

for System Test” column. Once it passes these tests, we check the code in to

the trunk and move the card.

This means that, from the trunk’s perspective, the product grows in discrete

steps, while always remaining stable and ready for system test.

Trunk

Policy:

Ready for
System Test

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Feature

A

Feature

B

Now, since we’re all human, we sometimes make mistakes and check in things

that break the trunk. That’s OK, as long as the mistakes are discovered

quickly and fixed (or rolled back). Our continuous integration system contin-

uously monitors the trunk and runs builds and tests whenever something is

90 • Chapter 14. How We Do Version Control

report erratum • discussDownload from Wow! eBook <www.wowebook.com> www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

checked in. If something is wrong, a lava lamp turns an angry color and alerts

us. The continuous integration system can’t verify everything, but it will catch

the most obvious issues such as broken builds or failing unit tests.

14.2 Team Branches

Each team has a team branch that they use to check in and share code during

development (some teams have several different types of team branches).

Team branches have more lenient policies than the trunk. The code has to

compile, and all unit tests have to pass, but the feature doesn’t have to be

finished or tested. The team branch is there to provide a place for developers

to check in unfinished code.

So, how do we keep the trunk and the team branches and all individual

workstations in sync? Here’s a summary of how change flows through the

system:

Team 1
Work Branch

Team 2
Work Branch

Trunk

(Always Ready for System Test)

Team 3
Work Branch

Flow
Down

Every Day

Flow Up
When Feature

is Done

Flow Up When
Code Compiles
and Unit Tests

Pass

Flow
Down

Every Day

Basically, change flows “downward” (from the trunk to the team branches to

the workstations) on a continuous basis and flows “upward” (from workstations

to team branches to the trunk) at stable points.

Every morning the team leads merge down any changes from the trunk to

their team branch, handling any merge conflicts immediately. Similarly, each

developer will merge down any changes from their team branch to their

workstation on a fairly continuous basis.

report erratum • discuss

Team Branches • 91

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Whenever a developer feels that his code is stable enough to share with other

team members (that is, the code compiles and the unit tests pass), he will

check in the code on the team branch.

Whenever the team feels that they have completed a feature and tested it as

well as they can, they will do the following:

• Merge down from the trunk to the team branch (in case the trunk has

been updated by other teams today).

• Do a final check to ensure that the team branch is stable (that is, ready

for system test).

• Merge the team branch up into the trunk.

At that moment in time, the team branch and trunk contain exactly the same

code! This brief moment of glory lasts until a developer checks in something

new on the team branch.

This model is nice because it provides a way for changes to ripple through

the organization in a rapid but consistent way, while keeping the trunk stable.

Anything that appears on the trunk will usually be on all team branches and

all developer workstations within a day, and any merge conflicts will be

resolved quickly.

Unmerged branches (or diverging code) are a form of technical debt, and we

were suffering badly from that before we moved to this stable trunk model.

14.3 System Test Branch

System test goes on more or less continuously (rather than just at the end

of the release cycle). Since system test is all about how the features fit together

as whole, we need a stable version of the system to run the tests on. That is,

with the exception of bug fixes, we don’t want features being added and

updated while system test is going on.

We manage this using system test branches. Whenever we are ready for a

new round of system tests, we spawn off a system test branch from the trunk.

Since the trunk is always ready for system test (except when we’ve goofed),

the test team can do that immediately. The dirty stuff is in the team branches,

so there’s no need to wait.

Once we’ve created the system test branch, we deploy that version to a system

test environment and start running system tests. The automated regression

tests were run before merging the features to the trunk, so during system

test we do mostly manual scenario testing and exploratory testing to catch

92 • Chapter 14. How We Do Version Control

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

the more subtle bugs. This version of the system is isolated from any change

happening on the trunk, giving the testers a nice stable release to test on.

If we find a bug in system test, a developer fixes that bug directly on the

system test branch and directly merges the fix down to the trunk. That way,

bug fixes reach all teams quickly, and we can be sure the fix will be included

in future releases.

System test branch
Policy:

Only Bug Fixes

Feature
A

Feature
B

Feature
C

Feature
D

Bug Fix

1: Start
System Test

Trunk

Policy:

Ready for
System Test

2: Fix Bug 4: System
Test Done!

3: Merge to
Trunk

System testing is complete when no system-level problems can be found on

that version. There may be key features missing, so we might not be ready

for acceptance test yet, but the features implemented so far seem to work

together. Great!

What do we do now? Well, we start over again! System test takes days and

sometimes weeks. During this time new teams are adding functionality to the

trunk. So, we create a new system test branch from the latest version on the

trunk, deploy that to the system test environment, and run a new series of

system tests. And so on.

Trunk

System
Test

Branches

Currently
Ongoing

System Test
Done! Done!

report erratum • discuss

System Test Branch • 93

Download from Wow! eBook <www.wowebook.com> www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

This way of working ensures that we always have a stable version that we

could release to acceptance test. When problems are found in system test,

we can solve them fairly quickly, since only a limited amount of code has

changed since last system test. Over time, each system test cycle gradually

becomes shorter.

We don’t always run all system tests. Sometimes we choose a suitable subset,

depending on which parts of the system have been modified and how close

we are to the release date. This is a risk trade-off decision that’s done sepa-

rately for each new system test cycle.

The version control system is really the heart of any multiteam development

project. As the organization becomes more Lean and Agile, the version control

system usually needs to be evolved as well. So, keep an eye on this. Find out

how long it takes to change one single line of code and get it into production.

That may well be the most important metric in the project!

94 • Chapter 14. How We Do Version Control

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 15

Why We Use Only Physical Kanban Boards

So, why do we use this big, messy, icky, analog thing with tape and sticky

notes and handwritten text when we have plenty of slick electronic tools to

choose from? Most of those electronic tools can automagically generate all

kinds of detailed statistics, be backed up, be accessed from outside the

building, have different views, and so on. Why don’t we use something like

that instead?

One of the main reasons is evolution.

Our board has changed structure many times. It took a couple of months

before it started stabilizing. Only then did we start using black tape to mark

the columns—before that we used hand-drawn lines because they changed

so often. But we can still move the tape if we need to do so.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Here are some examples of changes that have happened:

• Adding or removing columns

• Adding or removing swim lanes, sometimes within a column, sometimes

across the whole board

• Adding a new type of item on the board (index card, sticky note, magnet,

colored tape)

• Writing down policy statements such as “definition of done”

• Writing down metrics such as velocity

• Adding color dimensions such as “red text means defect” or “pink sticky

means impediment”

• Using envelopes to group all features that were released together, and

writing the release version number on the cover

• Allowing some items to be placed on the border between two teams because

they are being shared between them

• Dividing one feature into many subfeatures, and keeping them together

by writing a keyword at the top of each subfeature

Each of these changes is trivial to implement. Anybody, even a five-year-old,

could implement any of these changes physically on the board once we know

exactly what we want it to look like.

I have yet to see any electronic tool that can do all of this—except possibly a

generic drawing program like Google Drawing. And if we add the rule that

anybody should be able to implement the change within fifteen minutes

without any training—well, in that case a physical card wall is hard to beat.

At one point we redesigned the whole board based on this sketch:

96 • Chapter 15. Why We Use Only Physical Kanban Boards

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

It took about one hour to create the actual board based on this sketch. Once

again, most electronic tools I’ve seen can’t do this. And the ones that can

require expert-level knowledge.

The second reason we use a physical board: collaboration.

The “daily cocktail party” I described in Chapter 3, Attending the Daily Cocktail

Party, on page 13 would be very difficult to do without physical boards.

If we had an electronic Kanban board, we could use a projector to display it

on the wall. But we would lose most of the interaction, the part where people

pick up a card from the wall and wave it while talking about it, or where

people write stuff on the cards or move them around during the meeting.

People would most likely update the board while sitting at their desk—which

is more convenient but less collaborative.

One clear pattern I’ve noticed with all my clients is that boards like this can

change the culture of an organization, and this definitely happened in the

PUST project. I could see how the patterns of interaction changed and how

trust between the teams improved by collaborating in front of the board every

day. During our first project-level retrospective, one of the first items that

came up under keep doing was “keep using Kanban boards to visualize the

work.”

We do have several electronic tracking systems to complement the physical

Kanban boards—things like the bug tracker and various spreadsheets for

report erratum • discuss

Chapter 15. Why We Use Only Physical Kanban Boards • 97

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Using Google Drawing as an Electronic “Wall”

At my company, Crisp, we wanted some kind of board to keep track of our consulting

engagements and sales leads. We are rarely gathered in the same location, so a

physical wall wouldn’t work. We needed something electronic, yet we didn’t want to

sacrifice the flexibility of a wall.

Google Drawing turned out to be a great solution! It is just a drawing canvas. You

can draw lines and rectangles, write text, and drag things around, just like on a

physical whiteboard or wall. No constraints. And it’s in the cloud, so everyone can

see and update the board at the same time and see what is going on.

If we were collocated, we would definitely use a physical wall. But Google Drawing is

the closest thing we’ve found to a wall for distributed organizations.

metrics and release planning. But the project board is the “master.” We’ve all

agreed to make sure that the board always reflects the truth and to keep it

up-to-date in real time. Any other electronic docs that duplicate information

on the board are considered to be “shadows” of the board—if things are out

of sync, the board is always the master.

We have discussed introducing an electronic tool to duplicate parts of the

board at a higher level. That way, we could automate some of the metrics and

make a high-level electronic board visible to upper management and other

stakeholders who aren’t in the same physical location. It would cost some

effort to keep the digital and physical boards in sync but might be worth it.

This digital board, like our other electronic tools, would be a complement to

the physical board, not a replacement. We haven’t tried this yet, though.

As you can see, we’re by no means at the end of our journey. There are always

things that can be improved!

98 • Chapter 15. Why We Use Only Physical Kanban Boards

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 16

What We Learned

Well, I think that concludes the case study. Hope you enjoyed the tour!

As you may have figured out, this case study is really all about organizational

change! Here are some key takeaway points, from the perspective of a change

agent (and anybody can be a change agent).

16.1 Know Your Goal

Get everyone together and agree on what “perfect” means in your context.

What would a “perfect” process, organization, and work environment look

like? This will just be your compass direction, so the goal doesn’t have to be

realistic. Perfection is a direction, not a place! Having a clearly defined direction

makes it easier to focus and evaluate your improvement efforts.

16.2 Experiment

Don’t look for perfect solutions. It’s probably not worth the wait, and you’ll

probably get it wrong anyway. Instead, look for small incremental improve-

ments, and think of them as experiments. An experiment may or may not

lead to the intended improvement, but it should always generate insights that

can be used to design the next experiment.

A great process isn’t designed; it is evolved. So, the important thing isn’t your

process; the important thing is your process for improving your process.

16.3 Embrace Failure

Some changes just don’t work out. Some changes even make things worse.

Don’t worry about it, because few failures are irreversible. Fear of failure is

the biggest enemy of innovation. Instead of asking “Why did we fail? Who

screwed up?” ask “What did we learn, and what will we try next?”

The only real failure is the failure to learn from failure.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

16.4 Solve Real Problems

Whenever you’re trying to change something, ask yourself continuously, “What

problem am I trying to solve? Is it real or hypothetical? Is there any other

more important problem that I should focus on instead?” When in doubt, ask

people! It is very easy to fall into the trap of focusing on irrelevant or imagined

problems, especially as external coach on a part-time basis.

16.5 Have Dedicated Change Agents

Change is hard! Especially when it involves people. And organizational change

always involves people. One critical success factor is having at least one

dedicated change agent, someone who focuses almost entirely on driving,

leading, and facilitating the change process.

Even better, have two change agents: one insider and one outsider. The insider

(typically an employee) has the domain knowledge, knows who to talk to for

what, and knows the history of the organization and what has worked in the

past. The outsider (typically a consultant) provides a fresh perspective and

experience from helping other companies go through the same type of change.

Culture can be defined as “things that everyone does without noticing it.” An

outsider is more likely to notice, and challenge, the status quo.

16.6 Involve People

Most people like change; they just don’t like to be changed. So, don’t make

any change without first involving the people who will be affected by it. Forcing

people to change is usually ineffective, unnecessary, and, well, cruel. If people

resist your great change proposal, you probably haven’t made the problem

clear enough. Or you’re solving the wrong problem. Go back to your cause-

effect diagram (see Chapter 20, Cause-Effect Diagrams, on page 131) and think

again!

Better yet, don’t even make the change proposal yourself. Instead, visualize

the problem that you think you see, and engage the people affected by the

problem to propose solutions. People are much more likely to accept a change

if it was their own idea!

Once everyone agrees that the problem really is a problem and that it is worth

solving, then you’re halfway to the solution!

100 • Chapter 16. What We Learned

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Part II

A Closer Look at the Techniques

Oh, did you want more? OK, let’s go deeper into

some of the techniques mentioned in this book.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 17

Agile and Lean in a Nutshell

Probably most people reading this book have a basic understanding of Agile

and Lean principles, but this quick summary will remind those less familiar

with the techniques and demonstrate how they tie in with the associated

methods Scrum, XP, and Kanban.

Broadly speaking, Lean and Agile are two sets of highly compatible values

and principles that outline how to succeed with product development. Scrum,

XP, and Kanban are three concrete ways of putting these principles into

practice. In other words, they are three slightly overlapping flavors of Lean

and Agile software development.

Kanban

Scrum

XP

Lean and Agile
Values and Principles

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Scrum and XP and Kanban offer concrete techniques such as sprint planning

meetings (Scrum), pair programming (XP), and limit work in progress (Kanban).

These techniques can be seen as process tools. The three toolkits have signif-

icant overlap; for example, all three recommend the use of physical taskboards

to visualize what is going on.

17.1 Agile in a Nutshell

The term Agile software development was coined in 2001, when seventeen

thought leaders from the software community met at a ski resort in Utah to

discuss and compare notes on how to succeed with software development.

These people had independently been creating new methods such as Scrum,

XP, and Dynamic Systems Development Method (DSDM). During the meeting,

they discovered a strong common ground: a shared vision of how to succeed

with software development. This became known as the Agile Manifesto.1

Here is the manifesto:

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

1. www.agilemanifesto.org

104 • Chapter 17. Agile and Lean in a Nutshell

report erratum • discusswww.it-ebooks.info

http://www.agilemanifesto.org
http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.

After the meeting they agreed on twelve principles behind these values:

• Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

• Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

• Businesspeople and developers must work together daily throughout the
project.

• Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

• Working software is the primary measure of progress.

• Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

• Continuous attention to technical excellence and good design enhances
agility.

• Simplicity—the art of maximizing the amount of work not done—is essential.

• The best architectures, requirements, and designs emerge from self-organizing
teams.

• At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

Although the term Agile was coined in 2001, most Agile methods were created

in the 1980s and 1990s. Agile is just an umbrella term, a description of the

common denominator. Any method or approach that follows these values and

principles can be considered Agile.

The Agile Manifesto is a historical document, a call for change. The wording

of the manifesto resonated deeply with thousands of people around the world,

causing somewhat of a revolution in software development. Ten years later,

all the authors (except one) met again in the same location and concluded

that they still stand behind agile values and principles. So, it seems that,

report erratum • discuss

Agile in a Nutshell • 105

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

despite the fast pace of change in the software industry, the Agile Manifesto

is standing the test of time.

Nobody owns the term Agile software development, so it has many interpreta-

tions. We know what Agile meant in 2001 (through the manifesto); today it

is less clear. Many of the original manifesto authors hope that the term Agile

will eventually fall out of use, signifying that the Agile values and principles

have become simply “the way we do software.”

17.2 Lean in a Nutshell

Lean is the western term for what the Japanese call “TPS” (Toyota Production

System)—an approach to manufacturing that has helped make Toyota the

most successful car manufacturer in the world. The underlying principles

behind TPS, the Toyota Way, have turned out to be applicable almost any-

where, including software development.

Agile and Lean can be seen as cousins with common values but different

origins. Lean arose from manufacturing. Agile arose from software develop-

ment. Both sets of principles fit well together and are very broadly applicable.

More and more software development organizations are discovering how to

combine these principles to cover the whole chain from product concept to

delivery.

Mary and Tom Poppendieck have been instrumental in mapping Lean princi-

ples to software development. Here is their summary.2

Optimize the Whole

Optimizing a part of a system will always, over time, suboptimize the overall

system.

• Focus on the entire value stream: From concept to cash. From customer

request to deployed software.

• Deliver a complete product: Customers don’t want software; they want

their problems solved. Complete solutions are built by complete teams.

• Think long term: Beware of governance and incentive systems that drive

short-term thinking and optimize local performance.

2. www.poppendieck.com

106 • Chapter 17. Agile and Lean in a Nutshell

report erratum • discusswww.it-ebooks.info

http://www.poppendieck.com
http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Eliminate Waste

Waste is anything that does not add customer value. The three biggest wastes

in software development are the following:

• Building the wrong thing: “There is nothing so useless as doing efficiently

that which should not be done at all.”

• Failure to learn: Many of our policies—for example, governance by variance

from plan, frequent handovers, and separating decision making from

work—interfere with the learning that is the essence of development.

• Thrashing: Practices that interfere with the smooth flow of value—task

switching, long lists of requests, big piles of partly done work—deliver

half the value for twice the effort.

Build Quality In

If you routinely find defects in your verification process, your process is

defective.

• Final verification should not find defects: Every software development

process ever invented had as its primary purpose finding and fixing defects

as early in the development process as possible.

• Mistake-proof your process with test-first development: Tests—including

unit tests, end-to-end tests, and integration tests—must be available to

establish confidence in the correctness of the system at any time during

development, at every level of the system.

• Break dependencies: System architecture should support the addition of

any feature at any time.

Learn Constantly

Planning is useful. Learning is essential.

• Predictable performance is driven by feedback: A predictable organization

does not guess about the future and call it a plan; it develops the capacity

to rapidly respond to the future as it unfolds.

• Maintain options: Think of code as an experiment—make it change-tolerant.

• Last responsible moment: Learn as much as possible before making irre-

versible decisions. Don’t make decisions that will be expensive to change

before their time—and don’t make them after their time!

report erratum • discuss

Lean in a Nutshell • 107

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Deliver Fast

Start with a deep understanding of all stakeholders and what they will value.

Create a steady, even flow of work, pulled from this deep understanding of

value.

• Rapid delivery, high quality, and low cost are fully compatible: Companies

that compete on the basis of speed have a big cost advantage, deliver

superior quality, and are more attuned to their customers’ needs.

• Queuing theory applies to development, not just servers: Focusing on use

creates traffic jams that reduce use. Drive down cycle time with small

batches and fewer things in process. Aggressively limit the size of lists

and queues.

• Managing workflow is a lot easier than managing schedules: The best way

to establish reliable, predictable deliveries is to establish reliable, repeat-

able workflows with iterations or a Kanban system.

Engage Everyone

The time and energy of bright, creative people are the scarce resources in

today’s economy and the basis of competitive advantage.

People who are paid fairly and adequately are motivated by autonomy, mastery,

and purpose.3

• Autonomy: The most effective work groups are semi-autonomous teams

with an internal leader who has end-to-end responsibility for complete,

meaningful tasks.

• Mastery: Respect for people means providing the challenge, feedback, and

environment that enables everyone to become excellent.

• Purpose: Tie work to value. Only by believing in the purpose of their work

will people become engaged in achieving that purpose.

Keep Getting Better

Results are not the point—the point is to develop the people and the systems

capable of delivering results.

3. http://www.youtube.com/watch?v=u6XAPnuFjJc

108 • Chapter 17. Agile and Lean in a Nutshell

report erratum • discusswww.it-ebooks.info

http://www.youtube.com/watch?v=u6XAPnuFjJc
http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

• Failure is a learning opportunity: The most reliable performance comes

when even small failures are deeply investigated and corrected—when

noise is not tolerated.

• Standards exist to be challenged and improved: Embody the current, best-

known practice in standards that everyone follows, while encouraging

everyone to challenge and change the standards.

• Use the scientific method: Teach teams to establish hypotheses, conduct

many rapid experiments, create concise documentation, and implement

the best alternative.

17.3 Scrum in a Nutshell

Scrum is a software development approach that Jeff Sutherland and Ken

Schwaber developed during the early 1990s. It is rooted in empirical process

control and complex adaptive systems theory and was inspired by a Harvard

Business Review article called “New New Product Development Game” from

1986.4

The core concepts of Scrum are as follows.

Ordered Product Backlog

Split your work into a list of small, concrete deliverables—the product backlog.

The product owner defines a product vision and orders the backlog by business

value and other factors such as risk and dependencies.

PO

Product

Product
Backlog

Items

Ordered
Product

Backlog

4. http://hbr.org/product/new-new-product-development-game/an/86116-PDF-ENG

report erratum • discuss

Scrum in a Nutshell • 109

www.it-ebooks.info

http://hbr.org/product/new-new-product-development-game/an/86116-PDF-ENG
http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Cross-functional Teams

Split your organization into small, cross-functional, self-organizing teams.

Each team has a product owner, who provides the vision and overall business

priorities, and a Scrum master, who focuses on improving the team and

removing impediments.

SM

SM PO

Sprints

Split time into short fixed-length iterations, or sprints (typically two or three

weeks long). The team chooses how many product backlog items to pull into

each iteration. Each iteration ends with a demonstration of a tested, poten-

tially shippable release.

January May

Continuously Adjusted Release Plan

The product owner optimizes the release plan and updates priorities in collab-

oration with the customer, based on insights gained by inspecting the release

after each iteration.

Continuously Adjusted Process

The teams optimize the development process by having a retrospective after

each iteration.

So, with Scrum:

Instead of a large group spending a long time building a big thing...

...we have a small team spending a short time building a small thing.

110 • Chapter 17. Agile and Lean in a Nutshell

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

But integrating regularly to see the whole.

Scrum does not mandate any specific engineering practices—those are left

up to the team. In practice, however, succeeding with Scrum without including

the core engineering practices of XP is very hard.

17.4 XP in a Nutshell

Extreme Programming (XP) is a software development approach that Kent

Beck created in the mid-1990s. It is based on the values of simplicity, com-

munication, feedback, courage, and respect. XP evolved in parallel with Scrum

and, in fact, includes most of the same elements. For example, on-site customer

in XP corresponds roughly to product owner in Scrum.

Sprint

Planning

Meeting

Daily Scrum

Sprint

Review

Sprint

Backlog

Product

Backlog

TDD

Pair

Programming Refactoring

Simple

Design

Coding

Standard

Sustainable

Pace
Metaphor

Continuous

Integration

Collective

Ownership

Whole

Team

Planning

Game

Small

Releases

Customer

Tests

Burndown

Chart

Product

Owner

Team

Scrum

Master

Scrum

XP

XP

Coach

Onsite

Customer

Sprint

Retrospective

In that sense, Scrum can be seen as a “wrapper” around XP, focusing on

structural issues and external communication, while XP duplicates most of

that and adds some team-internal engineering practices. These include the

following:

• Continuous integration: Have a system that automatically builds, integrates,

and tests the code as the team develops it. This gives the team early

feedback on the quality of their work.

report erratum • discuss

XP in a Nutshell • 111

Download from Wow! eBook <www.wowebook.com> www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

• Pair programming: Program together in pairs on one workstation to maxi-

mize learning, maximize design quality, and minimize defects.

• Test-driven development: Use test code to drive the design of the system.

Write an automated test, then write just enough code to make that one

test pass, and then refactor the code primarily to improve readability and

remove duplication. Rinse and repeat.

• Collective code ownership: Anybody on the team is allowed to (and, in fact,

encouraged to) edit any part of the code base. This creates a sense of team

ownership and ensures a coherent, easy-to-understand design across the

whole system.

• Incremental design improvement: Instead of creating a complete design

from the beginning, start with the simplest possible design and then

continuously improve it using techniques such as refactoring.

Many of these practices build upon each other. For example, incremental

design improvement is difficult, scary, and risky if the system isn’t well covered

by automated tests, and good test coverage is best achieved by doing test-

driven development and pair programming. However, that gets painful if all

the tests have to be triggered manually and run locally on each developer’s

workstation, so we need a continuous integration system to do that automati-

cally in the background. And so on.

17.5 Kanban in a Nutshell

Kanban is a Lean approach to Agile software development.

Actually, Kanban means many things. Literally, Kanban is a Japanese word

that means “visual card” (or sign). At Toyota, Kanban is the term used for the

visual and physical signaling system that ties together the whole Lean pro-

duction system.

In 2004, however, David Anderson pioneered a more direct implementation

of Lean thinking and the Theory of Constraints5 to software development.

Under the guidance of experts such as Don Reinertsen, this evolved into what

David called a “Kanban system for software development” and which most

people now simply refer to as “Kanban.”

So although Kanban as applied to software development is quite new, Kanban

as used in Lean production is more than a half-century old.

5. http://en.wikipedia.org/wiki/Theory_of_Constraints

112 • Chapter 17. Agile and Lean in a Nutshell

report erratum • discusswww.it-ebooks.info

http://en.wikipedia.org/wiki/Theory_of_Constraints
http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

The rules of Kanban are simple. But, like chess, just because the rules are

simple doesn’t mean the game is easy.

• Visualize the workflow:

• Split the work into pieces, write each item on a card, and put the card

on the wall.

• Use named columns to illustrate where each item is in the workflow.

• Limit work in progress (WIP): Assign explicit limits to how many items may

be in progress at each workflow state.

• Measure and manage cycle time: Average the time to complete one item,

sometimes called lead time (a better term might be flowthrough time).

Optimize the process to make the cycle time as small and predictable as

possible.

Develop
Done Backlog 3

2
Live :o)

Ongoing
Deploy

1

FLOW

Selected

This is basically a direct implementation of a Lean pull-scheduling system.

While Scrum focuses on structure and communication and XP adds engineer-

ing practices, Kanban focuses on visualizing flow and managing bottlenecks.

One Day in Kanban Land

Here’s a cartoon that illustrates the type of behavior that Kanban tries to

drive:

report erratum • discuss

Kanban in a Nutshell • 113

Download from Wow! eBook <www.wowebook.com> www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Selected
Develop

Done

A
B

G

D

Backlog 2
2

Live!
Ongoing

Deploy

C

F

H I

1

Selected
Develop

Done

A

B G

D

Backlog 2
2

Live!
Ongoing

Deploy

C

F

H I

1

A & B are the 2 most

important things right now!

Selected
Develop

Done

D

G
B

Backlog 2
2

Live!
Ongoing

Deploy

A

F

H I

1

Great! Next is C & D!

We’ll do A

And we’ll do B C

Selected
Develop

Done

C

D

G

B

Backlog 2
2

Live!
Ongoing

Deploy

A

F

H I

1
A is done!

J
K
L

Hmmm... might need

J+K+L as well

Ah, something

to deploy!

114 • Chapter 17. Agile and Lean in a Nutshell

report erratum • discussDownload from Wow! eBook <www.wowebook.com> www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Selected
Develop

Done

D

G

B

Backlog 2
2

Live!
Ongoing

Deploy

A

F

H I

1

J
K
L

Deploying A!

Developing

C!

C

Selected
Develop

Done

C

D

G

B

Backlog 2
2

Live!
Ongoing

Deploy

A

F

H I

1

J
K
L

Crap!

A doesn’t

build!
B is done!

Selected
Develop

Done

C

D

G

B

Backlog 2
2

Live!
Ongoing

Deploy

A

F

H I

1

J
K
L

We’ll do D!

No, wait.... that would break

the Kanban limit of 2!

Selected
Develop

Done

C

D

G

B

Backlog 2
2

Live!
Ongoing

Deploy

A

F

H I

1

J

K

L
Get coffee. Then tell us

what this #%&@ stack

trace means.

How can

we help?

K is pre=y urgent. I’ll

schedule it next.

report erratum • discuss

Kanban in a Nutshell • 115

Download from Wow! eBook <www.wowebook.com> www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Selected
Develop

Done

C

D

G

B

Backlog 2
2

Live!
Ongoing

Deploy

A

F

H I

1

J

K

L

C is done!

Great, hope you

start K soon!

Sure, as soon as we sort out the

problem with A.

Selected
Develop

Done

C

D

G

B

Backlog 2
2

Live!
Ongoing

Deploy

A

F

H I

1

J

K

L

I want F & G as well. But

the Kanban limit stops

me. Hmmm....

How can we help?

We don’t need any more hands right now. But this is

a recurring problem, so write a test for it to avoid the

problem in the future!

Selected
Develop

Done

C

D

G

B

Backlog 2
2

Live!
Ongoing

Deploy

A

F

H I

1

J

K

L

Is there anything I can do

to help? I’m no techie

but...
Sure! Get more coffee and

protect us from disrup=ons.

Selected
Develop

Done

C

D G
B

Backlog 3
2

Live!
Ongoing

Deploy

A

F

H
I

1

J

K

L

M

Don’t you miss the old days?

All‐night Integra7on hell?

Big‐bang releases?

LOL

M or H. Definitely M!

No, H! Hmmmmm. No wait, M!

M or H or M or H?!? Aaaaarrrrgh

R

A few days later...

116 • Chapter 17. Agile and Lean in a Nutshell

report erratum • discussDownload from Wow! eBook <www.wowebook.com> www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 18

Reducing the Test Automation Backlog

Many companies with existing legacy code bases bump into a huge impediment

when they want to get Agile: lack of test automation!

Without test automation, making changes in the system is very hard, because

things break without anybody noticing. When the new release goes live, the

real users discover the defects, causing embarrassment and an expensive

hotfix—or even worse, a chain of hotfixes, because each hotfix introduces

new, unanticipated defects.

This makes the team terribly afraid to change code and therefore reluctant

to improve the design of the code, which leads to a downward spiral of worse

and worse code as the system grows.

The good news is that you can do something about it!

18.1 What to Do About It

Your main options in this case are as follows:

• Ignore the problem. Let the system decline into entropy death, and hope

that nobody needs it by then.

• Rebuild the system from scratch using test-driven development to ensure

good test coverage.

• Start a separate test automation project, where a dedicated team improves

the test coverage for the system until it’s adequate.

• Let the team improve test coverage a little bit each iteration.

Guess which approach usually works best? Yep, the last one—improve test

coverage a little bit each iteration. At least in my experience.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

The third option may sound tempting, but it’s risky. Who’s going to do the

test automation? A separate team? If so, does that mean the other developers

don’t need to learn how to automate tests? That’s a problem. Or is the whole

team doing the test automation project? In that case, their velocity (from a

business perspective) is 0 until they’re done. So, when are they done? When

does test automation “end”?

Let’s get back to the fourth option—improve test coverage a little bit each

iteration. So, how to do that in practice?

18.2 How to Improve Test Coverage a Little Bit Each Iteration

Here’s an approach that I like:

1. List your test cases.

2. Classify each test by risk, how expensive it is to do manually, and how

expensive it is to automate.

3. Sort the list in priority order.

4. Automate a few tests each iteration, starting from the highest priority.

So, let’s take a look at each of these steps.

18.3 Step 1: List Your Test Cases

Think about how you test your system today. Brainstorm a list of your most

important test cases—the ones that you already execute manually today or

wish you had time to execute. Here’s an example from a hypothetical online

banking system:

Test Case

Change Skin

Security Alert

Transaction History

Block Account

Add New User

Sort Query Results

Deposit Cash

Validate Transfer

118 • Chapter 18. Reducing the Test Automation Backlog

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

18.4 Step 2: Classify Each Test

First classify your test cases by risk. Look at your list of tests. Ignore the cost

of manual testing for the moment. Now, what if you could throw away half of

the tests and never execute them? Which tests would you keep? This factor

is a combination of the probability of failure and the cost of failure.

Highlight the risky tests, the ones that keep you awake at night.

Test Case Risk

Change Skin

Security Alert

Transaction History

Block Account

Add New User

Sort Query Results

Deposit Cash

Validate Transfer

Now think about how long each test takes to execute manually. Which half

of the tests takes the longest? Highlight those.

Test Case Risk Manual Test
Cost

Change Skin

Security Alert

Transaction History

Block Account

Add New User

Sort Query Results

Deposit Cash

Validate Transfer

Finally, think about how much work it would be to write automation scripts

for each test. Highlight the most expensive half.

report erratum • discuss

Step 2: Classify Each Test • 119

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Test Case Risk Manual Test
Cost

Automation
Cost

Change Skin

Security Alert

Transaction History

Block Account

Add New User

Sort Query Results

Deposit Cash

Validate Transfer

Pay Every
Time!

Pay Only
Once!

Note that manual test cost is incurred every time the test is run, while automa-

tion cost is incurred only once. So, time spent writing test automation code

is actually an investment, not a cost.

18.5 Step 3: Sort the List in Priority Order

Which test do you think we should automate first? Should we automate

Change skin, which is low-risk, easy to test manually, and difficult to auto-

mate? Or should we automate Block account, which is high-risk, difficult to

test manually, and easy to automate? That’s a fairly easy decision.

Here’s a more difficult decision. Should we automate Validate transfer, which

is high-risk, hard to test manually, and hard to automate? Or should we

automate Deposit cash, which also is high-risk but easy to test manually and

easy to automate? That decision is context dependent.

You basically need to make three decisions about which test to automate

first:

• The high-risk test that’s easy to test manually or the low-risk test that’s

difficult to test manually

• The test that’s easy to do manually and easy to automate or the test that’s

hard to do manually and hard to automate

• The high-risk test that’s hard to automate or the low-risk test that’s easy

to automate

120 • Chapter 18. Reducing the Test Automation Backlog

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Those decisions give you a prioritization of your categories, which in turn lets

you sort your list of test cases by priority. In my example, I decided to prioritize

manual test cost first, then risk, then automation cost. Here’s the sorted list:

Test Case Risk Manual Test
Cost

Automation
Cost

Block Account

Validate Transfer

Transaction History

Sort Query Results

Deposit Cash

Security Alert

Add New User

Change Skin

Automate
First!

Automate Last
(or Never)

So, that’s it! A prioritized backlog of test automation stories.

Of course, we could also invent some kind of calculation algorithm. For exam-

ple, we could give each highlighted cell one point. Then we just add up each

row and sort. Or we could just sort the list manually using gut feel.

We could also use more precise units such as hours and story points for each

category:

Test Case Risk Manual
Test Cost

Automation
Cost

Block Account High 5 hrs 0.5 sp

Validate Transfer High 3 hrs 1 sp

Transaction History Medium 3 hrs 1 sp

Sort Query Results Medium 2 hrs 8 sp

Deposit Cash High 1.5 hr 1 sp

Security Alert High 1 hr 13 sp

Add New User Low 0.5 hr 3 sp

Change Skin Low 0.5 hr 20 sp

report erratum • discuss

Step 3: Sort the List in Priority Order • 121

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Remember, though, that our goal for the moment is just to prioritize the list.

If we can do that with a simple and crude categorization scheme, then there’s

no need to complicate things, right? Analysis is useful, but over-analysis is

a waste of time.

Anyway, now we have a prioritized test automation backlog!

18.6 Step 4: Automate a Few Tests Each Iteration

Regardless of the test automation backlog, each new feature should include

an automated test at the feature level. That’s the XP practice known as cus-

tomer acceptance tests. Not doing that is what got your system into this mess

in the first place.

But in addition to implementing new stories, we want to spend some time

automating old test cases for previously existing stories. How much time

should we spend on that? The team needs to negotiate that with the product

owner.

For example, we may agree that 80 percent of the team’s capacity will be

spent on developing new features from the product backlog and 20 percent

of the capacity will be spent on the test automation backlog. So, during each

iteration planning meeting, the team will pull from both backlogs.

Test
Automation

Backlog

Product
Backlog

Iteration
Backlog

80%

20%

122 • Chapter 18. Reducing the Test Automation Backlog

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Here are some other examples of how the agreement might look:

• In each iteration we will implement one test automation story.

• In each iteration we will implement up to ten story points of test automa-

tion stories.

• In each iteration we will finish the product backlog stories first and then

spend the remainder of the time (if any) implementing test automation

stories.

• The product owner will merge the test automation stories into the overall

product backlog, and the team will treat them just like any other story.

The exact form of the agreement doesn’t matter. You can change it every iter-

ation if you like (as long as the team and product owner agree). The important

thing is that the test automation debt is gradually repaid, step by step.

After finishing half the stories on your test automation backlog, you might

decide, “Hey, we’ve paid back enough debt now! Let’s just skip the rest of the

old test cases; they’re not worth automating anyway,” and dump the rest. In

that case, congratulations!

18.7 Does This Solve the Problem?

Following this pattern does not magically solve your test automation problem,

at least not in the short term. However, this pattern does make the problem

easier to approach. Within a few months you should notice a significant

difference.

report erratum • discuss

Does This Solve the Problem? • 123

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 19

Sizing the Backlog with Planning Poker

Planning Poker is a simple but powerful tool that makes team estimating (that

is, estimating the effort involved in building a feature) faster, more accurate,

and more fun. The term was coined by James Grenning and popularized by

Mike Cohn.

19.1 Estimating Without Planning Poker

Here’s a typical problem with team estimates. Let’s say we’re in a sprint

planning meeting, and the product owner says....

OK guys,
how big is

this feature?

So, the team starts thinking about how big the feature is.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

A

B

C

D E

small
medium

large

ZZZzzzzzz…

Mr. A believes that he knows exactly what needs to be done, and it isn’t much

work at all. Mrs. B and C are more pessimistic. Mr. D and E are slacking off.

So, Mr. A says....

A

B

C

D E

Small!

ZZZzzzzzz…

!?

!?

!?

This makes B and C confused. They start doubting their own estimates. Mr.

E wakes up and doesn’t really know what is being estimated. D is still dozing.

The product owner asks for the rest of the team’s estimates.

A

B

C

D E

Small…

Small…

Small…

Small…

126 • Chapter 19. Sizing the Backlog with Planning Poker

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

As you can see, the rest of the team has been heavily influenced by A, just

because A spoke up first. We have lost the opportunity to hear why Mrs. B

and Mrs. C think this is a medium to large feature, which may be valuable

information!

19.2 Estimating with Planning Poker

Now imagine that each team member is holding the following cards. (Our

Planning Poker cards actually use numbers: 1 to symbolize Small, 2 to sym-

bolize Medium, and 3 to symbolize Large.)

S M L ?

Let’s redo the estimate. The product owner says....

OK guys,
how big is

this feature?

Once again, the team starts thinking about how big the feature is.

A

B

C

D E

small
medium

large

medium

small

This time nobody blurts anything out. Instead, they all have to present a card,

face down, that represents their estimate. Everybody has to present a card,

so Mr. D and E wake up. Mr. D admits that he was sleeping and asks what

the feature is about. It’s harder to slack off when doing estimates this way!

When they’re done, all cards are turned over simultaneously, revealing every-

one’s estimates.

report erratum • discuss

Estimating with Planning Poker • 127

Download from Wow! eBook <www.wowebook.com> www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

A

B

C

D E

S
M

L

M

S

Whoops! Big divergence here. The team, in particular Mr. A and Mrs. C, needs

to discuss this feature and why their estimates are so wildly different. After

some discussion, Mr. A realizes that he forgot some important tasks that need

to be included in the feature. Mrs. C realizes that, with the design that Mr.

A presented, the feature might not be so large after all.

After the discussion (three minutes in total), they do another estimation round

for that same feature.

A

B

C

D E

M
M

M

M

S

Convergence! OK, not complete convergence. But they agree that Medium

should be an OK estimate. Next feature.

19.3 Special Cards

The question mark card means, “I have absolutely no idea at

all. That feature might be huge, or it might be tiny.” This circum-?

stance should be rare. If this card is used too often, the team

needs to discuss the features more and try to achieve a better

knowledge spread within the team.

The coffee cup card means, “I’m too tired to think. Let’s take a

short break!”

128 • Chapter 19. Sizing the Backlog with Planning Poker

report erratum • discussDownload from Wow! eBook <www.wowebook.com> www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Joe asks:

Won’t All Features Average Out to Medium

Whenever Estimates Diverge?

No, not if the team has a discussion about why there is divergence and then plays

another round based on that information. One person may convince the rest of the

team that this feature is Small, because it has already been implemented in another

system and can be reused. Or vice versa—one person may convince the rest of the

team that this feature is Large, because of some risk that nobody else thought of.

Most teams like Planning Poker because it takes much of the pain out of

estimating and instead turns it into a simple and fun process. The greatest

value is really in the conversations that get triggered while playing; the esti-

mate itself is just a positive side effect.

report erratum • discuss

Special Cards • 129

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 20

Cause-Effect Diagrams

Cause-effect diagrams are a simple and pragmatic way of doing root-cause

analysis. I’ve been using these diagrams for years to help organizations

understand and solve all kinds of problems, technical as well as organizational.

Let’s take a closer look at how cause-effect diagrams work so you can put

them to use in your own context.

20.1 Solve Problems, Not Symptoms

The key to effective problem solving is first to make sure you understand the

problem you are trying to solve—why it needs to be solved, how you’ll know

when you’ve solved it, and what the root cause of it is.

Symptoms often show up in one place, while the cause of the problem is

somewhere else. If you “solve” the symptom without digging deeper, it’s

highly likely that the problem will just reappear later in a different shape.

Let’s look at a couple of examples.

• Problem: Smoke in my bedroom.

• Bad solution: Open the window and go back to sleep.

• Good solution: Find the source of the smoke and solve it. Whoops,

there’s a fire in the basement! Extinguish it, find out what caused the

fire in the first place, and install a fire alarm for earlier warning next

time.

• Problem: Hot forehead, tired.

• Bad solution: Put ice on forehead to cool it down. Drink some coffee

to wake up. Keep working.

• Good solution: Take my temperature. Oh, I have fever! Go home and

rest.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

• Problem: Memory leak in server.

• Bad solution: Buy more memory.

• Good solution: Find and fix the source of the memory leak. Implement

tests to detect new memory leaks in the future.

• Problem: Water in the boat.

• Bad solution: Pump out the water and keep sailing.

• Good solution: Find the source of the water. Ah, a hole! Fix it. Then

pump out the water.

...and so on.

Most problems in organizations are systemic. The “system” (your organization)

has a glitch that needs to be fixed. Until you find the source of the glitch,

most attempts to fix the problem will be futile or even counterproductive.

20.2 The Lean Problem-Solving Approach: A3 Thinking

One of the core tenets of Lean thinking is Kaizen—continuous process

improvement. Toyota attributes much of its success to its highly disciplined

problem-solving approach. This approach is sometimes called A3 thinking

(based on the single A3-size papers used to capture knowledge from each

problem-solving effort).

You can download an A3 example and template from http://www.crisp.se/

lean/a3-template. It is hard to show here because, well, A3 is probably a lot

larger than what you are holding in your hand right now. Figure 2, A3 Exam-

ple, on page 133 shows a high-level view, though.

With the A3 approach, a significant amount of time (the left half of the sheet)

is spent analyzing and visualizing the root cause of a problem before

proposing solutions. A cause-effect diagram is only one way of doing a root-

cause analysis. There are other ways, too, such as value stream maps and

Ishikawa (fishbone) diagrams. This sample A3 contains a value stream map

(top left) and a cause-effect diagram (bottom-left).

The nice thing about cause-effect diagrams is that they are fairly intuitive

and self-explanatory (especially compared to fishbone diagrams). Another

advantage is that you can illustrate reinforcing loops (vicious cycles), which

is very useful from a systems-thinking perspective.

Let’s look at how to create and use these diagrams effectively.

132 • Chapter 20. Cause-Effect Diagrams

report erratum • discusswww.it-ebooks.info

http://www.crisp.se/lean/a3-template
http://www.crisp.se/lean/a3-template
http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

A3 Problem Solving Template, Example, and Assessment Questions - version 1.1 - By Tom Poppendieck and Henrik Kniberg.

Background
Games out of date

Missed market windows-Revenue is declining

Demotivated teams-Key developers about to quit

Overhead costs -Time to develop games steadily increasing due to declining technical quality

Pressure to Work FASTER!

Current Condition

Process cycle e�ciency = 3 months add value / 25 months cycle time = 12%

Goal / Target Condition

8x faster cycle time

5x fewer escaped defects

20% improvement in revenue

Root Cause Analysis

Owner: Lisa

Mentor: Heinrich

Date: 18 May 2009

Countermeasures

1. Cross Functional Teams - Graphics design through deployment
Predict 2x Faster Delivery

End dependencies - now spend 75% of time waiting/negotiating
2. Abandon all but most promising 3 games in each queue. Do ONE game per cross

functional team at a time.
4x faster delivery from reduced task switching
Eliminating queues will cut 1.3 years from schedule

3. Engage developers in playing games and selecting ideas
30% more pro�t to par with best competitor

Improved �ltering on which games to develop

More fun games, more popular

Con�rmation (Results)

1. Cross Functional Teams

Half as much time waiting
2. One game at a time

Queues eliminated, time to complete game is 4 months (6x)

Technical Debt decreasing - Escaped defects down by 2x so far
3. Engage developers in playing games and selecting ideas

One team taking time to play is producing more innovative games.

Impact on pro�t is TBD.

Follow-up

1. Consider more cross training of team members to reduce waiting for expertise
2. Reduce di�culty of integration and deployment steps
3. Improve processes for generating and selecting game ideas

a. Recruit talent if identi�able/available
b. Improve skills/process of best people already in company
c. Broaden both participation in selection and game playing experience

of everyone in the company.
4. Continue improvement of reused game components/engines to improve

development throughput and reduce defects.

F
ig

u
re

 2
—

A
3

 E
x

a
m

p
le

re
p

o
rt e

rra
tu

m
 • d

iscu
ss

H
o

w
 to

 U
se

 C
a

u
se

-E
ffe

ct D
ia

g
ra

m
s • 1

3
3

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

20.3 How to Use Cause-Effect Diagrams

Here’s the basic process:

1. Select a problem—anything that’s bothering you—and write it down.

2. Trace “upward” to figure out the business consequences, the “visible

damage” that your problem is causing.

3. Trace “downward” to find the root cause (or causes).

4. Identify and highlight vicious cycles (circular paths).

5. Iterate these steps a few times to refine and clarify your diagram.

6. Decide which root causes to address and how (that is, which countermea-

sures to implement).

Later, follow up. If your countermeasures worked, congratulations! If your

countermeasures didn’t work, don’t despair. Analyze why they didn’t work,

update your diagram based on the new knowledge gained, and try some other

countermeasures.

A countermeasure is an experiment, not a solution. Your hypothesis is that

this countermeasure will solve (or mitigate) the problem, but you can never

be sure. In effect, you’re prodding your system to see how it reacts. That’s

why the follow-up is important.

Failure really just means that your system is trying to tell you something—so

you’d better listen. The only real failure is the failure to learn from failure!

20.4 Example 1: Long Release Cycle

Let’s say our problem is that we always miss deadlines. More specifically, our

releases always occur at a later date than planned.

Delayed
Releases

A problem is a problem only if it conflicts with your goal. So, start by defining

your goal, and think about the consequences of this problem in terms of your

goal. This can be done by asking a series of “so what?” questions until you

identify the visible damage.

Let’s say our goal is to delight our customers and maximize our revenue. Our

dialogue might sound something like this:

134 • Chapter 20. Cause-Effect Diagrams

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Lisa: Who cares if the releases are delayed? What’s the consequence?

Jim: Delays make our release cycles long.

Lisa: So what?

Jim: That delays our revenues, which messes up our cash flow. It also causes us

to lose customers, since they’re impatient and don’t like waiting longer than neces-

sary!

As we talk, we add boxes and cause-effect arrows to the diagram. Normally

I try to go “upward” from the original problem statement when mapping out

consequences, but that isn’t a strict rule.

Delayed
Revenue

Long Release Cycle

Loss of
Customers

Problem Problem

Delayed
Releases

We can see from the diagram that delayed releases isn’t really the problem.

The real problem is delayed revenue and loss of customers. At this point we

should consider three things:

• Are any other issues causing loss of customers or delayed revenues? If

so, are delayed releases the biggest culprit, or should we turn our attention

elsewhere?

• Can we quantify the problem? How much revenue have we lost? How

many customers have we lost? This data will help us evaluate how much

effort it’s worth spending to solve this problem.

• How will we know when we’ve solved the problem? If a consultant comes

in, does a noisy rain dance, and then proudly proclaims, “I’ve solved the

problem now,” how will we call the bluff?

Once we’ve spent some time analyzing the consequences of the problem, it’s

time to dig downward, toward the root.

report erratum • discuss

Example 1: Long Release Cycle • 135

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

First, ask a series of “why” questions. Yes, this is the “five whys” technique

that you’ve probably heard of if you’ve studied Lean thinking.

Lisa: Why are the releases delayed?

Jim: Because the scope keeps increasing.

Lisa: Why?

Jim: Because the customers come up with new features and insist that we add

them to the current release, and they refuse to allow us to remove lower-priority

features.

Lisa: Why? Why not defer the features until the next release?

Jim: Because the release cycle is so long, new demands appear before the release

is done!

OK, that was only three whys. But you get the picture.

The dialogue between Jim and Lisa gives us this next diagram:

Delayed
Revenue

Long Release Cycle

Loss of
Customers

Problem Problem

Delayed
Releases

Business Needs
Change Within Current

Release Cycle

New Features Added to
Current Release

Total Scope
Increase

Lower Priority
Features Not

Removed

The vicious cycle (or reenforcing loop) is highlighted with thicker arrows.

Recurring problems almost always involve loops like this, but they may take

some time to find. Spotting these will greatly increase your likelihood of

solving the problem effectively and permanently!

136 • Chapter 20. Cause-Effect Diagrams

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Our goal is to identify the root cause(s) of this problem, so we can achieve

maximum effect with minimum effort. It’s easy to miss important causes on

the first pass, so go back and ask a few more whys.

Lisa: Why is the release cycle so long? Are delayed releases the only cause?

Jim: Well, actually, even without the delays, our planned release cycles are quite

long.

Lisa: How long is your planned release cycle?

Jim: Once per quarter.

Lisa: Why so long, then?

Jim: Because releases are expensive and complicated.

Lisa: Why?

Jim: Because there’s so much stuff in each release, and it’s all manual work.

Delayed
Revenue

Long Release Cycle

Loss of
Customers

Problem Problem

Delayed
Releases

Business Needs
Change Within Current

Release Cycle

New Features Added
to Current Release

Total Scope
Increase

Release
Seldom

High Fixed Cost
per Release

Difficult
Release
Process

Lots of Stuff
in Each
Release

Lower Priority
Features Not

Removed

Lack of Release
Automation

Root Cause Root Cause

Look to the left—another vicious cycle (thick arrows)! The long time between

releases means lots of stuff in each release, which means releases are difficult

and expensive, which makes us reluctant to have frequent releases.

As you see, I’ve decided to label two root causes. Now it’s time to propose

countermeasures.

report erratum • discuss

Example 1: Long Release Cycle • 137

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CountermeasureRoot Cause

Implement release automationLack of release automation

Negotiate a rule with the customer, allowing

them to add new features to a release only if

Lower-priority features not

removed

they remove lower-priority features of corre-

sponding size

There’s no strict rule for determining which issue is the root cause, but here

are some indicators:

• This issue has arrows only going out and no arrows coming in.

• It doesn’t feel meaningful to dig further down (ask further “why” questions)

from here.

• This issue is something we can address, and it will probably have a positive

effect on the problem.

The five whys technique is called that because it typically takes about five

“why” questions to get to the root. We tend to stop asking too early, so keep

digging!

Note that the problem that was originally identified—delayed releases—wasn’t

really a problem or a root cause. It was just a symptom. We used that as a

handle to dig upward to identify the real problem and then downward to

identify the root causes. This system allows us to propose effective counter-

measures in an informed way.

Without this type of analysis, we tend to jump to conclusions and execute

ineffective and counterproductive changes—for example, adding more people,

even though head count had nothing to do with the problem. Or changing

the incentive model (reward people for releasing on time or punish people for

releasing late), even though the current incentive model had nothing to do

with the problem. I bet you’ve already seen that happen a few times.

20.5 Example 2: Defects Released to Production

Let’s say that we’re having problems with defective code being released to

production.

Defects

Released to

Production

138 • Chapter 20. Cause-Effect Diagrams

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Lisa: So what?

Jim: The defects make our customers angry!

Angry
Customers

Problem

Defects
Released to
Production

Lisa: Why are defects released to production?

Jim: Because they aren’t properly tested before release.

Lisa: Why not?

...and so on. Here’s where we ended up:

Angry
Customers

Problem

Defects
Released to
Production

Releases Not
Properly Tested

Lack of Test
Automation

Not Enough
Time to Write
Test Scripts

Lack of Tools
and Training in

Test Automation

Hotfixes
Required

Teams Disrupted

Stress

Scope of Sprint
Not Reduced

Root Cause Root Cause

Look at that, two reinforcing loops! Check out the red arrows.

Loop 1 (inner loop): Defects in the product cause hotfixes, which disrupts the

teams. Since teams aren’t allowed to reduce the scope of the project, people

get stressed and don’t have time to test new releases properly. And that, of

course, leads to more defects in production.

report erratum • discuss

Example 2: Defects Released to Production • 139

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Loop 2 (outer loop): Because people are stressed, they don’t have time to write

automated test scripts, either. This leads to an overall lack of test automation,

making it harder and harder to regression-test new releases properly, which

leads to defects in production, more hotfixes, and ultimately more stress.

But wait, there’s more!

Teams hate being disrupted. This disturbs flow and, in the long run, ruins

motivation. This might explain why the staff turnover rate has been high! So

in solving the original problem (defects in production), we get the added bonus

of reducing team turnover!

Teams
Demotivated

Loss of Team
Members

Problem

Angry
Customers

Problem

Defects
Released to
Production

Releases Not
Properly Tested

Lack of Test
Automation

Not Enough
Time to Write
Test Scripts

Lack of Tools
and Training in

Test Automation

Hotfixes
Required

Teams Disrupted

Stress

Scope of Sprint
Not Reduced

Root Cause Root Cause

That’s the nice thing about addressing the root cause. Root causes are usu-

ally the cause of more than one problem (that’s why they’re called root).

20.6 Example 3: Lack of Pair Programming

I was asked to help a client figure out why they weren’t doing XP practices

such as pair programming and test-driven development. “We know that we

should be doing it, but we aren’t,” the client said.

No TDD
No Pair

Programming

140 • Chapter 20. Cause-Effect Diagrams

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

So is lack of test-driven development (TDD) and pair programming really a

problem? As usual, the things we call problems often turn out to be just

symptoms.

Lisa: What is the consequence of not doing pair programming and TDD?

Jim: We think we’d have much better code quality if we did these things.

Lisa: What is the consequence of bad code quality? Have you encountered any

actual problems due to bad code quality?

Jim: Yeah, we’ve had some crashing demos. We’re a research company, and

demos are how we get business, so this really is a problem.

Crashing Demos

Problem

No TDD
No Pair

Programming

Bad Code
Quality

Etc Etc (etc)

Let’s take one of the issues and see whether we can dig down to the root.

Lisa: Why aren’t you pair programming, then?

Jim: Because many people are afraid that it won’t work and we’ll be wasting our

time. We have no proof that it works.

Lisa: What kind of proof would you need?

Jim: Well, we’ve seen studies that indicate that it works. But nobody here has

tried it, so we aren’t sure that it works.

There’s the first loop:

No Pair
Programming

Pair Programming
Works

No Experience of
Pair Programming

report erratum • discuss

Example 3: Lack of Pair Programming • 141

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

They don’t want to do it because they don’t know that it will work. And they

don’t know that it will work because they haven’t tried it.

Lisa: Why haven’t you at least given pair programming a try?

Jim: We don’t have time to experiment.

Lisa: Why not?

Jim: Because we don’t have any slack. Each hour is accounted for. Our customers

keep piling work on us.

Lisa: Why don’t they let you manage your own time and let you pull in more work

whenever you’re ready?

Jim: They don’t trust us to use our time effectively.

The lack of trust also leads to a general fear of failure, which of course reduces

the likelihood that they’ll try something new like pair programming without

“proof” that it works.

No Pair
programming

Pair Programming
Works

No Experience of
Pair Programming

No Time to
Experiment

No Slack

Push-Scheduling
Instead of Pull

Lack of Trust

Root Cause

Every Hour Must Be
Chargeable

Fear of Failure

Root Cause

142 • Chapter 20. Cause-Effect Diagrams

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

There appears to be two big root causes: lack of trust, and the management

principle that every hour must be chargeable. Let’s fold this back into the big

picture.

Lack of Trust

Crashing Demos

Problem

Root Cause

No TDD
No Pair

Programming

Bad Code
Quality

Etc Etc (etc)

Lack of trust turned out to be the root cause of not doing XP practices such

as TDD and pair programming, which caused bad quality, which caused

crashing demos. And guess what? Crashing demos reduced trust even further.

There’s a vicious circle for you!

We did these exercises in a two-day workshop with about twenty-five people.

At the beginning, we talked mostly about technical stuff—how to get started

with TDD and pair programming. That didn’t really get us anywhere, so we

instead split into groups and had each group choose one problem, draw cause-

effect diagrams, and create problem-solving A3s. The interesting thing was

that several of the groups that analyzed seemingly different problems came

up with the same root cause: lack of trust! This last diagram was just one

example of that.

By the end of the day we were all talking about what we could do to increase

the level of trust between the customer and the developers, which was a

surprising turn of events.

For starters, we agreed that we should invite “them” (the customers) to par-

ticipate the next time we do this type of workshop. That should lessen the

use of terms like “us” and “them.”

report erratum • discuss

Example 3: Lack of Pair Programming • 143

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

20.7 Example 4: Lots of Problems

Here’s a bigger example. This organization was doing Scrum but was having

some problems. The cause-effect diagram that emerged after interviews and

workshops showed that they weren’t doing Scrum correctly, and this was

causing the problems.

Teams Grouped
by Component

Teams Not
Business-
Oriented

Teams
Not

Focused Have Own PO

Have Own
Team

Ineffective
Requirements

Communication
Unclear Roles &
Responsibilities

Too Much Focus
on Written Specs

Teams Not
Getting

Feedback From
Customer

Lack of
Team Spirit

Lack of
Discipline in

Teams

Hard to
Plan

Delayed
Releases

Lack of
Transparency

No
Burndowns

Bad
Throughput in
Development

Difficult to
Release

Cutting Quality
Instead of

Scope

Teams Disrupted
During Sprint

Many Operational
Problems

Customers
Dissatisfied

Hard to
Change

the Code
Many

Defects

Not
Measuring

Velocity

Feature Split
Across Multiple

Teams

Fear of
Committing

Problems
Estimating

Lack of Test
Automation

Problem

Problem

Problem

Problem

Root Cause

Root Cause

Root Cause

Root Cause

Root Cause

Root Cause

Root Cause

Root Cause

It became clear to everyone that many of the root causes could be addressed

with a “proper” Scrum implementation (for example, reorganizing into cross-

functional teams and making sure each team had a dedicated product owner).

This triggered organizational changes that ultimately fixed many of the root

causes (green stars). The next step was to improve test automation.

Scrum isn’t always the solution, of course. In fact, sometimes Scrum itself is

the problem, and other techniques such as Kanban are the solution. For more

details on how Scrum and Kanban fit together, see Kanban and Scrum—

making the most of both [KS09].

144 • Chapter 20. Cause-Effect Diagrams

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

20.8 Practical Issues: How to Create and Maintain the Diagrams

So, how do we actually create the diagram? Well, that depends a bit on how

many people are involved.

Working Alone

When creating the diagrams alone, I find it easiest to work directly with a

diagramming tool such as Visio or PowerPoint. It’s nice to be able to move

things around quickly, resize the boxes, and make quick backups when

playing around with the picture.

Working in a Small Group (2–8 People)

Gather in front of a whiteboard or flipchart. Use sticky notes for issues, and

draw arrows to connect them. A whiteboard is preferable, so you could erase

and redraw the arrows as you move the sticky notes around. Make sure

everybody is helping out, not just one person doing all the drawing. Make

sure someone takes a high-resolution photo and sends it to everyone after

the meeting.

Working in a Larger Group (9–30 People)

Split the group into smaller teams, each focused around one specific problem.

It’s OK to have multiple teams working independently on the same prob-

lem—they may come to the same conclusion or different conclusions, and

both cases are interesting. Each team works with a flipchart/whiteboard and

sticky notes. Gather everyone together at regular intervals to share insights.

report erratum • discuss

Practical Issues: How to Create and Maintain the Diagrams • 145

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Long-Term Maintenance of a Diagram

Let the diagram live in a tool such as Visio or PowerPoint. Whenever you get

to a workshop setting, decide whether the meeting is mostly for presenting

the diagram or for updating it. If presenting, use a projector to show the dia-

gram directly in Visio (or whatever tool you use). If updating the picture,

replicate it on a whiteboard/flipchart with sticky notes and arrows so that

people can collaborate effectively. Then synchronize with the electronic tool

after the meeting.

This type of synchronizing does take some time, but it’s often worth it. Nothing

can beat physical tools like whiteboards and sticky notes when doing team

workshops.

20.9 Pitfalls

Let’s look at some typical pitfalls when creating these diagrams and how to

avoid them.

Too Many Arrows and Boxes

Sometimes a helpful diagram can turn into a rat’s maze. In that case, you

need to simplify it. Here are some techniques:

• Remove redundant boxes (boxes that don’t add much value to the

diagram).

• Focus on “depth first” rather than “breadth first.” Don’t write down all

causes of a problem; write only the most important one or two, and then

keep digging deeper.

• Accept imperfections: a diagram like this will never be perfect. George

Box puts it nicely: “All models are wrong, but some are useful.”

• Maybe your problem area is too broad. Try to limit yourself to a more

narrowly defined problem.

• Split the diagram into pieces, like I did in the previous example 3.

Oversimplification

This type of cause-effect diagram is simple, intentionally so. It doesn’t replace

face-to-face communication. If you need something more advanced or formally

defined, read a book on systems thinking such as The Fifth Discipline [Sen94].

There are ways to distinguish between reinforcing loops and balancing loops

and ways of adding a temporal dimension (showing how X causes Y but with

146 • Chapter 20. Cause-Effect Diagrams

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

a delay). Just beware: even a “perfect” diagram is useless if you need a doc-

toral degree to understand it.

Getting Personal

Avoid “blame game” issues such as the following:

Lots of Defects in

Jeff is Lazy and
Clumsy

Problem solving works best if you assume that all problems are systemic.

Sure, some people are clumsy. But even if that causes us significant problems,

that’s still a systemic problem—we have a system that assumes clumsy people

aren’t clumsy, a system that lets extremely clumsy people in, or a system

that doesn’t help clumsy people get less clumsy, and so on.

20.10 Why Use Cause-Effect Diagrams?

In summary, cause-effect diagrams are a great way to help teams:

• Create a common understanding: Team-based problem solving is extremely

effective but requires a common understanding of the issue. Cause-effect

diagrams are a very practical collaboration technique.

• Identify how problems affect the business: Knowledge of this enables

people to focus on the most important problems first and make informed

decisions.

• Find root causes: This helps maximize the effect of your changes.

• Eliminate vicious cycles (negative reinforcing loops): Break vicious cycles

or turn them into positive reinforcing loops (good stuff leading to more

good stuff, instead of bad stuff leading to more bad stuff).

Cause-effect diagrams are useful, but the key point is really the problem

solving approach itself: the questions asked and the resulting conversations

and insights. You might not even need to draw the actual diagram, just pic-

turing it in your head as you talk can be enough.

This structured problem-solving approach is useful in just about any context

—such as coaching a friend or improving your own life. Or even improving

the world!

report erratum • discuss

Why Use Cause-Effect Diagrams? • 147

www.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

CHAPTER 21

Final Words

OK, it has been a long journey. Now let’s wrap it up!

In Part I you learned about our project—how we work and what we’ve learned

along the way. In Part II you learned more about the specific techniques used

in the project. Now what?

If you’re interested in more material of this sort, then feel free to keep an eye

on my blog, at http://blog.crisp.se/author/henrikkniberg. You also can give

feedback or participate in discussions about this book on http://prag-

prog.com/book/hklean/lean-from-the-trenches.

It’s tempting to give you a long list of further reading. But I won’t do that.

You’ve read enough for the moment; it’s time to put this book down and get

back into your own trenches!

Knowledge doesn’t stick unless you practice. So, think about what you learned

from this book and how this knowledge might come to use in your context.

Then go experiment!

report erratum • discusswww.it-ebooks.info

http://blog.crisp.se/author/henrikkniberg
http://pragprog.com/book/hklean/lean-from-the-trenches
http://pragprog.com/book/hklean/lean-from-the-trenches
http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

APPENDIX 1

Glossary: How We Avoid Buzzword Bingo

Much of the Lean and Agile lingo sounds strange to normal people, especially

non-English speakers. (Everyone on the PUST project speaks Swedish.) Words

like product backlog, retrospective, user story, velocity, Scrum master, and

story points can seriously alienate nontechies.

So, I’ve tried to de-buzzwordify as much as possible in this project. There’s

no need to alienate people unnecessarily. Being careful about our choice of

terminology has turned out to be very helpful, so let me share our glossary

with you.

Needless to say, this chapter is most relevant to the Swedish readers.

What We Meant (Corresponding

Buzzwords/Synonyms)

Literal Translation

to English

Our Term

Sprint retrospectiveProcess improvement

meeting

Processförbättringsmöte

Feature, product backlog itemDeliverableLeverabel

User story (as opposed to tech

stories and other noncustomer

stuff)

Customer deliverableKundleverabel

Epic, themeFeature areaFunktionsområde

Scrum masterTeam leadTeamledare

Project-level Kanban boardProject boardProjekttavla

Team-level Kanban/Scrum hybrid

board

Team boardTeamtavla

The term leverabel was especially useful. Previously, the term krav (= require-

ments) was used to mean just about anything. Now there is a clear distinction

between leverabel and funktionsområde.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/hklean/errata/add
http://forums.pragprog.com/forums/hklean
http://www.it-ebooks.info

Index

A
A3 problem-solving process,

62, 132

acceptance testing
automated, 37, 122
project board, 21
PUST, 8
scenarios, 36

Acceptance Testing in
Progress column, 21

agents, change, 100

Agile
Kanban and, 103, 112
principles, 103–106

Agile Manifesto, 104

Agile Retrospectives, 56

“Agile Version Control with
Multiple Teams”, 89

analysis meetings, 15, 28, 86

Anderson, David, 112

automated testing
acceptance testing, 37
backlog, 41, 117–123
continuous, 46

autonomy, 108

B
backlog, iteration, 122

backlog, product
grooming, 85
ordered, 109
Planning Poker, 86, 125–

129
project board, 20, 36

backlog, test automation, 41,
117–123

balancing loops, 147

banking system example,
118–122

Beck, Kent, 111

Berra, Yogi, 82

blame, avoiding, 147

blockers, 24, 47, see al-

so bugs

bottlenecks
cumulative flow dia-

grams, 81–82
WIP limits and, 69

Box, George, 146

branches, see also version
control

system test, 92
team, 91

buffers, 65–68

bug tracker, 47–50

bugs, see also cause-effect
diagrams

contact person, 61
deferred, 47
defining ready and, 37
handling, 45–52, 107
recurring, 50–52, 132,

136
root-cause analysis exam-

ple, 138–140
version control and, 93
WIP limits, 70

burn-up charts, 33, 74

C
cadences, 22

cause-effect diagrams
about, 131
advantages, 147
creating and maintaining,

145–146

long release cycle exam-
ple, 134–138

multi problem example,
144

pair programming exam-
ple, 140–143

pitfalls, 146
process improvement

workshops, 58
production defects exam-

ple, 138–140
recurring bugs, 50, 132,

136
using, 132, 134

celebrating
improvements, 57
releases, 43

change
agents, 100
managing rate of, 62–64
resistance, 60, 100

Change Control Board, 48

charts, burn-up, 33, 74

charts, cause-effect,
see cause-effect diagrams

check-in comments, 37

clarity, 53, 62

classifying test cases, 119

cocktail party, daily, 13–17,
97

code ownership, collective,
112

Cohn, Mike, 125

collaboration
cause-effect diagrams,

147
cross-team, 10, 28
defining ready and done,

38

www.it-ebooks.info

http://www.it-ebooks.info

goal tracking and, 34
Lean principle, 108
room arrangements, 56

collective code ownership,
112

collocation, 9

comments, check-in, 37

communication, see al-

so project boards
bugs, 46
cross-team, 10, 17
process improvement

workshops, 53
project board, 27–30
XP, 111

Concordion, 37

consensus voting, 57–60, 127

constraints theory, 112

contact person
bugs, 61
feature, 36

continuous improvement
experimentation, 99
incremental design im-

provement, 112
Lean principle, 108
managing rate of change,

62–64
metrics, 74
problem solving, 132
process improvement

workshops, 53–62
retrospectives, 54
strategy, 53
test automation, 117–123

continuous integration, 111

continuous testing
advantages, 21, 45
automated, 46
cadence, 22

costs
changes, 62
delivery, 108
goals and, 34
release frequency, 6
tests, 119

countermeasures, 134, 137

Crisp, 98

cross-functional teams
backlog grooming, 86
collaboration with, 10, 28
defining ready and done,

38
process improvement

workshops, 53–62

Scrum, 110
sync meetings, 15–17

cumulative flow, 81–82

customer acceptance tests,
122

customer involvement
Agile principles, 104
Onsite Customer, 111
PUST, 7
release plan, 110
value, 36, 62, 86, 106,

108

cycle efficiency, 83

cycle time, 73, 76–81, 113,
134–138

cycles, vicious, 132, 136, 147

D
daily cocktail party, 13–17,

97

daily stand-ups, 14–16, 97

defect prevention meetings,
50

defects released to production
example, 138–140, see al-

so bugs

deferred bugs, 47

defining
goals, 31–34, 99
ready and done, 30, 35–

38, 90

deliver fast Lean principle,
108

demonstrated features, 37

demos, schedule, 22

dependencies, 86, 107

Derby, Esther, 56

design improvement, incre-
mental, 112

Dev in Progress column, 20

dev sync meetings, 15

development columns on
project board, 28, 35–39

development environment, 38

Development in Progress col-
umn, 28

development sync meetings,
15

development teams, see fea-
ture development teams

diagrams, see cause-effect di-
agrams

done, defining, 30, 35

dot voting, 57

downstream bottlenecks, 69

DSDM (Dynamic Systems
Development Method), 104

E
efficiency, process cycle, 83

elapsed time, 83

electronic project boards, 98

electronic tracking systems,
97

eliminating waste, 107

embedded teams, 10

engage everyone Lean princi-
ple, 108

epics, 7, 20, 87

escalation points, 54

estimating
cycle time, 77
release, 33, 87
size, 36, 125–129

experimentation, 99

Extreme Programming,
see XP

F
facilitators, retrospectives, 54

failures, 99, 109, 134

feature areas, 7, 20, 87

feature cards, 20

feature development teams,
10, 14–16, 68

features
automated testing, 122
cycle time, 76–81
defining ready and done,

35–38
project board, 20, 28, 68
selecting, 20, 68, 85
tagging, 68
WIP limits, 69–72

feedback and predictability,
107

The Fifth Discipline, 147

fishbone diagrams, 132

fist of five voting, 59

five whys technique, 136, 138

flow, cumulative, see cumula-
tive flow

G
glossary, 151

154 • Index

www.it-ebooks.info

http://www.it-ebooks.info

goals, high-level, 31–34, 53,
99

Google Drawing, 96, 98

Grenning, James, 125

grooming, backlog, 85

gut feelings, prioritizing with,
58

I
Ideas column, 20

IDs, 36–37

ignoring bugs, 47–50

impediments, see blockers

improvement, continuous,
see continuous improve-
ment

In Production column, 21

incremental design improve-
ment, 112

integration testing, 37

integration, continuous, 111

internal improvements,
see tech stories

Ishikawa diagrams, 132

iteration backlog, 122

K
Kaizen, see continuous im-

provement

Kanban, see also project
boards

Agile and, 103, 112
parallelism, 21
principles, 112–113
Scrum and, 22, 144

Kanban and Scrum—making

the most of both, 22, 144

Kanban boards, see project
boards

L
Larsen, Diana, 56

last responsible moment, 107

lead time, 113, see also cycle
time

Lean
A3 problem-solving pro-

cess, 62, 132
evolution, 6
five whys technique,

136, 138
principles, 106–109
pull-scheduling system,

113

learning, Lean principle, 107

listing test cases, 118

Little’s law, 80

loops
balancing, 147
reinforcing, 132, 136,

147

M
mainline model of version

control, 89–94

managing rate of change, 62–
64

Manifesto, Agile, 104

mastery, 108

meetings
analysis, 15, 28, 86
Change Control Board,

48
daily, 13–17, 97
defect prevention, 50
process improvement

workshops, 53–62
retrospectives, 22, 54,

110
sprint planning, 20, 61,

67, 85–88, 104
sync, 15–17

merge conflicts, 38, 91, see

also version control

milestones, 31

N
“New New Product Develop-

ment Game”, 109

Next Five Bugs column, 48

Next Five Tech Stories col-
umn, 39

Next Ten Features column,
20, 28, 68, 85

O
Onsite Customer, 111

onsite users, PUST, 8

optimizing the whole, 106

ordered product backlog, 109

Owner, Product, see Product
Owner

P
pair programming, 104, 112,

140–143

panic, avoiding, 43

partial system testing, 46, 94

perfect conditions, 36

pilot users, PUST, 8

planning
releases, 33, 87, 113,

125–129
schedule, 22

Planning Poker, 86, 125–129

Polisens mobila Utrednings
STöd, see PUST

Poppendieck, Mary, 106

Poppendieck, Tom, 106

PowerPoint, 145–146

predictability, 107

prioritizing
bugs, 47
consensus, 57–60
features and tech stories,

39, 68
gut feelings, 58
problem solving, 100, 131
tests, 120–122

problem solving, see al-

so cause-effect diagrams
A3 thinking, 62, 132
prioritizing, 100, 131

process cycle efficiency, 83

Process Improvement Propos-
al, 62–63

process improvement work-
shops, 53–62

process metrics
cumulative flow, 81–82
cycle efficiency, 83
cycle time, 73, 76–81,

113, 134–138
goal checking, 33
prioritizing with, 58
project board and, 97
velocity, 73–76, 79–81,

87
WIP limits, 72

product backlog, see backlog,
product

Product Owner, 86, 109,
111, 122

In Production column, 21

production columns, 21

project boards
backlog, 20, 36
blockers, 24
buffers, 65–68
bugs, 48
clarity, 53
defining ready and done,

35–38
electronic, 98

Index • 155

www.it-ebooks.info

http://www.it-ebooks.info

high-level goals, 31
Kanban principles, 113
layout, 19–26
physical, 95–98
scaling, 27–30
team boards, 27–30
tech stories, 39–43
tracking systems, 97
traffic system metaphor,

23–26
urgent items, 24
WIP limits, 30, 69–72

project sync meetings, 16

pull-scheduling system, 113

purpose, 108

PUST, about, 3–8

Q
quality

building in, 107
defining ready and done,

37

queues, see buffers

queuing theory, 80, 108

R
Ready for Acceptance Test

column, 21

Ready for Development col-
umn

defining, 35–38
tech stories, 39

Ready for Production column,
21

Ready for System Test col-
umn, 20, 28, 35–38, 90

reality checks
goals, 31–33
metrics, 74

recurring bugs, 50–52, 132,
136

regression testing, 37

Reinertsen, Don, 112

reinforcing loops, 132, 136,
147

releases
cause-effect diagrams,

134–140
celebrating, 43
continuously adjusted,

110
estimating, 33, 87, 125–

129
frequent, 5–6, 43
PUST, 5–6
schedule, 22, 113

requirements analyst teams,
10, 15–16, 28, 86

requirements sync meetings,
16

resistance to change, 60, 100

resource utilization, 86

retrospectives, 22, 54, 110,
see also process improve-
ment workshops

rikspolisstyrelsen, see RPS
(rikspolisstyrelsen)

road blocks, see blockers

room arrangement for work-
shops, 56

root-cause analysis, see al-

so cause-effect diagrams
about, 131–132
five whys technique,

136, 138
process improvement

workshops, 58
recurring bugs, 50, 132

RPS (rikspolisstyrelsen), 3–5,
7

S
scaling

project boards, 27–30
teams, 9–10

scenario testing, 92

schedule, 22, 113

Schwaber, Ken, 109

scientific method, 109

Scrum
Agile and, 103
buffers, 67
cause-effect diagram ex-

ample, 144
formula, 14
Kanban and, 22, 144
Master, 14, 110
principles, 109–112
Product Backlog, 20, 36,

109
Product Owner, 86, 109,

111, 122
retrospectives, 54, 110
of Scrums, 54
sprints, 20, 22, 85, 104,

110
teams, 10, 110

Selenium, 37

self-organization
continuous improvement

and, 53

goal tracking and, 34
WIP limits, 71

size
backlog, 86
cycle time and, 78
estimating, 36, 125–129
velocity and, 75

slicing the elephant, 6

specialization, 68

Specification by Example, 37

sprint planning meetings, 20,
61, 67, 85–88, 104

sprints, defined, 110

stand-ups, daily, 14–16, 97

standards, challenging, 109

story points, 75, 87

Sutherland, Jeff, 109

Swedish Police, see RPS (rik-
spolisstyrelsen)

Swedish terms, 151

symptoms
bugs as, 52
root-cause analysis, 131,

138

sync meetings, 15–17

synchronizing
cause-effect diagrams,

146
project and team boards,

30
team branches and

trunk, 91

System Test General, 10

System Test in Progress col-
umn, 21, 28

system testing
bottlenecks, 70
branches, 92
continuous, 21, 45
defining ready and done,

35–38
partial, 46, 94
project board, 21, 28, 35–

38, 90
schedule, 22
teams, 10, 15–16
version control and, 90,

92–94

T
tagging features, 68

team branches, 91

team estimating, 125–129

156 • Index

www.it-ebooks.info

http://www.it-ebooks.info

team leaders, meetings, 14–
15

teams
boards, individual, 27–30
daily meetings, 13–17
embedded, 10
feature development, 10,

14–16, 68
requirements analyst,

10, 15–16, 28, 86
Scrum, 10, 110
specialization, 68
structuring, 9–11
system test, 10, 15–16

tech stories
handling, 39–43
metrics, 75
WIP limits, 70

test automation backlog,
see backlog, test automa-
tion

test cases, 118

test environment, 38

test sync meetings, 15–16

test-driven development,
107, 112, 141

testability, 86

testing, acceptance, see accep-
tance testing

testing, automated, see auto-
mated testing

testing, continuous, see con-
tinuous testing

testing, integration, 37

testing, regression, 37

testing, scenario, 92

testing, system, see system
testing

Theory of Constraints, 112

thrashing, 107

throughput, see velocity

thumb voting, 58

time, cycle, see cycle time

time, elapsed, 83

time, touch, 83

timeline, PUST, 5

Top 30 bugs, 47

Top five bugs, 48

Top Three Impediments, 25

touch time, 83

Toyota Way, 106, see al-

so Lean

TPS (Toyota Production Sys-
tem), 106, 112, see al-

so Lean

tracking high-level goals, 31–
34

tracking systems, 97

traffic system metaphor, 23–
25

trunk, 38, 89–94

trust and pair programming,
142

U
urgent items, marking, 24

V
value stream maps, 132

velocity, 73–76, 79–81, 87

version control, 38, 89–94

vicious cycles, 132, 136, 147

Visio, 145–146

visualizing workflow, 113

voting, by consensus, 57–60,
127

W
Wait for Team to Start Col-

umn, 66

waste, eliminating, 107

waterfall process model, 21

Weinberg, Jerry, 51

WIP (work in progress), limits,
104

WIP (works in progress)
buffers, 65–68
limits, 30, 69–72, 78, 81,

113

workflow, 108, 113

works in progress, see WIP
(works in progress)

X
XP, 103, 111, 140–143

Index • 157

www.it-ebooks.info

http://www.it-ebooks.info

Be Agile
Don’t just “do” agile; you want to be agile. We’ll show you how.

The best agile book isn’t a book: Agile in a Flash is a

unique deck of index cards that fit neatly in your

pocket. You can tape them to the wall. Spread them

out on your project table. Get stains on them over

lunch. These cards are meant to be used, not just read.

Jeff Langr and Tim Ottinger

(110 pages) ISBN: 9781934356715. $15

http://pragprog.com/titles/olag

Here are three simple truths about software develop-

ment:

1. You can’t gather all the requirements up front. 2.

The requirements you do gather will change. 3. There

is always more to do than time and money will allow.

Those are the facts of life. But you can deal with those

facts (and more) by becoming a fierce software-delivery

professional, capable of dispatching the most dire of

software projects and the toughest delivery schedules

with ease and grace.

Jonathan Rasmusson

(280 pages) ISBN: 9781934356586. $34.95

http://pragprog.com/titles/jtrap

www.it-ebooks.info

http://pragprog.com/titles/olag
http://pragprog.com/titles/jtrap
http://www.it-ebooks.info

Get Results
Reading about new techniques is one thing, making them work in your company and on

your team is another matter entirely. Here’s the help you need.

If you work with people, you need this book. Learn to

read co-workers’ and users’ patterns of resistance and

dismantle their objections. With these techniques and

strategies you can master the art of evangelizing and

help your organization adopt your solutions.

Terrence Ryan

(200 pages) ISBN: 9781934356609. $32.95

http://pragprog.com/titles/trevan

Discover how to coach your team to become more Agile.

Agile Coaching de-mystifies agile practices—it’s a

practical guide to creating strong agile teams. Packed

with useful tips from practicing agile coaches Rachel

Davies and Liz Sedley, this book gives you coaching

tools that you can apply whether you are a project

manager, a technical lead, or working in a software

team.

Rachel Davies and Liz Sedley

(248 pages) ISBN: 9781934356432. $34.95

http://pragprog.com/titles/sdcoach

www.it-ebooks.info

http://pragprog.com/titles/trevan
http://pragprog.com/titles/sdcoach
http://www.it-ebooks.info

More on Agile Development
Working on embedded systems or on your own? This is how it’s done, the agile way.

Still chasing bugs and watching your code deteriorate?

Think TDD is only for desktop or web apps? It’s not:

TDD is for you, the embedded C programmer. TDD

helps you prevent defects and build software with a

long useful life. This is the first book to teach the hows

and whys of TDD for C programmers.

James W. Grenning

(384 pages) ISBN: 9781934356623. $34.95

http://pragprog.com/titles/jgade

Want to be a better developer? This book collects the

personal habits, ideas, and approaches of successful

agile software developers and presents them in a series

of short, easy-to-digest tips.

You’ll learn how to improve your software development

process, see what real agile practices feel like, avoid

the common temptations that kill projects, and keep

agile practices in balance.

Venkat Subramaniam and Andy Hunt

(208 pages) ISBN: 9780974514086. $29.95

http://pragprog.com/titles/pad

www.it-ebooks.info

http://pragprog.com/titles/jgade
http://pragprog.com/titles/pad
http://www.it-ebooks.info

Think Better
Want to concentrate more effectively, and learn how to take advantage of your brain’s wiring?

We’ve got you covered.

Do you ever look at the clock and wonder where the

day went? You spent all this time at work and didn’t

come close to getting everything done. Tomorrow, try

something new. Use the Pomodoro Technique, original-

ly developed by Francesco Cirillo, to work in focused

sprints throughout the day. In Pomodoro Technique Il-

lustrated, Staffan Nöteberg shows you how to organize

your work to accomplish more in less time. There’s no

need for expensive software or fancy planners. You can

get started with nothing more than a piece of paper, a

pencil, and a kitchen timer.

Staffan Nöteberg

(144 pages) ISBN: 9781934356500. $24.95

http://pragprog.com/titles/snfocus

Software development happens in your head. Not in

an editor, IDE, or design tool. You’re well educated on

how to work with software and hardware, but what

about wetware—our own brains? Learning new skills

and new technology is critical to your career, and it’s

all in your head.

In this book by Andy Hunt, you’ll learn how our brains

are wired, and how to take advantage of your brain’s

architecture. You’ll learn new tricks and tips to learn

more, faster, and retain more of what you learn.

You need a pragmatic approach to thinking and

learning. You need to Refactor Your Wetware.

Andy Hunt

(288 pages) ISBN: 9781934356050. $34.95

http://pragprog.com/titles/ahptl

www.it-ebooks.info

http://pragprog.com/titles/snfocus
http://pragprog.com/titles/ahptl
http://www.it-ebooks.info

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers will

be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page

http://pragprog.com/titles/hklean
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with

our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available

for purchase at our store: http://pragprog.com/titles/hklean

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

www.it-ebooks.info

http://pragprog.com/titles/hklean
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/hklean
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us
http://www.it-ebooks.info

	Cover
	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	How to Read This Book
	New to Agile or Lean?
	Disclaimer
	Acknowledgments

	Part 1—How We Work
	1. About the Project
	Timeline
	How We Sliced the Elephant
	How We Involved the Customer

	2. Structuring the Teams
	3. Attending the Daily Cocktail Party
	First Tier: Feature Team Daily Stand-up
	Second Tier: Sync Meetings per Specialty
	Third Tier: Project Sync Meeting

	4. The Project Board
	Our Cadences
	How We Handle Urgent Issues and Impediments

	5. Scaling the Kanban Boards
	6. Tracking the High-Level Goal
	7. Defining Ready and Done
	Ready for Development
	Ready for System Test
	How This Improved Collaboration

	8. Handling Tech Stories
	Example 1: System Test Bottleneck
	Example 2: Day Before the Release
	Example 3: The 7-Meter Class

	9. Handling Bugs
	Continuous System Test
	Fix the Bugs Immediately!
	Why We Limit the Number of Bugs in the Bug Tracker
	Visualizing Bugs
	Preventing Recurring Bugs

	10. Continuously Improving the Process
	Team Retrospectives
	Process Improvement Workshops
	Managing the Rate of Change

	11. Managing Work in Progress
	Using WIP Limits
	Why WIP Limits Apply Only to Features

	12. Capturing and Using Process Metrics
	Velocity (Features per Week)
	Why We Don't Use Story Points
	Cycle Time (Weeks per Feature)
	Cumulative Flow
	Process Cycle Efficiency

	13. Planning the Sprint and Release
	Backlog Grooming
	Selecting the Top Ten Features
	Why We Moved Backlog Grooming Out of the Sprint Planning Meeting
	Planning the Release

	14. How We Do Version Control
	No Junk on the Trunk
	Team Branches
	System Test Branch

	15. Why We Use Only Physical Kanban Boards
	16. What We Learned
	Know Your Goal
	Experiment
	Embrace Failure
	Solve Real Problems
	Have Dedicated Change Agents
	Involve People

	Part 2—A Closer Look at the Techniques
	17. Agile and Lean in a Nutshell
	Agile in a Nutshell
	Lean in a Nutshell
	Scrum in a Nutshell
	XP in a Nutshell
	Kanban in a Nutshell

	18. Reducing the Test Automation Backlog
	What to Do About It
	How to Improve Test Coverage a Little Bit Each Iteration
	Step 1: List Your Test Cases
	Step 2: Classify Each Test
	Step 3: Sort the List in Priority Order
	Step 4: Automate a Few Tests Each Iteration
	Does This Solve the Problem?

	19. Sizing the Backlog with Planning Poker
	Estimating Without Planning Poker
	Estimating with Planning Poker
	Special Cards

	20. Cause-Effect Diagrams
	Solve Problems, Not Symptoms
	The Lean Problem-Solving Approach: A3 Thinking
	How to Use Cause-Effect Diagrams
	Example 1: Long Release Cycle
	Example 2: Defects Released to Production
	Example 3: Lack of Pair Programming
	Example 4: Lots of Problems
	Practical Issues: How to Create and Maintain the Diagrams
	Pitfalls
	Why Use Cause-Effect Diagrams?

	21. Final Words
	A1. Glossary: How We Avoid Buzzword Bingo
	Index

