title: Installation
description: Create a new Next.js application with “create-next-app . Set up
TypeScript, styles, and configure your "next.config.js" file.
related:

title: Next Steps

description: Learn about the files and folders in your Next.js project.

links:

- getting-started/project-structure

System Requirements:

- [Node.js 18.17](https://nodejs.org/) or later.
- macOS, Windows (including WSL), and Linux are supported.

Automatic Installation

We recommend starting a new Next.js app using [create-next-app "](/docs/
app/api-reference/create-next-app), which sets up everything automatically for
you. To create a project, run:

"““bash filename="Terminal"
npx create-next-app@latest

On installation, you'll see the following prompts:

"7 txt filename="Terminal"

What is your project named? my-app

Would you like to use TypeScript? No / Yes

Would you like to use ESLint? No / Yes

Would you like to use Tailwind CSS? No / Yes

Would you like to use “src/” directory? No [Yes

Would you like to use App Router? (recommended) No / Yes

Would you like to customize the default import alias (@/*)? No / Yes
What import alias would you like configured? @/*

After the prompts, "create-next-app " will create a folder with your project
name and install the required dependencies.

> **Good to know**:

>

> - Next.js now ships with [TypeScript](/docs/app/building-your-application/
configuring/typescript), [ESLint](/docs/app/building-your-application/
configuring/eslint), and [Tailwind CSS](/docs/app/building-your-application/

styling/tailwind-css) configuration by default.

> - You can optionally use a ['src” directory](/docs/app/building-your-
application/configuring/src-directory) in the root of your project to separate
your application's code from configuration files.

Manual Installation

To manually create a new Next.js app, install the required packages:
*“bash filename="Terminal"

npm install next@latest react@latest react-dom@Iatest

Open your “package.json’ file and add the following “scripts ":

**“json filename="package.json"

{
"scripts": {
"dev": "next dev",
"build": "next build",
"start": "next start",
"lint": "next lint"
}
}

These scripts refer to the different stages of developing an application:

- "dev’: runs [next dev](/docs/app/api-reference/next-cli#development) to
start Next.js in development mode.

- “build": runs ['next build '](/docs/app/api-reference/next-cli#build) to build
the application for production usage.

- “start: runs [next start'](/docs/app/api-reference/next-cli#production) to
start a Next.js production server.

- 'lint": runs ['next lint] (/docs/app/api-reference/next-cli#lint) to set up
Next.js' built-in ESLint configuration.

Creating directories

Next.js uses file-system routing, which means the routes in your application are
determined by how you structure your files.

The "app directory
For new applications, we recommend using the [App Router](/docs/app). This

router allows you to use React's latest features and is an evolution of the
[Pages Router](/docs/pages) based on community feedback.

Create an "app/” folder, then add a ‘layout.tsx™ and “page.tsx file. These will
be rendered when the user visits the root of your application (/).

<lmage
alt="App Folder Structure"
srcLight="/docs/light/app-getting-started.png"
srcDark="/docs/dark/app-getting-started.png"

width="1600"
height="363"
/>

Create a [root layout](/docs/app/building-your-application/routing/pages-and-
layouts#root-layout-required) inside "app/layout.tsx” with the required
“<html>" and “<body>" tags:

“ " tsx filename="app/layout.tsx" switcher
export default function RootLayout({
children,
et
children: React.ReactNode
HA
return (
<html lang="en">
<body>{children}</body>
</html>
)
}

“"Yjsx filename="app/layout.js" switcher
export default function RootLayout({ children }) {
return (
<html lang="en">
<body>{children}</body>
</html>
)
}

Finally, create a home page "app/page.tsx’ with some initial content:

“ " tsx filename="app/page.tsx" switcher
export default function Page() {
return <h1>Hello, Next.js!</h1>

EUR RN

" jsx filename="app/page.js" switcher
export default function Page() {
return <h1>Hello, Next.js!</h1>

LURNRY

> **Good to know**: If you forget to create "layout.tsx ', Next.js will
automatically create this file when running the development server with "next
dev'.

Learn more about [using the App Router](/docs/app/building-your-application/
routing/defining-routes).

The "pages’ directory (optional)

If you prefer to use the Pages Router instead of the App Router, you can create
a ‘pages/ directory at the root of your project.

Then, add an “index.tsx" file inside your "pages’ folder. This will be your home
page (*/°):

" tsx filename="pages/index.tsx" switcher
export default function Page() {
return <h1>Hello, Next.js!</h1>

LUE RN

Next, add an "_app.tsx file inside "pages/’ to define the global layout. Learn
more about the [custom App file](/docs/pages/building-your-application/
routing/custom-app).

" tsx filename="pages/_app.tsx" switcher
import type { AppProps } from 'next/app’

export default function App({ Component, pageProps }: AppProps) {
return <Component {...pageProps} />

AUENEN

“*Yjsx filename="pages/_app.js" switcher
export default function App({ Component, pageProps }) {
return <Component {...pageProps} />

LUR RN

Finally, add a "_document.tsx" file inside “pages/" to control the initial

response from the server. Learn more about the [custom Document file](/docs/
pages/building-your-application/routing/custom-document).

* " tsx filename="pages/_document.tsx" switcher
import { Html, Head, Main, NextScript } from 'next/document’

export default function Document() {
return (
<Html>
<Head />
<body>
<Main />
<NextScript />
</body>
</Html>
)
}

Learn more about [using the Pages Router](/docs/pages/building-your-
application/routing/pages-and-layouts).

> **Good to know**: Although you can use both routers in the same project,
routes in “app " will be prioritized over "pages’. We recommend using only one
router in your new project to avoid confusion.

The "public” folder (optional)

Create a "public’ folder to store static assets such as images, fonts, etc. Files
inside “public” directory can then be referenced by your code starting from the
base URL (/).

Run the Development Server

1. Run "npm run dev " to start the development server.

2. Visit "http://localhost:3000 " to view your application.

3. Edit "app/page.tsx’ (or ‘pages/index.tsx’) file and save it to see the updated
result in your browser.

title: Next.js Project Structure
nav_title: Project Structure
description: A list of folders and files conventions in a Next.js project

This page provides an overview of the file and folder structure of a Next.js
project. It covers top-level files and folders, configuration files, and routing
conventions within the "app” and “pages’ directories.

Top-level folders

| [Tapp](/docs/app/building-your-application/routing) | App Router
I

| [pages](/docs/pages/building-your-application/routing) | Pages
Router |

| [public](/docs/app/building-your-application/optimizing/static-assets) |
Static assets to be served |

| [src](/docs/app/building-your-application/configuring/src-directory) |
Optional application source folder |

Top-level files

| **Next.js** |

I

| [next.config.js](/docs/app/api-reference/next-config-js)
Configuration file for Next.js |

| [package.json'](/docs/getting-started/installation#manual-installation)
| Project dependencies and scripts |

| ["instrumentation.ts] (/docs/app/building-your-application/optimizing/
instrumentation) | OpenTelemetry and Instrumentation file |

| [middleware.ts](/docs/app/building-your-application/routing/middleware)
| Next.js request middleware |

| [".env](/docs/app/building-your-application/configuring/environment-

variables) | Environment variables |
| [.env.local](/docs/app/building-your-application/configuring/environment-
variables) | Local environment variables |

| [*.env.production](/docs/app/building-your-application/configuring/
environment-variables) | Production environment variables |

| [".env.development](/docs/app/building-your-application/configuring/
environment-variables) | Development environment variables |

| [".eslintrc.json](/docs/app/building-your-application/configuring/eslint)
| Configuration file for ESLint |

| “.gitignore” | Git files and

folders to ignore |

| “next-env.d.ts’ | TypeScript
declaration file for Next.js |

| “tsconfig.json’ | Configuration
file for TypeScript |

| “jsconfig.json’ | Configuration

file for JavaScript |
“app’ Routing Conventions

Routing Files

| [layout'](/docs/app/api-reference/file-conventions/layout) | “.js”
“jsx C.tsx' | Layout |

| [page](/docs/app/api-reference/file-conventions/page) | .js’
“jsx C.tsx' | Page |

| [loading](/docs/app/api-reference/file-conventions/loading) | .js®

“.jsx ".tsx' | Loading Ul |

| [not-found](/docs/app/api-reference/file-conventions/not-found) |
“.js® T.jsx’ ".tsx’ | Not found Ul |

| [error’](/docs/app/api-reference/file-conventions/error) | .js°
“.jsx© T.tsx” | Error Ul |

| [global-error’](/docs/app/api-reference/file-conventions/error#global-
errorjs) | “.js= ".jsx ".tsx | Global error Ul |

| [route](/docs/app/api-reference/file-conventions/route) | “.js”
“ts” | APl endpoint |

| [template "](/docs/app/api-reference/file-conventions/template) |
“js T.jsx' ".tsx | Re-rendered layout |

| [default](/docs/app/api-reference/file-conventions/default) | .js®
“jsx “.tsx' | Parallel route fallback page |

Nested Routes

| [folder](/docs/app/building-your-application/routing#route-segments) |
Route segment |

| [folder/folder](/docs/app/building-your-application/routing#nested-routes) |
Nested route segment |

Dynamic Routes

| [[folder]](/docs/app/building-your-application/routing/dynamic-

routes#convention) | Dynamic route segment |
| [[...folder]](/docs/app/building-your-application/routing/dynamic-
routes#catch-all-segments) | Catch-all route segment |

| ["[[...folder]] ']1(/docs/app/building-your-application/routing/dynamic-
routes#optional-catch-all-segments) | Optional catch-all route segment |

Route Groups and Private Folders

e |
| [(folder) “](/docs/app/building-your-application/routing/route-
groups#convention) | Group routes without affecting routing |

| [_folder](/docs/app/building-your-application/routing/colocation#private-
folders) | Opt folder and all child segments out of routing |

Parallel and Intercepted Routes

| [@folder] (/docs/app/building-your-application/routing/parallel-
routes#convention) | Named slot |

| [(.)folder](/docs/app/building-your-application/routing/intercepting-
routes#convention) | Intercept same level |

| ["(..)folder](/docs/app/building-your-application/routing/intercepting-
routes#convention) | Intercept one level above |

| ["(..)(..)folder](/docs/app/building-your-application/routing/intercepting-
routes#convention) | Intercept two levels above |

| [(...)folder](/docs/app/building-your-application/routing/intercepting-
routes#convention) | Intercept from root |

Metadata File Conventions

App Icons

| [favicon'](/docs/app/api-reference/file-conventions/metadata/app-

icons#favicon) | “.ico’ | Favicon file |
| ["icon](/docs/app/api-reference/file-conventions/metadata/app-icons#icon)

| “ico’ .jpg’ ".jpeg’ .png’ ".svg | App lcon file |

| [icon](/docs/app/api-reference/file-conventions/metadata/app-

icons#generate-icons-using-code-js-ts-tsx) | “.js= T.s’ .tsx® |

Generated App Icon |

| [Tapple-icon](/docs/app/api-reference/file-conventions/metadata/app-

icons#apple-icon) | “.jpg” “.jpeg’, .png’ | Apple App

Icon file |

| [Tapple-icon](/docs/app/api-reference/file-conventions/metadata/app-

icons#generate-icons-using-code-js-ts-tsx) | ".js* ".ts® ".tsx’ |

Generated Apple App Icon |

Open Graph and Twitter Images

| [Topengraph-image "](/docs/app/api-reference/file-conventions/metadata/
opengraph-image#opengraph-image) | “.jpg” ".jpeg’ .png’ .gif’
| Open Graph image file |

| [Topengraph-image "](/docs/app/api-reference/file-conventions/metadata/
opengraph-image#generate-images-using-code-js-ts-tsx) | ".js* ".ts® ".tsx’

| Generated Open Graph image |

| [twitter-image "](/docs/app/api-reference/file-conventions/metadata/
opengraph-image#twitter-image) | “.jpg” “.jpeg’ ‘.png’ ".gif’ |
Twitter image file |

| [twitter-image "](/docs/app/api-reference/file-conventions/metadata/
opengraph-image#generate-images-using-code-js-ts-tsx) | ".js* ".ts® ".tsx’
| Generated Twitter image |

SEO

| [sitemap](/docs/app/api-reference/file-conventions/metadata/

sitemap#static-sitemapxml) | “.xml’ | Sitemap file |

| [sitemap](/docs/app/api-reference/file-conventions/metadata/
sitemap#generate-a-sitemap) | ".js* ".ts' | Generated Sitemap |

| [‘robots](/docs/app/api-reference/file-conventions/metadata/robots#static-
robotstxt) | “.txt® | Robots file |

| [robots](/docs/app/api-reference/file-conventions/metadata/
robots#generate-a-robots-file) | ".js* ".ts’ | Generated Robots file |

“pages’ Routing Conventions

Special Files

| “.js* ".jsx “.tsx' | Custom App |
| [_document](/docs/pages/building-your-application/routing/custom-

document) | “.js* ".jsx ".tsx | Custom Document |

| [_error’](/docs/pages/building-your-application/routing/custom-error#more-
advanced-error-page-customizing) | ".js= ".jsx ".tsx | Custom Error Page |

| [[404°](/docs/pages/building- your appl|cat|on/rout|ng/custom -error#404-
page) | “.js* ".jsx* “.tsx' | 404 Error Page |

| ['500°](/docs/pages/bundlng your appl|cat|on/rout|ng/custom -error#500-
page) | “.js* ".jsx ".tsx | 500 Error Page |

Routes

| **Folder convention** |

I I

| [Cindex](/docs/pages/building-your-application/routing/pages-and-
layouts#index-routes) | “.js* ".jsx ".tsx' | Home page |

| [folder/index](/docs/pages/building-your-application/routing/pages-and-
layouts#index-routes) | ".js* ".jsx ".tsx | Nested page |

| **File convention** |

I I

| ["index](/docs/pages/building-your-application/routing/pages-and-
layouts#index-routes) | “.js* ".jsx ".tsx | Home page |

| [file](/docs/pages/bundlng your-application/routing/pages-and-layouts)
| “.js® ".jsx ".tsx' | Nested page |

Dynamic Routes

| **Folder convention**

I I I
| [[folder]/index®](/docs/pages/bundlng your-application/routing/dynamic-

routes) | “.js* ".jsx" “.tsx' | Dynamic route segment |
| ['[...folder]/index](/docs/pages/building-your-application/routing/dynamic-
routes#catch-all-segments) | “.js* ".jsx .tsx' | Catch-all route segment

I
| ["[[...folder]]/index](/docs/pages/building-your-application/routing/dynamic-

routes#optional-catch-all-segments) | ".js* ".jsx ".tsx" | Optional catch-all
route segment |

| **File convention** |
I I

| [[file] 1(/docs/pages/building-your-application/routing/dynamic-routes)

| “.js* ".jsx ".tsx' | Dynamic route segment |

| [[...file] 1(/docs/pages/building-your- appl|cat|on/rout|ng/dynam|c—

routes#catch-all-segments) | “.js* ".jsx ‘.tsx' | Catch-all route
segment |

| [[[...file]] ']1(/docs/pages/building-your-application/routing/dynamic-
routes#optional-catch-all-segments) | “.js* ".jsx" ".tsx | Optional catch-

all route segment |

title: Defining Routes
description: Learn how to create your first route in Next.js.
related:
description: Learn more about creating pages and layouts.
links:
- app/building-your-application/routing/pages-and-layouts

> We recommend reading the [Routing Fundamentals](/docs/app/building-your-
application/routing) page before continuing.

This page will guide you through how to define and organize routes in your
Next.js application.

Creating Routes

Next.js uses a file-system based router where **folders** are used to define
routes.

Each folder represents a [**route** segment](/docs/app/building-your-
application/routing#route-segments) that maps to a **URL** segment. To
create a [nested route](/docs/app/building-your-application/routing#nested-
routes), you can nest folders inside each other.

<lmage
alt="Route segments to path segments"
srcLight="/docs/light/route-segments-to-path-segments.png"
srcDark="/docs/dark/route-segments-to-path-segments.png"
width="1600"
height="594"

[>

A special [page.js file](/docs/app/building-your-application/routing/pages-
and-layouts#pages) is used to make route segments publicly accessible.

<lmage
alt="Defining Routes"
srcLight="/docs/light/defining-routes.png"
srcDark="/docs/dark/defining-routes.png"

width="1600"
height="687"
/>

In this example, the “/dashboard/analytics™ URL path is _not_ publicly
accessible because it does not have a corresponding "page.js” file. This folder
could be used to store components, stylesheets, images, or other colocated
files.

> **Good to know**: ".js*, ".jsx ', or ".tsx" file extensions can be used for
special files.

Creating Ul

[Special file conventions](/docs/app/building-your-application/routing#file-
conventions) are used to create Ul for each route segment. The most common
are [pages](/docs/app/building-your-application/routing/pages-and-
layouts#pages) to show Ul unique to a route, and [layouts](/docs/app/building-
your-application/routing/pages-and-layouts#layouts) to show Ul that is shared
across multiple routes.

For example, to create your first page, add a “page.js” file inside the "app”
directory and export a React component:

" tsx filename="app/page.tsx" switcher
export default function Page() {
return <h1>Hello, Next.js!</h1>

LUENRY

" jsx filename="app/page.js" switcher
export default function Page() {
return <h1>Hello, Next.js!</h1>

LURNRY

title: Pages and Layouts
description: Create your first page and shared layout with the App Router.

> We recommend reading the [Routing Fundamentals](/docs/app/building-your-
application/routing) and [Defining Routes](/docs/app/building-your-application/
routing/defining-routes) pages before continuing.

The App Router inside Next.js 13 introduced new file conventions to easily
create [pages](#pages), [shared layouts] (#layouts), and [templates]
(#templates). This page will guide you through how to use these special files in
your Next.js application.

Pages

A page is Ul that is **unique** to a route. You can define pages by exporting a
component from a “page.js’ file. Use nested folders to [define a route](/docs/
app/building-your-application/routing/defining-routes) and a "page.js file to
make the route publicly accessible.

Create your first page by adding a "page.js” file inside the “app" directory:

<lmage
alt="page.js special file"
srcLight="/docs/light/page-special-file.png"
srcDark="/docs/dark/page-special-file.png"

width="1600"
height="444"
/>

" tsx filename="app/page.tsx" switcher
/| “app/page.tsx’ is the Ul for the */° URL
export default function Page() {

return <h1>Hello, Home page!</h1>

LURNRY

“jsx filename="app/page.js" switcher
/| “app/page.js’ is the Ul for the '/ URL
export default function Page() {

return <h1>Hello, Home page!</h1>

EUR RN

“ " tsx filename="app/dashboard/page.tsx" switcher
/| “app/dashboard/page.tsx” is the Ul for the “/dashboard™ URL
export default function Page() {

return <h1>Hello, Dashboard Page!</h1>

AUENEN

**Yjsx filename="app/dashboard/page.js" switcher
/| “app/dashboard/page.js’ is the Ul for the "/dashboard™ URL
export default function Page() {

return <h1>Hello, Dashboard Page!</h1>

LURNRY

> **Good to know**:

>

> - A page is always the [leaf](/docs/app/building-your-application/
routing#terminology) of the [route subtree](/docs/app/building-your-
application/routing#terminology).

>-".js", ".jsx', or ".tsx’ file extensions can be used for Pages.

> - A "page.js file is required to make a route segment publicly accessible.
> - Pages are [Server Components](/docs/app/building-your-application/
rendering/server-components) by default but can be set to a [Client
Component](/docs/app/building-your-application/rendering/client-
components).

> - Pages can fetch data. View the [Data Fetching](/docs/app/building-your-
application/data-fetching) section for more information.

Layouts
A layout is Ul that is **shared** between multiple pages. On navigation, layouts
preserve state, remain interactive, and do not re-render. Layouts can also be

[nested](#nesting-layouts).

You can define a layout by “default” exporting a React component from a
“layout.js” file. The component should accept a "children” prop that will be

populated with a child layout (if it exists) or a child page during rendering.

<lmage
alt="layout.js special file"
srcLight="/docs/light/layout-special-file.png"
srcDark="/docs/dark/layout-special-file.png"

width="1600"
height="606"
/>

" tsx filename="app/dashboard/layout.tsx" switcher
export default function DashboardLayout({
children, // will be a page or nested layout
3o
children: React.ReactNode
nA
return (
<section>
{/* Include shared Ul here e.g. a header or sidebar */}
<nav></nav>

{children}
<[section>
)
}

*Yjsx filename="app/dashboard/layout.js" switcher
export default function DashboardLayout({
children, // will be a page or nested layout
HA
return (
<section>
{/* Include shared Ul here e.g. a header or sidebar */}
<nav></nav>

{children}
<[section>
)
}

> **Good to know**:

>

> - The top-most layout is called the [Root Layout](#root-layout-required). This
required layout is shared across all pages in an application. Root layouts
must contain “html" and "body" tags.

> - Any route segment can optionally define its own [Layout] (#¥nesting-layouts).
These layouts will be shared across all pages in that segment.

> - Layouts in a route are **nested** by default. Each parent layout wraps child
layouts below it using the React "children” prop.

> - You can use [Route Groups](/docs/app/building-your-application/routing/
route-groups) to opt specific route segments in and out of shared layouts.

> - Layouts are [Server Components](/docs/app/building-your-application/
rendering/server-components) by default but can be set to a [Client
Component](/docs/app/building-your-application/rendering/client-
components).

> - Layouts can fetch data. View the [Data Fetching](/docs/app/building-your-
application/data-fetching) section for more information.

> - Passing data between a parent layout and its children is not possible.
However, you can fetch the same data in a route more than once, and React will
[automatically dedupe the requests](/docs/app/building-your-application/
caching#request-memoization) without affecting performance.

> - Layouts do not have access to the route segments below itself. To access all
route segments, you can use [useSelectedLayoutSegment'](/docs/app/api-
reference/functions/use-selected-layout-segment) or
[‘useSelectedLayoutSegments '](/docs/app/api-reference/functions/use-
selected-layout-segments) in a Client Component.

>-".js", ".jsx ', or ".tsx" file extensions can be used for Layouts.

> - A “layout.js” and ‘page.js’ file can be defined in the same folder. The layout
will wrap the page.

Root Layout (Required)

The root layout is defined at the top level of the "app” directory and applies to
all routes. This layout enables you to modify the initial HTML returned from the
server.

* " tsx filename="app/layout.tsx" switcher
export default function RootLayout({
children,
y{
children: React.ReactNode
HA
return (
<html lang="en">
<body>{children}</body>
</html>
)
}

“jsx filename="app/layout.js" switcher
export default function RootLayout({ children }) {

return (
<html lang="en">
<body>{children}</body>
</html>
)
}

> **Good to know**:

>

> - The "app’ directory *must** include a root layout.

> - The root layout must define "<html>" and "<body>" tags since Next.js does
not automatically create them.

> - You can use the [built-in SEO support](/docs/app/building-your-application/
optimizing/metadata) to manage "<head>" HTML elements, for example, the
“<title>" element.

> - You can use [route groups](/docs/app/building-your-application/routing/
route-groups) to create multiple root layouts. See an [example here](/docs/app/
building-your-application/routing/route-groups#creating-multiple-root-
layouts).

> - The root layout is a [Server Component](/docs/app/building-your-
application/rendering/server-components) by default and **can not** be set to
a [Client Component](/docs/app/building-your-application/rendering/client-
components).

> **Migrating from the "pages’ directory:** The root layout replaces the
['_app.js]1(/docs/pages/building-your-application/routing/custom-app) and
['_document.js](/docs/pages/building-your-application/routing/custom-
document) files. [View the migration guide](/docs/app/building-your-
application/upgrading/app-router-migration#migrating-_documentjs-and-
_appjs).

Nesting Layouts

Layouts defined inside a folder (e.g. "app/dashboard/layout.js") apply to
specific route segments (e.g. "acme.com/dashboard) and render when those
segments are active. By default, layouts in the file hierarchy are **nested**,
which means they wrap child layouts via their “children” prop.

<lmage
alt="Nested Layout"
srcLight="/docs/light/nested-layout.png"
srcDark="/docs/dark/nested-layout.png"
width="1600"
height="606"

[>

" tsx filename="app/dashboard/layout.tsx" switcher
export default function DashboardLayout({

children,
3 A

children: React.ReactNode

DA

return <section>{children}</section>

EUR RN

**Yjsx filename="app/dashboard/layout.js" switcher
export default function DashboardLayout({ children }) {
return <section>{children}</section>

LR RN

> **Good to know**:
>
> - Only the root layout can contain "<html>" and "<body>" tags.

If you were to combine the two layouts above, the root layout (“app/layout.js’)
would wrap the dashboard layout (app/dashboard/layout.js "), which would
wrap route segments inside "app/dashboard/*".

The two layouts would be nested as such:

<lmage
alt="Nested Layouts"
srcLight="/docs/light/nested-layouts-ui.png"
srcDark="/docs/dark/nested-layouts-ui.png"

width="1600"
height="1026"
/>

You can use [Route Groups](/docs/app/building-your-application/routing/route-
groups) to opt specific route segments in and out of shared layouts.

Templates

Templates are similar to layouts in that they wrap each child layout or page.
Unlike layouts that persist across routes and maintain state, templates create a
new instance for each of their children on navigation. This means that when a
user navigates between routes that share a template, a new instance of the
component is mounted, DOM elements are recreated, state is **not**
preserved, and effects are re-synchronized.

There may be cases where you need those specific behaviors, and templates
would be a more suitable option than layouts. For example:

- Features that rely on "useEffect’ (e.g logging page views) and "useState’
(e.g a per-page feedback form).

- To change the default framework behavior. For example, Suspense
Boundaries inside layouts only show the fallback the first time the Layout is
loaded and not when switching pages. For templates, the fallback is shown on
each navigation.

A template can be defined by exporting a default React component from a
“template.js” file. The component should accept a “children” prop.

<lmage
alt="template.js special file"
srcLight="/docs/light/template-special-file.png"
srcDark="/docs/dark/template-special-file.png"

width="1600"
height="444"
/>

“ " tsx filename="app/template.tsx" switcher
export default function Template({ children }: { children: React.ReactNode }) {
return <div>{children}</div>

LURNRN

" jsx filename="app/template.js" switcher
export default function Template({ children }) {
return <div>{children}</div>

LURNRN

In terms of nesting, "template.js’ is rendered between a layout and its children.
Here's a simplified output:

" jsx filename="0utput"
<Layout>
{/* Note that the template is given a unique key. */}
<Template key={routeParam}>{children}</Template>
</Layout>

Modifying “<head>"

In the "app’ directory, you can modify the "<head>" HTML elements such as

“title” and "meta’ using the [built-in SEO support](/docs/app/building-your-
application/optimizing/metadata).

Metadata can be defined by exporting a [' metadata” object](/docs/app/api-
reference/functions/generate-metadata#the-metadata-object) or
['generateMetadata” function](/docs/app/api-reference/functions/generate-
metadata#tgeneratemetadata-function) in a [layout.js "](/docs/app/api-
reference/file-conventions/layout) or [page.js](/docs/app/api-reference/file-
conventions/page) file.

* " tsx filename="app/page.tsx" switcher
import { Metadata } from 'next'

export const metadata: Metadata = {
title: '"Next.js',
}

export default function Page() {
return ...

LURNRN

*jsx filename="app/page.js" switcher
export const metadata = {

title: 'Next.js',
}

export default function Page() {
return ..

LURNRY

> **Good to know**: You should **not** manually add "<head>" tags such as
“<title>" and “<meta>" to root layouts. Instead, you should use the [Metadata
API](/docs/app/api-reference/functions/generate-metadata) which
automatically handles advanced requirements such as streaming and de-
duplicating "<head>" elements.

[Learn more about available metadata options in the API reference.](/docs/app/
api-reference/functions/generate-metadata)

title: Linking and Navigating
description: Learn how navigation works in Next.js, and how to use the Link
Component and “useRouter’ hook.
related:
links:

- app/building-your-application/caching
- app/building-your-application/configuring/typescript

There are two ways to navigate between routes in Next.js:

- Using the ['<Link>" Component](#link-component)
- Using the ['useRouter’ Hook](#userouter-hook)

This page will go through how to use "<Link>", "useRouter() *, and dive deeper
into how navigation works.

"<Link>" Component

“<Link>" is a built-in component that extends the HTML "<a>" tag to provide
[prefetching] (#1-prefetching) and client-side navigation between routes. It is
the primary way to navigate between routes in Next.js.

You can use it by importing it from “next/link", and passing a “href prop to the
component:

“tsx filename="app/page.tsx" switcher
import Link from 'next/link'

export default function Page() {
return <Link href="/dashboard">Dashboard</Link>

LURNRY

" jsx filename="app/page.js" switcher
import Link from 'next/link'

export default function Page() {
return <Link href="/dashboard">Dashboard</Link>

EUR RN

There are other optional props you can pass to "<Link>". See the [API
reference](/docs/app/api-reference/components/link) for more.

Examples
Linking to Dynamic Segments
When linking to [dynamic segments](/docs/app/building-your-application/

routing/dynamic-routes), you can use [template literals and interpolation]
(https://developer.mozilla.org/docs/Web/JavaScript/Reference/

Template_literals) to generate a list of links. For example, to generate a list of
blog posts:

" "jsx filename="app/blog/PostList.js"
import Link from 'next/link'

export default function PostList({ posts }) {
return (

{posts.map((post) => (
<li key={post.id}>
<Link href={"/blog/${post.slug} }>{post.title}</Link>

)}
<ful>
)
}

Checking Active Links

You can use [usePathname() ‘](/docs/app/api-reference/functions/use-
pathname) to determine if a link is active. For example, to add a class to the
active link, you can check if the current “pathname™ matches the "href’ of the
link:

" tsx filename="app/components/links.tsx" switcher
'use client'

import { usePathname } from 'next/navigation'
import Link from 'next/link’

export function Links() {
const pathname = usePathname()

return (
<nav>

<Link className={"link ${pathname ==="/' ? 'active' : "'} '} href="/">
Home
</Link>

<Link
className={"link ${pathname === '/about' ? 'active' : ''}'}
href="/about"

About

</Link>

</nav>

" jsx filename="app/components/links.js" switcher
'use client'

import { usePathname } from 'next/navigation'
import Link from 'next/link'

export function Links() {
const pathname = usePathname()

return (
<nav>

<Link className={"link ${pathname ==="/' ? 'active' : "'} '} href="/">
Home
</Link>

<Link
className={"link ${pathname === "[about' ? 'active' : ''}"}
href="/about"
>
About
</Link>

</nav>
)
}

Scrolling to an “id”®

The default behavior of the Next.js App Router is to scroll to the top of a new
route or to maintain the scroll position for backwards and forwards navigation.

If you'd like to scroll to a specific "id" on navigation, you can append your URL

with a "#° hash link or just pass a hash link to the "href" prop. This is possible
since "<Link>" renders to an "<a>" element.

Tjsx
<Link href="/dashboard#settings">Settings</Link>

/| Output
Settings

Disabling scroll restoration

The default behavior of the Next.js App Router is to scroll to the top of a new

route or to maintain the scroll position for backwards and forwards navigation.

If you'd like to disable this behavior, you can pass “scroll={false}" to the

“<Link>" component, or “scroll: false™ to ‘router.push()" or ‘router.replace() .
jsx

/| next/link

<Link href="/dashboard" scroll={false}>

Dashboard
</Link>

“ljsx
/| useRouter
import { useRouter } from 'next/navigation’

const router = useRouter()

router.push('/dashboard’, { scroll: false })

"useRouter() " Hook
The “useRouter’ hook allows you to programmatically change routes.

This hook can only be used inside Client Components and is imported from
‘next/navigation .

“*Yjsx filename="app/page.js"
'use client'

import { useRouter } from 'next/navigation'

export default function Page() {
const router = useRouter()

return (
<button type="button" onClick={() => router.push('/dashboard')}>
Dashboard
</button>

)
-

For a full list of "'useRouter” methods, see the [API reference](/docs/app/api-
reference/functions/use-router).

> **Recommendation:** Use the "<Link>" component to navigate between
routes unless you have a specific requirement for using "useRouter .

How Routing and Navigation Works

The App Router uses a hybrid approach for routing and navigation. On the
server, your application code is automatically code-split by route segments.
And on the client, Next.js [prefetches](#1-prefetching) and [caches](#2-
caching) the route segments. This means, when a user navigates to a new
route, the browser doesn't reload the page, and only the route segments that
change re-render - improving the navigation experience and performance.

1. Prefetching

Prefetching is a way to preload a route in the background before the user visits
it.

There are two ways routes are prefetched in Next.js:

- **"<Link>" component**: Routes are automatically prefetched as they
become visible in the user's viewport. Prefetching happens when the page first
loads or when it comes into view through scrolling.

- ***router.prefetch() **: The "useRouter’ hook can be used to prefetch
routes programmatically.

The <Link>"'s prefetching behavior is different for static and dynamic routes:

- [**Static Routes**](/docs/app/building-your-application/rendering/server-
components#static-rendering-default): "prefetch’ defaults to "true’. The
entire route is prefetched and cached.

- [**Dynamic Routes**](/docs/app/building-your-application/rendering/server-
components#dynamic-rendering): "prefetch’ default to automatic. Only the
shared layout down until the first “loading.js" file is prefetched and cached for
*30s". This reduces the cost of fetching an entire dynamic route, and it means
you can show an [instant loading state](/docs/app/building-your-application/

routing/loading-ui-and-streaming#instant-loading-states) for better visual
feedback to users.

You can disable prefetching by setting the "prefetch” prop to “false".

See the ['<Link>" API reference](/docs/app/api-reference/components/link) for
more information.

> **Good to know**:
>
> - Prefetching is not enabled in development, only in production.

2. Caching

Next.js has an **in-memory client-side cache** called the [Router Cache](/
docs/app/building-your-application/data-fetching/fetching-caching-and-
revalidating#caching-data#router-cache). As users navigate around the app,
the React Server Component Payload of [prefetched](#1-prefetching) route
segments and visited routes are stored in the cache.

This means on navigation, the cache is reused as much as possible, instead of
making a new request to the server - improving performance by reducing the
number of requests and data transferred.

Learn more about how the [Router Cache](/docs/app/building-your-application/
data-fetching/fetching-caching-and-revalidating#caching-data) works and how
to configure it.

3. Partial Rendering

Partial rendering means only the route segments that change on navigation re-
render on the client, and any shared segments are preserved.

For example, when navigating between two sibling routes, “/dashboard/
settings’ and “/dashboard/analytics’, the "settings™ and "analytics™ pages will
be rendered, and the shared "dashboard’ layout will be preserved.

<lmage
alt="How partial rendering works"
srcLight="/docs/light/partial-rendering.png"
srcDark="/docs/dark/partial-rendering.png"

width="1600"
height="945"
[>

Without partial rendering, each navigation would cause the full page to re-
render on the server. Rendering only the segment that changes reduces the

amount of data transferred and execution time, leading to improved
performance.

4. Soft Navigation

By default, the browser performs a hard navigation between pages. This means
the browser reloads the page and resets React state such as "useState’ hooks
in your app and browser state such as the user's scroll position or focused
element. However, in Next.js, the App Router uses soft navigation. This means
React only renders the segments that have changed while preserving React and
browser state, and there is no full page reload.

5. Back and Forward Navigation

By default, Next.js will maintain the scroll position for backwards and forwards
navigation, and re-use route segments in the [Router Cache](/docs/app/
building-your-application/data-fetching/fetching-caching-and-
revalidating#caching-data).

title: Route Groups
description: Route Groups can be used to partition your Next.js application into
different sections.

In the "app’ directory, nested folders are normally mapped to URL paths.
However, you can mark a folder as a **Route Group** to prevent the folder
from being included in the route's URL path.

This allows you to organize your route segments and project files into logical
groups without affecting the URL path structure.

Route groups are useful for:

- [Organizing routes into groups] (#organize-routes-without-affecting-the-url-
path) e.g. by site section, intent, or team.
- Enabling [nested layouts](/docs/app/building-your-application/routing/pages-
and-layouts) in the same route segment level:

- [Creating multiple nested layouts in the same segment, including multiple
root layouts](#creating-multiple-root-layouts)

- [Adding a layout to a subset of routes in a common segment] (#opting-
specific-segments-into-a-layout)

Convention

A route group can be created by wrapping a folder's name in parenthesis:
“(folderName) "

Examples
Organize routes without affecting the URL path

To organize routes without affecting the URL, create a group to keep related
routes together. The folders in parenthesis will be omitted from the URL (e.g.
“(marketing) " or “(shop)’).

<lmage
alt="0Organizing Routes with Route Groups"
srcLight="/docs/light/route-group-organisation.png"
srcDark="/docs/dark/route-group-organisation.png"

width="1600"
height="930"
/>

Even though routes inside " (marketing) " and " (shop) " share the same URL
hierarchy, you can create a different layout for each group by adding a
“layout.js” file inside their folders.

<lmage
alt="Route Groups with Multiple Layouts"
srcLight="/docs/light/route-group-multiple-layouts.png"
srcDark="/docs/dark/route-group-multiple-layouts.png"

width="1600"
height="768"
/>

Opting specific segments into a layout

To opt specific routes into a layout, create a new route group (e.g. "(shop) ")
and move the routes that share the same layout into the group (e.g. "account’
and “cart’). The routes outside of the group will not share the layout (e.g.
‘checkout’).

<lmage
alt="Route Groups with Opt-in Layouts"
srcLight="/docs/light/route-group-opt-in-layouts.png"
srcDark="/docs/dark/route-group-opt-in-layouts.png"

width="1600"
height="930"
/>

Creating multiple root layouts

To create multiple [root layouts](/docs/app/building-your-application/routing/

pages-and-layouts#root-layout-required), remove the top-level "layout.js" file,
and add a ‘layout.js" file inside each route groups. This is useful for partitioning
an application into sections that have a completely different Ul or experience.
The "<html>" and "<body>" tags need to be added to each root layout.

<lmage
alt="Route Groups with Multiple Root Layouts"
srcLight="/docs/light/route-group-multiple-root-layouts.png"
srcDark="/docs/dark/route-group-multiple-root-layouts.png"
width="1600"
height="687"

/>

In the example above, both " (marketing) and "(shop) ™ have their own root
layout.

> **Good to know**:

>

> - The naming of route groups has no special significance other than for
organization. They do not affect the URL path.

> - Routes that include a route group **should not** resolve to the same URL
path as other routes. For example, since route groups don't affect URL
structure, " (marketing)/about/page.js* and " (shop)/about/page.js* would both
resolve to "fabout’ and cause an error.

> - If you use multiple root layouts without a top-level "layout.js" file, your
home “page.js” file should be defined in one of the route groups, For example:
“app/(marketing)/page.js .

> - Navigating **across multiple root layouts** will cause a **full page load**
(as opposed to a client-side navigation). For example, navigating from “/cart’
that uses "app/(shop)/layout.js’ to "/blog" that uses "app/(marketing)/layout.js"
will cause a full page load. This **only** applies to multiple root layouts.

title: Dynamic Routes
description: Dynamic Routes can be used to programmatically generate route
segments from dynamic data.
related:
title: Next Steps
description: For more information on what to do next, we recommend the
following sections
links:
- app/building-your-application/routing/linking-and-navigating
- app/api-reference/functions/generate-static-params

When you don't know the exact segment names ahead of time and want to
create routes from dynamic data, you can use Dynamic Segments that are filled
in at request time or [prerendered](#generating-static-params) at build time.

Convention

A Dynamic Segment can be created by wrapping a folder's name in square
brackets: "[folderName] . For example, "[id]" or "[slug] .

Dynamic Segments are passed as the "params’ prop to [layout](/docs/app/
api-reference/file-conventions/layout), [page '](/docs/app/api-reference/file-
conventions/page), [route](/docs/app/building-your-application/routing/
route-handlers), and [generateMetadata](/docs/app/api-reference/functions/
generate-metadata#generatemetadata-function) functions.

Example

For example, a blog could include the following route “app/blog/[slug]/page.js’
where "[slug] " is the Dynamic Segment for blog posts.

" tsx filename="app/blog/[slug]/page.tsx" switcher
export default function Page({ params }: { params: { slug: string } }) {
return <div>My Post: {params.slug}</div>

EUR RN

“Yjsx filename="app/blog/[slug]/page.js" switcher
export default function Page({ params }) {
return <div>My Post: {params.slug}</div>

| Route | Example URL | “params’ |

“app/blog/[slug]/page.js’	‘/blog/a”	{slug:'a'}
“app/blog/[slug]/page.js’	‘/blog/b™	‘{slug: 'b"'}"
“app/blog/[slug]/page.js’	‘[blog/c™	‘{slug:'c'}"

See the [generateStaticParams()] (#generating-static-params) page to learn
how to generate the params for the segment.

> **Good to know**: Dynamic Segments are equivalent to [Dynamic Routes](/
docs/app/building-your-application/routing/dynamic-routes) in the "pages’

directory.

Generating Static Params

The “generateStaticParams™ function can be used in combination with
[dynamic route segments](/docs/app/building-your-application/routing/
dynamic-routes) to [**statically generate**](/docs/app/building-your-
application/rendering/server-components#static-rendering-default) routes at
build time instead of on-demand at request time.

" tsx filename="app/blog/[slug]/page.tsx" switcher
export async function generateStaticParams() {
const posts = await fetch('https://.../posts').then((res) => res.json())

return posts.map((post) => ({
slug: post.slug,

)
-

*Tjsx filename="app/blog/[slug]/page.js" switcher
export async function generateStaticParams() {
const posts = await fetch('https://.../posts').then((res) => res.json())

return posts.map((post) => ({
slug: post.slug,
)
}

The primary benefit of the "generateStaticParams™ function is its smart
retrieval of data. If content is fetched within the "generateStaticParams”
function using a “fetch' request, the requests are [automatically memoized](/
docs/app/building-your-application/caching#request-memoization). This
means a fetch’ request with the same arguments across multiple
‘generateStaticParams ', Layouts, and Pages will only be made once, which
decreases build times.

Use the [migration guide](/docs/app/building-your-application/upgrading/app-
router-migration#dynamic-paths-getstaticpaths) if you are migrating from the
‘pages’ directory.

See [generateStaticParams server function documentation](/docs/app/api-
reference/functions/generate-static-params) for more information and
advanced use cases.

Catch-all Segments

Dynamic Segments can be extended to **catch-all** subsequent segments by
adding an ellipsis inside the brackets '[...folderName] .

For example, "app/shop/[...slug]/page.js” will match "/shop/clothes’, but also /
shop/clothes/tops”, /shop/clothes/tops/t-shirts’, and so on.

| Route | Example URL | "'params’ |

| “app/shop/[...slug]/page.js’ | ‘/shop/a” | ‘{slug:['a'l} I
| “app/shop/[...slug]/page.js’ | ‘/shop/a/b™ | ‘{slug: ['a’,'b']}" |
| “app/shop/[...slug]/page.js" | ‘[/shop/a/b/c” | "{ slug: ['a’, 'b", 'c'] }" |

Optional Catch-all Segments

Catch-all Segments can be made **optional** by including the parameter in
double square brackets: "[[...folderName]] .

For example, “app/shop/[[...slug]l/page.js” will **also** match “/shop, in
addition to “/shop/clothes”, */shop/clothes/tops’, “/shop/clothes/tops/t-shirts”.

The difference between **catch-all** and **optional catch-all** segments is
that with optional, the route without the parameter is also matched (*/shop” in
the example above).

| Route | Example URL | "params’ |

| “app/shop/[[...slug]]/page.js" | "/shop" | {3 I

| “app/shop/[[...slug]l/page.js’ | "/shop/a” | {slug: ['a']}’ |

| “app/shop/[[...slug]]l/page.js” | [shop/a/b” | ‘{slug: ['a’, 'b']}" |
| “app/shop/[[...slug]]l/page.js" | "[shop/a/b/c” | { slug: ['a", 'b’, 'c'] }" |

TypeScript

When using TypeScript, you can add types for "params’ depending on your
configured route segment.

“ " tsx filename="app/blog/[slug]/page.tsx" switcher
export default function Page({ params }: { params: { slug: string } }) {
return <h1>My Page</h1>

LR RN

*Yjsx filename="app/blog/[slug]/page.js" switcher
export default function Page({ params }) {
return <h1>My Page</h1>

EUR RN

| Route | “params’ Type Definition

“app/blog/[slug]/page.js’	“{slug: string }"
“app/shop/[...slug]/page.js’	“{slug: string[] }
“app/[categoryld]/[itemId]/page.js’	*{ categoryld: string, itemld: string } "

> **Good to know**: This may be done automatically by the [TypeScript
plugin](/docs/app/building-your-application/configuring/typescript#typescript-
plugin) in the future.

title: Loading Ul and Streaming

description: Built on top of Suspense, Loading Ul allows you to create a fallback
for specific route segments, and automatically stream content as it becomes
ready.

The special file "loading.js" helps you create meaningful Loading Ul with [React
Suspense](https://react.dev/reference/react/Suspense). With this convention,
you can show an [instant loading state](#instant-loading-states) from the
server while the content of a route segment loads. The new content is
automatically swapped in once rendering is complete.

<lmage
alt="Loading UI"
srcLight="/docs/light/loading-ui.png"
srcDark="/docs/dark/loading-ui.png"

width="1600"
height="691"
/>

Instant Loading States

An instant loading state is fallback Ul that is shown immediately upon
navigation. You can pre-render loading indicators such as skeletons and
spinners, or a small but meaningful part of future screens such as a cover
photo, title, etc. This helps users understand the app is responding and
provides a better user experience.

Create a loading state by adding a "loading.js" file inside a folder.

<lmage
alt="loading.js special file"
srcLight="/docs/light/loading-special-file.png"
srcDark="/docs/dark/loading-special-file.png"
width="1600"
height="606"

[>

" tsx filename="app/dashboard/loading.tsx" switcher
export default function Loading() {
/] You can add any Ul inside Loading, including a Skeleton.
return <LoadingSkeleton />

AUR RN

" "jsx filename="app/dashboard/loading.js" switcher
export default function Loading() {
/| You can add any Ul inside Loading, including a Skeleton.
return <LoadingSkeleton />

EUR RN

In the same folder, “loading.js” will be nested inside "layout.js". It will
automatically wrap the "page.js’ file and any children below in a "<Suspense>"
boundary.

<lmage
alt="loading.js overview"
srcLight="/docs/light/loading-overview.png"
srcDark="/docs/dark/loading-overview.png"

width="1600"
height="768"
/>

> **Good to know**:

>

> - Navigation is immediate, even with [server-centric routing](/docs/app/
building-your-application/routing/linking-and-navigating#how-routing-and-
navigation-works).

> - Navigation is interruptible, meaning changing routes does not need to wait
for the content of the route to fully load before navigating to another route.

> - Shared layouts remain interactive while new route segments load.

> **Recommendation:** Use the ‘loading.js’ convention for route segments
(layouts and pages) as Next.js optimizes this functionality.

Streaming with Suspense

In addition to “loading.js", you can also manually create Suspense Boundaries
for your own Ul components. The App Router supports streaming with
[Suspense](https://react.dev/referencefreact/Suspense) for both [Node.js and
Edge runtimes](/docs/app/building-your-application/rendering/edge-and-
nodejs-runtimes).

What is Streaming?

To learn how Streaming works in React and Next.js, it's helpful to understand
Server-Side Rendering (SSR) and its limitations.

With SSR, there's a series of steps that need to be completed before a user can
see and interact with a page:

1. First, all data for a given page is fetched on the server.

2. The server then renders the HTML for the page.

3. The HTML, CSS, and JavaScript for the page are sent to the client.

4. A non-interactive user interface is shown using the generated HTML, and
CSS.

5. Finally, React [hydrates](https://react.dev/reference/react-dom/client/
hydrateRoot#hydrating-server-rendered-html) the user interface to make it
interactive.

<lmage
alt="Chart showing Server Rendering without Streaming"
srcLight="/docs/light/server-rendering-without-streaming-chart.png"
srcDark="/docs/dark/server-rendering-without-streaming-chart.png"
width="1600"
height="612"

/>

These steps are sequential and blocking, meaning the server can only render
the HTML for a page once all the data has been fetched. And, on the client,
React can only hydrate the Ul once the code for all components in the page has
been downloaded.

SSR with React and Next.js helps improve the perceived loading performance
by showing a non-interactive page to the user as soon as possible.

<lmage
alt="Server Rendering without Streaming"
srcLight="/docs/light/server-rendering-without-streaming.png"
srcDark="/docs/dark/server-rendering-without-streaming.png"
width="1600"
height="748"

[>

However, it can still be slow as all data fetching on server needs to be
completed before the page can be shown to the user.

Streaming allows you to break down the page's HTML into smaller chunks
and progressively send those chunks from the server to the client.

<lmage
alt="How Server Rendering with Streaming Works"
srcLight="/docs/light/server-rendering-with-streaming.png"
srcDark="/docs/dark/server-rendering-with-streaming.png"

width="1600"
height="785"
/>

This enables parts of the page to be displayed sooner, without waiting for all
the data to load before any Ul can be rendered.

Streaming works well with React's component model because each component
can be considered a chunk. Components that have higher priority (e.g. product
information) or that don't rely on data can be sent first (e.g. layout), and React
can start hydration earlier. Components that have lower priority (e.g. reviews,
related products) can be sent in the same server request after their data has
been fetched.

<lmage
alt="Chart showing Server Rendering with Streaming"
srcLight="/docs/light/server-rendering-with-streaming-chart.png"
srcDark="/docs/dark/server-rendering-with-streaming-chart.png"
width="1600"
height="730"

/>

Streaming is particularly beneficial when you want to prevent long data
requests from blocking the page from rendering as it can reduce the [Time To
First Byte (TTFB)](https://web.dev/ttfb/) and [First Contentful Paint (FCP)]
(https://web.dev/first-contentful-paint/). It also helps improve [Time to
Interactive (TTI)](https://developer.chrome.com/en/docs/lighthouse/
performance/interactive/), especially on slower devices.

Example

“<Suspense>" works by wrapping a component that performs an asynchronous
action (e.g. fetch data), showing fallback Ul (e.g. skeleton, spinner) while it's
happening, and then swapping in your component once the action completes.

" tsx filename="app/dashboard/page.tsx" switcher
import { Suspense } from 'react’
import { PostFeed, Weather } from './Components’

export default function Posts() {
return (
<section>

<Suspense fallback={<p>Loading feed...</p>}>
<PostFeed />

</Suspense>

<Suspense fallback={<p>Loading weather...</p>}>
<Weather />

</Suspense>

<[section>
)
}

“Yjsx filename="app/dashboard/page.js" switcher
import { Suspense } from 'react'
import { PostFeed, Weather } from './Components'

export default function Posts() {
return (
<section>
<Suspense fallback={<p>Loading feed...</p>}>
<PostFeed />
</Suspense>
<Suspense fallback={<p>Loading weather...</p>}>
<Weather />
</Suspense>
</section>

)
-

By using Suspense, you get the benefits of:

1. **Streaming Server Rendering** - Progressively rendering HTML from the
server to the client.

2. **Selective Hydration** - React prioritizes what components to make
interactive first based on user interaction.

For more Suspense examples and use cases, please see the [React
Documentation](https://react.dev/reference/react/Suspense).

SEO

- Next.js will wait for data fetching inside [generateMetadata](/docs/app/api-
reference/functions/generate-metadata) to complete before streaming Ul to the
client. This guarantees the first part of a streamed response includes "<head>"
tags.

- Since streaming is server-rendered, it does not impact SEO. You can use the
[Mobile Friendly Test](https://search.google.com/test/mobile-friendly) tool from

Google to see how your page appears to Google's web crawlers and view the
serialized HTML ([source] (https://web.dev/rendering-on-the-web/#seo-
considerations)).

#i#t# Status Codes

When streaming, a "200" status code will be returned to signal that the request
was successful.

The server can still communicate errors or issues to the client within the
streamed content itself, for example, when using [‘redirect](/docs/app/api-
reference/functions/redirect) or [notFound](/docs/app/api-reference/
functions/not-found). Since the response headers have already been sent to
the client, the status code of the response cannot be updated. This does not
affect SEO.

title: Error Handling
description: Handle runtime errors by automatically wrapping route segments
and their nested children in a React Error Boundary.
related:
links:
- app/api-reference/file-conventions/error

The “error.js” file convention allows you to gracefully handle unexpected
runtime errors in [nested routes](/docs/app/building-your-application/
routing#nested-routes).

- Automatically wrap a route segment and its nested children in a [React Error
Boundary] (https://react.dev/reference/react/Component#catching-rendering-
errors-with-an-error-boundary).

- Create error Ul tailored to specific segments using the file-system hierarchy
to adjust granularity.

- Isolate errors to affected segments while keeping the rest of the application
functional.

- Add functionality to attempt to recover from an error without a full page
reload.

Create error Ul by adding an “error.js” file inside a route segment and exporting
a React component:

<lmage
alt="error.js special file"
srcLight="/docs/light/error-special-file.png"
srcDark="/docs/dark/error-special-file.png"
width="1600"

height="606"
/>

“ " tsx filename="app/dashboard/error.tsx" switcher
'use client' // Error components must be Client Components

import { useEffect } from 'react’

export default function Error({
error,
reset,
3 {
error: Error & { digest?: string }
reset: () => void
HA
useEffect(() => {
/| Log the error to an error reporting service
console.error(error)
}, [error])

return (
<div>
<h2>Something went wrong!</h2>
<button
onClick={
/| Attempt to recover by trying to re-render the segment
() => reset()
}
>
Try again
</button>
</div>
)
}

“jsx filename="app/dashboard/error.js" switcher
'use client' /[Error components must be Client Components

import { useEffect } from 'react’

export default function Error({ error, reset }) {
useEffect(() => {
/| Log the error to an error reporting service
console.error(error)
}, [error])

return (
<div>
<h2>Something went wrong!</h2>
<button
onClick={
/| Attempt to recover by trying to re-render the segment
() => reset()
}
>
Try again
</button>
</div>
)
}

How “error.js” Works

<lmage
alt="How error.js works"
srcLight="/docs/light/error-overview.png"
srcDark="/docs/dark/error-overview.png"

width="1600"
height="903"
/>

- “error.js® automatically creates a [React Error Boundary](https://react.dev/
reference/react/Component#catching-rendering-errors-with-an-error-
boundary) that **wraps** a nested child segment or "page.js’ component.

- The React component exported from the “error.js’ file is used as the
fallback component.

- If an error is thrown within the error boundary, the error is **contained** and
the fallback component is **rendered**,

- When the fallback error component is active, layouts **above** the error
boundary **maintain** their state and **remain** interactive, and the error
component can display functionality to recover from the error.

Recovering From Errors

The cause of an error can sometimes be temporary. In these cases, simply
trying again might resolve the issue.

An error component can use the ‘reset() function to prompt the user to
attempt to recover from the error. When executed, the function will try to re-
render the Error boundary's contents. If successful, the fallback error
component is replaced with the result of the re-render.

" tsx filename="app/dashboard/error.tsx" switcher
'use client'

export default function Error({
error,
reset,
3o
error: Error & { digest?: string }
reset: () => void
HA
return (
<div>
<h2>Something went wrong!</h2>
<button onClick={() => reset()}>Try again</button>
</div>
)
}

“jsx filename="app/dashboard/error.js" switcher
'use client'

export default function Error({ error, reset }) {
return (
<div>
<h2>Something went wrong!</h2>
<button onClick={() => reset()}>Try again</button>
</div>
)
}

Nested Routes

React components created through [special files](/docs/app/building-your-
application/routing#file-conventions) are rendered in a [specific nested
hierarchy](/docs/app/building-your-application/routing#component-hierarchy).

For example, a nested route with two segments that both include “layout.js’
and “error.js" files are rendered in the following _simplified_ component
hierarchy:

<lmage
alt="Nested Error Component Hierarchy"
srcLight="/docs/light/nested-error-component-hierarchy.png"
srcDark="/docs/dark/nested-error-component-hierarchy.png"

width="1600"
height="687"
/>

The nested component hierarchy has implications for the behavior of “error.js”
files across a nested route:

- Errors bubble up to the nearest parent error boundary. This means an
“error.js” file will handle errors for all its nested child segments. More or less
granular error Ul can be achieved by placing “error.js" files at different levels in
the nested folders of a route.

- An “error.js’ boundary will **not** handle errors thrown in a “layout.js"
component in the **same** segment because the error boundary is nested
inside that layout's component.

Handling Errors in Layouts

“error.js’ boundaries do **not** catch errors thrown in “layout.js™ or
“template.js’ components of the **same segment**. This [intentional hierarchy]
(#nested-routes) keeps important Ul that is shared between sibling routes
(such as navigation) visible and functional when an error occurs.

To handle errors within a specific layout or template, place an “error.js” file in
the layout's parent segment.

To handle errors within the root layout or template, use a variation of “error.js’
called “global-error.js".

Handling Errors in Root Layouts

The root “app/error.js™ boundary does **not** catch errors thrown in the root
‘app/layout.js” or ‘app/template.js’ component.

To specifically handle errors in these root components, use a variation of
“error.js® called “app/global-error.js’ located in the root “app " directory.

Unlike the root “error.js’, the "global-error.js* error boundary wraps the
entire application, and its fallback component replaces the root layout when
active. Because of this, it is important to note that "global-error.js™ **must**
define its own "<html>" and "<body>" tags.

‘global-error.js” is the least granular error Ul and can be considered "catch-all"
error handling for the whole application. It is unlikely to be triggered often as
root components are typically less dynamic, and other “error.js* boundaries will
catch most errors.

Even if a "global-error.js™ is defined, it is still recommended to define a root

“error.js® whose fallback component will be rendered **within** the root layout,
which includes globally shared Ul and branding.

“ " tsx filename="app/global-error.tsx" switcher
'use client'

export default function GlobalError({
error,
reset,
3o
error: Error & { digest?: string }
reset: () => void
HA
return (
<html>
<body>
<h2>Something went wrong!</h2>
<button onClick={() => reset()}>Try again</button>
</body>
</html>
)
}

*Yjsx filename="app/global-error.js" switcher
'use client'

export default function GlobalError({ error, reset }) {
return (
<html>
<body>
<h2>Something went wrong!</h2>
<button onClick={() => reset()}>Try again</button>
</body>
</html>
)
}

Handling Server Errors
If an error is thrown inside a Server Component, Next.js will forward an "Error’
object (stripped of sensitive error information in production) to the nearest

“error.js” file as the “error’ prop.

Securing Sensitive Error Information

During production, the "Error’ object forwarded to the client only includes a
generic ‘'message’ and ‘digest’ property.

This is a security precaution to avoid leaking potentially sensitive details
included in the error to the client.

The "'message’ property contains a generic message about the error and the
“digest” property contains an automatically generated hash of the error that
can be used to match the corresponding error in server-side logs.

During development, the "Error’ object forwarded to the client will be serialized
and include the "'message’ of the original error for easier debugging.

title: Parallel Routes
description: Simultaneously render one or more pages in the same view that
can be navigated independently. A pattern for highly dynamic applications.

Parallel Routing allows you to simultaneously or conditionally render one or
more pages in the same layout. For highly dynamic sections of an app, such as
dashboards and feeds on social sites, Parallel Routing can be used to
implement complex routing patterns.

For example, you can simultaneously render the team and analytics pages.

<lmage
alt="Parallel Routes Diagram"
srcLight="/docs/light/parallel-routes.png"
srcDark="/docs/dark/parallel-routes.png"

width="1600"
height="952"
[>

Parallel Routing allows you to define independent error and loading states for
each route as they're being streamed in independently.

<lmage
alt="Parallel routes enable custom error and loading states"
srcLight="/docs/light/parallel-routes-cinematic-universe.png"
srcDark="/docs/dark/parallel-routes-cinematic-universe.png"
width="1600"
height="1218"

/>

Parallel Routing also allows you to conditionally render a slot based on certain

conditions, such as authentication state. This enables fully separated code on
the same URL.

<lmage
alt="Conditional routes diagram"
srcLight="/docs/light/conditional-routes-ui.png"
srcDark="/docs/dark/conditional-routes-ui.png"

width="1600"
height="898"
[>

Convention

Parallel routes are created using named **slots** Slots are defined with the
‘@folder’ convention, and are passed to the same-level layout as props.

> Slots are _not_ route segments and _do not affect the URL structure_. The
file path “/@team/members™ would be accessible at '/members".

For example, the following file structure defines two explicit slots: “@analytics®
and "@team".

<lmage
alt="Parallel Routes File-system Structure"
srcLight="/docs/light/parallel-routes-file-system.png"
srcDark="/docs/dark/parallel-routes-file-system.png"

width="1600"
height="687"
/>

The folder structure above means that the component in “app/layout.js™ now
accepts the "@analytics ™ and "@team" slots props, and can render them in
parallel alongside the "children” prop:

* " tsx filename="app/layout.tsx" switcher
export default function Layout(props: {
children: React.ReactNode
analytics: React.ReactNode
team: React.ReactNode
N A
return (
<>
{props.children}
{props.team}
{props.analytics}
<[>

)

“*Yjsx filename="app/layout.js" switcher
export default function Layout(props) {
return (
<>
{props.children}
{props.team}
{props.analytics}
<[>
)
}

> **Good to know**: The “children’ prop is an implicit slot that does not need
to be mapped to a folder. This means "app/page.js’ is equivalent to "app/
@children/page.js .

Unmatched Routes
By default, the content rendered within a slot will match the current URL.

In the case of an unmatched slot, the content that Next.js renders differs based
on the routing technique and folder structure.

"default.js’

You can define a “default.js" file to render as a fallback when Next.js cannot
recover a slot's active state based on the current URL.

Consider the following folder structure. The "@team" slot has a "settings’
directory, but “@analytics™ does not.

<lmage
alt="Parallel Routes unmatched routes"
srcLight="/docs/light/parallel-routes-unmatched-routes.png"
srcDark="/docs/dark/parallel-routes-unmatched-routes.png"
width="1600"
height="930"

[>
Navigation

On navigation, Next.js will render the slot's previously active state, even if it
doesn't match the current URL.

Reload

On reload, Next.js will first try to render the unmatched slot's "default.js" file. If
that's not available, a 404 gets rendered.

> The 404 for unmatched routes helps ensure that you don't accidentally
render a route that shouldn't be parallel rendered.

"useSelectedLayoutSegment(s)"

Both [useSelectedLayoutSegment](/docs/app/api-reference/functions/use-
selected-layout-segment) and [useSelectedLayoutSegments](/docs/app/api-
reference/functions/use-selected-layout-segments) accept a
“parallelRoutesKey *, which allows you to read the active route segment within
that slot.

“ " tsx filename="app/layout.tsx" switcher
'use client'

import { useSelectedLayoutSegment } from 'next/navigation’

export default async function Layout(props: {

/...

auth: React.ReactNode

DA

const loginSegments = useSelectedLayoutSegment('auth')

/...
-

“*Yjsx filename="app/layout.js" switcher
'use client'

import { useSelectedLayoutSegment } from 'next/navigation'

export default async function Layout(props) {
const loginSegments = useSelectedLayoutSegment(‘'auth')

/...
.

When a user navigates to “@auth/login’, or “/login" in the URL bar,
‘loginSegments ™ will be equal to the string ""login"".

Examples

Modals
Parallel Routing can be used to render modals.

<lmage
alt="Parallel Routes Diagram"
srcLight="/docs/light/parallel-routes-auth-modal.png"
srcDark="/docs/dark/parallel-routes-auth-modal.png"

width="1600"
height="687"
/>

The "@auth” slot renders a "<Modal>" component that can be shown by
navigating to a matching route, for example “/login".

* T tsx filename="app/layout.tsx" switcher
export default async function Layout(props: {
/...
auth: React.ReactNode
HA
return (
<>
{*...*}
{props.auth}
<[>
)
}

“"jsx filename="app/layout.js" switcher
export default async function Layout(props) {
return (
<>
... "1
{props.auth}
<[>
)
}

" tsx filename="app/@auth/login/page.tsx" switcher
import { Modal } from 'components/modal’

export default function Login() {
return (
<Modal>

<h1>Login</h1>
{* ... "I}
</Modal>
)
}

" jsx filename="app/@auth/login/page.js" switcher
import { Modal } from 'components/modal’

export default function Login() {
return (
<Modal>
<h1>Login</h1>
{* ... *}
</Modal>
)
}

To ensure that the contents of the modal don't get rendered when it's not
active, you can create a “default.js" file that returns "null".

“ " tsx filename="app/@auth/default.tsx" switcher
export default function Default() {
return null

AR RN

" jsx filename="app/@auth/default.js" switcher
export default function Default() {
return null

AR RN

Dismissing a modal

If a modal was initiated through client navigation, e.g. by using "<Link href="/
login">", you can dismiss the modal by calling "router.back()" or by using a
‘Link” component.

" tsx filename="app/@auth/login/page.tsx" highlight="5" switcher
'use client'

import { useRouter } from 'next/navigation’

import { Modal } from 'components/modal’

export default async function Login() {

const router = useRouter()
return (
<Modal>
 router.back()}>Close modal
<h1>Login</h1>

</Modal>
)
}

“Yjsx filename="app/@auth/login/page.js" highlight="5" switcher
'use client'

import { useRouter } from 'next/navigation’

import { Modal } from 'components/modal’

export default async function Login() {
const router = useRouter()
return (
<Modal>
 router.back()}>Close modal
<h1>Login</h1>

</Modal>
)
}

> More information on modals is covered in the [Intercepting Routes](/docs/
app/building-your-application/routing/intercepting-routes) section.

If you want to navigate elsewhere and dismiss a modal, you can also use a
catch-all route.

<lmage
alt="Parallel Routes Diagram"
srcLight="/docs/light/parallel-routes-catchall.png"
srcDark="/docs/dark/parallel-routes-catchall.png"

width="1600"
height="768"
[>

* T tsx filename="app/@auth/[...catchAll]/page.tsx" switcher
export default function CatchAll() {
return null

AR RN

" jsx filename="app/@auth/[...catchAll]/page.js" switcher
export default function CatchAll() {
return null

AUR RN

> Catch-all routes take precedence over "default.js .
Conditional Routes

Parallel Routes can be used to implement conditional routing. For example, you
can render a “@dashboard’™ or “@login’ route depending on the authentication
state.

“ " tsx filename="app/layout.tsx" switcher
import { getUser } from '@/lib/auth’

export default function Layout({
dashboard,
login,
FA
dashboard: React.ReactNode
login: React.ReactNode
A
const isLoggedin = getUser()
return isLoggedIn ? dashboard : login

LR RN

“"jsx filename="app/layout.js" switcher
import { getUser } from '@/lib/auth’

export default function Layout({ dashboard, login }) {
const isLoggedIn = getUser()
return isLoggedIn ? dashboard : login

AR RN

<lmage
alt="Parallel routes authentication example"
srcLight="/docs/light/conditional-routes-ui.png"
srcDark="/docs/dark/conditional-routes-ui.png"
width="1600"
height="898"

/>

title: Intercepting Routes
description: Use intercepting routes to load a new route within the current
layout while masking the browser URL, useful for advanced routing patterns
such as modals.
related:

title: Next Steps

description: Learn how to use modals with Intercepted and Parallel Routes.

links:

- app/building-your-application/routing/parallel-routes

Intercepting routes allows you to load a route from another part of your
application within the current layout. This routing paradigm can be useful when
you want to display the content of a route without the user switching to a
different context.

For example, when clicking on a photo in a feed, you can display the photo in a
modal, overlaying the feed. In this case, Next.js intercepts the /photo/123"
route, masks the URL, and overlays it over "[feed .

<lmage
alt="Intercepting routes soft navigation"
srcLight="/docs/light/intercepting-routes-soft-navigate.png"
srcDark="/docs/dark/intercepting-routes-soft-navigate.png"
width="1600"
height="617"

/>

However, when navigating to the photo by clicking a shareable URL or by
refreshing the page, the entire photo page should render instead of the modal.
No route interception should occur.

<lmage
alt="Intercepting routes hard navigation"
srcLight="/docs/light/intercepting-routes-hard-navigate.png"
srcDark="/docs/dark/intercepting-routes-hard-navigate.png"
width="1600"
height="604"

[>
Convention

Intercepting routes can be defined with the “(..)" convention, which is similar to
relative path convention "../" but for segments.

You can use:

) to match segments on the **same level**

.)" to match segments **one level above**

.)(..)" to match segments **two levels above**

..)” to match segments from the **root** "app" directory

.
°
o
o

For example, you can intercept the "photo” segment from within the "feed"
segment by creating a “(..)photo" directory.

<lmage
alt="Intercepting routes folder structure"
srcLight="/docs/light/intercepted-routes-files.png"
srcDark="/docs/dark/intercepted-routes-files.png"

width="1600"
height="604"
/>

> Note that the “(..) convention is based on _route segments_, not the file-
system.

Examples
Modals

Intercepting Routes can be used together with [Parallel Routes](/docs/app/
building-your-application/routing/parallel-routes) to create modals.

Using this pattern to create modals overcomes some common challenges when
working with modals, by allowing you to:

- Make the modal content **shareable through a URL**

- **Preserve context** when the page is refreshed, instead of closing the modal
- **Close the modal on backwards navigation** rather than going to the
previous route

- **Reopen the modal on forwards navigation**

<lmage
alt="Intercepting routes modal example"
srcLight="/docs/light/intercepted-routes-modal-example.png"
srcDark="/docs/dark/intercepted-routes-modal-example.png"
width="1600"
height="976"

/>

> In the above example, the path to the "photo’ segment can use the “(..)"

matcher since "@modal’ is a _slot_ and not a _segment_. This means that the
“photo” route is only one _segment_ level higher, despite being two _file-
system_ levels higher.

Other examples could include opening a login modal in a top navbar while also
having a dedicated “/login™ page, or opening a shopping cart in a side modal.

[View an example](https://github.com/vercel-labs/nextgram) of modals with
Intercepted and Parallel Routes.

title: Route Handlers
description: Create custom request handlers for a given route using the Web's
Request and Response APlIs.
related:

title: APl Reference

description: Learn more about the route.js file.

links:

- app/api-reference/file-conventions/route

Route Handlers allow you to create custom request handlers for a given route
using the Web [Request] (https://developer.mozilla.org/docs/Web/API/Request)
and [Response](https://developer.mozilla.org/docs/Web/API/Response) APIs.

<lmage
alt="Route.js Special File"
srcLight="/docs/light/route-special-file.png"
srcDark="/docs/dark/route-special-file.png"

width="1600"
height="444"
/>

> **Good to know**: Route Handlers are only available inside the "app’
directory. They are the equivalent of [API Routes](/docs/pages/building-your-
application/routing/api-routes) inside the "pages’ directory meaning you **do
not** need to use APl Routes and Route Handlers together.

Convention

Route Handlers are defined in a [‘route.js|ts" file](/docs/app/api-reference/file-
conventions/route) inside the "app " directory:

**'ts filename="app/api/route.ts" switcher
export const dynamic = 'force-dynamic' /| defaults to force-static
export async function GET(request: Request) {}

" js filename="app/api/route.js" switcher
export const dynamic = 'force-dynamic' /[defaults to force-static
export async function GET(request) {}

Route Handlers can be nested inside the "app " directory, similar to “page.js’
and “layout.js . But there **cannot** be a ‘route.js" file at the same route
segment level as "page.js’.

Supported HTTP Methods

The following [HTTP methods](https://developer.mozilla.org/docs/Web/HTTP/
Methods) are supported: "GET", "POST", 'PUT", 'PATCH", 'DELETE", "HEAD",
and "OPTIONS" . If an unsupported method is called, Next.js will returna "405
Method Not Allowed " response.

Extended "NextRequest™ and "NextResponse™ APls

In addition to supporting native [Request](https://developer.mozilla.org/docs/
Web/API/Request) and [Response](https://developer.mozilla.org/docs/Web/API/
Response). Next.js extends them with

['NextRequest](/docs/app/api-reference/functions/next-request) and
['NextResponse](/docs/app/api-reference/functions/next-response) to provide
convenient helpers for advanced use cases.

Behavior
Caching

Route Handlers are cached by default when using the "GET ™ method with the
"Response’ object.

“*ts filename="app/items/route.ts" switcher
export async function GET() {
const res = await fetch('https://data.mongodb-api.com/...’, {
headers: {
'Content-Type': 'application/json’,
'API-Key': process.env.DATA_API_KEY,
h
1

const data = await res.json()

return Response.json({ data })

LURNRY

" js filename="app/items/route.js" switcher
export async function GET() {
const res = await fetch('https://data.mongodb-api.com/..., {
headers: {
'Content-Type': 'application/json’,
'API-Key': process.env.DATA_API_KEY,
|3
1

const data = await res.json()

return Response.json({ data })

LR RN

> **TypeScript Warning:** "Response.json() " is only valid from TypeScript 5.2.
If you use a lower TypeScript version, you can use [NextResponse.json() "](/
docs/app/api-reference/functions/next-response#json) for typed responses
instead.

Opting out of caching
You can opt out of caching by:

- Using the "Request’ object with the "GET" method.

- Using any of the other HTTP methods.

- Using [Dynamic Functions](#dynamic-functions) like "cookies™ and
“headers".

- The [Segment Config Options](#segment-config-options) manually specifies
dynamic mode.

For example:

**ts filename="app/products/api/route.ts" switcher
export async function GET(request: Request) {
const { searchParams } = new URL(request.url)
const id = searchParams.get('id")
const res = await fetch(https://data.mongodb-api.com/product/${id}", {
headers: {
'Content-Type': 'application/json’,
'API-Key': process.env.DATA_API_KEY!,
|3
1

const product = await res.json()

return Response.json({ product })

}

" js filename="app/products/api/route.js" switcher
export async function GET(request) {
const { searchParams } = new URL(request.url)
const id = searchParams.get('id")
const res = await fetch(https://data.mongodb-api.com/product/${id}", {
headers: {
'Content-Type': 'application/json’,
'API-Key': process.env.DATA_API_KEY,
h
1

const product = await res.json()

return Response.json({ product })

RN

Similarly, the "POST" method will cause the Route Handler to be evaluated
dynamically.

“"ts filename="app/items/route.ts" switcher
export async function POST() {
const res = await fetch('https://data.mongodb-api.com/...’, {
method: 'POST/,
headers: {
'Content-Type': 'application/json’,
'API-Key': process.env.DATA_API_KEY!,

h
body: JSON.stringify({ time: new Date().tolSOString() }),

}

const data = await res.json()

return Response.json(data)

AUR RN

“ s filename="app/items/route.js" switcher
export async function POST() {
const res = await fetch('https://data.mongodb-api.com/..., {
method: 'POST,
headers: {
'Content-Type': 'application/json’,
'API-Key': process.env.DATA_API_KEY,

|3
body: JSON.stringify({ time: new Date().tolSOString() }),

}

const data = await res.json()
return Response.json(data)

RN

> **Good to know**: Like API Routes, Route Handlers can be used for cases like
handling form submissions. A new abstraction for [handling forms and
mutations](/docs/app/building-your-application/data-fetching/forms-and-
mutations) that integrates deeply with React is being worked on.

Route Resolution
You can consider a ‘route’ the lowest level routing primitive.

- They **do not** participate in layouts or client-side navigations like “page .
- There **cannot** be a ‘route.js file at the same route as "page.js .

| Page | Route | Result |
R | <o | mmmmmmm e |
| “app/page.js’ | “app/route.js® | <Cross size={18} /> Conflict |

| “app/page.js’ | “app/api/route.js” | <Check size={18} /> Valid |

|

‘app/[user]/page.js’ | "app/apifroute.js’ | <Check size={718} /> Valid |
Each ‘route.js’ or "page.js’ file takes over all HTTP verbs for that route.
" jsx filename="app/page.js"

export default function Page() {
return <h1>Hello, Next.js!</h1>

}

/] K Conflict

/| “app/route.js’

export async function POST (request) {}

Examples

The following examples show how to combine Route Handlers with other
Next.js APIs and features.

Revalidating Cached Data

You can [revalidate cached data](/docs/app/building-your-application/data-
fetching/fetching-caching-and-revalidating#revalidating-data) using the

['next.revalidate "] (/docs/app/building-your-application/data-fetching/fetching-
caching-and-revalidating#revalidating-data) option:

“ts filename="app/items/route.ts" switcher
export async function GET() {
const res = await fetch('https://data.mongodb-api.com/..., {
next: { revalidate: 60 }, // Revalidate every 60 seconds

}

const data = await res.json()

return Response.json(data)

AR RN

“js filename="app/items/route.js" switcher
export async function GET() {
const res = await fetch('https://data.mongodb-api.com/..., {
next: { revalidate: 60 }, // Revalidate every 60 seconds

}

const data = await res.json()

return Response.json(data)

LUE RN

Alternatively, you can use the [revalidate® segment config option](/docs/app/
api-reference/file-conventions/route-segment-config#revalidate):

“ts
export const revalidate = 60

Dynamic Functions

Route Handlers can be used with dynamic functions from Next.js, like
[‘cookies](/docs/app/api-reference/functions/cookies) and ["headers](/docs/
app/api-reference/functions/headers).

Cookies

You can read cookies with [cookies](/docs/app/api-reference/functions/
cookies) from “next/headers . This server function can be called directly in a
Route Handler, or nested inside of another function.

This "cookies ™ instance is read-only. To set cookies, you need to return a new
"Response’ using the [Set-Cookie '] (https://developer.mozilla.org/docs/Web/
HTTP/Headers/Set-Cookie) header.

" ts filename="app/api/route.ts" switcher
import { cookies } from 'next/headers'

export async function GET(request: Request) {
const cookieStore = cookies()
const token = cookieStore.get('token"')

return new Response('Hello, Next.js!', {
status: 200,
headers: { 'Set-Cookie': "token=${token.value}" },
1
}

* s filename="app/api/route.js" switcher
import { cookies } from 'next/headers'

export async function GET(request) {
const cookieStore = cookies()
const token = cookieStore.get('token"')

return new Response('Hello, Next.js!', {
status: 200,
headers: { 'Set-Cookie'": "token=${token}" },
1
}

Alternatively, you can use abstractions on top of the underlying Web APIs to
read cookies ([NextRequest](/docs/app/api-reference/functions/next-
request)):

“ " ts filename="app/api/route.ts" switcher
import { type NextRequest } from 'next/server’

export async function GET(request: NextRequest) {
const token = request.cookies.get('token')

LURNRN

*"js filename="app/api/route.js" switcher
export async function GET(request) {
const token = request.cookies.get('token')

LUR RN

##t## Headers

You can read headers with [headers](/docs/app/api-reference/functions/
headers) from "next/headers’. This server function can be called directly in a
Route Handler, or nested inside of another function.

This “headers’ instance is read-only. To set headers, you need to return a new
"Response’ with new "headers".

" 'ts filename="app/api/route.ts" switcher
import { headers } from 'next/headers'

export async function GET(request: Request) {
const headersList = headers()
const referer = headersList.get('referer’)

return new Response('Hello, Next.js!’, {
status: 200,
headers: { referer: referer },
1
}

" js filename="app/api/route.js" switcher
import { headers } from 'next/headers'

export async function GET(request) {
const headersList = headers|()
const referer = headersList.get('referer')

return new Response('Hello, Next.js!', {
status: 200,
headers: { referer: referer },
1
}

Alternatively, you can use abstractions on top of the underlying Web APIs to
read headers ([NextRequest](/docs/app/api-reference/functions/next-
request)):

* " ts filename="app/api/route.ts" switcher
import { type NextRequest } from 'next/server’

export async function GET(request: NextRequest) {
const requestHeaders = new Headers(request.headers)

*js filename="app/api/route.js" switcher
export async function GET(request) {
const requestHeaders = new Headers(request.headers)

AUENEN

Redirects

“ " ts filename="app/api/route.ts" switcher
import { redirect } from 'next/navigation'

export async function GET(request: Request) {
redirect('https://nextjs.org/")

LURNRY

" js filename="app/api/route.js" switcher
import { redirect } from 'next/navigation’

export async function GET(request) {
redirect('https://nextjs.org/")

AURNEN

Dynamic Route Segments

> We recommend reading the [Defining Routes](/docs/app/building-your-
application/routing/defining-routes) page before continuing.

Route Handlers can use [Dynamic Segments](/docs/app/building-your-
application/routing/dynamic-routes) to create request handlers from dynamic
data.

“ts filename="app/items/[slug]/route.ts" switcher
export async function GET(

request: Request,

{ params }: { params: { slug: string } }
) {

const slug = params.slug // 'a’, 'b’, or 'c'

LR RN

" s filename="app/items/[slug]/route.js" switcher
export async function GET (request, { params }) {

const slug = params.slug // 'a’, 'b', or 'c'

| Route | Example URL | ‘params” |

“app/items/[slug]/route.js™	“J/items/a"	{slug:'a'}"
“app/items/[slug]/route.js”	“J/items/b™	{slug: 'b"'}
“app/items/[slug]/route.js™	“[items/c"	{slug:'c'}

URL Query Parameters

The request object passed to the Route Handler is a "NextRequest " instance,
which has [some additional convenience methods](/docs/app/api-reference/
functions/next-request#nexturl), including for more easily handling query
parameters.

" ts filename="app/api/search/route.ts" switcher
import { type NextRequest } from 'next/server’

export function GET(request: NextRequest) {
const searchParams = request.nextUrl.searchParams
const query = searchParams.get('query')
/| query is "hello" for [api/search?query=hello

EUR RN

* s filename="app/api/search/route.js" switcher
export function GET(request) {
const searchParams = request.nextUrl.searchParams
const query = searchParams.get('query')
/| query is "hello" for [api/search?query=hello

LUENRY

Streaming

Streaming is commonly used in combination with Large Language Models
(LLMs), such as OpenAl, for Al-generated content. Learn more about the [Al
SDK](https://sdk.vercel.ai/docs).

" ts filename="app/api/chat/route.ts" switcher
import OpenAl from 'openai'
import { OpenAlStream, StreamingTextResponse } from 'ai’

const openai = new OpenAl({
apiKey: process.env.OPENAI_API_KEY,

}

export const runtime = 'edge’

export async function POST(req: Request) {
const { messages } = await req.json()
const response = await openai.chat.completions.create({
model: 'gpt-3.5-turbo’,
stream: true,
messages,

}

const stream = OpenAlStream(response)

return new StreamingTextResponse(stream)

AR RN

“js filename="app/api/chat/route.js" switcher
import OpenAl from 'openai'
import { OpenAlStream, StreamingTextResponse } from 'ai’

const openai = new OpenAl({
apiKey: process.env.OPENAI_API_KEY,

)

export const runtime = 'edge’

export async function POST(req) {
const { messages } = await req.json()
const response = await openai.chat.completions.create({
model: 'gpt-3.5-turbo’,
stream: true,
messages,

}

const stream = OpenAlStream(response)
return new StreamingTextResponse(stream)

AUR RN

These abstractions use the Web APIs to create a stream. You can also use the
underlying Web APIs directly.

" ts filename="app/api/route.ts" switcher
/| https://developer.mozilla.org/docs/Web/API/

ReadableStream#convert_async_iterator_to_stream
function iteratorToStream(iterator: any) {
return new ReadableStream({
async pull(controller) {
const { value, done } = await iterator.next()

if (done) {
controller.close()

}else {
controller.enqueue(value)

function sleep(time: number) {
return new Promise((resolve) =
setTimeout(resolve, time)

}
}

> {

const encoder = new TextEncoder()

async function* makelterator() {
yield encoder.encode('<p>0One</p>')
await sleep(200)
yield encoder.encode('<p>Two</p>")
await sleep(200)
yield encoder.encode('<p>Three</p>")

}

export async function GET() {
const iterator = makelterator()
const stream = iteratorToStream(iterator)

return new Response(stream)

LUR RN

* s filename="app/api/route.js" switcher
/| https://developer.mozilla.org/docs/Web/API/
ReadableStream#convert_async_iterator_to_stream
function iteratorToStream(iterator) {
return new ReadableStream({
async pull(controller) {
const { value, done } = await iterator.next()

if (done) {
controller.close()

} else {
controller.enqueue(value)

function sleep(time) {
return new Promise((resolve) => {
setTimeout(resolve, time)
1
}

const encoder = new TextEncoder()

async function* makelterator() {
yield encoder.encode('<p>0One</p>")
await sleep(200)
yield encoder.encode('<p>Two</p>')
await sleep(200)
yield encoder.encode('<p>Three</p>")

}

export async function GET() {
const iterator = makelterator()
const stream = iteratorToStream(iterator)

return new Response(stream)

LURNRN

Request Body
You can read the "Request’ body using the standard Web APl methods:

“"ts filename="app/items/route.ts" switcher
export async function POST (request: Request) {
const res = await request.json()
return Response.json({ res })

LR RN

“ s filename="app/items/route.js" switcher
export async function POST(request) {

const res = await request.json()
return Response.json({ res })

AR RN

Request Body FormData
You can read the "FormData" using the ‘request.formData() " function:

“*ts filename="app/items/route.ts" switcher
export async function POST (request: Request) {
const formData = await request.formData()
const name = formData.get('name’)
const email = formData.get('email')
return Response.json({ name, email })

LR RN

“ s filename="app/items/route.js" switcher
export async function POST (request) {
const formData = await request.formData()
const name = formData.get('name')
const email = formData.get('email’)
return Response.json({ name, email })

LR RN

Since ‘formData’ data are all strings, you may want to use [zod-form-data’]
(https://www.npmjs.com/zod-form-data) to validate the request and retrieve
data in the format you prefer (e.g. "number’).

CORS

You can set CORS headers on a "Response’ using the standard Web API
methods:

* " ts filename="app/api/route.ts" switcher
export const dynamic = 'force-dynamic' // defaults to force-static

export async function GET(request: Request) {
return new Response('Hello, Next.js!', {
status: 200,
headers: {
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Methods': 'GET, POST, PUT, DELETE, OPTIONS',
'Access-Control-Allow-Headers': 'Content-Type, Authorization’,

}l

*"js filename="app/api/route.js" switcher
export const dynamic = 'force-dynamic' /[defaults to force-static

export async function GET (request) {
return new Response('Hello, Next.js!’, {
status: 200,
headers: {
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Methods': 'GET, POST, PUT, DELETE, OPTIONS',
'Access-Control-Allow-Headers': 'Content-Type, Authorization’,
|3
})
}

Edge and Node.js Runtimes

Route Handlers have an isomorphic Web API to support both Edge and Node.js
runtimes seamlessly, including support for streaming. Since Route Handlers use
the same [route segment configuration](/docs/app/api-reference/file-
conventions/route-segment-config) as Pages and Layouts, they support long-
awaited features like general-purpose [statically regenerated](/docs/app/
building-your-application/data-fetching/fetching-caching-and-
revalidating#revalidating-data) Route Handlers.

You can use the "‘runtime’ segment config option to specify the runtime:

s
export const runtime = 'edge' // 'nodejs' is the default

Non-Ul Responses

You can use Route Handlers to return non-Ul content. Note that

[sitemap.xml] (/docs/app/api-reference/file-conventions/metadata/
sitemap#generate-a-sitemap), [robots.txt](/docs/app/api-reference/file-
conventions/metadata/robots#generate-a-robots-file), [app icons](/docs/
app/api-reference/file-conventions/metadata/app-icons#generate-icons-using-
code-js-ts-tsx), and [open graph images](/docs/app/api-reference/file-
conventions/metadata/opengraph-image) all have built-in support.

" ts filename="app/rss.xml/route.ts" switcher
export const dynamic = 'force-dynamic' /[defaults to force-static

export async function GET() {
return new Response(<?xml version="1.0" encoding="UTF-8" ?>
<rss version="2.0">

<channel>
<title>Next.js Documentation</title>
<link>https://nextjs.org/docs</link>
<description>The React Framework for the Web</description>
</channel>

<[rss>")

AUENEN

* s filename="app/rss.xml/route.js" switcher
export const dynamic = 'force-dynamic' /| defaults to force-static

export async function GET() {
return new Response(<?xml version="1.0" encoding="UTF-8" ?>
<rss version="2.0">

<channel>
<title>Next.js Documentation</title>
<link>https://nextjs.org/docs</link>
<description>The React Framework for the Web</description>
</channel>

<[rss>")

AR RN

Segment Config Options

Route Handlers use the same [route segment configuration](/docs/app/api-
reference/file-conventions/route-segment-config) as pages and layouts.

" ts filename="app/items/route.ts" switcher
export const dynamic = 'auto’

export const dynamicParams = true

export const revalidate = false

export const fetchCache = 'auto'

export const runtime = 'nodejs'

export const preferredRegion = 'auto’

*js filename="app/items/route.js" switcher

export const dynamic = 'auto’

export const dynamicParams = true
export const revalidate = false

export const fetchCache = 'auto'
export const runtime = 'nodejs'
export const preferredRegion = 'auto’

See the [API reference](/docs/app/api-reference/file-conventions/route-
segment-config) for more details.

title: Middleware
description: Learn how to use Middleware to run code before a request is
completed.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

Middleware allows you to run code before a request is completed. Then, based
on the incoming request, you can modify the response by rewriting, redirecting,
modifying the request or response headers, or responding directly.

Middleware runs before cached content and routes are matched. See [Matching
Paths](#matching-paths) for more details.

Convention

Use the file "'middleware.ts” (or ".js) in the root of your project to define
Middleware. For example, at the same level as "pages’ or "app’, or inside “src’
if applicable.

Example

**ts filename="middleware.ts" switcher
import { NextResponse } from 'next/server’
import type { NextRequest } from 'next/server’

/| This function can be marked ‘async’ if using "await" inside
export function middleware(request: NextRequest) {
return NextResponse.redirect(new URL('/home', request.url))

}

/| See "Matching Paths" below to learn more

export const config = {
matcher: 'fabout/:path*’,

LUENRY

" js filename="middleware.js" switcher
import { NextResponse } from 'next/server’

/| This function can be marked “async’ if using "await" inside
export function middleware(request) {
return NextResponse.redirect(new URL('/home’, request.url))

}

/| See "Matching Paths" below to learn more
export const config = {
matcher: '[about/:path*/,

AUENEN

Matching Paths

Middleware will be invoked for **every route in your project**. The following
is the execution order:

1. "headers™ from "next.config.js’

2. ‘redirects’ from "next.config.js’

3. Middleware ("rewrites’, ‘redirects’, etc.)

4. "beforeFiles” (‘rewrites’) from "next.config.js’

5. Filesystem routes (" public/’, "_next/static/”, "pages/’, "app/’, etc.)
6. "afterFiles™ ("rewrites’) from "next.config.js’

7. Dynamic Routes ("/blog/[slug])

8. ‘fallback™ (‘rewrites’) from "next.config.js’

There are two ways to define which paths Middleware will run on:

1. [Custom matcher config] (#matcher)
2. [Conditional statements](#conditional-statements)

Matcher
“matcher’ allows you to filter Middleware to run on specific paths.
“js filename="middleware.js"

export const config = {
matcher: 'fabout/:path*’,

LUENRY

You can match a single path or multiple paths with an array syntax:

* s filename="middleware.js"
export const config = {

matcher: ['/about/:path*', '/dashboard/:path*'],
}

The "matcher’ config allows full regex so matching like negative lookaheads or
character matching is supported. An example of a negative lookahead to match
all except specific paths can be seen here:

" js filename="middleware.js"
export const config = {
matcher: [
/*
* Match all request paths except for the ones starting with:
* - api (API routes)
* - _next/static (static files)
* - _next/image (image optimization files)
* - favicon.ico (favicon file)
*/
'/((?'api|_next/static|_next/image|favicon.ico).*)',
1
}

> **Good to know**: The "matcher’ values need to be constants so they can
be statically analyzed at build-time. Dynamic values such as variables will be
ignored.

Configured matchers:

1. MUST start with */°

2. Can include named parameters: “/about/:path’ matches “/about/a” and */
about/b” but not “/about/a/c’

3. Can have modifiers on named parameters (starting with ":"): “/about/:path*"
matches “/about/a/b/c’ because "* is_zero or more_. '?" is_zero or one_ and
“+' _one or more_

4. Can use regular expression enclosed in parenthesis: “/about/(.*) " is the same
as [about/:path*’

Read more details on [path-to-regexp](https://github.com/pillarjs/path-to-
regexp#path-to-regexp-1) documentation.

> **Good to know**: For backward compatibility, Next.js always considers '/

public® as "/public/index . Therefore, a matcher of */public/:path” will match.
Conditional Statements

“ " ts filename="middleware.ts" switcher
import { NextResponse } from 'next/server’
import type { NextRequest } from 'next/server’

export function middleware(request: NextRequest) {
if (request.nextUrl.pathname.startsWith('/about')) {
return NextResponse.rewrite(new URL('/about-2', request.url))

}

if (request.nextUrl.pathname.startsWith('/dashboard")) {
return NextResponse.rewrite(new URL('/dashboard/user’, request.url))
}
}

“js filename="middleware.js" switcher
import { NextResponse } from 'next/server’

export function middleware(request) {
if (request.nextUrl.pathname.startsWith('/about')) {
return NextResponse.rewrite(new URL('/about-2', request.url))

}

if (request.nextUrl.pathname.startsWith('/dashboard')) {
return NextResponse.rewrite(new URL('/dashboard/user’, request.url))
}
}

NextResponse
The "NextResponse™ API allows you to:

- ‘redirect’ the incoming request to a different URL

- ‘rewrite’ the response by displaying a given URL

- Set request headers for APl Routes, "getServerSideProps’, and ‘rewrite’
destinations

- Set response cookies

- Set response headers

<AppOnly>

To produce a response from Middleware, you can:

1. ‘rewrite to a route ([Page](/docs/app/building-your-application/routing/
pages-and-layouts) or [Route Handler](/docs/app/building-your-application/
routing/route-handlers)) that produces a response

2. return a "NextResponse ' directly. See [Producing a Response](#producing-
a-response)

</AppOnly>
<PagesOnly>
To produce a response from Middleware, you can:

1. ‘rewrite’ to a route ([Page](/docs/pages/building-your-application/routing/
pages-and-layouts) or [Edge API Route](/docs/pages/building-your-application/
routing/api-routes)) that produces a response

2. return a "NextResponse " directly. See [Producing a Response] (#producing-
a-response)

</PagesOnly>
Using Cookies

Cookies are regular headers. On a "Request’, they are stored in the "Cookie"
header. On a "Response’ they are in the "Set-Cookie ™ header. Next.js provides
a convenient way to access and manipulate these cookies through the
“cookies” extension on "NextRequest™ and "NextResponse'.

1. For incoming requests, "cookies’ comes with the following methods: "get’,
‘getAll’, "set’, and "delete’ cookies. You can check for the existence of a
cookie with "has" or remove all cookies with “clear".

2. For outgoing responses, ‘cookies" have the following methods "get”,
‘getAll’, “set’, and ‘delete’.

*ts filename="middleware.ts" switcher
import { NextResponse } from 'next/server’
import type { NextRequest } from 'next/server’

export function middleware(request: NextRequest) {

/| Assume a "Cookie:nextjs=fast" header to be present on the incoming
request

/| Getting cookies from the request using the "RequestCookies™ API

let cookie = request.cookies.get('nextjs')

console.log(cookie) // => { name: 'nextjs’', value: 'fast’, Path: '/' }

const allCookies = request.cookies.getAll()

console.log(allCookies) [/ => [{ name: 'nextjs’, value: 'fast' }]

request.cookies.has('nextjs') [/ => true
request.cookies.delete('nextjs')
request.cookies.has('nextjs') [/ => false

/| Setting cookies on the response using the "ResponseCookies” API
const response = NextResponse.next()
response.cookies.set('vercel’, 'fast')
response.cookies.set({
name: 'vercel',
value: 'fast’,
path: '/,
})
cookie = response.cookies.get('vercel')
console.log(cookie) /[=> { name: 'vercel', value: 'fast’, Path: '/' }
/| The outgoing response will have a *Set-Cookie:vercel=fast;path=/test’
header.

return response

AUENEN

* s filename="middleware.js" switcher
import { NextResponse } from 'next/server’

export function middleware(request) {

/| Assume a "Cookie:nextjs=fast" header to be present on the incoming
request

/| Getting cookies from the request using the "RequestCookies™ API

let cookie = request.cookies.get('nextjs')

console.log(cookie) /[=> { name: 'nextjs’, value: 'fast’, Path: '/' }

const allCookies = request.cookies.getAll()

console.log(allCookies) /[=> [{ name: 'nextjs’, value: 'fast' }]

request.cookies.has('nextjs') // => true
request.cookies.delete('nextjs')
request.cookies.has('nextjs') [/ => false

/| Setting cookies on the response using the "ResponseCookies”™ API
const response = NextResponse.next()
response.cookies.set('vercel', 'fast')
response.cookies.set({

name: 'vercel',

value: 'fast’,

path: '/,
1

cookie = response.cookies.get('vercel')

console.log(cookie) /[=> { name: 'vercel', value: 'fast’, Path: '/' }
/| The outgoing response will have a *Set-Cookie:vercel=fast;path=/test’
header.

return response

LR RN

Setting Headers

You can set request and response headers using the "NextResponse™ API
(setting _request_ headers is available since Next.js v13.0.0).

“ " ts filename="middleware.ts" switcher
import { NextResponse } from 'next/server’
import type { NextRequest } from 'next/server’

export function middleware(request: NextRequest) {
/| Clone the request headers and set a new header “x-hello-from-
middleware1’
const requestHeaders = new Headers(request.headers)
requestHeaders.set('x-hello-from-middleware?’, 'hello')

/| You can also set request headers in NextResponse.rewrite
const response = NextResponse.next({
request: {
/| New request headers
headers: requestHeaders,

}I
}

/| Set a new response header "x-hello-from-middleware2"
response.headers.set('x-hello-from-middleware?2’, 'hello')
return response

LURNRN

“"js filename="middleware.js" switcher
import { NextResponse } from 'next/server’

export function middleware(request) {
/| Clone the request headers and set a new header “x-hello-from-
middleware1’
const requestHeaders = new Headers(request.headers)
requestHeaders.set('x-hello-from-middleware?’, 'hello')

/| You can also set request headers in NextResponse.rewrite

const response = NextResponse.next({
request: {
/| New request headers
headers: requestHeaders,

}I
}

/| Set a new response header “x-hello-from-middleware2"
response.headers.set('x-hello-from-middleware?2’, 'hello')
return response

> **Good to know**: Avoid setting large headers as it might cause [431
Request Header Fields Too Large](https://developer.mozilla.org/docs/Web/
HTTP/Status/431) error depending on your backend web server configuration.

Producing a Response

You can respond from Middleware directly by returning a "Response’ or
"NextResponse ' instance. (This is available since [Next.js v13.1.0] (https://
nextjs.org/blog/next-13-1#nextjs-advanced-middleware))

" ts filename="middleware.ts" switcher
import { NextRequest } from 'next/server’
import { isAuthenticated } from '@lib/auth’

/| Limit the middleware to paths starting with “/api/
export const config = {
matcher: '/api/:function*’,

}

export function middleware(request: NextRequest) {
/| Call our authentication function to check the request
if (YisAuthenticated(request)) {
/| Respond with JSON indicating an error message
return Response.json(
{ success: false, message: 'authentication failed' },
{ status: 4017}
)

)
-

" js filename="middleware.js" switcher
import { isAuthenticated } from '@lib/auth’

/| Limit the middleware to paths starting with “/api/’
export const config = {
matcher: 'fapi/:function*’,

}

export function middleware(request) {
/| Call our authentication function to check the request
if (YisAuthenticated(request)) {
/| Respond with JSON indicating an error message
return Response.json(
{ success: false, message: 'authentication failed' },
{ status: 407}
)
}
}

Advanced Middleware Flags

In "v13.1" of Next.js two additional flags were introduced for middleware,
“skipMiddlewareUrINormalize™ and skipTrailingSlashRedirect™ to handle
advanced use cases.

“skipTrailingSlashRedirect" allows disabling Next.js default redirects for adding
or removing trailing slashes allowing custom handling inside middleware which
can allow maintaining the trailing slash for some paths but not others allowing
easier incremental migrations.

“js filename="next.config.js"
module.exports = {
skipTrailingSlashRedirect: true,

LURNRY

" js filename="middleware.js"
const legacyPrefixes = ['/docs’, '[blog']

export default async function middleware(req) {
const { pathname } = req.nextUrl

if (legacyPrefixes.some((prefix) => pathname.startsWith(prefix))) {
return NextResponse.next()

}

/| apply trailing slash handling
if (

Ipathname.endsWith('/') &&
Ipathname.match(/((?!|.well-known(?:|/.*)?) (?2:[*/]+|/)*["/]+].|w+)])
) {
req.nextUrl.pathname +="/'
return NextResponse.redirect(req.nextUrl)
}
}

“skipMiddlewareUrINormalize" allows disabling the URL normalizing Next.js
does to make handling direct visits and client-transitions the same. There are
some advanced cases where you need full control using the original URL which
this unlocks.

“ s filename="next.config.js"
module.exports = {
skipMiddlewareUrINormalize: true,

LURNRY

" js filename="middleware.js"
export default async function middleware(req) {
const { pathname } = req.nextUrl

/| GET /_next/data/build-id/hello.json
console.log(pathname)

/| with the flag this now /_next/data/build-id/hello.json
/| without the flag this would be normalized to /hello

Runtime

Middleware currently only supports the [Edge runtime](/docs/app/building-
your-application/rendering/edge-and-nodejs-runtimes). The Node.js runtime
can not be used.

Version History
| Version | Changes

| "'v13.1.0" | Advanced Middleware flags added
I

| "v13.0.0" | Middleware can modify request headers, response headers, and

send responses |

| "v12.2.0" | Middleware is stable, please see the [upgrade guide](/docs/
messages/middleware-upgrade-guide) |

| *v12.0.9" | Enforce absolute URLs in Edge Runtime ([PR](https://github.com/
vercel/next.js/pull/33410)) |

| *v12.0.0" | Middleware (Beta) added

title: Project Organization and File Colocation
nav_title: Project Organization
description: Learn how to organize your Next.js project and colocate files.
related:
links:

- app/building-your-application/routing/defining-routes

- app/building-your-application/routing/route-groups

- app/building-your-application/configuring/src-directory

- app/building-your-application/configuring/absolute-imports-and-module-
aliases

Apart from [routing folder and file conventions](/docs/getting-started/project-
structure#app-routing-conventions), Next.js is **unopinionated** about how
you organize and colocate your project files.

This page shares default behavior and features you can use to organize your
project.

- [Safe colocation by default] (#safe-colocation-by-default)
- [Project organization features](#project-organization-features)
- [Project organization strategies](#project-organization-strategies)

Safe colocation by default

In the "app’ directory, [nested folder hierarchy](/docs/app/building-your-
application/routing#route-segments) defines route structure.

Each folder represents a route segment that is mapped to a corresponding
segment in a URL path.

However, even though route structure is defined through folders, a route is
not publicly accessible until a “page.js” or ‘route.js" file is added to a
route segment.

<Image
alt="A diagram showing how a route is not publicly accessible until a page.js
or route.js file is added to a route segment."

srcLight="/docs/light/project-organization-not-routable.png"
srcDark="/docs/dark/project-organization-not-routable.png"
width="1600"
height="444"

/>

And, even when a route is made publicly accessible, only the **content
returned** by “page.js’ or ‘route.js’ is sent to the client.

<lmage
alt="A diagram showing how page.js and route.js files make routes publicly
accessible."
srcLight="/docs/light/project-organization-routable.png"
srcDark="/docs/dark/project-organization-routable.png"

width="1600"
height="687"
/>

This means that **project files** can be **safely colocated** inside route
segments in the "app” directory without accidentally being routable.

<lmage
alt="A diagram showing colocated project files are not routable even when a
segment contains a page.js or route.js file."
srcLight="/docs/light/project-organization-colocation.png"
srcDark="/docs/dark/project-organization-colocation.png"

width="1600"
height="1011"
[>

> **Good to know**:

>

> - This is different from the "pages’ directory, where any file in "pages’ is
considered a route.

> - While you **can** colocate your project files in "app’ you don't **have** to.
If you prefer, you can [keep them outside the "app’ directory](#store-project-
files-outside-of-app).

Project organization features
Next.js provides several features to help you organize your project.
Private Folders

Private folders can be created by prefixing a folder with an underscore:
*_folderName"

This indicates the folder is a private implementation detail and should not be
considered by the routing system, thereby **opting the folder and all its
subfolders** out of routing.

<lmage
alt="An example folder structure using private folders"
srcLight="/docs/light/project-organization-private-folders.png"
srcDark="/docs/dark/project-organization-private-folders.png"
width="1600"
height="849"

/>

Since files in the "app’ directory can be [safely colocated by default] (#safe-
colocation-by-default), private folders are not required for colocation. However,
they can be useful for:

- Separating Ul logic from routing logic.

- Consistently organizing internal files across a project and the Next.js
ecosystem.

- Sorting and grouping files in code editors.

- Avoiding potential naming conflicts with future Next.js file conventions.

> **Good to know**

>

> - While not a framework convention, you might also consider marking files
outside private folders as "private" using the same underscore pattern.

> - You can create URL segments that start with an underscore by prefixing the
folder name with “%5F" (the URL-encoded form of an underscore):
"%5FfolderName".

> - If you don't use private folders, it would be helpful to know Next.js [special
file conventions](/docs/getting-started/project-structure#routing-files) to
prevent unexpected naming conflicts.

Route Groups

Route groups can be created by wrapping a folder in parenthesis:
*(folderName) "

This indicates the folder is for organizational purposes and should **not be
included** in the route's URL path.

<lmage
alt="An example folder structure using route groups"
srcLight="/docs/light/project-organization-route-groups.png"
srcDark="/docs/dark/project-organization-route-groups.png"
width="1600"

height="849"
/>

Route groups are useful for:

- [Organizing routes into groups](/docs/app/building-your-application/routing/
route-groups#organize-routes-without-affecting-the-url-path) e.g. by site
section, intent, or team.

- Enabling nested layouts in the same route segment level:

- [Creating multiple nested layouts in the same segment, including multiple
root layouts](/docs/app/building-your-application/routing/route-
groups#creating-multiple-root-layouts)

- [Adding a layout to a subset of routes in a common segment](/docs/app/
building-your-application/routing/route-groups#opting-specific-segments-
into-a-layout)

“src’ Directory

Next.js supports storing application code (including “app) inside an optional
['src’ directory](/docs/app/building-your-application/configuring/src-
directory). This separates application code from project configuration files
which mostly live in the root of a project.

<lmage
alt="An example folder structure with the “src" directory"
srcLight="/docs/light/project-organization-src-directory.png"
srcDark="/docs/dark/project-organization-src-directory.png"
width="1600"
height="687"

/>

Module Path Aliases

Next.js supports [Module Path Aliases](/docs/app/building-your-application/
configuring/absolute-imports-and-module-aliases) which make it easier to read
and maintain imports across deeply nested project files.

“*Yjsx filename="app/dashboard/settings/analytics/page.js"
/| before

import { Button } from '../../../[components/button’

/| after

import { Button } from '@/components/button’

Project organization strategies

There is no "right" or "wrong" way when it comes to organizing your own files
and folders in a Next.js project.

The following section lists a very high-level overview of common strategies.
The simplest takeaway is to choose a strategy that works for you and your team
and be consistent across the project.

> **Good to know**: In our examples below, we're using ‘components” and
‘lib” folders as generalized placeholders, their naming has no special
framework significance and your projects might use other folders like "ui,
“utils’, "hooks", “styles’, etc.

Store project files outside of "app”

This strategy stores all application code in shared folders in the **root of your
project** and keeps the "app’ directory purely for routing purposes.

<lmage
alt="An example folder structure with project files outside of app"
srcLight="/docs/light/project-organization-project-root.png"
srcDark="/docs/dark/project-organization-project-root.png"
width="1600"
height="849"

/>

Store project files in top-level folders inside of "app’

This strategy stores all application code in shared folders in the **root of the
‘app directory**

<lmage
alt="An example folder structure with project files inside app"
srcLight="/docs/light/project-organization-app-root.png"
srcDark="/docs/dark/project-organization-app-root.png"

width="1600"
height="849"
/>

Split project files by feature or route

This strategy stores globally shared application code in the root "app " directory
and **splits** more specific application code into the route segments that use
them.

<Ilmage
alt="An example folder structure with project files split by feature or route"

srcLight="/docs/light/project-organization-app-root-split.png"
srcDark="/docs/dark/project-organization-app-root-split.png"
width="1600"
height="1011"

/>

title: Internationalization
description: Add support for multiple languages with internationalized routing
and localized content.

Next.js enables you to configure the routing and rendering of content to
support multiple languages. Making your site adaptive to different locales
includes translated content (localization) and internationalized routes.

Terminology

- **L ocale:** An identifier for a set of language and formatting preferences.
This usually includes the preferred language of the user and possibly their
geographic region.

- “en-US": English as spoken in the United States

- 'nl-NL": Dutch as spoken in the Netherlands

- 'nl": Dutch, no specific region

Routing Overview

It's recommended to use the user’s language preferences in the browser to
select which locale to use. Changing your preferred language will modify the
incoming “Accept-Language’ header to your application.

For example, using the following libraries, you can look at an incoming
"Request’ to determine which locale to select, based on the "Headers ", locales
you plan to support, and the default locale.

" js filename="middleware.js"
import { match } from '@formatjs/intl-localematcher’
import Negotiator from 'negotiator’

let headers = { 'accept-language': 'en-US,en;q=0.5"'}
let languages = new Negotiator({ headers }).languages()
let locales = ['en-US', 'nI-NL', 'nl']

let defaultLocale = 'en-US'

match(languages, locales, defaultLocale) // -> 'en-US'

Routing can be internationalized by either the sub-path (" /fr/products’) or
domain (" my-site.fr/products). With this information, you can now redirect the
user based on the locale inside [Middleware](/docs/app/building-your-
application/routing/middleware).

“*js filename="middleware.js"
let locales = ['en-US', 'nl-NL', 'nl']

/| Get the preferred locale, similar to the above or using a library
function getLocale(request) { ... }

export function middleware(request) {
/| Check if there is any supported locale in the pathname
const { pathname } = request.nextUrl
const pathnameHasLocale = locales.some(
(locale) => pathname.startsWith("/${locale}/") || pathname === "/${locale}"

)

if (pathnameHasLocale) return

/| Redirect if there is no locale

const locale = getLocale(request)
request.nextUrl.pathname = “/${locale}${pathname}’
/] e.g. incoming request is [products

/| The new URL is now /en-US/products

return Response.redirect(request.nextUrl)

}

export const config = {
matcher: [
/| Skip all internal paths (_next)
'1((?!'_next) *)",
/| Optional: only run on root (/) URL
I
1
}

Finally, ensure all special files inside “app/" are nested under “app/[lang] . This
enables the Next.js router to dynamically handle different locales in the route,
and forward the “lang’ parameter to every layout and page. For example:

" jsx filename="app/[lang]/page.js"
/| You now have access to the current locale
/] e.g. [en-US/products -> ‘lang’ is "en-US"

export default async function Page({ params: {lang } }) {
return ...

AR RN

The root layout can also be nested in the new folder (e.g. “app/[lang]/
layout.js”).

Localization

Changing displayed content based on the user’s preferred locale, or
localization, is not something specific to Next.js. The patterns described below
would work the same with any web application.

Let's assume we want to support both English and Dutch content inside our
application. We might maintain two different “dictionaries” which are objects
that give us a mapping from some key to a localized string. For example:

**“json filename="dictionaries/en.json"
{
"products": {
"cart": "Add to Cart"

)
-

" “json filename="dictionaries/nl.json"
{
"products": {
"cart": "Toevoegen aan Winkelwagen"
}
}

We can then create a "getDictionary ™ function to load the translations for the
requested locale:

*Yjsx filename="app/[lang]/dictionaries.js"
import 'server-only'

const dictionaries = {
en: () => import('./dictionaries/en.json').then((module) => module.default),
nl: () => import("./dictionaries/nl.json').then((module) => module.default),

}

export const getDictionary = async (locale) => dictionaries[locale]()

Given the currently selected language, we can fetch the dictionary inside of a
layout or page.

*jsx filename="app/[lang]/page.js"
import { getDictionary } from './dictionaries’

export default async function Page({ params: { lang } }) {
const dict = await getDictionary(lang) // en
return <button>{dict.products.cart}</button> // Add to Cart

AUENEN

Because all layouts and pages in the "app/’ directory default to [Server
Components](/docs/app/building-your-application/rendering/server-
components), we do not need to worry about the size of the translation files
affecting our client-side JavaScript bundle size. This code will **only run on
the server**, and only the resulting HTML will be sent to the browser.

Static Generation

To generate static routes for a given set of locales, we can use
‘generateStaticParams” with any page or layout. This can be global, for
example, in the root layout:

**Yjsx filename="app/[lang]/layout.js"

export async function generateStaticParams() {
return [{ lang: 'en-US'}, { lang: 'de' }]

}

export default function Root({ children, params }) {
return (
<html lang={params.lang}>
<body>{children}</body>
</html>
)
}

Resources

- [Minimal i18n routing and translations] (https://github.com/vercel/next.js/tree/
canary/examples/app-dir-i18n-routing)

- ['next-intl] (https://next-intl-docs.vercel.app/docs/next-13)

- [next-international "] (https://github.com/QuiiBz/next-international)

- ['next-i18n-router] (https://github.com/i18nexus/next-i18n-router)

title: Data Fetching, Caching, and Revalidating

nav_title: Fetching, Caching, and Revalidating

description: Learn how to fetch, cache, and revalidate data in your Next.js
application.

Data fetching is a core part of any application. This page goes through how you
can fetch, cache, and revalidate data in React and Next.js.

There are four ways you can fetch data:

1. [On the server, with “fetch] (#fetching-data-on-the-server-with-fetch)

2. [On the server, with third-party libraries] (#fetching-data-on-the-server-with-
third-party-libraries)

3. [On the client, via a Route Handler] (#fetching-data-on-the-client-with-
route-handlers)

4. [On the client, with third-party libraries] (#fetching-data-on-the-client-with-
route-handlers).

Fetching Data on the Server with “fetch’

Next.js extends the native [fetch®™ Web API](https://developer.mozilla.org/docs/
Web/API/Fetch_API) to allow you to configure the [caching](#caching-data) and
[revalidating] (#revalidating-data) behavior for each fetch request on the server.
React extends “fetch to automatically [memoize](/docs/app/building-your-
application/data-fetching/patterns#fetching-data-where-its-needed) fetch
requests while rendering a React component tree.

You can use fetch™ with "async’/ await’ in Server Components, in [Route
Handlers](/docs/app/building-your-application/routing/route-handlers), and in
[Server Actions](/docs/app/building-your-application/data-fetching/forms-and-
mutations).

For example:

“ " tsx filename="app/page.tsx" switcher

async function getData() {
const res = await fetch('https://api.example.com/...")
/| The return value is *not* serialized
/] You can return Date, Map, Set, etc.

if ('res.ok) {
/| This will activate the closest “error.js™ Error Boundary
throw new Error('Failed to fetch data')

}

return res.json()

}

export default async function Page() {
const data = await getData()

return <main></main>

AURNRN

“Yjsx filename="app/page.js" switcher

async function getData() {
const res = await fetch('https://api.example.com/...")
/| The return value is *not* serialized
/| You can return Date, Map, Set, etc.

if ('res.ok) {
/| This will activate the closest “error.js™ Error Boundary
throw new Error('Failed to fetch data')

}

return res.json()

}

export default async function Page() {
const data = await getData()

return <main></main>

RN

> **Good to know**:

>

> - Next.js provides helpful functions you may need when fetching data in
Server Components such as [cookies](/docs/app/api-reference/functions/
cookies) and [headers](/docs/app/api-reference/functions/headers). These
will cause the route to be dynamically rendered as they rely on request time
information.

> - In Route handlers, “fetch' requests are not memoized as Route Handlers
are not part of the React component tree.

> - To use "async '/ await" in a Server Component with TypeScript, you'll need
to use TypeScript '5.1.3" or higher and “@types/react’™ "18.2.8" or higher.

Caching Data

Caching stores data so it doesn't need to be re-fetched from your data source
on every request.

By default, Next.js automatically caches the returned values of “fetch’ in the
[Data Cache](/docs/app/building-your-application/caching#data-cache) on the
server. This means that the data can be fetched at build time or request time,
cached, and reused on each data request.

A
/| 'force-cache' is the default, and can be omitted
fetch('https://...!, { cache: 'force-cache'})

“fetch’ requests that use the "POST " method are also automatically cached.
Unless it's inside a [Route Handler](/docs/app/building-your-application/
routing/route-handlers) that uses the "POST" method, then it will not be
cached.

> **What is the Data Cache?**

>

> The Data Cache is a persistent [HTTP cache](https://developer.mozilla.org/
docs/Web/HTTP/Caching). Depending on your platform, the cache can scale
automatically and be [shared across multiple regions](https://vercel.com/docs/
infrastructure/data-cache).

>

> Learn more about the [Data Cache](/docs/app/building-your-application/
caching#data-cache).

Revalidating Data

Revalidation is the process of purging the Data Cache and re-fetching the latest
data. This is useful when your data changes and you want to ensure you show
the latest information.

Cached data can be revalidated in two ways:

- **Time-based revalidation**: Automatically revalidate data after a certain
amount of time has passed. This is useful for data that changes infrequently
and freshness is not as critical.

- **OQn-demand revalidation**: Manually revalidate data based on an event
(e.g. form submission). On-demand revalidation can use a tag-based or path-
based approach to revalidate groups of data at once. This is useful when you
want to ensure the latest data is shown as soon as possible (e.g. when content
from your headless CMS is updated).

Time-based Revalidation

To revalidate data at a timed interval, you can use the "next.revalidate™ option
of ‘fetch’ to set the cache lifetime of a resource (in seconds).

s
fetch('https://...!, { next: { revalidate: 3600 } })

Alternatively, to revalidate all “fetch’ requests in a route segment, you can use
the [Segment Config Options](/docs/app/api-reference/file-conventions/route-
segment-config).

" jsx filename="layout.js | page.js"
export const revalidate = 3600 // revalidate at most every hour

If you have multiple fetch requests in a statically rendered route, and each has
a different revalidation frequency. The lowest time will be used for all requests.
For dynamically rendered routes, each “fetch' request will be revalidated
independently.

Learn more about [time-based revalidation](/docs/app/building-your-
application/caching#time-based-revalidation).

###t# On-demand Revalidation

Data can be revalidated on-demand by path ([‘revalidatePath](/docs/app/api-
reference/functions/revalidatePath)) or by cache tag ([revalidateTag](/docs/
app/api-reference/functions/revalidateTag)) inside a [Server Action](/docs/app/
building-your-application/data-fetching/forms-and-mutations) or [Route
Handler](/docs/app/building-your-application/routing/route-handlers).

Next.js has a cache tagging system for invalidating “fetch’ requests across
routes.

1. When using “fetch’, you have the option to tag cache entries with one or
more tags.

2. Then, you can call ‘revalidateTag " to revalidate all entries associated with
that tag.

For example, the following “fetch' request adds the cache tag "collection™:

“ " tsx filename="app/page.tsx" switcher

export default async function Page() {
const res = await fetch('https://...", { next: { tags: ['collection'] } })
const data = await res.json()
/...

}

“jsx filename="app/page.js" switcher

export default async function Page() {
const res = await fetch('https://...", { next: { tags: ['collection'] } })
const data = await res.json()

/...
-

You can then revalidate this "fetch’ call tagged with “collection” by calling
‘revalidateTag’ in a Server Action:

" 'ts filename="app/actions.ts" switcher
'use server'

import { revalidateTag } from 'next/cache’

export default async function action() {
revalidateTag('collection')

LURNRY

" js filename="app/actions.js" switcher
'use server'

import { revalidateTag } from 'next/cache'

export default async function action() {
revalidateTag('collection')

AR RN

Learn more about [on-demand revalidation](/docs/app/building-your-
application/caching#on-demand-revalidation).

Error handling and revalidation

If an error is thrown while attempting to revalidate data, the last successfully
generated data will continue to be served from the cache. On the next
subsequent request, Next.js will retry revalidating the data.

Opting out of Data Caching

“fetch” requests are **not** cached if:

- The “cache: 'no-store'’ is added to “fetch' requests.
- The ‘revalidate: 0" option is added to individual "fetch' requests.

- The “fetch' request is inside a Router Handler that uses the "POST" method.
- The “fetch' request comes after the usage of "headers’ or "cookies .

- The "const dynamic = 'force-dynamic'’ route segment option is used.

- The “fetchCache’ route segment option is configured to skip cache by
default.

- The “fetch™ request uses "Authorization™ or "Cookie™ headers and there's an
uncached request above it in the component tree.

###4# Individual “fetch™ Requests

To opt out of caching for individual “fetch' requests, you can set the "cache’
option in “fetch™ to "'no-store'". This will fetch data dynamically, on every
request.

“js filename="layout.js | page.js"
fetch('https://...!, { cache: 'no-store' })

View all the available “cache’ options in the [fetch™ API reference](/docs/app/
api-reference/functions/fetch).

Multiple “fetch® Requests

If you have multiple “fetch™ requests in a route segment (e.g. a Layout or Page),
you can configure the caching behavior of all data requests in the segment
using the [Segment Config Options](/docs/app/api-reference/file-conventions/
route-segment-config).

However, we recommend configuring the caching behavior of each “fetch’
request individually. This gives you more granular control over the caching
behavior.

Fetching data on the Server with third-party libraries

In cases where you're using a third-party library that doesn't support or expose
“fetch’ (for example, a database, CMS, or ORM client), you can configure the
caching and revalidating behavior of those requests using the [Route Segment
Config Option](/docs/app/api-reference/file-conventions/route-segment-
config) and React's "cache function.

Whether the data is cached or not will depend on whether the route segment is
[statically or dynamically rendered](/docs/app/building-your-application/
rendering/server-components#server-rendering-strategies). If the segment is
static (default), the output of the request will be cached and revalidated as part
of the route segment. If the segment is dynamic, the output of the request will
not be cached and will be re-fetched on every request when the segment is
rendered.

You can also use the experimental [unstable_cache API](/docs/app/api-
reference/functions/unstable_cache).

Example
In the example below:

- The React "cache’ function is used to [memoize](/docs/app/building-your-
application/caching#request-memoization) data requests.

- The ‘revalidate™ optionis set to "3600° in the "layout.ts™ and "page.ts’
segments, meaning the data will be cached and revalidated at most every hour.

" ts filename="app/utils.ts" switcher
import { cache } from 'react’

export const getltem = cache(async (id: string) => {
const item = await db.item.findUnique({ id })
return item

&8

*js filename="app/utils.js" switcher
import { cache } from 'react’

export const getltem = cache(async (id) => {
const item = await db.item.findUnique({ id })
return item

8

Although the “getltem function is called twice, only one query will be made to
the database.

*tsx filename="app/item/[id]/layout.tsx" switcher
import { getltem } from '@/utils/get-item’

export const revalidate = 3600 /| revalidate the data at most every hour

export default async function Layout({
params: { id },
et
params: { id: string }
nA
const item = await getltem(id)
/...
}

" jsx filename="app/item/[id]/layout.js" switcher
import { getltem } from '@/utils/get-item’

export const revalidate = 3600 // revalidate the data at most every hour

export default async function Layout({ params: {id } }) {
const item = await getltem(id)
/...

}

**tsx filename="app/item/[id]/page.tsx" switcher
import { getltem } from '@/utils/get-item’

export const revalidate = 3600 // revalidate the data at most every hour

export default async function Page({
params: { id },
3 {
params: { id: string }
nA
const item = await getltem(id)
/...
}

“jsx filename="app/item/[id]/page.js" switcher
import { getltem } from '@/utils/get-item’

export const revalidate = 3600 /| revalidate the data at most every hour

export default async function Page({ params: {id } }) {
const item = await getltem(id)
/] ...

}

Fetching Data on the Client with Route Handlers

If you need to fetch data in a client component, you can call a [Route Handler](/
docs/app/building-your-application/routing/route-handlers) from the client.
Route Handlers execute on the server and return the data to the client. This is
useful when you don't want to expose sensitive information to the client, such
as API tokens.

See the [Route Handler](/docs/app/building-your-application/routing/route-
handlers) documentation for examples.

> **Server Components and Route Handlers**

>

> Since Server Components render on the server, you don't need to call a Route
Handler from a Server Component to fetch data. Instead, you can fetch the data
directly inside the Server Component.

Fetching Data on the Client with third-party libraries

You can also fetch data on the client using a third-party library such as [SWR]
(https://swr.vercel.app/) or [React Query](https://tanstack.com/query/latest).
These libraries provide their own APIs for memoizing requests, caching,
revalidating, and mutating data.

> **Future APIs**:

>

> ‘use’ is a React function that **accepts and handles a promise** returned
by a function. Wrapping "fetch' in "use’ is currently **not** recommended in
Client Components and may trigger multiple re-renders. Learn more about
‘use’ in the [React docs](https://react.dev/reference/react/use).

title: Data Fetching Patterns
description: Learn about common data fetching patterns in React and Next.js.

There are a few recommended patterns and best practices for fetching data in
React and Next.js. This page will go over some of the most common patterns
and how to use them.

Fetching Data on the Server

Whenever possible, we recommend fetching data on the server. This allows you
to:

- Have direct access to backend data resources (e.g. databases).

- Keep your application more secure by preventing sensitive information, such
as access tokens and API keys, from being exposed to the client.

- Fetch data and render in the same environment. This reduces both the back-
and-forth communication between client and server, as well as the [work on the
main thread](https://vercel.com/blog/how-react-18-improves-application-
performance) on the client.

- Perform multiple data fetches with single round-trip instead of multiple
individual requests on the client.

- Reduce client-server [waterfalls] (#parallel-and-sequential-data-fetching).
- Depending on your region, data fetching can also happen closer to your data
source, reducing latency and improving performance.

You can fetch data on the server using Server Components, [Route Handlers](/
docs/app/building-your-application/routing/route-handlers), and [Server
Actions](/docs/app/building-your-application/data-fetching/forms-and-
mutations).

Fetching Data Where It's Needed

If you need to use the same data (e.g. current user) in multiple components in a
tree, you do not have to fetch data globally, nor forward props between
components. Instead, you can use fetch' or React "cache’ in the component
that needs the data without worrying about the performance implications of
making multiple requests for the same data.

This is possible because “fetch' requests are automatically memoized. Learn
more about [request memoization](/docs/app/building-your-application/
caching#request-memoization)

> **Good to know**: This also applies to layouts, since it's not possible to pass
data between a parent layout and its children.

Streaming

Streaming and [Suspense](https://react.dev/reference/react/Suspense) are
React features that allow you to progressively render and incrementally stream
rendered units of the Ul to the client.

With Server Components and [nested layouts](/docs/app/building-your-
application/routing/pages-and-layouts), you're able to instantly render parts of
the page that do not specifically require data, and show a [loading state](/docs/
app/building-your-application/routing/loading-ui-and-streaming) for parts of
the page that are fetching data. This means the user does not have to wait for
the entire page to load before they can start interacting with it.

<lmage
alt="Server Rendering with Streaming"
srcLight="/docs/light/server-rendering-with-streaming.png"
srcDark="/docs/dark/server-rendering-with-streaming.png"

width="1600"
height="785"
/>

To learn more about Streaming and Suspense, see the [Loading Ul](/docs/app/
building-your-application/routing/loading-ui-and-streaming) and [Streaming

and Suspense](/docs/app/building-your-application/routing/loading-ui-and-
streaming#streaming-with-suspense) pages.

Parallel and Sequential Data Fetching

When fetching data inside React components, you need to be aware of two
data fetching patterns: Parallel and Sequential.

<lmage
alt="Sequential and Parallel Data Fetching"
srcLight="/docs/light/sequential-parallel-data-fetching.png"
srcDark="/docs/dark/sequential-parallel-data-fetching.png"
width="1600"
height="525"

/>

- With **sequential data fetching** requests in a route are dependent on each
other and therefore create waterfalls. There may be cases where you want this
pattern because one fetch depends on the result of the other, or you want a
condition to be satisfied before the next fetch to save resources. However, this
behavior can also be unintentional and lead to longer loading times.

- With **parallel data fetching** requests in a route are eagerly initiated and
will load data at the same time. This reduces client-server waterfalls and the
total time it takes to load data.

Sequential Data Fetching

If you have nested components, and each component fetches its own data,
then data fetching will happen sequentially if those data requests are different
(this doesn't apply to requests for the same data as they are automatically
[memoized](/docs/app/building-your-application/caching#request-
memoization)).

For example, the "Playlists’ component will only start fetching data once the
“Artist’ component has finished fetching data because "Playlists™ depends on
the “artistID " prop:

* " tsx filename="app/artist/[username]/page.tsx" switcher

/I ...

async function Playlists({ artistID }: { artistID: string }) {
/| Wait for the playlists
const playlists = await getArtistPlaylists(artistID)

return (

{playlists.map((playlist) => (

<li key={playlist.id}>{playlist.name}
)}
<[ul>
)
}

export default async function Page({
params: { username },
3
params: { username: string }
R
/| Wait for the artist
const artist = await getArtist(username)

return (
<>
<h1>{artist.name}</h1>
<Suspense fallback={<div>Loading...</div>}>
<Playlists artistID={artist.id} />
</Suspense>
<[>
)
}

“Yjsx filename="app/artist/[username]/page.js" switcher

/I ...

async function Playlists({ artistID }) {
/| Wait for the playlists
const playlists = await getArtistPlaylists(artistID)

return (

{playlists.map((playlist) => (
<li key={playlist.id}>{playlist.name}
)}
<ful>
)
}

export default async function Page({ params: { username } }) {
/| Wait for the artist
const artist = await getArtist(username)

return (
<>

<h1>{artist.name}</h1>
<Suspense fallback={<div>Loading...</div>}>
<Playlists artistID={artist.id} />
</Suspense>
<[>
)
}

In cases like this, you can use [loading.js](/docs/app/building-your-
application/routing/loading-ui-and-streaming) (for route segments) or [React
“<Suspense>](/docs/app/building-your-application/routing/loading-ui-and-
streaming#streaming-with-suspense) (for nested components) to show an
instant loading state while React streams in the result.

This will prevent the whole route from being blocked by data fetching, and the
user will be able to interact with the parts of the page that are not blocked.

> **Blocking Data Requests:**

>

> An alternative approach to prevent waterfalls is to fetch data globally, at the
root of your application, but this will block rendering for all route segments
beneath it until the data has finished loading. This can be described as "all or
nothing" data fetching. Either you have the entire data for your page or
application, or none.

>

> Any fetch requests with “await™ will block rendering and data fetching for the
entire tree beneath it, unless they are wrapped in a “*<Suspense>" boundary or
“loading.js " is used. Another alternative is to use [parallel data fetching]
(#parallel-data-fetching) or the [preload pattern](#preloading-data).

Parallel Data Fetching

To fetch data in parallel, you can eagerly initiate requests by defining them
outside the components that use the data, then calling them from inside the
component. This saves time by initiating both requests in parallel, however, the
user won't see the rendered result until both promises are resolved.

In the example below, the "getArtist™ and "getArtistAlbums™ functions are
defined outside the "Page’ component, then called inside the component, and
we wait for both promises to resolve:

* " tsx filename="app/artist/[username]/page.tsx" switcher
import Albums from './albums'

async function getArtist(username: string) {
const res = await fetch(" https://api.example.com/artist/${username}")

return res.json()

}

async function getArtistAlbums(username: string) {
const res = await fetch(https://api.example.com/artist/${username}/albums ™)
return res.json()

}

export default async function Page({
params: { username },
et
params: { username: string }
A
/| Initiate both requests in parallel
const artistData = getArtist(username)
const albumsData = getArtistAlbums(username)

/| Wait for the promises to resolve
const [artist, albums] = await Promise.all([artistData, albumsData])

return (
<>
<h1>{artist.name}</h1>
<Albums list={albums}></Albums>
<[>
)
}

" jsx filename="app/artist/[username]/page.js" switcher
import Albums from './albums'

async function getArtist(username) {
const res = await fetch(https://api.example.com/artist/${username}’)
return res.json()

}

async function getArtistAloums(username) {
const res = await fetch(" https://api.example.com/artist/${username}/albums ™)
return res.json()

}

export default async function Page({ params: { username } }) {
/| Initiate both requests in parallel
const artistData = getArtist(username)
const albumsData = getArtistAlbums(username)

/| Wait for the promises to resolve
const [artist, albums] = await Promise.all([artistData, albumsData])

return (
<>
<h1>{artist.name}</h1>
<Albums list={albums}></Albums>
<[>
)
}

To improve the user experience, you can add a [Suspense Boundary](/docs/
app/building-your-application/routing/loading-ui-and-streaming) to break up
the rendering work and show part of the result as soon as possible.

Preloading Data

Another way to prevent waterfalls is to use the preload pattern. You can
optionally create a "preload’ function to further optimize parallel data fetching.
With this approach, you don't have to pass promises down as props. The
‘preload” function can also have any name as it's a pattern, not an API.

“ " tsx filename="components/Item.tsx" switcher
import { getltem } from '@/utils/get-item’

export const preload = (id: string) => {
/| void evaluates the given expression and returns undefined
/| https://developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/void
void getltem(id)
}
export default async function Item({ id }: { id: string }) {
const result = await getltem(id)

/I ...
-

“ " jsx filename="components/ltem.js" switcher
import { getltem } from '@/utils/get-item’

export const preload = (id) => {
/| void evaluates the given expression and returns undefined
/| https://developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/void
void getltem(id)

}

export default async function Item({ id }) {

const result = await getltem(id)

/I ...
-

“ " tsx filename="app/item/[id]/page.tsx" switcher
import Item, { preload, checklsAvailable } from '@/components/ltem’

export default async function Page({
params: { id },

3 {
params: { id: string }

NA
/| starting loading item data
preload(id)
/| perform another asynchronous task
const isAvailable = await checklsAvailable()

return isAvailable ? <ltem id={id} /> : null

“*Yjsx filename="app/item/[id]/page.js" switcher
import Item, { preload, checklsAvailable } from '@/components/Item'

export default async function Page({ params: {id } }) {
/| starting loading item data
preload(id)
/| perform another asynchronous task
const isAvailable = await checklsAvailable()

return isAvailable ? <ltem id={id} /> : null

LUR RN

Using React "cache’, “server-only’, and the Preload Pattern

You can combine the “cache’ function, the “preload’ pattern, and the “server-
only ™ package to create a data fetching utility that can be used throughout your

app.

" ts filename="utils/get-item.ts" switcher
import { cache } from 'react’
import 'server-only'

export const preload = (id: string) => {
void getltem(id)

export const getltem = cache(async (id: string) => {

/I ...
N

" s filename="utils/get-item.js" switcher
import { cache } from 'react’
import 'server-only'

export const preload = (id) => {
void getltem(id)
}

export const getltem = cache(async (id) => {

/...
N

With this approach, you can eagerly fetch data, cache responses, and
guarantee that this data fetching [only happens on the server](/docs/app/
building-your-application/rendering/composition-patterns#keeping-server-
only-code-out-of-the-client-environment).

The "utils/get-item” exports can be used by Layouts, Pages, or other
components to give them control over when an item's data is fetched.

> **Good to know:**

>

> - We recommend using the [server-only" package](/docs/app/building-your-
application/rendering/composition-patterns#keeping-server-only-code-out-of-
the-client-environment) to make sure server data fetching functions are never
used on the client.

title: Forms and Mutations

nav_title: Forms and Mutations

description: Learn how to handle form submissions and data mutations with
Next.js.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

<PagesOnly>

Forms enable you to create and update data in web applications. Next.js
provides a powerful way to handle form submissions and data mutations using
AP| Routes.

> **Good to know:**

>

> - We will soon recommend [incrementally adopting](/docs/app/building-your-
application/upgrading/app-router-migration) the App Router and using [Server
Actions](/docs/app/building-your-application/data-fetching/forms-and-
mutations#how-server-actions-work) for handling form submissions and data
mutations. Server Actions allow you to define asynchronous server functions
that can be called directly from your components, without needing to manually
create an API Route.

> - API Routes [do not specify CORS headers](https://developer.mozilla.org/
docs/Web/HTTP/CORS), meaning they are same-origin only by default.

> - Since API Routes run on the server, we're able to use sensitive values (like
API keys) through [Environment Variables](/docs/pages/building-your-
application/configuring/environment-variables) without exposing them to the
client. This is critical for the security of your application.

</PagesOnly>

<AppOnly>

Forms enable you to create and update data in web applications. Next.js
provides a powerful way to handle form submissions and data mutations using

Server Actions

<details>
<summary>Examples</summary>

- [Form with Loading & Error States](https://github.com/vercel/next.js/tree/
canary/examples/next-forms)

</details>

How Server Actions Work

With Server Actions, you don't need to manually create APl endpoints. Instead,
you define asynchronous server functions that can be called directly from your

components.

> **‘ Watch:** Learn more about forms and mutations with the App Router >
[YouTube (10 minutes)](https://youtu.be/dDpZfOQBMaU?

si=cJZHIUu_jFhCzHUg).

Server Actions can be defined in Server Components or called from Client
Components. Defining the action in a Server Component allows the form to
function without JavaScript, providing progressive enhancement.

> **Good to know:**

>

> - Forms calling Server Actions from Server Components can function without
JavaScript.

> - Forms calling Server Actions from Client Components will queue
submissions if JavaScript isn't loaded yet, prioritizing client hydration.

> - Server Actions inherit the [runtime](/docs/app/building-your-application/
rendering/edge-and-nodejs-runtimes) from the page or layout they are used
on.

> - Server Actions work with fully static routes (including revalidating data with
ISR).

Revalidating Cached Data

Server Actions integrate deeply with the Next.js [caching and revalidation](/
docs/app/building-your-application/caching) architecture. When a form is
submitted, the Server Action can update cached data and revalidate any cache
keys that should change.

Rather than being limited to a single form per route like traditional applications,
Server Actions enable having multiple actions per route. Further, the browser
does not need to refresh on form submission. In a single network roundtrip,

Next.js can return both the updated Ul and the refreshed data.

View the examples below for [revalidating data from Server Actions]
(#revalidating-data).

</AppOnly>

Examples

Server-only Forms
<PagesOnly>

With the Pages Router, you need to manually create APl endpoints to handle
securely mutating data on the server.

" ts filename="pages/api/submit.ts" switcher
import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
req: NextApiRequest,
res: NextApiResponse

) {
const data = req.body
const id = await createltem(data)
res.status(200).json({ id })

}

* s filename="pages/api/submit.js" switcher
export default function handler(req, res) {
const data = req.body
const id = await createltem(data)
res.status(200).json({ id })

AUENEN

Then, call the API Route from the client with an event handler:

" tsx filename="pages/index.tsx" switcher
import { FormEvent } from 'react’

export default function Page() {
async function onSubmit(event: FormEvent<HTMLFormElement>) {
event.preventDefault()

const formData = new FormData(event.currentTarget)
const response = await fetch('/api/submit’, {

method: 'POST,

body: formData,

)

// Handle response if necessary
const data = await response.json()
/...

}

return (
<form onSubmit={onSubmit}>
<input type="text" name="name" />
<button type="submit">Submit</button>
<[/form>

)
-

“ " jsx filename="pages/index.jsx" switcher
export default function Page() {
async function onSubmit(event) {
event.preventDefault()

const formData = new FormData(event.target)
const response = await fetch('/api/submit’, {
method: 'POST/,
body: formData,

)

// Handle response if necessary
const data = await response.json()
/...

}

return (
<form onSubmit={onSubmit}>
<input type="text" name="name" />
<button type="submit">Submit</button>
<[form>
)
}

</PagesOnly>
<AppOnly>

To create a server-only form, define the Server Action in a Server Component.
The action can either be defined inline with the ""use server"" directive at the
top of the function, or in a separate file with the directive at the top of the file.

" tsx filename="app/page.tsx" switcher
export default function Page() {
async function create(formData: FormData) {
'use server'

/| mutate data
/| revalidate cache

}

return <form action={create}>...</form>

LUENRY

" jsx filename="app/page.jsx" switcher
export default function Page() {
async function create(formData) {
'use server'

/| mutate data
/| revalidate cache

}

return <form action={create}>...</form>

LR RN

> **Good to know**: “<form action={create}>" takes the [FormData](https://
developer.mozilla.org/docs/Web/API/FormData/FormData) data type. In the
example above, the FormData submitted via the HTML [form] (https://
developer.mozilla.org/docs/Web/HTML/Element/form) is accessible in the
server action “create .

Revalidating Data

Server Actions allow you to invalidate the [Next.js Cache](/docs/app/building-
your-application/caching) on demand. You can invalidate an entire route
segment with [revalidatePath] (/docs/app/api-reference/functions/
revalidatePath):

“*ts filename="app/actions.ts" switcher
'use server'

import { revalidatePath } from 'next/cache’

export default async function submit() {
await submitForm()
revalidatePath('/")

LUENRY

“js filename="app/actions.js" switcher
'use server'

import { revalidatePath } from 'next/cache’

export default async function submit() {
await submitForm()
revalidatePath('/")

}

Or invalidate a specific data fetch with a cache tag using [‘revalidateTag](/
docs/app/api-reference/functions/revalidateTag):

" ts filename="app/actions.ts" switcher
'use server'

import { revalidateTag } from 'next/cache’

export default async function submit() {
await addPost()
revalidateTag('posts')

LURNRN

*"js filename="app/actions.js" switcher
'use server'

import { revalidateTag } from 'next/cache'

export default async function submit() {
await addPost()
revalidateTag('posts')

LR RN

</AppOnly>
Redirecting
<PagesOnly>

If you would like to redirect the user to a different route after a mutation, you
can [‘redirect](/docs/pages/building-your-application/routing/api-
routes#response-helpers) to any absolute or relative URL:

**ts filename="pages/api/submit.ts" switcher
import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
req: NextApiRequest,
res: NextApiResponse

) {
const id = await addPost()
res.redirect(307, *[post/${id}")

}

* s filename="pages/api/submit.js" switcher
export default async function handler(req, res) {
const id = await addPost()
res.redirect(307, “/post/${id}")
}

</PagesOnly>
<AppOnly>

If you would like to redirect the user to a different route after the completion of
a Server Action, you can use [redirect](/docs/app/api-reference/functions/
redirect) and any absolute or relative URL:

" ts filename="app/actions.ts" switcher
'use server'

import { redirect } from 'next/navigation’
import { revalidateTag } from 'next/cache’

export default async function submit() {
const id = await addPost()
revalidateTag('posts') // Update cached posts
redirect("/post/${id}") // Navigate to new route

AR RN

“js filename="app/actions.js" switcher
'use server'

import { redirect } from 'next/navigation’
import { revalidateTag } from 'next/cache'

export default async function submit() {
const id = await addPost()
revalidateTag('posts') // Update cached posts
redirect(’/post/${id}") // Navigate to new route
}

</AppOnly>

Form Validation

We recommend using HTML validation like "required” and "type="email"" for
basic form validation.

For more advanced server-side validation, use a schema validation library like
[zod](https://zod.deV/) to validate the structure of the parsed form data:

<PagesOnly>

“*ts filename="pages/api/submit.ts" switcher
import type { NextApiRequest, NextApiResponse } from 'next'
import { z } from 'zod'

const schema = z.object({

/...
H

export default async function handler(
req: NextApiRequest,
res: NextApiResponse

) {

const parsed = schema.parse(req.body)

/I ...
-

* s filename="pages/api/submit.js" switcher
import { z } from 'zod'

const schema = z.object({
/...
1

export default async function handler(req, res) {
const parsed = schema.parse(req.body)

/I ...
-

</PagesOnly>
<AppOnly>

“ " tsx filename="app/actions.ts" switcher
import { z } from 'zod'

const schema = z.object({

/I ...
1)

export default async function submit(formData: FormData) {
const parsed = schema.parse({
id: formData.get('id"),
1
/...
}

“*jsx filename="app/actions.js" switcher
import { z } from 'zod'

const schema = z.object({

/I ...
1

export default async function submit(formData) {
const parsed = schema.parse({
id: formData.get('id"),
1
/...
}

</AppOnly>

Displaying Loading State

<AppOnly>

Use the ['useFormStatus](https://react.dev/reference/react-dom/hooks/
useFormStatus) hook to show a loading state when a form is submitting on the
server. The "useFormStatus™ hook can only be used as a child of a "form"
element using a Server Action.

For example, the following submit button:

“ " tsx filename="app/submit-button.tsx" switcher
'use client'

import { useFormStatus } from 'react-dom'

export function SubmitButton() {
const { pending } = useFormStatus()

return (
<button type="submit" aria-disabled={pending}>
Add
</button>

)
-

“Yjsx filename="app/submit-button.jsx" switcher
'use client'

import { useFormStatus } from 'react-dom'

export function SubmitButton() {
const { pending } = useFormStatus()

return (
<button type="submit" aria-disabled={pending}>
Add
</button>

)
-

"<SubmitButton /> can then be used in a form with a Server Action:

* " tsx filename="app/page.tsx" switcher
import { SubmitButton } from '@/app/submit-button’

export default async function Home() {
return (
<form action={...}>
<input type="text" name="field-name" />
<SubmitButton />
<[form>
)
}

*jsx filename="app/page.jsx" switcher
import { SubmitButton } from '@/app/submit-button’

export default async function Home() {
return (
<form action={...}>
<input type="text" name="field-name" />

<SubmitButton />
<[form>
)
}

</AppOnly>
<PagesOnly>

You can use React state to show a loading state when a form is submitting on
the server:

" tsx filename="pages/index.tsx" switcher
import React, { useState, FormEvent } from 'react'

export default function Page() {
const [isLoading, setlsLoading] = useState<boolean>(false)

async function onSubmit(event: FormEvent<HTMLFormElement>) {
event.preventDefault()
setlsLoading(true) /| Set loading to true when the request starts

try {
const formData = new FormData(event.currentTarget)

const response = await fetch('/api/submit’, {
method: 'POST,
body: formData,

}

/| Handle response if necessary
const data = await response.json()
/...
} catch (error) {
/| Handle error if necessary
console.error(error)
} finally {
setlsLoading(false) // Set loading to false when the request completes
}
}

return (
<form onSubmit={onSubmit}>
<input type="text" name="name" />
<button type="submit" disabled={isLoading}>
{isLoading ? 'Loading...' : 'Submit'}
</button>

<[form>

)
-

" jsx filename="pages/index.jsx" switcher
import React, { useState } from 'react’

export default function Page() {
const [isLoading, setlsLoading] = useState(false)

async function onSubmit(event) {
event.preventDefault()
setlsLoading(true) /| Set loading to true when the request starts

try {
const formData = new FormData(event.currentTarget)

const response = await fetch('/api/submit’, {
method: 'POST/,
body: formData,

}

/| Handle response if necessary
const data = await response.json()
/...
} catch (error) {
/| Handle error if necessary
console.error(error)
} finally {
setlsLoading(false) [/ Set loading to false when the request completes
}
}

return (
<form onSubmit={onSubmit}>
<input type="text" name="name" />
<button type="submit" disabled={isLoading}>
{isLoading ? 'Loading...' : 'Submit'}
</button>
<[form>
)
}

</PagesOnly>

Error Handling

<AppOnly>

Server Actions can also return [serializable objects](https://
developer.mozilla.org/docs/Glossary/Serialization). For example, your Server
Action might handle errors from creating a new item:

" ts filename="app/actions.ts" switcher
'use server'

export async function createTodo(prevState: any, formData: FormData) {
try {
await createltem(formData.get('todo"))
return revalidatePath('/')
} catch (e) {
return { message: 'Failed to create' }
}
}

“js filename="app/actions.js" switcher
'use server'

export async function createTodo(prevState, formData) {

try {
await createltem(formData.get('todo'))
return revalidatePath('/")
} catch (e) {
return { message: 'Failed to create' }
}
}

Then, from a Client Component, you can read this value and display an error
message.

* " tsx filename="app/add-form.tsx" switcher
'use client'

import { useFormState, useFormStatus } from 'react-dom’
import { createTodo } from '@/app/actions’

const initialState = {
message: null,

}

function SubmitButton() {

const { pending } = useFormStatus()

return (
<button type="submit" aria-disabled={pending}>
Add
</button>

)
}

export function AddForm() {
const [state, formAction] = useFormState(createTodo, initialState)

return (
<form action={formAction}>
<label htmlFor="todo">Enter Task</label>
<input type="text" id="todo" name="todo" required />
<SubmitButton />
<p aria-live="polite" className="sr-only">
{state?.message}
<[p>
<[form>
)
}

*jsx filename="app/add-form.jsx" switcher
'use client'

import { useFormState, useFormStatus } from 'react-dom'
import { createTodo } from '@/app/actions’

const initialState = {
message: null,

}

function SubmitButton() {
const { pending } = useFormStatus()

return (
<button type="submit" aria-disabled={pending}>
Add
</button>

)
}

export function AddForm() {
const [state, formAction] = useFormState(createTodo, initialState)

return (
<form action={formAction}>
<label htmlFor="todo">Enter Task</label>
<input type="text" id="todo" name="todo" required />
<SubmitButton />
<p aria-live="polite" className="sr-only">
{state?.message}
<[p>
<[form>
)
}

</AppOnly>
<PagesOnly>

You can use React state to show an error message when a form submission
fails:

" tsx filename="pages/index.tsx" switcher
import React, { useState, FormEvent } from 'react’

export default function Page() {
const [isLoading, setlsLoading] = useState<boolean>(false)
const [error, setError] = useState<string | null>(null)

async function onSubmit(event: FormEvent<HTMLFormElement>) {
event.preventDefault()
setlsLoading(true)
setError(null) /| Clear previous errors when a new request starts

try {
const formData = new FormData(event.currentTarget)

const response = await fetch('/api/submit’, {
method: 'POST,
body: formData,

}

if ('response.ok) {
throw new Error('Failed to submit the data. Please try again.')

}

/| Handle response if necessary
const data = await response.json()

/...

} catch (error) {
/| Capture the error message to display to the user
setError(error.message)
console.error(error)

} finally {
setlsLoading(false)

}

}

return (
<div>
{error && <div style={{ color: 'red' }}>{error}</div>}
<form onSubmit={onSubmit}>
<input type="text" name="name" [>
<button type="submit" disabled={isLoading}>
{isLoading ? 'Loading...' : 'Submit'}
</button>
<[form>
</div>
)
}

“jsx filename="pages/index.jsx" switcher
import React, { useState } from 'react’

export default function Page() {
const [isLoading, setlsLoading] = useState(false)
const [error, setError] = useState(null)

async function onSubmit(event) {
event.preventDefault()
setlsLoading(true)
setError(null) /| Clear previous errors when a new request starts

try {
const formData = new FormData(event.currentTarget)

const response = await fetch('/api/submit’, {
method: 'POST,
body: formData,

}

if (‘response.ok) {
throw new Error('Failed to submit the data. Please try again.')

}

/| Handle response if necessary

const data = await response.json()
/...

} catch (error) {
/| Capture the error message to display to the user
setError(error.message)
console.error(error)

} finally {
setlsLoading(false)

}

}

return (
<div>
{error && <div style={{ color: 'red' }}>{error}</div>}
<form onSubmit={onSubmit}>
<input type="text" name="name" [>
<button type="submit" disabled={isLoading}>
{isLoading ? 'Loading...' : 'Submit'}
</button>
</form>
</div>
)
}

</PagesOnly>

<AppOnly>

Optimistic Updates

Use [useOptimistic "] (https://react.dev/reference/react/useOptimistic) to
optimistically update the Ul before the Server Action finishes, rather than

waiting for the response:

" tsx filename="app/page.tsx" switcher
'use client'

import { useOptimistic } from 'react’
import { send } from './actions'

type Message = {
message: string

}

export function Thread({ messages }: { messages: Message[] }) {
const [optimisticMessages, addOptimisticMessage] =

useOptimisticcMessage[]>(
messages,
(state: Message[], newMessage: string) => [
...state,
{ message: newMessage },
]
)

return (
<div>
{optimisticMessages.map((m, k) => (
<div key={k}>{m.message}</div>
)}
<form
action={async (formData: FormData) => {
const message = formData.get('message')
addOptimisticMessage(message)
await send(message)
13
>
<input type="text" name="message" />
<button type="submit">Send</button>
</form>
</div>
)
}

" Yjsx filename="app/page.jsx" switcher
'use client'

import { useOptimistic } from 'react’
import { send } from './actions'

export function Thread({ messages }) {
const [optimisticMessages, addOptimisticMessage] = useOptimistic(
messages,
(state, newMessage) => [...state, { message: newMessage }]

)

return (
<div>
{optimisticMessages.map((m) => (
<div>{m.message}</div>
)}
<form
action={async (formData) => {

const message = formData.get('message')
addOptimisticMessage(message)
await send(message)
13
>
<input type="text" name="message" />
<button type="submit">Send</button>
</form>
</div>
)
}

</AppOnly>
Setting Cookies
<PagesOnly>

You can set cookies inside an API Route using the “setHeader™ method on the
response:

**ts filename="pages/api/cookie.ts" switcher
import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
req: NextApiRequest,
res: NextApiResponse
) {
res.setHeader('Set-Cookie', 'username=lee; Path=/; HttpOnly")
res.status(200).send('Cookie has been set.")

EUR RN

**js filename="pages/api/cookie.js" switcher

export default async function handler(req, res) {
res.setHeader('Set-Cookie', 'username=lee; Path=/; HttpOnly")
res.status(200).send('Cookie has been set.")

}
</PagesOnly>
<AppOnly>

You can set cookies inside a Server Action using the [cookies](/docs/app/api-
reference/functions/cookies) function:

" ts filename="app/actions.ts" switcher
'use server'

import { cookies } from 'next/headers'

export async function create() {
const cart = await createCart()
cookies().set('cartld’, cart.id)

AURNEN

**js filename="app/actions.js" switcher
'use server'

import { cookies } from 'next/headers'

export async function create() {
const cart = await createCart()
cookies().set('cartld’, cart.id)

LUENRY

</AppOnly>
Reading Cookies
<PagesOnly>

You can read cookies inside an APl Route using the [cookies](/docs/pages/
building-your-application/routing/api-routes#request-helpers) request helper:

" ts filename="pages/api/cookie.ts" switcher
import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
req: NextApiRequest,
res: NextApiResponse

) {
const auth = req.cookies.authorization
/] ...

}

" js filename="pages/api/cookie.js" switcher
export default async function handler(req, res) {
const auth = req.cookies.authorization

/I ...

</PagesOnly>
<AppOnly>

You can read cookies inside a Server Action using the [cookies](/docs/app/
api-reference/functions/cookies) function:

" ts filename="app/actions.ts" switcher
'use server'

import { cookies } from 'next/headers'

export async function read() {
const auth = cookies().get('authorization')?.value

/...
-

*js filename="app/actions.js" switcher
‘'use server'

import { cookies } from 'next/headers'

export async function read() {
const auth = cookies().get('authorization')?.value

/...
-

</AppOnly>
Deleting Cookies
<PagesOnly>

You can delete cookies inside an APl Route using the “setHeader™ method on
the response:

**ts filename="pages/api/cookie.ts" switcher
import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
req: NextApiRequest,

res: NextApiResponse

) {
res.setHeader('Set-Cookie', 'username=; Path=/; HttpOnly; Max-Age=0")

res.status(200).send('Cookie has been deleted.')

AUENEN

“*js filename="pages/api/cookie.js" switcher

export default async function handler(req, res) {
res.setHeader('Set-Cookie', 'username=; Path=/; HttpOnly; Max-Age=0')
res.status(200).send('Cookie has been deleted.')

}
</PagesOnly>

<AppOnly>

You can delete cookies inside a Server Action using the [cookies](/docs/app/
api-reference/functions/cookies) function:

**ts filename="app/actions.ts" switcher
'use server'

import { cookies } from 'next/headers'

export async function delete() {
cookies().delete('name')
/] ...

}

e

js filename="app/actions.js" switcher
'use server'

import { cookies } from 'next/headers'

export async function delete() {
cookies().delete('name')

/...
-

See [additional examples](/docs/app/api-reference/functions/cookies#deleting-
cookies) for deleting cookies from Server Actions.

</AppOnly>

title: Server Components
description: Learn how you can use React Server Components to render parts
of your application on the server.
related:
description: Learn how Next.js caches data and the result of static rendering.
links:
- app/building-your-application/caching

React Server Components allow you to write Ul that can be rendered and
optionally cached on the server. In Next.js, the rendering work is further split by
route segments to enable streaming and partial rendering, and there are three
different server rendering strategies:

- [Static Rendering] (#static-rendering-default)
- [Dynamic Rendering](#dynamic-rendering)
- [Streaming] (#streaming)

This page will go through how Server Components work, when you might use
them, and the different server rendering strategies.

Benefits of Server Rendering

There are a couple of benefits to doing the rendering work on the server,
including:

- **Data Fetching**: Server Components allow you to move data fetching to
the server, closer to your data source. This can improve performance by
reducing time it takes to fetch data needed for rendering, and the amount of
requests the client needs to make.

- **Security**: Server Components allow you to keep sensitive data and logic
on the server, such as tokens and API keys, without the risk of exposing them
to the client.

- **Caching**: By rendering on the server, the result can be cached and reused
on subsequent requests and across users. This can improve performance and
reduce cost by reducing the amount of rendering and data fetching done on
each request.

- **Bundle Sizes**: Server Components allow you to keep large dependencies
that previously would impact the client JavaScript bundle size on the server.
This is beneficial for users with slower internet or less powerful devices, as the
client does not have to download, parse and execute any JavaScript for Server
Components.

- **|nitial Page Load and [First Contentful Paint (FCP)](https://web.dev/
fcp/)**: On the server, we can generate HTML to allow users to view the page
immediately, without waiting for the client to download, parse and execute the

JavaScript needed to render the page.

- **Search Engine Optimization and Social Network Shareability**: The
rendered HTML can be used by search engine bots to index your pages and
social network bots to generate social card previews for your pages.

- **Streaming**: Server Components allow you to split the rendering work into
chunks and stream them to the client as they become ready. This allows the
user to see parts of the page earlier without having to wait for the entire page
to be rendered on the server.

Using Server Components in Next.js

By default, Next.js uses Server Components. This allows you to automatically
implement server rendering with no additional configuration, and you can opt
into using Client Components when needed, see [Client Components](/docs/
app/building-your-application/rendering/client-components).

How are Server Components rendered?

On the server, Next.js uses React's APIs to orchestrate rendering. The
rendering work is split into chunks: by individual route segments and [Suspense
Boundaries] (https://react.dev/reference/react/Suspense).

Each chunk is rendered in two steps:

1. React renders Server Components into a special data format called the
React Server Component Payload (RSC Payload).

2. Next.js uses the RSC Payload and Client Component JavaScript instructions
to render *HTML** on the server.

{/* Rendering Diagram */}
Then, on the client:

1. The HTML is used to immediately show a fast non-interactive preview of the
route - this is for the initial page load only.

2. The React Server Components Payload is used to reconcile the Client and
Server Component trees, and update the DOM.

3. The JavaScript instructions are used to [hydrate] (https://react.dev/reference/
react-dom/client/hydrateRoot) Client Components and make the application
interactive.

> **What is the React Server Component Payload (RSC)?**

>

> The RSC Payload is a compact binary representation of the rendered React
Server Components tree. It's used by React on the client to update the
browser's DOM. The RSC Payload contains:

>

> - The rendered result of Server Components

> - Placeholders for where Client Components should be rendered and
references to their JavaScript files

> - Any props passed from a Server Component to a Client Component

Server Rendering Strategies

There are three subsets of server rendering: Static, Dynamic, and Streaming.
Static Rendering (Default)

{/* Static Rendering Diagram */}

With Static Rendering, routes are rendered at **build time**, or in the
background after [data revalidation](/docs/app/building-your-application/data-
fetching/fetching-caching-and-revalidating#revalidating-data). The result is
cached and can be pushed to a [Content Delivery Network (CDN)](https://
developer.mozilla.org/docs/Glossary/CDN). This optimization allows you to
share the result of the rendering work between users and server requests.

Static rendering is useful when a route has data that is not personalized to the
user and can be known at build time, such as a static blog post or a product

page.
Dynamic Rendering
{/* Dynamic Rendering Diagram */}

With Dynamic Rendering, routes are rendered for each user at **request
time**,

Dynamic rendering is useful when a route has data that is personalized to the
user or has information that can only be known at request time, such as cookies
or the URL's search params.

> **Dynamic Routes with Cached Data**

>

> In most websites, routes are not fully static or fully dynamic - it's a spectrum.
For example, you can have an e-commerce page that uses cached product data
that's revalidated at an interval, but also has uncached, personalized customer
data.

>

> In Next.js, you can have dynamically rendered routes that have both cached
and uncached data. This is because the RSC Payload and data are cached
separately. This allows you to opt into dynamic rendering without worrying
about the performance impact of fetching all the data at request time.

>

> Learn more about the [full-route cache](/docs/app/building-your-application/
caching#full-route-cache) and [Data Cache](/docs/app/building-your-
application/caching#data-cache).

Switching to Dynamic Rendering

During rendering, if a [dynamic function](#dynamic-functions) or [uncached
data request](/docs/app/building-your-application/data-fetching/fetching-
caching-and-revalidating#opting-out-of-data-caching) is discovered, Next.js
will switch to dynamically rendering the whole route. This table summarizes
how dynamic functions and data caching affect whether a route is statically or
dynamically rendered:

| Dynamic Functions | Data | Route |

| oo | --mmmeeee e |
| No | Cached | Statically Rendered |

| Yes | Cached | Dynamically Rendered |

| No | Not Cached | Dynamically Rendered |
| Yes | Not Cached | Dynamically Rendered |

In the table above, for a route to be fully static, all data must be cached.
However, you can have a dynamically rendered route that uses both cached
and uncached data fetches.

As a developer, you do not need to choose between static and dynamic
rendering as Next.js will automatically choose the best rendering strategy for
each route based on the features and APIs used. Instead, you choose when to
[cache or revalidate specific data](/docs/app/building-your-application/data-
fetching/fetching-caching-and-revalidating), and you may choose to [stream]
(#streaming) parts of your UI.

Dynamic Functions

Dynamic functions rely on information that can only be known at request time
such as a user's cookies, current requests headers, or the URL's search
params. In Next.js, these dynamic functions are:

- **["cookies() '](/docs/app/api-reference/functions/cookies) and
[headers() '](/docs/app/api-reference/functions/headers)**: Using these in
a Server Component will opt the whole route into dynamic rendering at request
time.
- **["useSearchParams() '](/docs/app/api-reference/functions/use-
search-params)**:

- In Client Components, it'll skip static rendering and instead render all Client
Components up to the nearest parent Suspense boundary on the client.

- We recommend wrapping the Client Component that uses
‘useSearchParams() " in a "<Suspense/>" boundary. This will allow any Client

Components above it to be statically rendered. [Example](/docs/app/api-
reference/functions/use-search-params#static-rendering).

- **[*searchParams](/docs/app/api-reference/file-conventions/
page#searchparams-optional)**: Using the [Pages](/docs/app/api-reference/
file-conventions/page) prop will opt the page into dynamic rendering at request
time.

Using any of these functions will opt the whole route into dynamic rendering at
request time.

Streaming

<lmage
alt="Diagram showing parallelization of route segments during streaming,
showing data fetching, rendering, and hydration of invidiual chunks."
srcLight="/docs/light/sequential-parallel-data-fetching.png"
srcDark="/docs/dark/sequential-parallel-data-fetching.png"
width="1600"
height="525"

/>

Streaming enables you to progressively render Ul from the server. Work is split
into chunks and streamed to the client as it becomes ready. This allows the
user to see parts of the page immediately, before the entire content has
finished rendering.

<lmage
alt="Diagram showing partially rendered page on the client, with loading Ul for
chunks that are being streamed."
srcLight="/docs/light/server-rendering-with-streaming.png"
srcDark="/docs/dark/server-rendering-with-streaming.png"

width="1600"
height="785"
/>

Streaming is built into the Next.js App Router by default. This helps improve
both the initial page loading performance, as well as Ul that depends on slower
data fetches that would block rendering the whole route. For example, reviews
on a product page.

You can start streaming route segments using ‘loading.js* and Ul components
with [React Suspense](/docs/app/building-your-application/routing/loading-ui-
and-streaming). See the [Loading Ul and Streaming](/docs/app/building-your-
application/routing/loading-ui-and-streaming) section for more information.

title: Client Components

description: Learn how to use Client Components to render parts of your
application on the client.

Client Components allows you to write interactive Ul that can be rendered on
the client at request time. In Next.js, client rendering is **opt-in**, meaning
you have to explicitly decide what components React should render on the
client.

This page will go through how Client Components work, how they're rendered,
and when you might use them.

Benefits of Client Rendering

There are a couple of benefits to doing the rendering work on the client,
including:

- **Interactivity**: Client Components can use state, effects, and event
listeners, meaning they can provide immediate feedback to the user and update
the UL.

- **Browser APIs**: Client Components have access to browser APIs, like
[geolocation](https://developer.mozilla.org/docs/Web/APl/Geolocation_API) or
[localStorage](https://developer.mozilla.org/docs/Web/API/Window/
localStorage), allowing you to build Ul for specific use cases.

Using Client Components in Next.js

To use Client Components, you can add the React ["use client" " directive]
(https:/[react.dev/reference/react/use-client) at the top of a file, above your
imports.

“"use client" " is used to declare a [boundary](/docs/app/building-your-
application/rendering#network-boundary) between a Server and Client
Component modules. This means that by defining a ""use client" " in a file, all
other modules imported into it, including child components, are considered part
of the client bundle.

" tsx filename="app/counter.tsx" highlight={1} switcher
'use client'

import { useState } from 'react’

export default function Counter() {
const [count, setCount] = useState(0)

return (
<div>

<p>You clicked {count} times</p>
<button onClick={() => setCount(count + 7)}>Click me</button>
</div>
)
}

“jsx filename="app/counter.js" highlight={1} switcher
'use client'

import { useState } from 'react’

export default function Counter() {
const [count, setCount] = useState(0)

return (
<div>
<p>You clicked {count} times</p>
<button onClick={() => setCount(count + 7)}>Click me</button>
</div>
)
}

The diagram below shows that using “onClick" and “useState " in a nested
component (" toggle.js’) will cause an error if the "use client" " directive is not
defined. This is because, by default, the components are rendered on the
server where these APls are not available. By defining the ""use client""
directive in "toggle.js’, you can tell React to render the component and its
children on the client, where the APIs are available.

<lmage
alt="Use Client Directive and Network Boundary"
srcLight="/docs/light/use-client-directive.png"
srcDark="/docs/dark/use-client-directive.png"

width="1600"
height="1320"
/>

> **Defining multiple “use client’ entry points**:

>

> You can define multiple "use client" entry points in your React Component
tree. This allows you to split your application into multiple client bundles (or
branches).

>

> However, ""use client"” doesn't need to be defined in every component that
needs to be rendered on the client. Once you define the boundary, all child

components and modules imported into it are considered part of the client
bundle.

How are Client Components Rendered?

In Next.js, Client Components are rendered differently depending on whether
the request is part of a full page load (an initial visit to your application or a
page reload triggered by a browser refresh) or a subsequent navigation.

Full page load

To optimize the initial page load, Next.js will use React's APIs to render a static
HTML preview on the server for both Client and Server Components. This
means, when the user first visits your application, they will see the content of
the page immediately, without having to wait for the client to download, parse,
and execute the Client Component JavaScript bundle.

On the server:

1. React renders Server Components into a special data format called the
React Server Component Payload (RSC Payload) which includes references
to Client Components.

2. Next.js uses the RSC Payload and Client Component JavaScript instructions
to render **HTML** for the route on the server.

Then, on the client:

1. The HTML is used to immediately show a fast non-interactive initial preview
of the route.

2. The React Server Components Payload is used to reconcile the Client and
Server Component trees, and update the DOM.

3. The JavaScript instructions are used to [hydrate](https://react.dev/reference/
react-dom/client/hydrateRoot) Client Components and make their Ul
interactive.

> **What is hydration?**

>

> Hydration is the process of attaching event listeners to the DOM, to make the
static HTML interactive. Behind the scenes, hydration is done with the

[hydrateRoot "] (https://react.dev/reference/react-dom/client/hydrateRoot)
React API.

Subsequent Navigations

On subsequent navigations, Client Components are rendered entirely on the
client, without the server-rendered HTML.

This means the Client Component JavaScript bundle is downloaded and
parsed. Once the bundle is ready, React will use the RSC Payload to reconcile
the Client and Server Component trees, and update the DOM.

Going back to the Server Environment

Sometimes, after you've declared the ""use client"” boundary, you may want to
go back to the server environment. For example, you may want to reduce the
client bundle size, fetch data on the server, or use an API that is only available
on the server.

You can keep code on the server even though it's theoretically nested inside
Client Components by interleaving Client and Server Components and [Server
Actions](/docs/app/building-your-application/data-fetching/forms-and-
mutations). See the [Composition Patterns](/docs/app/building-your-
application/rendering/composition-patterns) page for more information.

title: Server and Client Composition Patterns
nav_title: Composition Patterns
description: Recommended patterns for using Server and Client Components.

When building React applications, you will need to consider what parts of your
application should be rendered on the server or the client. This page covers
some recommended composition patterns when using Server and Client
Components.

When to use Server and Client Components?

Here's a quick summary of the different use cases for Server and Client
Components:

| What do you need to do? | Server
Component | Client Component |

| Fetch data | <Check size={18} /> |
<Cross size={18} /> |
| Access backend resources (directly) | <Check

size={18} /> | <Cross size={18} /> |

| Keep sensitive information on the server (access tokens, API keys, etc) |
<Check size={18} /> | <Cross size={18} /> |

| Keep large dependencies on the server [Reduce client-side JavaScript

| <Check size={18} [> | <Cross size={18} /> |

| Add interactivity and event listeners (" onClick() ©, "'onChange() *, etc) |
<Cross size={18} /> | <Check size={18} /> |

| Use State and Lifecycle Effects (‘useState() ", ‘useReducer() ", "useEffect()",
etc) | <Cross size={18} /> | <Check size={18} /> |

| Use browser-only APls | <Cross
size={18} /> | <Check size={18} /> |

| Use custom hooks that depend on state, effects, or browser-only APIs

| <Cross size={18} /> | <Check size={18} /> |

| Use [React Class components](https://react.dev/reference/react/Component)
| <Cross size={18} /> | <Check size={18} /> |

Server Component Patterns

Before opting into client-side rendering, you may wish to do some work on the
server like fetching data, or accessing your database or backend services.

Here are some common patterns when working with Server Components:
Sharing data between components

When fetching data on the server, there may be cases where you need to share
data across different components. For example, you may have a layout and a
page that depend on the same data.

Instead of using [React Context](https://react.dev/learn/passing-data-deeply-
with-context) (which is not available on the server) or passing data as props,
you can use [fetch](/docs/app/building-your-application/data-fetching/
fetching-caching-and-revalidating#fetching-data-on-the-server-with-fetch) or
React's "cache’ function to fetch the same data in the components that need
it, without worrying about making duplicate requests for the same data. This is
because React extends "fetch™ to automatically memoize data requests, and
the “cache’ function can be used when “fetch' is not available.

Learn more about [memoization](/docs/app/building-your-application/
caching#request-memoization) in React.

Keeping Server-only Code out of the Client Environment

Since JavaScript modules can be shared between both Server and Client
Components modules, it's possible for code that was only ever intended to be
run on the server to sneak its way into the client.

For example, take the following data-fetching function:

* " ts filename="lib/data.ts" switcher

export async function getData() {
const res = await fetch('https://external-service.com/data’, {

headers: {
authorization: process.env.API_KEY,
h
1

return res.json()

EUR RN

“ s filename="lib/data.js" switcher
export async function getData() {
const res = await fetch('https://external-service.com/data’, {
headers: {
authorization: process.env.API_KEY,
|3
})

return res.json()

EUR RN

At first glance, it appears that "getData” works on both the server and the
client. However, this function contains an "API_KEY , written with the intention
that it would only ever be executed on the server.

Since the environment variable "API_KEY " is not prefixed with "NEXT_PUBLIC",
it's a private variable that can only be accessed on the server. To prevent your
environment variables from being leaked to the client, Next.js replaces private
environment variables with an empty string.

As a result, even though "getData() " can be imported and executed on the
client, it won't work as expected. And while making the variable public would
make the function work on the client, you may not want to expose sensitive
information to the client.

To prevent this sort of unintended client usage of server code, we can use the
“server-only " package to give other developers a build-time error if they ever
accidentally import one of these modules into a Client Component.

To use “server-only, first install the package:

" “bash filename="Terminal"

npm install server-only

Then import the package into any module that contains server-only code:

*js filename="lib/data.js"
import 'server-only'

export async function getData() {
const res = await fetch('https://external-service.com/data’, {
headers: {
authorization: process.env.API_KEY,

}I
}

return res.json()

AUR RN

Now, any Client Component that imports "getData() ~ will receive a build-time
error explaining that this module can only be used on the server.

The corresponding package "client-only ™ can be used to mark modules that
contain client-only code — for example, code that accesses the "window"
object.

Using Third-party Packages and Providers

Since Server Components are a new React feature, third-party packages and
providers in the ecosystem are just beginning to add the ""use client""
directive to components that use client-only features like "useState ",
‘useEffect’, and “createContext .

Today, many components from "npm’ packages that use client-only features
do not yet have the directive. These third-party components will work as
expected within Client Components since they have the ""use client"" directive,
but they won't work within Server Components.

For example, let's say you've installed the hypothetical "acme-carousel’
package which has a “<Carousel /[>" component. This component uses
‘useState’, but it doesn't yet have the ""use client" " directive.

If you use “<Carousel /> within a Client Component, it will work as expected:

" tsx filename="app/gallery.tsx" switcher
'use client'

import { useState } from 'react’
import { Carousel } from 'acme-carousel’

export default function Gallery() {

let [isOpen, setlsOpen] = useState(false)

return (
<div>
<button onClick={() => setlsOpen(true)}>View pictures</button>

{/* Works, since Carousel is used within a Client Component */}
{isOpen && <Carousel [>}
</div>
)
}

" jsx filename="app/gallery.js" switcher
'use client'

import { useState } from 'react’
import { Carousel } from 'acme-carousel’

export default function Gallery() {
let [isOpen, setlsOpen] = useState(false)

return (
<div>
<button onClick={() => setlsOpen(true)}>View pictures</button>

{/* Works, since Carousel is used within a Client Component */}
{isOpen && <Carousel [>}
</div>
)
}

However, if you try to use it directly within a Server Component, you'll see an
error:

“tsx filename="app/page.tsx" switcher
import { Carousel } from 'acme-carousel’

export default function Page() {
return (
<div>
<p>View pictures</p>

{/* Error: "useState" can not be used within Server Components */}
<Carousel [>
</div>

“Yjsx filename="app/page.js" switcher
import { Carousel } from 'acme-carousel’

export default function Page() {
return (
<div>
<p>View pictures</p>
{/* Error: ‘useState" can not be used within Server Components */}
<Carousel [>
</div>

)
}

This is because Next.js doesn't know “<Carousel /> is using client-only
features.

To fix this, you can wrap third-party components that rely on client-only
features in your own Client Components:

“ " tsx filename="app/carousel.tsx" switcher
'use client'

import { Carousel } from 'acme-carousel’
export default Carousel

" jsx filename="app/carousel.js" switcher
'use client'

import { Carousel } from 'acme-carousel’

export default Carousel

Now, you can use "<Carousel /> directly within a Server Component:

“ " tsx filename="app/page.tsx" switcher
import Carousel from './carousel’

export default function Page() {

return (
<div>
<p>View pictures</p>

{/* Works, since Carousel is a Client Component */}
<Carousel [>
</div>
)
}

“jsx filename="app/page.js" switcher
import Carousel from './carousel'

export default function Page() {
return (
<div>
<p>View pictures</p>

{/* Works, since Carousel is a Client Component */}
<Carousel />
</div>
)
}

We don't expect you to need to wrap most third-party components since it's
likely you'll be using them within Client Components. However, one exception is
providers, since they rely on React state and context, and are typically needed
at the root of an application. [Learn more about third-party context providers

below] (#using-context-providers).

Using Context Providers

Context providers are typically rendered near the root of an application to share
global concerns, like the current theme. Since [React context](https://react.dev/
learn/passing-data-deeply-with-context) is not supported in Server

Components, trying to create a context at the root of your application will cause

an error:

“*tsx filename="app/layout.tsx" switcher
import { createContext } from 'react'

/| createContext is not supported in Server Components
export const ThemeContext = createContext({})

export default function RootLayout({ children }) {

return (
<html>
<body>
<ThemeContext.Provider value="dark">{children}</
ThemeContext.Provider>
</body>
</html>
)
}

“"jsx filename="app/layout.js" switcher
import { createContext } from 'react'

/| createContext is not supported in Server Components
export const ThemeContext = createContext({})

export default function RootLayout({ children }) {
return (
<html>
<body>
<ThemeContext.Provider value="dark">{children}</
ThemeContext.Provider>
</body>
</html>
)
}

To fix this, create your context and render its provider inside of a Client
Component:

* " tsx filename="app/theme-provider.tsx" switcher
'use client'

import { createContext } from 'react’
export const ThemeContext = createContext({})
export default function ThemeProvider({ children }) {

return <ThemeContext.Provider value="dark">{children}</
ThemeContext.Provider>

LURNRN

" jsx filename="app/theme-provider.js" switcher
'use client'

import { createContext } from 'react'
export const ThemeContext = createContext({})

export default function ThemeProvider({ children }) {
return <ThemeContext.Provider value="dark">{children}</
ThemeContext.Provider>

AR RN

Your Server Component will now be able to directly render your provider since
it's been marked as a Client Component:

“ " tsx filename="app/layout.tsx" switcher
import ThemeProvider from './theme-provider'

export default function RootLayout({
children,
et
children: React.ReactNode
NA
return (
<html>
<body>
<ThemeProvider>{children}</ThemeProvider>
</body>
</html>
)
}

" jsx filename="app/layout.js" switcher
import ThemeProvider from './theme-provider'

export default function RootLayout({ children }) {
return (
<html>
<body>
<ThemeProvider>{children}</ThemeProvider>
</body>
</html>
)
}

With the provider rendered at the root, all other Client Components throughout

your app will be able to consume this context.

> **Good to know**: You should render providers as deep as possible in the
tree — notice how "ThemeProvider™ only wraps “{children}" instead of the entire
‘<html>" document. This makes it easier for Next.js to optimize the static parts
of your Server Components.

Advice for Library Authors

In a similar fashion, library authors creating packages to be consumed by other
developers can use the ""use client"" directive to mark client entry points of
their package. This allows users of the package to import package components
directly into their Server Components without having to create a wrapping
boundary.

You can optimize your package by using ['use client' deeper in the tree]
(#moving-client-components-down-the-tree), allowing the imported modules
to be part of the Server Component module graph.

It's worth noting some bundlers might strip out ""use client" " directives. You
can find an example of how to configure esbuild to include the ""use client""
directive in the [React Wrap Balancer](https://github.com/shuding/react-wrap-
balancer/blob/main/tsup.config.ts#L10-L13) and [Vercel Analytics](https://
github.com/vercel/analytics/blob/main/packages/web/tsup.config.js#L26-L30)
repositories.

Client Components
Moving Client Components Down the Tree

To reduce the Client JavaScript bundle size, we recommend moving Client
Components down your component tree.

For example, you may have a Layout that has static elements (e.g. logo, links,
etc) and an interactive search bar that uses state.

Instead of making the whole layout a Client Component, move the interactive
logic to a Client Component (e.g. "<SearchBar />") and keep your layout as a
Server Component. This means you don't have to send all the component
Javascript of the layout to the client.

“ " tsx filename="app/layout.tsx" switcher
/| SearchBar is a Client Component
import SearchBar from './searchbar’

/| Logo is a Server Component

import Logo from "./logo'

/| Layout is a Server Component by default
export default function Layout({ children }: { children: React.ReactNode }) {
return (
<>
<nav>
<Logo />
<SearchBar />
</nav>
<main>{children}</main>
<[>
)
}

" jsx filename="app/layout.js" switcher
/| SearchBar is a Client Component
import SearchBar from './searchbar’

/| Logo is a Server Component

import Logo from "./logo'

/| Layout is a Server Component by default
export default function Layout({ children }) {
return (
<>
<nav>
<Logo />
<SearchBar [>
<[nav>
<main>{children}</main>
<[>
)
}

Passing props from Server to Client Components (Serialization)

If you fetch data in a Server Component, you may want to pass data down as
props to Client Components. Props passed from the Server to Client
Components need to be [serializable] (https://developer.mozilla.org/docs/
Glossary/Serialization) by React.

If your Client Components depend on data that is not serializable, you can
[fetch data on the client with a third party library](/docs/app/building-your-
application/data-fetching/fetching-caching-and-revalidating#fetching-data-on-
the-client-with-third-party-libraries) or on the server via a [Route Handler](/
docs/app/building-your-application/routing/route-handlers).

Interleaving Server and Client Components

When interleaving Client and Server Components, it may be helpful to visualize
your Ul as a tree of components. Starting with the [root layout](/docs/app/
building-your-application/routing/pages-and-layouts#root-layout-required),
which is a Server Component, you can then render certain subtrees of
components on the client by adding the ""use client" " directive.

{/* Diagram - interleaving */}

Within those client subtrees, you can still nest Server Components or call
Server Actions, however there are some things to keep in mind:

- During a request-response lifecycle, your code moves from the server to the
client. If you need to access data or resources on the server while on the client,
you'll be making a **new** request to the server - not switching back and
forth.

- When a new request is made to the server, all Server Components are
rendered first, including those nested inside Client Components. The rendered
result (RSC Payload) will contain references to the locations of Client
Components. Then, on the client, React uses the RSC Payload to reconcile
Server and Client Components into a single tree.

{/* Diagram */}

- Since Client Components are rendered after Server Components, you cannot
import a Server Component into a Client Component module (since it would
require a new request back to the server). Instead, you can pass a Server
Component as "props’ to a Client Component. See the [unsupported pattern]
(#unsupported-pattern-importing-server-components-into-client-components)
and [supported pattern] (#supported-pattern-passing-server-components-to-
client-components-as-props) sections below.

Unsupported Pattern: Importing Server Components into Client
Components

The following pattern is not supported. You cannot import a Server Component
into a Client Component:

“ " tsx filename="app/client-component.tsx" switcher highlight={4,17}
'use client'

/| You cannot import a Server Component into a Client Component.
import ServerComponent from './Server-Component'

export default function ClientComponent({

children,
3 A
children: React.ReactNode

DA

const [count, setCount] = useState(0)

return (
<>
<button onClick={() => setCount(count + 1)}>{count}</button>

<ServerComponent />
<[>
)
}

* " jsx filename="app/client-component.js" switcher highlight={3,13}
'use client'

/| You cannot import a Server Component into a Client Component.
import ServerComponent from './Server-Component'

export default function ClientComponent({ children }) {
const [count, setCount] = useState(0)

return (
<>
<button onClick={() => setCount(count + 7)}>{count}</button>

<ServerComponent />
<[>

)
}

Supported Pattern: Passing Server Components to Client Components as
Props

The following pattern is supported. You can pass Server Components as a prop
to a Client Component.

A common pattern is to use the React "children’ prop to create a_"slot"_in
your Client Component.

In the example below, "<ClientComponent>" accepts a "children’ prop:

“ " tsx filename="app/client-component.tsx" switcher highlight={6,15}

'use client'
import { useState } from 'react’

export default function ClientComponent({
children,

3o
children: React.ReactNode

DA

const [count, setCount] = useState(0)

return (
<>
<button onClick={() => setCount(count + 1)}>{count}</button>
{children}
<[>
)
}

" jsx filename="app/client-component.js" switcher highlight={5,12}
'use client'

import { useState } from 'react’

export default function ClientComponent({ children }) {
const [count, setCount] = useState(0)

return (
<>
<button onClick={() => setCount(count + 7)}>{count}</button>

{children}
<[>
)
}

"<ClientComponent>" doesn't know that “children’ will eventually be filled in
by the result of a Server Component. The only responsibility
"<ClientComponent>" has is to decide **where** "children” will eventually be
placed.

In a parent Server Component, you can import both the "<ClientComponent>"
and “<ServerComponent>" and pass "<ServerComponent>" as a child of
“<ClientComponent>":

“*tsx filename="app/page.tsx" highlight={11} switcher

/| This pattern works:

/| You can pass a Server Component as a child or prop of a
/| Client Component.

import ClientComponent from './client-component’

import ServerComponent from './server-component'

/| Pages in Next.js are Server Components by default
export default function Page() {
return (
<ClientComponent>
<ServerComponent />
</ClientComponent>
)
}

“jsx filename="app/page.js" highlight={11} switcher

/| This pattern works:

/] You can pass a Server Component as a child or prop of a
/| Client Component.

import ClientComponent from './client-component’

import ServerComponent from './server-component'

/| Pages in Next.js are Server Components by default
export default function Page() {
return (
<ClientComponent>
<ServerComponent />
</ClientComponent>
)
}

With this approach, "<ClientComponent>" and "<ServerComponent>" are
decoupled and can be rendered independently. In this case, the child
“<ServerComponent>" can be rendered on the server, well before
“<ClientComponent>" is rendered on the client.

> **Good to know:**

>

> - The pattern of "lifting content up" has been used to avoid re-rendering a
nested child component when a parent component re-renders.

> - You're not limited to the "children’ prop. You can use any prop to pass JSX.

title: Edge and Node.js Runtimes
description: Learn about the switchable runtimes (Edge and Node.js) in Next.js.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

In the context of Next.js, runtime refers to the set of libraries, APIs, and general
functionality available to your code during execution.

On the server, there are two runtimes where parts of your application code can
be rendered:

- The **Node.js Runtime** (default) has access to all Node.js APIs and
compatible packages from the ecosystem.

- The **Edge Runtime** is based on [Web APIs](/docs/app/api-reference/
edge).

Runtime Differences

There are many considerations to make when choosing a runtime. This table
shows the major differences at a glance. If you want a more in-depth analysis of
the differences, check out the sections below.

| Node | Serverless | Edge

| Cold Boot

|/ | Normal |Low |

| [HTTP Streaming](/docs/app/building-your-application/routing/loading-ui-
and-streaming) | Yes | Yes | Yes |
| 10

| All | All | “fetch® |

| Scalability

|/ | High | Highest |

| Security

| Normal | High | High |

| Latency

| Normal | Low | Lowest |

| npm Packages

| All] All | A smaller subset |

| [Static Rendering](/docs/app/building-your-application/rendering/server-

components#static-rendering-default) | Yes | Yes | No

I

| [Dynamic Rendering](/docs/app/building-your-application/rendering/server-
components#dynamic-rendering) | Yes | Yes | Yes

I

| [Data Revalidation w/ “fetch'](/docs/app/building-your-application/data-
fetching/fetching-caching-and-revalidating#revalidating-data) | Yes | Yes

| Yes |

Edge Runtime
In Next.js, the lightweight Edge Runtime is a subset of available Node.js APIs.

The Edge Runtime is ideal if you need to deliver dynamic, personalized content
at low latency with small, simple functions. The Edge Runtime's speed comes
from its minimal use of resources, but that can be limiting in many scenarios.

For example, code executed in the Edge Runtime [on Vercel cannot exceed
between 1 MB and 4 MB](https://vercel.com/docs/concepts/limits/
overview#edge-middleware-and-edge-functions-size), this limit includes
imported packages, fonts and files, and will vary depending on your
deployment infrastructure.

Node.js Runtime

Using the Node.js runtime gives you access to all Node.js APIs, and all npm
packages that rely on them. However, it's not as fast to start up as routes using
the Edge runtime.

Deploying your Next.js application to a Node.js server will require managing,
scaling, and configuring your infrastructure. Alternatively, you can consider
deploying your Next.js application to a serverless platform like Vercel, which
will handle this for you.

Serverless Node.js

Serverless is ideal if you need a scalable solution that can handle more complex
computational loads than the Edge Runtime. With Serverless Functions on
Vercel, for example, your overall code size is [50MB](https://vercel.com/docs/
concepts/limits/overview#serverless-function-size) including imported
packages, fonts, and files.

The downside compared to routes using the [Edge](https://vercel.com/docs/
concepts/functions/edge-functions) is that it can take hundreds of milliseconds
for Serverless Functions to boot up before they begin processing requests.
Depending on the amount of traffic your site receives, this could be a frequent
occurrence as the functions are not frequently "warm".

<AppOnly>
Examples
Segment Runtime Option

You can specify a runtime for individual route segments in your Next.js
application. To do so, [declare a variable called "runtime’ and export it](/docs/
app/api-reference/file-conventions/route-segment-config). The variable must
be a string, and must have a value of either "'nodejs'™ or "'edge'’ runtime.

The following example demonstrates a page route segment that exports a
‘runtime” with a value of “'edge' ":

“ " tsx filename="app/page.tsx" switcher
export const runtime = 'edge’' // 'nodejs' (default) | 'edge’

*Yjsx filename="app/page.js" switcher
export const runtime = 'edge' // 'nodejs' (default) | 'edge’

You can also define ‘runtime™ on a layout level, which will make all routes under
the layout run on the edge runtime:

* " tsx filename="app/layout.tsx" switcher
export const runtime = 'edge’' // 'nodejs' (default) | 'edge’

“"Yjsx filename="app/layout.js" switcher
export const runtime = 'edge’' // 'nodejs' (default) | 'edge’

If the segment runtime is _not_ set, the default 'nodejs” runtime will be used.
You do not need to use the ‘runtime’ option if you do not plan to change from
the Node.js runtime.

</AppOnly>

> Please refer to the [Node.js Docs](https://nodejs.org/docs/latest/api/) and
[Edge Docs](/docs/app/api-reference/edge) for the full list of available APIs.
Both runtimes can also support [streaming](/docs/app/building-your-
application/routing/loading-ui-and-streaming) depending on your deployment
infrastructure.

title: Rendering
description: Learn the differences between Next.js rendering environments,
strategies, and runtimes.

Rendering converts the code you write into user interfaces. React and Next.js
allow you to create hybrid web applications where parts of your code can be

rendered on the server or the client. This section will help you understand the
differences between these rendering environments, strategies, and runtimes.

Fundamentals
To start, it's helpful to be familiar with three foundational web concepts:

- The [Environments](#rendering-environments) your application code can be
executed in: the server and the client.

- The [Request-Response Lifecycle] (#request-response-lifecycle) that's
initiated when a user visits or interacts with your application.

- The [Network Boundary] (#network-boundary) that separates server and
client code.

Rendering Environments

There are two environments where web applications can be rendered: the client
and the server.

<lmage
alt="Client and Server Environments"
srcLight="/docs/light/client-and-server-environments.png"
srcDark="/docs/dark/client-and-server-environments.png"

width="1600"
height="672"
/>

- The **client** refers to the browser on a user's device that sends a request to
a server for your application code. It then turns the response from the server
into a user interface.

- The **server** refers to the computer in a data center that stores your
application code, receives requests from a client, and sends back an
appropriate response.

Historically, developers had to use different languages (e.g. JavaScript, PHP)
and frameworks when writing code for the server and the client. With React,
developers can use the **same language** (JavaScript), and the **same
framework** (e.g. Next.js or your framework of choice). This flexibility allows
you to seamlessly write code for both environments without context switching.

However, each environment has its own set of capabilities and constraints.
Therefore, the code you write for the server and the client is not always the
same. There are certain operations (e.g. data fetching or managing user state)
that are better suited for one environment over the other.

Understanding these differences is key to effectively using React and Next.js.
We'll cover the differences and use cases in more detail on the [Server](/docs/
app/building-your-application/rendering/server-components) and [Client](/
docs/app/building-your-application/rendering/client-components) Components
pages, for now, let's continue building on our foundation.

Request-Response Lifecycle

Broadly speaking, all websites follow the same **Request-Response
Lifecycle**:

1. **User Action:** The user interacts with a web application. This could be
clicking a link, submitting a form, or typing a URL directly into the browser's
address bar.

2. **HTTP Request:** The client sends an [HTTP](https://developer.mozilla.org/
docs/Web/HTTP) request to the server that contains necessary information
about what resources are being requested, what method is being used (e.g.
"GET’, "POST "), and additional data if necessary.

3. **Server:** The server processes the request and responds with the
appropriate resources. This process may take a couple of steps like routing,
fetching data, etc.

4. *HTTP Response:** After processing the request, the server sends an HTTP
response back to the client. This response contains a status code (which tells
the client whether the request was successful or not) and requested resources
(e.g. HTML, CSS, JavaScript, static assets, etc).

5. **Client:** The client parses the resources to render the user interface.

6. **User Action:** Once the user interface is rendered, the user can interact
with it, and the whole process starts again.

A major part of building a hybrid web application is deciding how to split the
work in the lifecycle, and where to place the Network Boundary.

Network Boundary

In web development, the **Network Boundary** is a conceptual line that
separates the different environments. For example, the client and the server, or
the server and the data store.

{/* Diagram: Network Boundary */}

In React, you choose where to place the client-server network boundary

wherever it makes the most sense.

Behind the scenes, the work is split into two parts: the **client module graph**
and the **server module graph** The server module graph contains all the
components that are rendered on the server, and the client module graph
contains all components that are rendered on the client.

{/* Diagram: Client and Server Module Graphs */}

It may be helpful to think about module graphs as a visual representation of
how files in your application depend on each other.

{/* For example, if you have a file called "Page.jsx" that imports a file called
“Button.jsx" on the server, the module graph would look something like this: -
Diagram - */}

You can use the React ""use client" " convention to define the boundary.
There's also a ""use server"" convention, which tells React to do some
computational work on the server.

Building Hybrid Applications

When working in these environments, it's helpful to think of the flow of the
code in your application as **unidirectional**. In other words, during a
response, your application code flows in one direction: from the server to the
client.

{/* Diagram: Response flow */}

If you need to access the server from the client, you send a **new** request to
the server rather than re-use the same request. This makes it easier to
understand where to render your components and where to place the Network
Boundary.

In practice, this model encourages developers to think about what they want to
execute on the server first, before sending the result to the client and making
the application interactive.

This concept will become clearer when we look at how you can [interleave
client and server components](/docs/app/building-your-application/rendering/
composition-patterns) in the same component tree.

title: Caching in Next.js
nav_title: Caching
description: An overview of caching mechanisms in Next.js.

Next.js improves your application's performance and reduces costs by caching
rendering work and data requests. This page provides an in-depth look at
Next.js caching mechanisms, the APIs you can use to configure them, and how
they interact with each other.

> **Good to know**: This page helps you understand how Next.js works under
the hood but is **not** essential knowledge to be productive with Next.js. Most
of Next.js' caching heuristics are determined by your APl usage and have
defaults for the best performance with zero or minimal configuration.

Overview

Here's a high-level overview of the different caching mechanisms and their
purpose:

| Mechanism | What | Where | Purpose
| Duration

| [Request Memoization] (#request-memoization) | Return values of functions |
Server | Re-use data in a React Component tree | Per-request lifecycle

I

| [Data Cache](#data-cache) | Data | Server | Store data
across user requests and deployments | Persistent (can be revalidated) |

| [Full Route Cache](#full-route-cache) | HTML and RSC payload | Server
| Reduce rendering cost and improve performance | Persistent (can be
revalidated) |

| [Router Cache](#router-cache) | RSC Payload | Client |
Reduce server requests on navigation | User session or time-based |

By default, Next.js will cache as much as possible to improve performance and
reduce cost. This means routes are **statically rendered** and data requests
are **cached** unless you opt out. The diagram below shows the default
caching behavior: when a route is statically rendered at build time and when a
static route is first visited.

<lmage

alt="Diagram showing the default caching behavior in Next.js for the four
mechanisms, with HIT, MISS and SET at build time and when a route is first
visited."

srcLight="/docs/light/caching-overview.png"

srcDark="/docs/dark/caching-overview.png"

width="1600"

height="1179"

/>

Caching behavior changes depending on whether the route is statically or
dynamically rendered, data is cached or uncached, and whether a request is
part of an initial visit or a subsequent navigation. Depending on your use case,
you can configure the caching behavior for individual routes and data requests.

Request Memoization

React extends the [fetch® API](#fetch) to automatically **memoize** requests
that have the same URL and options. This means you can call a fetch function
for the same data in multiple places in a React component tree while only
executing it once.

<lmage
alt="Deduplicated Fetch Requests"
srcLight="/docs/light/deduplicated-fetch-requests.png"
srcDark="/docs/dark/deduplicated-fetch-requests.png"

width="1600"
height="857"
/>

For example, if you need to use the same data across a route (e.g. in a Layout,
Page, and multiple components), you do not have to fetch data at the top of the
tree then forward props between components. Instead, you can fetch data in
the components that need it without worrying about the performance
implications of making multiple requests across the network for the same data.

“ " tsx filename="app/example.tsx" switcher
async function getltem() {
/| The “fetch’ function is automatically memoized and the result
/| is cached
const res = await fetch('https://.../item/1')
return res.json()

}

/| This function is called twice, but only executed the first time
const item = await getltem() // cache MISS

/| The second call could be anywhere in your route
const item = await getltem() // cache HIT

" jsx filename="app/example.js" switcher

async function getltem() {
/| The “fetch’ function is automatically memoized and the result
/| is cached
const res = await fetch('https://.../item/1')

return res.json()

}

/| This function is called twice, but only executed the first time
const item = await getltem() // cache MISS

/| The second call could be anywhere in your route
const item = await getltem() // cache HIT

How Request Memoization Works

<lmage
alt="Diagram showing how fetch memoization works during React rendering."
srcLight="/docs/light/request-memoization.png"
srcDark="/docs/dark/request-memoization.png"

width="1600"
height="742"
[>

- While rendering a route, the first time a particular request is called, its result
will not be in memory and it'll be a cache "MISS".

- Therefore, the function will be executed, and the data will be fetched from the
external source, and the result will be stored in memory.

- Subsequent function calls of the request in the same render pass will be a
cache "HIT’, and the data will be returned from memory without executing the
function.

- Once the route has been rendered and the rendering pass is complete,
memory is "reset" and all request memoization entries are cleared.

> **Good to know**:

>

> - Request memoization is a React feature, not a Next.js feature. It's included
here to show how it interacts with the other caching mechanisms.

> - Memoization only applies to the "GET" method in “fetch’ requests.

> - Memoization only applies to the React Component tree, this means:

> - |t applies to “fetch' requests in "generateMetadata’,
‘generateStaticParams ', Layouts, Pages, and other Server Components.

> - |t doesn't apply to “fetch' requests in Route Handlers as they are not a
part of the React component tree.

> - For cases where “fetch' is not suitable (e.g. some database clients, CMS
clients, or GraphQL clients), you can use the [React “cache’ function](#react-
cache-function) to memoize functions.

Duration

The cache lasts the lifetime of a server request until the React component tree

has finished rendering.
Revalidating

Since the memoization is not shared across server requests and only applies
during rendering, there is no need to revalidate it.

Opting out

To opt out of memoization in “fetch' requests, you can pass an
“AbortController”™ “signal” to the request.

" js filename="app/example.js"
const { signal } = new AbortController()
fetch(url, { signal })

Data Cache

Next.js has a built-in Data Cache that **persists** the result of data fetches
across incoming **server requests** and **deployments** This is possible

because Next.js extends the native "fetch™ API to allow each request on the
server to set its own persistent caching semantics.

> **Good to know**: In the browser, the "cache’ option of “fetch' indicates
how a request will interact with the browser's HTTP cache, in Next.js, the
‘cache’ option indicates how a server-side request will interact with the
server's Data Cache.

By default, data requests that use “fetch™ are **cached** You can use the
[‘'cache] (#fetch-optionscache) and [next.revalidate "] (#fetch-
optionsnextrevalidate) options of “fetch™ to configure the caching behavior.

How the Data Cache Works

<lmage

alt="Diagram showing how cached and uncached fetch requests interact with
the Data Cache. Cached requests are stored in the Data Cache, and memoized,
uncached requests are fetched from the data source, not stored in the Data
Cache, and memoized."

srcLight="/docs/light/data-cache.png"

srcDark="/docs/dark/data-cache.png"

width="1600"
height="661"
/>

- The first time a “fetch’ request is called during rendering, Next.js checks the

Data Cache for a cached response.

- If a cached response is found, it's returned immediately and [memoized]
(#request-memoization).

- If a cached response is not found, the request is made to the data source, the
result is stored in the Data Cache, and memoized.

- For uncached data (e.g. { cache: 'no-store' }"), the result is always fetched
from the data source, and memoized.

- Whether the data is cached or uncached, the requests are always memoized
to avoid making duplicate requests for the same data during a React render
pass.

> **Differences between the Data Cache and Request Memoization**

>

> While both caching mechanisms help improve performance by re-using
cached data, the Data Cache is persistent across incoming requests and
deployments, whereas memoization only lasts the lifetime of a request.

>

> With memoization, we reduce the number of **duplicate** requests in the
same render pass that have to cross the network boundary from the rendering
server to the Data Cache server (e.g. a CDN or Edge Network) or data source
(e.g. a database or CMS). With the Data Cache, we reduce the number of
requests made to our origin data source.

Duration

The Data Cache is persistent across incoming requests and deployments
unless you revalidate or opt-out.

Revalidating
Cached data can be revalidated in two ways, with:

- **Time-based Revalidation**: Revalidate data after a certain amount of time
has passed and a new request is made. This is useful for data that changes
infrequently and freshness is not as critical.

- **On-demand Revalidation:** Revalidate data based on an event (e.g. form
submission). On-demand revalidation can use a tag-based or path-based
approach to revalidate groups of data at once. This is useful when you want to
ensure the latest data is shown as soon as possible (e.g. when content from
your headless CMS is updated).

Time-based Revalidation

To revalidate data at a timed interval, you can use the "next.revalidate™ option
of “fetch' to set the cache lifetime of a resource (in seconds).

‘\jS

/| Revalidate at most every hour
fetch('https://...", { next: { revalidate: 3600 } })

Alternatively, you can use [Route Segment Config options](#segment-config-
options) to configure all “fetch' requests in a segment or for cases where
you're not able to use “fetch'.

How Time-based Revalidation Works

<lmage

alt="Diagram showing how time-based revalidation works, after the
revalidation period, stale data is returned for the first request, then data is
revalidated."

srcLight="/docs/light/time-based-revalidation.png"

srcDark="/docs/dark/time-based-revalidation.png"

width="1600"
height="1252"
/>

- The first time a fetch request with ‘revalidate" is called, the data will be
fetched from the external data source and stored in the Data Cache.
- Any requests that are called within the specified timeframe (e.g. 60-seconds)
will return the cached data.
- After the timeframe, the next request will still return the cached (now stale)
data.

- Next.js will trigger a revalidation of the data in the background.

- Once the data is fetched successfully, Next.js will update the Data Cache
with the fresh data.

- If the background revalidation fails, the previous data will be kept unaltered.

This is similar to [**stale-while-revalidate**] (https://web.dev/stale-while-
revalidate/) behavior.

On-demand Revalidation

Data can be revalidated on-demand by path ([revalidatePath]
(#revalidatepath)) or by cache tag ([‘revalidateTag] (#fetch-optionsnexttags-
and-revalidatetag)).

How On-Demand Revalidation Works

<lmage
alt="Diagram showing how on-demand revalidation works, the Data Cache is
updated with fresh data after a revalidation request."
srcLight="/docs/light/on-demand-revalidation.png"
srcDark="/docs/dark/on-demand-revalidation.png"

width="1600"
height="1082"
/>

- The first time a “fetch’ request is called, the data will be fetched from the
external data source and stored in the Data Cache.
- When an on-demand revalidation is triggered, the appropriate cache entries
will be purged from the cache.

- This is different from time-based revalidation, which keeps the stale data in
the cache until the fresh data is fetched.
- The next time a request is made, it will be a cache "MISS" again, and the data
will be fetched from the external data source and stored in the Data Cache.

Opting out

For individual data fetches, you can opt out of caching by setting the [cache’]
(#fetch-optionscache) option to "no-store’. This means data will be fetched
whenever “fetch' is called.

“Vex
/| Opt out of caching for an individual “fetch' request
fetch(https://...", { cache: 'no-store' })

Alternatively, you can also use the [Route Segment Config options](#¥segment-
config-options) to opt out of caching for a specific route segment. This will
affect all data requests in the route segment, including third-party libraries.

“iex
/| Opt out of caching for all data requests in the route segment
export const dynamic = 'force-dynamic'

> **Vercel Data Cache**

>

> If your Next.js application is deployed to Vercel, we recommend reading the
[Vercel Data Cache](https://vercel.com/docs/infrastructure/data-cache)
documentation for a better understanding of Vercel specific features.

Full Route Cache

> **Related terms**:

>

> You may see the terms **Automatic Static Optimization** **Static Site
Generation** or **Static Rendering** being used interchangeably to refer to
the process of rendering and caching routes of your application at build time.

Next.js automatically renders and caches routes at build time. This is an
optimization that allows you to serve the cached route instead of rendering on
the server for every request, resulting in faster page loads.

To understand how the Full Route Cache works, it's helpful to look at how React
handles rendering, and how Next.js caches the result:

1. React Rendering on the Server

On the server, Next.js uses React's APIs to orchestrate rendering. The
rendering work is split into chunks: by individual routes segments and
Suspense boundaries.

Each chunk is rendered in two steps:

1. React renders Server Components into a special data format, optimized for
streaming, called the **React Server Component Payload**.

2. Next.js uses the React Server Component Payload and Client Component
JavaScript instructions to render **HTML** on the server.

This means we don't have to wait for everything to render before caching the
work or sending a response. Instead, we can stream a response as work is
completed.

> **What is the React Server Component Payload?**

>

> The React Server Component Payload is a compact binary representation of
the rendered React Server Components tree. It's used by React on the client to
update the browser's DOM. The React Server Component Payload contains:

>

> - The rendered result of Server Components

> - Placeholders for where Client Components should be rendered and
references to their JavaScript files

> - Any props passed from a Server Component to a Client Component

>

> To learn more, see the [Server Components](/docs/app/building-your-
application/rendering/server-components) documentation.

2. Next.js Caching on the Server (Full Route Cache)

<lmage

alt="Default behavior of the Full Route Cache, showing how the React Server
Component Payload and HTML are cached on the server for statically rendered
routes."

srcLight="/docs/light/full-route-cache.png"

srcDark="/docs/dark/full-route-cache.png"

width="1600"
height="888"
/>

The default behavior of Next.js is to cache the rendered result (React Server
Component Payload and HTML) of a route on the server. This applies to
statically rendered routes at build time, or during revalidation.

3. React Hydration and Reconciliation on the Client
At request time, on the client:

1. The HTML is used to immediately show a fast non-interactive initial preview
of the Client and Server Components.

2. The React Server Components Payload is used to reconcile the Client and
rendered Server Component trees, and update the DOM.

3. The JavaScript instructions are used to [hydrate](https://react.dev/reference/
react-dom/client/hydrateRoot) Client Components and make the application
interactive.

4. Next.js Caching on the Client (Router Cache)

The React Server Component Payload is stored in the client-side [Router
Cache](#router-cache) - a separate in-memory cache, split by individual route
segment. This Router Cache is used to improve the navigation experience by
storing previously visited routes and prefetching future routes.

5. Subsequent Navigations

On subsequent navigations or during prefetching, Next.js will check if the React
Server Components Payload is stored in the Router Cache. If so, it will skip
sending a new request to the server.

If the route segments are not in the cache, Next.js will fetch the React Server
Components Payload from the server, and populate the Router Cache on the
client.

Static and Dynamic Rendering

Whether a route is cached or not at build time depends on whether it's
statically or dynamically rendered. Static routes are cached by default, whereas

dynamic routes are rendered at request time, and not cached.

This diagram shows the difference between statically and dynamically rendered
routes, with cached and uncached data:

<lmage

alt="How static and dynamic rendering affects the Full Route Cache. Static
routes are cached at build time or after data revalidation, whereas dynamic
routes are never cached"

srcLight="/docs/light/static-and-dynamic-routes.png"

srcDark="/docs/dark/static-and-dynamic-routes.png"

width="1600"
height="1314"
[>

Learn more about [static and dynamic rendering](/docs/app/building-your-
application/rendering/server-components#server-rendering-strategies).

Duration

By default, the Full Route Cache is persistent. This means that the render
output is cached across user requests.

Invalidation
There are two ways you can invalidate the Full Route Cache:

- **[Revalidating Data](/docs/app/building-your-application/
caching#revalidating)**: Revalidating the [Data Cache](#data-cache), will in
turn invalidate the Router Cache by re-rendering components on the server and
caching the new render output.

- **Redeploying**: Unlike the Data Cache, which persists across deployments,
the Full Route Cache is cleared on new deployments.

Opting out

You can opt out of the Full Route Cache, or in other words, dynamically render
components for every incoming request, by:

- **Using a [Dynamic Function](#dynamic-functions)**: This will opt the route
out from the Full Route Cache and dynamically render it at request time. The
Data Cache can still be used.

- **Using the "dynamic = 'force-dynamic'" or ‘revalidate = 0" route segment
config options**: This will skip the Full Route Cache and the Data Cache.
Meaning components will be rendered and data fetched on every incoming
request to the server. The Router Cache will still apply as it's a client-side
cache.

- **QOpting out of the [Data Cache](#data-cache)**: If a route has a “fetch’
request that is not cached, this will opt the route out of the Full Route Cache.
The data for the specific "fetch™ request will be fetched for every incoming
request. Other “fetch’ requests that do not opt out of caching will still be
cached in the Data Cache. This allows for a hybrid of cached and uncached
data.

Router Cache

> **Related Terms:**

>

> You may see the Router Cache being referred to as **Client-side Cache** or
Prefetch Cache While **Prefetch Cache** refers to the prefetched route
segments, **Client-side Cache** refers to the whole Router cache, which
includes both visited and prefetched segments.

> This cache specifically applies to Next.js and Server Components, and is
different to the browser's [bfcache](https://web.dev/bfcache/), though it has a
similar result.

Next.js has an in-memory client-side cache that stores the React Server
Component Payload, split by individual route segments, for the duration of a
user session. This is called the Router Cache.

How the Router Cache Works

<lmage
alt="How the Router cache works for static and dynamic routes, showing MISS
and HIT for initial and subsequent navigations."
srcLight="/docs/light/router-cache.png"
srcDark="/docs/dark/router-cache.png"

width="1600"
height="1375"
/>

As a user navigates between routes, Next.js caches visited route segments and
[prefetches](/docs/app/building-your-application/routing/linking-and-
navigating#1-prefetching) the routes the user is likely to navigate to (based on
“<Link>" components in their viewport).

This results in an improved navigation experience for the user:

- Instant backward/forward navigation because visited routes are cached and
fast navigation to new routes because of prefetching and [partial rendering](/
docs/app/building-your-application/routing/linking-and-navigating#3-partial-
rendering).

- No full-page reload between navigations, and React state and browser state
are preserved.

> **Difference between the Router Cache and Full Route Cache**:

>

> The Router Cache temporarily stores the React Server Component Payload in
the browser for the duration of a user session, whereas the Full Route Cache
persistently stores the React Server Component Payload and HTML on the

server across multiple user requests.

>

> While the Full Route Cache only caches statically rendered routes, the Router
Cache applies to both statically and dynamically rendered routes.

Duration

The cache is stored in the browser's temporary memory. Two factors determine
how long the router cache lasts:

- **Session**: The cache persists across navigation. However, it's cleared on
page refresh.
- **Automatic Invalidation Period**: The cache of an individual segment is
automatically invalidated after a specific time. The duration depends on
whether the route is [statically](/docs/app/building-your-application/rendering/
server-components#static-rendering-default) or [dynamically](/docs/app/
building-your-application/rendering/server-components#dynamic-rendering)
rendered:

- **Dynamically Rendered**: 30 seconds

- **Statically Rendered**: 5 minutes

While a page refresh will clear **all** cached segments, the automatic
invalidation period only affects the individual segment from the time it was last
accessed or created.

By adding "prefetch={true}" or calling ‘router.prefetch” for a dynamically
rendered route, you can opt into caching for 5 minutes.

Invalidation
There are two ways you can invalidate the Router Cache:

- In a **Server Action**:

- Revalidating data on-demand by path with ([revalidatePath](/docs/app/
api-reference/functions/revalidatePath)) or by cache tag with ([‘revalidateTag ']
(/docs/app/api-referencef/functions/revalidateTag))

- Using [cookies.set](/docs/app/api-reference/functions/
cookiest#cookiessetname-value-options) or [cookies.delete '](/docs/app/api-
reference/functions/cookies#deleting-cookies) invalidates the Router Cache to
prevent routes that use cookies from becoming stale (e.g. authentication).

- Calling [router.refresh*](/docs/app/api-reference/functions/use-router) will
invalidate the Router Cache and make a new request to the server for the
current route.

Opting out

It's not possible to opt out of the Router Cache.

You can opt out of **prefetching** by setting the "prefetch’ prop of the
“<Link>" component to “false’. However, this will still temporarily store the
route segments for 30s to allow instant navigation between nested segments,
such as tab bars, or back and forward navigation. Visited routes will still be
cached.

Cache Interactions

When configuring the different caching mechanisms, it's important to
understand how they interact with each other:

Data Cache and Full Route Cache

- Revalidating or opting out of the Data Cache **will** invalidate the Full Route
Cache, as the render output depends on data.

- Invalidating or opting out of the Full Route Cache **does not** affect the Data
Cache. You can dynamically render a route that has both cached and uncached
data. This is useful when most of your page uses cached data, but you have a
few components that rely on data that needs to be fetched at request time. You
can dynamically render without worrying about the performance impact of re-
fetching all the data.

Data Cache and Client-side Router cache

- Revalidating the Data Cache in a [Route Handler](/docs/app/building-your-
application/routing/route-handlers) **will not** immediately invalidate the
Router Cache as the Route Handler isn't tied to a specific route. This means
Router Cache will continue to serve the previous payload until a hard refresh, or
the automatic invalidation period has elapsed.

- To immediately invalidate the Data Cache and Router cache, you can use
[‘revalidatePath '] (#revalidatepath) or [revalidateTag '] (#fetch-
optionsnexttags-and-revalidatetag) in a [Server Action](/docs/app/building-
your-application/data-fetching/forms-and-mutations).

APIs

The following table provides an overview of how different Next.js APIs affect
caching:

| API | Router Cache | Full
Route Cache | Data Cache | React Cache |

| ["<Link prefetch>"](#link) | Cache |
| | |

| [router.prefetch] (#routerprefetch) | Cache

| [router.refresh’](#routerrefresh) | Revalidate

I I I

| [fetch](#fetch) | |

| Cache | Cache |

| [fetch™ “options.cache](#fetch-optionscache) |

| | Cache or Optout | |

| [fetch™ “options.next.revalidate '] (#fetch-optionsnextrevalidate) |
| Revalidate | Revalidate | |

| [fetch™ “options.next.tags](#fetch-optionsnexttags-and-revalidatetag) |
| Cache | Cache | |

| [revalidateTag '] (#fetch-optionsnexttags-and-revalidatetag) |

Revalidate (Server Action) | Revalidate | Revalidate | |
| [revalidatePath] (#revalidatepath) | Revalidate (Server
Action) | Revalidate | Revalidate | |

| [const revalidate '] (#segment-config-options) |

| Revalidate or Opt out | Revalidate or Opt out | |

| [const dynamic '] (#segment-config-options) |

| Cache or Opt out | Cache or Opt out | |

| [cookies](#cookies) | Revalidate (Server
Action) | Opt out | | |

| [Theaders”, "useSearchParams’, "searchParams’](#dynamic-functions) |
| Opt out | | I

| [generateStaticParams] (#generatestaticparams) |

| Cache | | |

| [React.cache] (#react-cache-function) |

| | Cache |

| [Tunstable_cache](/docs/app/api-reference/functions/unstable_cache) |

" <Link>"

By default, the "<Link>" component automatically prefetches routes from the

Full Route Cache and adds the React Server Component Payload to the Router
Cache.

To disable prefetching, you can set the “prefetch’ prop to “false’. But this will
not skip the cache permanently, the route segment will still be cached client-

side when the user visits the route.

Learn more about the [<Link>" component](/docs/app/api-reference/
components/link).

“router.prefetch’

The “prefetch’™ option of the "useRouter’ hook can be used to manually

prefetch a route. This adds the React Server Component Payload to the Router
Cache.

See the ["useRouter’ hook](/docs/app/api-reference/functions/use-router) API
reference.

“router.refresh’

The ‘refresh’ option of the "useRouter™ hook can be used to manually refresh a
route. This completely clears the Router Cache, and makes a new request to
the server for the current route. ‘refresh™ does not affect the Data or Full Route
Cache.

The rendered result will be reconciled on the client while preserving React state
and browser state.

See the ['useRouter™ hook](/docs/app/api-reference/functions/use-router) API
reference.

fetch’
Data returned from “fetch’ is automatically cached in the Data Cache.
*Nisx

/| Cached by default. “force-cache’ is the default option and can be ommitted.
fetch(https://...", { cache: 'force-cache' })

See the [fetch™ API Reference](/docs/app/api-reference/functions/fetch) for
more options.

fetch options.cache’

You can opt out individual “fetch' requests of data caching by setting the
“cache’ option to "no-store’:

“Nisx
/| Opt out of caching
fetch(https://...", { cache: 'no-store' })

Since the render output depends on data, using "cache: 'no-store'" will also
skip the Full Route Cache for the route where the “fetch™ request is used. That
is, the route will be dynamically rendered every request, but you can still have
other cached data requests in the same route.

See the ['fetch® API Reference](/docs/app/api-reference/functions/fetch) for

more options.
##4# fetch options.next.revalidate’

You can use the "next.revalidate” option of "fetch™ to set the revalidation
period (in seconds) of an individual “fetch' request. This will revalidate the
Data Cache, which in turn will revalidate the Full Route Cache. Fresh data will
be fetched, and components will be re-rendered on the server.

TUjsx
/| Revalidate at most after 1 hour
fetch(https://...", { next: { revalidate: 3600 }})

See the ['fetch® API reference](/docs/app/api-reference/functions/fetch) for
more options.

“fetch options.next.tags™ and "revalidateTag®

Next.js has a cache tagging system for fine-grained data caching and
revalidation.

1. When using “fetch’ or [unstable_cache](/docs/app/api-reference/
functions/unstable_cache), you have the option to tag cache entries with one or
more tags.

2. Then, you can call ‘revalidateTag " to purge the cache entries associated with
that tag.

For example, you can set a tag when fetching data:

S ex

/| Cache data with a tag

fetch(https://...", { next: { tags: ['a’, 'b’, 'c']1}})

Then, call ‘revalidateTag" with a tag to purge the cache entry:
jsx

/| Revalidate entries with a specific tag
revalidateTag('a')

There are two places you can use revalidateTag ', depending on what you're
trying to achieve:

1. [Route Handlers](/docs/app/building-your-application/routing/route-
handlers) - to revalidate data in response of a third party event (e.g. webhook).

This will not invalidate the Router Cache immediately as the Router Handler
isn't tied to a specific route.

2. [Server Actions](/docs/app/building-your-application/data-fetching/forms-
and-mutations) - to revalidate data after a user action (e.g. form submission).
This will invalidate the Router Cache for the associated route.

“revalidatePath®

‘revalidatePath ™ allows you manually revalidate data **and** re-render the
route segments below a specific path in a single operation. Calling the
‘revalidatePath™ method revalidates the Data Cache, which in turn invalidates
the Full Route Cache.

jsx
revalidatePath('/")

There are two places you can use revalidatePath’, depending on what you're
trying to achieve:

1. [Route Handlers](/docs/app/building-your-application/routing/route-
handlers) - to revalidate data in response to a third party event (e.g. webhook).
2. [Server Actions](/docs/app/building-your-application/data-fetching/forms-
and-mutations) - to revalidate data after a user interaction (e.g. form
submission, clicking a button).

See the [revalidatePath™ API reference](/docs/app/api-reference/functions/
revalidatePath) for more information.

> **“revalidatePath ™ ** vs. ** router.refresh ™ **:

>

> Calling “router.refresh”™ will clear the Router cache, and re-render route
segments on the server without invalidating the Data Cache or the Full Route
Cache.

>

> The difference is that ‘revalidatePath™ purges the Data Cache and Full Route
Cache, whereas ‘router.refresh() " does not change the Data Cache and Full
Route Cache, as it is a client-side API.

Dynamic Functions

‘cookies’, "headers’, ‘useSearchParams’, and ‘searchParams’ are all
dynamic functions that depend on runtime incoming request information. Using
them will opt a route out of the Full Route Cache, in other words, the route will

be dynamically rendered.

H#### cookies’

Using "cookies.set™ or ‘cookies.delete’ in a Server Action invalidates the
Router Cache to prevent routes that use cookies from becoming stale (e.g. to
reflect authentication changes).

See the ['cookies](/docs/app/api-reference/functions/cookies) API reference.
Segment Config Options

The Route Segment Config options can be used to override the route segment
defaults or when you're not able to use the “fetch™ API (e.g. database client or
3rd party libraries).

The following Route Segment Config options will opt out of the Data Cache and
Full Route Cache:

- “const dynamic = 'force-dynamic'’
- ‘const revalidate = 0°

See the [Route Segment Config](/docs/app/api-reference/file-conventions/
route-segment-config) documentation for more options.

“generateStaticParams’

For [dynamic segments](/docs/app/building-your-application/routing/dynamic-
routes) (e.g. "app/blog/[slug]/page.js’), paths provided by
‘generateStaticParams” are cached in the Full Route Cache at build time. At
request time, Next.js will also cache paths that weren't known at build time the
first time they're visited.

You can disable caching at request time by using “export const dynamicParams
= false” option in a route segment. When this config option is used, only paths
provided by "generateStaticParams” will be served, and other routes will 404
or match (in the case of [catch-all routes](/docs/app/building-your-application/
routing/dynamic-routes#catch-all-segments)).

See the [generateStaticParams ™ API reference](/docs/app/api-reference/
functions/generate-static-params).

React "cache’ function
The React "cache’ function allows you to memoize the return value of a
function, allowing you to call the same function multiple times while only

executing it once.

Since “fetch' requests are automatically memoized, you do not need to wrap it
in React “cache’. However, you can use cache’ to manually memoize data

requests for use cases when the “fetch™ APl is not suitable. For example, some
database clients, CMS clients, or GraphQL clients.

“ " tsx filename="utils/get-item.ts" switcher
import { cache } from 'react’
import db from '@/lib/db'

export const getltem = cache(async (id: string) => {
const item = await db.item.findUnique({ id })
return item

D

T jsx filename="utils/get-item.js" switcher
import { cache } from 'react’
import db from '@/lib/db'

export const getltem = cache(async (id) => {
const item = await db.item.findUnique({ id })
return item

D

title: CSS Modules
description: Style your Next.js Application with CSS Modules.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

<PagesOnly>

<details open>
<summary>Examples</summary>

- [Basic CSS Example](https://github.com/vercel/next.js/tree/canary/examples/
basic-css)

</details>
</PagesOnly>

Next.js has built-in support for CSS Modules using the ".module.css”
extension.

CSS Modules locally scope CSS by automatically creating a unique class name.
This allows you to use the same class name in different files without worrying
about collisions. This behavior makes CSS Modules the ideal way to include
component-level CSS.

Example

<AppOnly>
CSS Modules can be imported into any file inside the “app’ directory:

" tsx filename="app/dashboard/layout.tsx" switcher
import styles from './styles.module.css'

export default function DashboardLayout({
children,

A
children: React.ReactNode

DA

return <section className={styles.dashboard}>{children}</section>

EUR RN

“*Yjsx filename="app/dashboard/layout.js" switcher
import styles from './styles.module.css'

export default function DashboardLayout({ children }) {
return <section className={styles.dashboard}>{children}</section>

AR RN

" “css filename="app/dashboard/styles.module.css"
.dashboard {
padding: 24px;
}
</AppOnly>

<PagesOnly>

For example, consider a reusable "Button™ component in the "components/’
folder:

First, create "components/Button.module.css” with the following content:

“*'css filename="Button.module.css"

/*
You do not need to worry about .error {} colliding with any other ".css’ or
“.module.css" files!
*
/
.error {
color: white;
background-color: red;

LUR RN

Then, create "components/Button.js’, importing and using the above CSS file:

“*Yjsx filename="components/Button.js"
import styles from './Button.module.css'

export function Button() {
return (

<button
type="button"
/| Note how the "error" class is accessed as a property on the imported
/| “styles’ object.
className={styles.error}

>
Destroy

</button>

)
-

</PagesOnly>

CSS Modules are an _optional feature_ and are **only enabled for files with
the ".module.css’ extension**.
Regular “<link>" stylesheets and global CSS files are still supported.

In production, all CSS Module files will be automatically concatenated into
many minified and code-split ".css” files.

These ".css” files represent hot execution paths in your application, ensuring
the minimal amount of CSS is loaded for your application to paint.

Global Styles
<AppOnly>
Global styles can be imported into any layout, page, or component inside the

‘app directory.

> **Good to know**: This is different from the "pages’ directory, where you can

only import global styles inside the "_app.js” file.
For example, consider a stylesheet named "app/global.css:

“'css

body {
padding: 20px 20px 60px;
max-width: 680px;
margin: 0 auto;

LURNRY

Inside the root layout (" app/layout.js’), import the "global.css’ stylesheet to
apply the styles to every route in your application:

* " tsx filename="app/layout.tsx" switcher
/| These styles apply to every route in the application
import './global.css'

export default function RootLayout({
children,
et
children: React.ReactNode
A
return (
<html lang="en">
<body>{children}</body>
</html>
)
}

" Yjsx filename="app/layout.js" switcher
/| These styles apply to every route in the application
import './global.css'

export default function RootLayout({ children }) {
return (
<html lang="en">
<body>{children}</body>
</html>
)
}

</AppOnly>

<PagesOnly>

To add a stylesheet to your application, import the CSS file within “pages/
_app.js .

For example, consider the following stylesheet named “styles.css:

**"css filename="styles.css"
body {
font-family: 'SF Pro Text', 'SF Pro Icons', 'Helvetica Neue', 'Helvetica’,
'Arial', sans-serif;
padding: 20px 20px 60px;
max-width: 680px;
margin: 0 auto;

AUENEN

Create a [pages/_app.js file](/docs/pages/building-your-application/routing/
custom-app) if not already present.

Then, [import] (https://developer.mozilla.org/docs/Web/JavaScript/Reference/
Statements/import) the “styles.css" file.

“jsx filename="pages/_app.js"
import '../styles.css'

/| This default export is required in a new "pages/_app.js_ file.
export default function MyApp({ Component, pageProps }) {
return <Component {...pageProps} />

AR RN

These styles (" styles.css’) will apply to all pages and components in your
application.

Due to the global nature of stylesheets, and to avoid conflicts, you may **only
import them inside [pages/_app.js](/docs/pages/building-your-application/
routing/custom-app)**.

In development, expressing stylesheets this way allows your styles to be hot
reloaded as you edit them—meaning you can keep application state.

In production, all CSS files will be automatically concatenated into a single
minified ".css’ file. The order that the CSS is concatenated will match the order
the CSS is imported into the "_app.js file. Pay special attention to imported JS
modules that include their own CSS; the JS module's CSS will be concatenated
following the same ordering rules as imported CSS files. For example:

"jsx
import '../styles.css'
/| The CSS in ErrorBoundary depends on the global CSS in styles.css,
/| so we import it after styles.css.
import ErrorBoundary from '../components/ErrorBoundary'

export default function MyApp({ Component, pageProps }) {
return (
<ErrorBoundary>
<Component {...pageProps} />
</ErrorBoundary>
)
}

</PagesOnly>
External Stylesheets
<AppOnly>

Stylesheets published by external packages can be imported anywhere in the
‘app directory, including colocated components:

“ " tsx filename="app/layout.tsx" switcher
import 'bootstrap/dist/css/bootstrap.css'

export default function RootLayout({
children,
3o
children: React.ReactNode
HA
return (
<html lang="en">
<body className="container">{children}</body>
</html>
)
}

“"jsx filename="app/layout.js" switcher
import 'bootstrap/dist/css/bootstrap.css'

export default function RootLayout({ children }) {
return (
<html lang="en">

<body className="container">{children}</body>
</html>
)
}

> **Good to know**: External stylesheets must be directly imported from an
npm package or downloaded and colocated with your codebase. You cannot
use “<link rel="stylesheet" />".

</AppOnly>
<PagesOnly>

Next.js allows you to import CSS files from a JavaScript file.

This is possible because Next.js extends the concept of [import] (https://
developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/import)
beyond JavaScript.

##4# Import styles from "‘node_modules’

Since Next.js **9.5.4** importing a CSS file from "node_modules’ is permitted
anywhere in your application.

For global stylesheets, like "bootstrap™ or "nprogress’, you should import the
file inside “pages/_app.js .
For example:

" jsx filename="pages/_app.js"
import 'bootstrap/dist/css/bootstrap.css'

export default function MyApp({ Component, pageProps }) {
return <Component {...pageProps} />

LUR RN

For importing CSS required by a third-party component, you can do so in your
component. For example:

*jsx filename="components/example-dialog.js"
import { useState } from 'react’

import { Dialog } from '@reach/dialog'

import VisuallyHidden from '@reach/visually-hidden'
import '@reach/dialog/styles.css'

function ExampleDialog(props) {
const [showDialog, setShowDialog] = useState(false)

const open = () => setShowDialog(true)
const close = () => setShowDialog(false)

return (
<div>
<button onClick={open}>0Open Dialog</button>
<Dialog isOpen={showDialog} onDismiss={close}>
<button className="close-button" onClick={close}>
<VisuallyHidden>Close</VisuallyHidden>
x
</button>
<p>Hello there. | am a dialog</p>
</Dialog>
</div>
)
}

</PagesOnly>
Additional Features

Next.js includes additional features to improve the authoring experience of
adding styles:

- When running locally with "next dev’, local stylesheets (either global or CSS
modules) will take advantage of [Fast Refresh](/docs/architecture/fast-refresh)
to instantly reflect changes as edits are saved.

- When building for production with “next build", CSS files will be bundled into
fewer minified ".css’ files to reduce the number of network requests needed to
retrieve styles.

- If you disable JavaScript, styles will still be loaded in the production build
("next start’). However, JavaScript is still required for "next dev' to enable
[Fast Refresh](/docs/architecture/fast-refresh).

title: Tailwind CSS
description: Style your Next.js Application using Tailwind CSS.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

<PagesOnly>

<details open>
<summary>Examples</summary>

- [With Tailwind CSS](https://github.com/vercel/next.js/tree/canary/examples/
with-tailwindcss)

</details>
</PagesOnly>

[Tailwind CSS](https://tailwindcss.com/) is a utility-first CSS framework that
works exceptionally well with Next.js.

Installing Tailwind

Install the Tailwind CSS packages and run the “init" command to generate both
the “tailwind.config.js™ and “postcss.config.js” files:

**“bash filename="Terminal"
npm install -D tailwindcss postcss autoprefixer
npx tailwindcss init -p

Configuring Tailwind

Inside "tailwind.config.js ', add paths to the files that will use Tailwind CSS class
names:

**js filename="tailwind.config.js"
[** @type {import('tailwindcss').Config} */
module.exports = {
content: [
LJapp/**[*{js,ts,jsx,tsx,mdx}', /| Note the addition of the "app " directory.
".[pages/**[*.{js,ts,jsx,tsx,mdx}',
'./components/**[*{js,ts,jsX,tsx,mdx},

/| Or if using “src” directory:
L[src/**[*{js,ts,jsX,tsx,mdx}',
1
theme: {
extend: {},

b
plugins: [],

You do not need to modify "postcss.config.js”.
<AppOnly>
Importing Styles

Add the [Tailwind CSS directives](https://tailwindcss.com/docs/functions-and-
directives#directives) that Tailwind will use to inject its generated styles to a
[Global Stylesheet](/docs/app/building-your-application/styling/css-
modules#global-styles) in your application, for example:

" “css filename="app/globals.css"
@tailwind base;

@tailwind components;

@tailwind utilities;

Inside the [root layout](/docs/app/building-your-application/routing/pages-and-
layouts#root-layout-required) (app/layout.tsx), import the “globals.css’
stylesheet to apply the styles to every route in your application.

“ " tsx filename="app/layout.tsx" switcher
import type { Metadata } from 'next'

/| These styles apply to every route in the application
import './globals.css'

export const metadata: Metadata = {
title: 'Create Next App',
description: 'Generated by create next app/,

}

export default function RootLayout({
children,
FA
children: React.ReactNode
HA
return (
<html lang="en">
<body>{children}</body>
</html>
)
}

" jsx filename="app/layout.js" switcher

/| These styles apply to every route in the application
import './globals.css'

export const metadata = {
title: 'Create Next App',
description: 'Generated by create next app/,

}

export default function RootLayout({ children }) {
return (
<html lang="en">
<body>{children}</body>
</html>
)
}

Using Classes

After installing Tailwind CSS and adding the global styles, you can use
Tailwind's utility classes in your application.

* " tsx filename="app/page.tsx" switcher
export default function Page() {
return <h1 className="text-3x| font-bold underline">Hello, Next.js!</h1>

AURNEN

*Yjsx filename="app/page.js" switcher
export default function Page() {
return <h1 className="text-3x| font-bold underline">Hello, Next.js!</h1>

}

</AppOnly>

<PagesOnly>

Importing Styles

Add the [Tailwind CSS directives](https://tailwindcss.com/docs/functions-and-
directives#directives) that Tailwind will use to inject its generated styles to a
[Global Stylesheet](/docs/pages/building-your-application/styling/css-

modules#global-styles) in your application, for example:

“ " "css filename="styles/globals.css"
@tailwind base;

@tailwind components;
@tailwind utilities;

Inside the [custom app file](/docs/pages/building-your-application/routing/
custom-app) (‘pages/_app.js’), import the “globals.css” stylesheet to apply
the styles to every route in your application.

“tsx filename="pages/_app.tsx" switcher

/| These styles apply to every route in the application
import '@/styles/globals.css'

import type { AppProps } from 'next/app’

export default function App({ Component, pageProps }: AppProps) {
return <Component {...pageProps} />

LURNRN

" jsx filename="pages/_app.js" switcher
/| These styles apply to every route in the application
import '@/styles/globals.css'

export default function App({ Component, pageProps }) {
return <Component {...pageProps} />

AUR RN

Using Classes

After installing Tailwind CSS and adding the global styles, you can use
Tailwind's utility classes in your application.

" tsx filename="pages/index.tsx" switcher
export default function Page() {
return <h1 className="text-3x| font-bold underline">Hello, Next.js!</h1>

EUR RN

“Yjsx filename="pages/index.js" switcher
export default function Page() {
return <h1 className="text-3x| font-bold underline">Hello, Next.js!</h1>

AR RN

</PagesOnly>

Usage with Turbopack

As of Next.js 13.1, Tailwind CSS and PostCSS are supported with [Turbopack]
(https://turbo.build/pack/docs/features/css#tailwind-css).

title: CSS-in-JS
description: Use CSS-in-JS libraries with Next.js

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

<AppOnly>

> **Warning:** CSS-in-JS libraries which require runtime JavaScript are not
currently supported in Server Components. Using CSS-in-JS with newer React
features like Server Components and Streaming requires library authors to
support the latest version of React, including [concurrent rendering] (https://
react.dev/blog/2022/03/29/react-v18#what-is-concurrent-react).

>

> We're working with the React team on upstream APIs to handle CSS and
JavaScript assets with support for React Server Components and streaming
architecture.

The following libraries are supported in Client Components in the "app’
directory (alphabetical):

- ['kuma-ui] (https://kuma-ui.com)

“@mui/material "] (https://mui.com/material-ui/guides/next-js-app-router/)
‘pandacss '] (https://panda-css.com)

“styled-jsx] (#styled-jsx)

“styled-components '] (#styled-components)

“style9 "] (https://github.com/johanholmerin/style9)

“tamagui] (https://tamagui.dev/docs/guides/next-js#server-components)
“tss-react] (https://tss-react.dev/)

- [vanilla-extract] (https://github.com/vercel/next.js/tree/canary/examples/
with-vanilla-extract)

Lo B e B e e B e T e T s B |

The following are currently working on support:
- ['emotion "] (https://github.com/emotion-js/emotion/issues/2928)
> **Good to know**: We're testing out different CSS-in-JS libraries and we'll be

adding more examples for libraries that support React 18 features and/or the
‘app’ directory.

If you want to style Server Components, we recommend using [CSS Modules](/
docs/app/building-your-application/styling/css-modules) or other solutions that
output CSS files, like PostCSS or [Tailwind CSS](/docs/app/building-your-
application/styling/tailwind-css).

Configuring CSS-in-JSin "app’
Configuring CSS-in-JS is a three-step opt-in process that involves:

1. A **style registry** to collect all CSS rules in a render.

2. The new "useServerinsertedHTML " hook to inject rules before any content
that might use them.

3. A Client Component that wraps your app with the style registry during initial
server-side rendering.

##4# " styled-jsx’

Using styled-jsx" in Client Components requires using 'v5.1.0 . First, create a
new registry:

" tsx filename="app/registry.tsx" switcher
'use client'

import React, { useState } from 'react’
import { useServerinsertedHTML } from 'next/navigation'
import { StyleRegistry, createStyleRegistry } from 'styled-jsx’

export default function StyledJsxRegistry({
children,
et
children: React.ReactNode
A
/| Only create stylesheet once with lazy initial state
/| x-ref: https://reactjs.org/docs/hooks-reference.html#lazy-initial-state
const [jsxStyleRegistry] = useState(() => createStyleRegistry())

useServerinsertedHTML(() => {
const styles = jsxStyleRegistry.styles()
jsxStyleRegistry.flush()
return <>{styles}</>

}

return <StyleRegistry registry={jsxStyleRegistry}>{children}</StyleRegistry>
}

" jsx filename="app/registry.js" switcher
'use client'

import React, { useState } from 'react’
import { useServerinsertedHTML } from 'next/navigation’
import { StyleRegistry, createStyleRegistry } from 'styled-jsx’

export default function StyledJsxRegistry({ children }) {
/| Only create stylesheet once with lazy initial state
/| x-ref: https://reactjs.org/docs/hooks-reference.html#lazy-initial-state
const [jsxStyleRegistry] = useState(() => createStyleRegistry())

useServerinsertedHTML(() => {
const styles = jsxStyleRegistry.styles()
jsxStyleRegistry.flush()
return <>{styles}</>

}

return <StyleRegistry registry={jsxStyleRegistry}>{children}</StyleRegistry>
}

Then, wrap your [root layout](/docs/app/building-your-application/routing/
pages-and-layouts#root-layout-required) with the registry:

“ " tsx filename="app/layout.tsx" switcher
import StyledJsxRegistry from './registry’

export default function RootLayout({
children,
et
children: React.ReactNode
HA
return (
<html>
<body>
<StyledJsxRegistry>{children}</StyledJsxRegistry>
</body>
</html>
)
}

“jsx filename="app/layout.js" switcher
import StyledJsxRegistry from './registry’

export default function RootLayout({ children }) {
return (
<html>
<body>
<StyledJsxRegistry>{children}</StyledJsxRegistry>
</body>
</html>
)
}

[View an example here](https://github.com/vercel/app-playground/tree/main/
app/styling/styled-jsx).

Styled Components
Below is an example of how to configure "styled-components@6 " or newer:

First, use the “styled-components™ API to create a global registry component
to collect all CSS style rules generated during a render, and a function to return
those rules. Then use the "useServerinsertedHTML ™ hook to inject the styles
collected in the registry into the “<head>" HTML tag in the root layout.

“tsx filename="lib/registry.tsx" switcher
'use client'

import React, { useState } from 'react’
import { useServerinsertedHTML } from 'next/navigation'
import { ServerStyleSheet, StyleSheetManager } from 'styled-components'

export default function StyledComponentsRegistry({
children,
b A
children: React.ReactNode
H A
/| Only create stylesheet once with lazy initial state
/| x-ref: https://reactjs.org/docs/hooks-reference.html#lazy-initial-state
const [styledComponentsStyleSheet] = useState(() => new
ServerStyleSheet())

useServerlinsertedHTML(() => {
const styles = styledComponentsStyleSheet.getStyleElement()
styledComponentsStyleSheet.instance.clearTag()
return <>{styles}</>

}

if (typeof window !=="'undefined') return <>{children}</>

return (
<StyleSheetManager sheet={styledComponentsStyleSheet.instance}>
{children}
</StyleSheetManager>
)
}

" jsx filename="lib/registry.js" switcher
'use client'

import React, { useState } from 'react’
import { useServerinsertedHTML } from 'next/navigation'
import { ServerStyleSheet, StyleSheetManager } from 'styled-components'

export default function StyledComponentsRegistry({ children }) {
/] Only create stylesheet once with lazy initial state
/| x-ref: https://reactjs.org/docs/hooks-reference.html#lazy-initial-state
const [styledComponentsStyleSheet] = useState(() => new
ServerStyleSheet())

useServerinsertedHTML(() => {
const styles = styledComponentsStyleSheet.getStyleElement()
styledComponentsStyleSheet.instance.clearTag()
return <>{styles}</>

1
if (typeof window !=="'undefined') return <>{children}</>

return (
<StyleSheetManager sheet={styledComponentsStyleSheet.instance}>
{children}
</StyleSheetManager>
)
}

Wrap the "children” of the root layout with the style registry component:

* " tsx filename="app/layout.tsx" switcher
import StyledComponentsRegistry from "./lib/registry’

export default function RootLayout({
children,

et
children: React.ReactNode
HA
return (
<html>
<body>
<StyledComponentsRegistry>{children}</StyledComponentsRegistry>
</body>
</html>
)
}

“jsx filename="app/layout.js" switcher
import StyledComponentsRegistry from "./lib/registry'

export default function RootLayout({ children }) {
return (
<html>
<body>
<StyledComponentsRegistry>{children}</StyledComponentsRegistry>
</body>
</html>
)
}

[View an example here](https://github.com/vercel/app-playground/tree/main/
app/styling/styled-components).

> **Good to know**:

>

> - During server rendering, styles will be extracted to a global registry and
flushed to the "<head>" of your HTML. This ensures the style rules are placed
before any content that might use them. In the future, we may use an upcoming
React feature to determine where to inject the styles.

> - During streaming, styles from each chunk will be collected and appended to
existing styles. After client-side hydration is complete, “styled-components’
will take over as usual and inject any further dynamic styles.

> - We specifically use a Client Component at the top level of the tree for the
style registry because it's more efficient to extract CSS rules this way. It avoids
re-generating styles on subsequent server renders, and prevents them from
being sent in the Server Component payload.

</AppOnly>

<PagesOnly>

<details>
<summary>Examples</summary>

- [Styled JSX](https://github.com/vercel/next.js/tree/canary/examples/with-
styled-jsx)

- [Styled Components](https://github.com/vercel/next.js/tree/canary/examples/
with-styled-components)

- [Emotion](https://github.com/vercel/next.js/tree/canary/examples/with-
emotion)

- [Linaria] (https://github.com/vercel/next.js/tree/canary/examples/with-linaria)
- [Tailwind CSS + Emotion](https://github.com/vercel/next.js/tree/canary/
examples/with-tailwindcss-emotion)

- [Styletron] (https://github.com/vercel/next.js/tree/canary/examples/with-
styletron)

- [Cxs](https://github.com/vercel/next.js/tree/canary/examples/with-cxs)

- [Aphrodite] (https://github.com/vercel/next.js/tree/canary/examples/with-
aphrodite)

- [Fela](https://github.com/vercel/next.js/tree/canary/examples/with-fela)

- [Stitches](https://github.com/vercel/next.js/tree/canary/examples/with-
stitches)

</details>

It's possible to use any existing CSS-in-JS solution.The simplest one is inline
styles:

TUjsx
function HiThere() {
return <p style={{ color: 'red' }}>hi there</p>

}

export default HiThere

We bundle [styled-jsx](https://github.com/vercel/styled-jsx) to provide support
for isolated scoped CSS.

The aim is to support "shadow CSS" similar to Web Components, which
unfortunately [do not support server-rendering and are JS-only](https://
github.com/w3c/webcomponents/issues/71).

See the above examples for other popular CSS-in-JS solutions (like Styled
Components).

A component using “styled-jsx " looks like this:

“Ujsx

function HelloWorld() {
return (
<div>
Hello world
<p>scoped!</p>
<style jsx>{"
p{
color: blue;
}
div {
background: red;
}
@media (max-width: 600px) {
div {
background: blue;
}
}
“}</style>
<style global jsx>{"
body {
background: black;
}
“}</style>
</div>
)
}

export default HelloWorld

Please see the [styled-jsx documentation](https://github.com/vercel/styled-jsx)
for more examples.

Disabling JavaScript

Yes, if you disable JavaScript the CSS will still be loaded in the production build
("next start’). During development, we require JavaScript to be enabled to
provide the best developer experience with [Fast Refresh](https://nextjs.org/
blog/next-9-4#fast-refresh).

</PagesOnly>

title: Sass
description: Style your Next.js application using Sass.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

Next.js has built-in support for integrating with Sass after the package is
installed using both the “.scss™ and ".sass’ extensions. You can use
component-level Sass via CSS Modules and the ".module.scss or
“.module.sass " extension.

First, install [sass](https://github.com/sass/sass):

**bash filename="Terminal"
npm install --save-dev sass

> **Good to know**:

>

> Sass supports [two different syntaxes](https://sass-lang.com/documentation/
syntax), each with their own extension.

> The ".scss’ extension requires you use the [SCSS syntax](https://sass-
lang.com/documentation/syntax#scss),

> while the ".sass’ extension requires you use the [Indented Syntax ("Sass")]
(https://sass-lang.com/documentation/syntax#the-indented-syntax).

>

> If you're not sure which to choose, start with the ".scss’ extension which is a
superset of CSS, and doesn't require you learn the

> Indented Syntax ("Sass").

Customizing Sass Options

If you want to configure the Sass compiler, use “sassOptions’ in
"next.config.js .

**js filename="next.config.js"
const path = require('path')

module.exports = {
sassOptions: {
includePaths: [path.join(__dirname, 'styles')],
|3
}

Sass Variables

Next.js supports Sass variables exported from CSS Module files.
For example, using the exported "primaryColor"™ Sass variable:

" “scss filename="app/variables.module.scss"
$primary-color: #64ff00;

:export {
primaryColor: $primary-color;

EUR RN

<AppOnly>

" jsx filename="app/page.js"
/| maps to root */° URL

import variables from './variables.module.scss'

export default function Page() {
return <h1 style={{ color: variables.primaryColor }}>Hello, Next.js!</h1>

AR RN

</AppOnly>
<PagesOnly>

**Yjsx filename="pages/_app.js"
import variables from '../styles/variables.module.scss'

export default function MyApp({ Component, pageProps }) {
return (
<Layout color={variables.primaryColor}>
<Component {...pageProps} />
</Layout>
)
}

</PagesOnly>

title: Styling
description: Learn the different ways you can style your Next.js application.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

Next.js supports different ways of styling your application, including:

- **Global CSS**: Simple to use and familiar for those experienced with
traditional CSS, but can lead to larger CSS bundles and difficulty managing
styles as the application grows.

- **CSS Modules**: Create locally scoped CSS classes to avoid naming
conflicts and improve maintainability.

- **Tailwind CSS**: A utility-first CSS framework that allows for rapid custom
designs by composing utility classes.

- **Sass**: A popular CSS preprocessor that extends CSS with features like
variables, nested rules, and mixins.

- ¥*CSS-in-JS**: Embed CSS directly in your JavaScript components, enabling
dynamic and scoped styling.

Learn more about each approach by exploring their respective documentation:

title: Image Optimization
nav_title: Images
description: Optimize your images with the built-in "next/image’ component.
related:

title: API Reference

description: Learn more about the next/image API.

links:

- app/api-reference/components/image

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

<details>
<summary>Examples</summary>

- [Image Component](https://github.com/vercel/next.js/tree/canary/examples/
image-component)

</details>

According to [Web Almanac](https://almanac.httparchive.org), images account

for a huge portion of the typical website's [page weight](https://
almanac.httparchive.org/en/2022/page-weight#content-type-and-file-formats)
and can have a sizable impact on your website's [LCP performance](https://
almanac.httparchive.org/en/2022/performance#lcp-image-optimization).

The Next.js Image component extends the HTML "" element with
features for automatic image optimization:

- **Gjze Optimization:** Automatically serve correctly sized images for each
device, using modern image formats like WebP and AVIF.

- **\/isual Stability:** Prevent [layout shift](/learn/seo/web-performance/cls)
automatically when images are loading.

- **Faster Page Loads:** Images are only loaded when they enter the viewport
using native browser lazy loading, with optional blur-up placeholders.

- **Asset Flexibility:** On-demand image resizing, even for images stored on
remote servers

> **& Watch:** Learn more about how to use "next/image” = [YouTube (9
minutes)](https://youtu.be/lU_qq_c_IKA).

Usage
‘g
import Image from 'next/image'
You can then define the “src’ for your image (either local or remote).
Local Images
To use a local image, "import™ your ".jpg’, .png’, or ".webp’ image files.
Next.js will [automatically determine](#image-sizing) the "width’ and "height’
of your image based on the imported file. These values are used to prevent
[Cumulative Layout Shift](https://nextjs.org/learn/seo/web-performance/cls)
while your image is loading.
<AppOnly>
" jsx filename="app/page.js"
import Image from 'next/image’
import profilePic from './me.png’
export default function Page() {
return (

<lmage
src={profilePic}

alt="Picture of the author"
/| width={500} automatically provided
/| height={500} automatically provided
/| blurDataURL="data:..." automatically provided
/| placeholder="blur" // Optional blur-up while loading
/>
)
}

</AppOnly>
<PagesOnly>

" jsx filename="pages/index.js"
import Image from 'next/image’
import profilePic from "../public/me.png’

export default function Page() {
return (
<lmage
src={profilePic}
alt="Picture of the author"
/] width={500} automatically provided
/| height={500} automatically provided
/| blurDataURL="data:..." automatically provided
/| placeholder="blur" // Optional blur-up while loading
/>
)
}

</PagesOnly>

> **Warning:** Dynamic “await import() " or ‘require()" are _not_ supported.
The “import™ must be static so it can be analyzed at build time.

Remote Images
To use a remote image, the “src’ property should be a URL string.

Since Next.js does not have access to remote files during the build process,
you'll need to provide the [width](/docs/app/api-reference/components/
image#width), [height'](/docs/app/api-reference/components/image#height)
and optional [blurDataURL "](/docs/app/api-reference/components/
image#blurdataurl) props manually.

The “width® and “height" attributes are used to infer the correct aspect ratio of
image and avoid layout shift from the image loading in. The “width™ and
“height™ do _not_ determine the rendered size of the image file. Learn more
about [Image Sizing] (#image-sizing).

“jsx filename="app/page.js"
import Image from 'next/image’

export default function Page() {
return (
<Image
src="https://s3.amazonaws.com/my-bucket/profile.png"
alt="Picture of the author"

width={500}
height={500}
/>

)
-

To safely allow optimizing images, define a list of supported URL patterns in
“next.config.js . Be as specific as possible to prevent malicious usage. For
example, the following configuration will only allow images from a specific AWS
S3 bucket:

**js filename="next.config.js"
module.exports = {
images: {
remotePatterns: [
{

protocol: 'https’,
hostname: 's3.amazonaws.com’,
port: ",
pathname: '/my-bucket/**',

Learn more about ['remotePatterns](/docs/app/api-reference/components/
image#remotepatterns) configuration. If you want to use relative URLs for the
image ‘src’, use a [loader](/docs/app/api-reference/components/
image#loader).

Domains

Sometimes you may want to optimize a remote image, but still use the built-in
Next.js Image Optimization API. To do this, leave the “loader™ at its default
setting and enter an absolute URL for the Image “src’ prop.

To protect your application from malicious users, you must define a list of
remote hostnames you intend to use with the "next/image’ component.

> Learn more about [remotePatterns](/docs/app/api-reference/components/
image#remotepatterns) configuration.

Loaders

Note that in the [example earlier] (#local-images), a partial URL (" "/me.png""’) is
provided for a local image. This is possible because of the loader architecture.

A loader is a function that generates the URLs for your image. It modifies the
provided “src’, and generates multiple URLs to request the image at different
sizes. These multiple URLs are used in the automatic [srcset](https://
developer.mozilla.org/docs/Web/API/HTMLImageElement/srcset) generation, so
that visitors to your site will be served an image that is the right size for their
viewport.

The default loader for Next.js applications uses the built-in Image Optimization
API, which optimizes images from anywhere on the web, and then serves them
directly from the Next.js web server. If you would like to serve your images
directly from a CDN or image server, you can write your own loader function
with a few lines of JavaScript.

You can define a loader per-image with the ['loader’ prop](/docs/app/api-
reference/components/image#loader), or at the application level with the
[‘loaderFile” configuration](/docs/app/api-reference/components/
image#loaderfile).

Priority

You should add the “priority ™ property to the image that will be the [Largest
Contentful Paint (LCP) element](https://web.dev/Icp/#what-elements-are-
considered) for each page. Doing so allows Next.js to specially prioritize the
image for loading (e.g. through preload tags or priority hints), leading to a
meaningful boost in LCP.

The LCP element is typically the largest image or text block visible within the
viewport of the page. When you run "next dev ', you'll see a console warning if

the LCP element is an “<Ilmage>" without the “priority " property.

Once you've identified the LCP image, you can add the property like this:

<PagesOnly>

**Yjsx filename="app/page.js"
import Image from 'next/image’

export default function Home() {
return (
<>
<h1>My Homepage</h1>
<lmage
src="/me.png"
alt="Picture of the author"
width={500}
height={500}
priority
/>
<p>Welcome to my homepage!</p>
<[>
)
}

</PagesOnly>
<AppOnly>

" jsx filename="app/page.js"
import Image from 'next/image’
import profilePic from "../public/me.png’

export default function Page() {
return <Image src={profilePic} alt="Picture of the author" priority />

LUENRY

</AppOnly>

See more about priority in the [next/image’ component documentation](/docs/
app/api-reference/components/image#priority).

Image Sizing

One of the ways that images most commonly hurt performance is through
layout shift, where the image pushes other elements around on the page as it
loads in. This performance problem is so annoying to users that it has its own
Core Web Vital, called [Cumulative Layout Shift](https://web.dev/cls/). The way

to avoid image-based layout shifts is to [always size your images](https://
web.dev/optimize-cls/#images-without-dimensions). This allows the browser to
reserve precisely enough space for the image before it loads.

Because "next/image’ is designed to guarantee good performance results, it
cannot be used in a way that will contribute to layout shift, and **must** be
sized in one of three ways:

1. Automatically, using a [static import] (#local-images)

2. Explicitly, by including a [width"](/docs/app/api-reference/components/
image#width) and [height '](/docs/app/api-reference/components/
image#height) property

3. Implicitly, by using [fill](/docs/app/api-reference/components/image#fill)
which causes the image to expand to fill its parent element.

> **What if | don't know the size of my images?**

>

> If you are accessing images from a source without knowledge of the images'
sizes, there are several things you can do:

>

> **Use “fill " **

>

> The [fill '](/docs/app/api-reference/components/image#fill) prop allows your
image to be sized by its parent element. Consider using CSS to give the
image's parent element space on the page along ["sizes](/docs/app/api-
reference/components/image#sizes) prop to match any media query break
points. You can also use [object-fit '] (https://developer.mozilla.org/docs/Web/
CSS/object-fit) with “fill*, “contain”, or "cover’, and [object-position] (https://
developer.mozilla.org/docs/Web/CSS/object-position) to define how the image
should occupy that space.

>

> **Normalize your images**

>

> If you're serving images from a source that you control, consider modifying
your image pipeline to normalize the images to a specific size.

>

> **Modify your API calls**

>

> If your application is retrieving image URLs using an API call (such as to a
CMS), you may be able to modify the API call to return the image dimensions
along with the URL.

If none of the suggested methods works for sizing your images, the “next/
image’ component is designed to work well on a page alongside standard

‘" elements.

Styling

Styling the Image component is similar to styling a normal “" element,
but there are a few guidelines to keep in mind:

- Use ‘className" or “style’, not “styled-jsx".

- In most cases, we recommend using the "className" prop. This can be an
imported [CSS Module](/docs/app/building-your-application/styling/css-
modules), a [global stylesheet](/docs/app/building-your-application/styling/
css-modules#global-styles), etc.

- You can also use the “style” prop to assign inline styles.

- You cannot use [styled-jsx](/docs/app/building-your-application/styling/css-
in-js) because it's scoped to the current component (unless you mark the style
as ‘global’).

- When using “fill*, the parent element must have "position: relative’

- This is necessary for the proper rendering of the image element in that

layout mode.
- When using “fill*, the parent element must have “display: block”
- This is the default for "<div>" elements but should be specified otherwise.

Examples
Responsive
<lmage
alt="Responsive image filling the width and height of its parent container"

srcLight="/docs/light/responsive-image.png"
srcDark="/docs/dark/responsive-image.png"

width="1600"

height="629"
/>

“ljsx

import Image from 'next/image'
import mountains from '../public/mountains.jpg’

export default function Responsive() {
return (
<div style={{ display: 'flex’, flexDirection: 'column' }}>
<lmage
alt="Mountains"
// Importing an image will
/| automatically set the width and height
src={mountains}
sizes="100vw"
/| Make the image display full width
style={{
width: '"100%",

height: 'auto’,
1
[>
</div>
)
}

Fill Container

<lmage
alt="Grid of images filling parent container width"
srcLight="/docs/light/fill-container.png"
srcDark="/docs/dark/fill-container.png"

width="1600"

height="529"
/>

"jsx

import Image from 'next/image’
import mountains from '../public/mountains.jpg’

export default function Fill() {

return (
<div
style={{
display: 'grid’,
gridGap: '8px/,
gridTemplateColumns: 'repeat(auto-fit, minmax(400px, auto))’,
I3
>
<div style={{ position: 'relative', height: '400px' }}>
<lmage

alt="Mountains"
src={mountains}
fill
sizes="(min-width: 808px) 50vw, 100vw"
style={{
objectFit: 'cover', /[cover, contain, none
1
/>
</div>
{/* And more images in the grid... */}
</div>
)
}

Background Image

<lmage
alt="Background image taking full width and height of page"
srcLight="/docs/light/background-image.png"
srcDark="/docs/dark/background-image.png"

width="1600"

height="427"
/>

Tljsx

import Image from 'next/image’
import mountains from '../public/mountains.jpg’

export default function Background() {
return (
<Ilmage
alt="Mountains"
src={mountains}
placeholder="blur"
quality={700}
fill
sizes="100vw"
style={{
objectFit: 'cover’,
I3
/>
)
}

For examples of the Image component used with the various styles, see the
[Image Component Demo](https://image-component.nextjs.gallery).

Other Properties

[**View all properties available to the "next/image’ component**](/docs/app/
api-reference/components/image)

Configuration

The "next/image’ component and Next.js Image Optimization APl can be
configured in the [next.config.js" file](/docs/app/api-reference/next-config-js).
These configurations allow you to [enable remote images](/docs/app/api-
reference/components/image#remotepatterns), [define custom image
breakpoints](/docs/app/api-reference/components/image#devicesizes),

[change caching behavior](/docs/app/api-reference/components/
image#caching-behavior) and more.

[**Read the full image configuration documentation for more information.**](/
docs/app/api-reference/components/image#configuration-options)

title: Font Optimization
nav_title: Fonts
description: Optimize your application's web fonts with the built-in “next/font’
loaders.
related:

title: APl Reference

description: Learn more about the next/font API.

links:

- app/api-reference/components/font

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

[** next/font **](/docs/app/api-reference/components/font) will automatically
optimize your fonts (including custom fonts) and remove external network
requests for improved privacy and performance.

> **& Watch:** Learn more about how to use "next/font™ = [YouTube (6
minutes)](https://www.youtube.com/watch?v=L8_98i_bMMA).

“next/font’ includes **built-in automatic self-hosting** for _any_font file.
This means you can optimally load web fonts with zero layout shift, thanks to
the underlying CSS “size-adjust’ property used.

This new font system also allows you to conveniently use all Google Fonts with
performance and privacy in mind. CSS and font files are downloaded at build
time and self-hosted with the rest of your static assets. **No requests are
sent to Google by the browser.**

Google Fonts
Automatically self-host any Google Font. Fonts are included in the deployment
and served from the same domain as your deployment. **No requests are sent

to Google by the browser.**

Get started by importing the font you would like to use from "next/font/google’
as a function. We recommend using [variable fonts](https://fonts.google.com/

variablefonts) for the best performance and flexibility.
<AppOnly>

“ " tsx filename="app/layout.tsx" switcher
import { Inter } from 'next/font/google’

/| If loading a variable font, you don't need to specify the font weight
const inter = Inter({

subsets: ['latin'],

display: 'swap',
1

export default function RootLayout({
children,
3 A
children: React.ReactNode
HA
return (
<html lang="en" className={inter.className}>
<body>{children}</body>
</html>
)
}

“*Yjsx filename="app/layout.js" switcher
import { Inter } from 'next/font/google’

/| If loading a variable font, you don't need to specify the font weight
const inter = Inter({

subsets: ['latin'],

display: 'swap',

}

export default function RootLayout({ children }) {
return (
<html lang="en" className={inter.className}>
<body>{children}</body>
</html>
)
}

If you can't use a variable font, you will **need to specify a weight**:

“ " tsx filename="app/layout.tsx" switcher

import { Roboto } from 'next/font/google’

const roboto = Roboto({
weight: '400,
subsets: ['latin'],
display: 'swap',

)

export default function RootLayout({
children,
3 {
children: React.ReactNode
NA
return (
<html lang="en" className={roboto.className}>
<body>{children}</body>
</html>
)
}

“"Yjsx filename="app/layout.js" switcher
import { Roboto } from 'next/font/google’

const roboto = Roboto({
weight: '400',
subsets: ['latin'],
display: 'swap',

}

export default function RootLayout({ children }) {
return (
<html lang="en" className={roboto.className}>
<body>{children}</body>
</html>
)
}

</AppOnly>
<PagesOnly>

To use the font in all your pages, add it to [_app.js” file](/docs/pages/building-
your-application/routing/custom-app) under “/pages’ as shown below:

*Yjsx filename="pages/_app.js"

import { Inter } from 'next/font/google’

/| If loading a variable font, you don't need to specify the font weight
const inter = Inter({ subsets: ['latin'] })

export default function MyApp({ Component, pageProps }) {
return (
<main className={inter.className}>
<Component {...pageProps} />
</main>
)
}

If you can't use a variable font, you will **need to specify a weight**:

“jsx filename="pages/_app.js"
import { Roboto } from 'next/font/google’

const roboto = Roboto({

weight: '400',
subsets: ['latin'],
})

export default function MyApp({ Component, pageProps }) {
return (
<main className={roboto.className}>
<Component {...pageProps} />
</main>
)
}

</PagesOnly>
You can specify multiple weights and/or styles by using an array:

*"jsx filename="app/layout.js"
const roboto = Roboto({
weight: ['400', '700'],
style: ['normal’, 'italic'],
subsets: ['latin'],
display: 'swap',

D

> **Good to know**: Use an underscore (|_) for font names with multiple

words. E.g. "Roboto Mono" should be imported as "Roboto_Mono".
<PagesOnly>
Apply the font in “<head>"

You can also use the font without a wrapper and “className"™ by injecting it
inside the "<head>" as follows:

*jsx filename="pages/_app.js"
import { Inter } from 'next/font/google’

const inter = Inter({ subsets: ['latin'] })

export default function MyApp({ Component, pageProps }) {

return (
<>
<style jsx global>{"
html {
font-family: ${inter.style.fontFamily};
}
“}</style>
<Component {...pageProps} />
<[>
)
}

Single page usage

To use the font on a single page, add it to the specific page as shown below:
" jsx filename="pages/index.js"
import { Inter } from 'next/font/google’

const inter = Inter({ subsets: ['latin'] })

export default function Home() {
return (
<div className={inter.className}>
<p>Hello World</p>
</div>
)
}

</PagesOnly>

Specifying a subset

Google Fonts are automatically [subset] (https://fonts.google.com/knowledge/
glossary/subsetting). This reduces the size of the font file and improves
performance. You'll need to define which of these subsets you want to preload.
Failing to specify any subsets while [preload "](/docs/app/api-reference/
components/font#preload) is “true” will result in a warning.

This can be done by adding it to the function call:

<AppOnly>

“ " tsx filename="app/layout.tsx" switcher

const inter = Inter({ subsets: ['latin'] })

“"Yjsx filename="app/layout.js" switcher
const inter = Inter({ subsets: ['latin'] })
</AppOnly>

<PagesOnly>

“jsx filename="pages/_app.js"

const inter = Inter({ subsets: ['latin'] })
</PagesOnly>

View the [Font API Reference](/docs/app/api-reference/components/font) for
more information.

Using Multiple Fonts

You can import and use multiple fonts in your application. There are two
approaches you can take.

The first approach is to create a utility function that exports a font, imports it,
and applies its "className ™ where needed. This ensures the font is preloaded

only when it's rendered:

* " ts filename="app/fonts.ts" switcher
import { Inter, Roboto_Mono } from 'next/font/google’

export const inter = Inter({

subsets: ['latin'],
display: 'swap',

}

export const roboto_mono = Roboto_Mono({
subsets: ['latin'],
display: 'swap',

8

" js filename="app/fonts.js" switcher
import { Inter, Roboto_Mono } from 'next/font/google’

export const inter = Inter({
subsets: ['latin'],
display: 'swap',

)

export const roboto_mono = Roboto_Mono({
subsets: ['latin'],
display: 'swap',

)

<AppOnly>

" tsx filename="app/layout.tsx" switcher
import { inter } from './fonts’

export default function Layout({ children }: { children: React.ReactNode }) {
return (
<html lang="en" className={inter.className}>
<body>
<div>{children}</div>
</body>
</html>
)
}

" Yjsx filename="app/layout.js" switcher
import { inter } from './fonts'

export default function Layout({ children }) {
return (
<html lang="en" className={inter.className}>
<body>

<div>{children}</div>
</body>
</html>
)
}

“ " tsx filename="app/page.tsx" switcher
import { roboto_mono } from './fonts'

export default function Page() {
return (
<>
<h1 className={roboto_mono.className}>My page</h1>
<[>
)
}

*jsx filename="app/page.js" switcher
import { roboto_mono } from './fonts'

export default function Page() {
return (
<>
<h1 className={roboto_mono.className}>My page</h1>
<[>
)
}

</AppOnly>

In the example above, “Inter” will be applied globally, and "Roboto Mono" can
be imported and applied as needed.

Alternatively, you can create a [CSS variable](/docs/app/api-reference/
components/font#variable) and use it with your preferred CSS solution:

<AppOnly>
“*tsx filename="app/layout.tsx" switcher
import { Inter, Roboto_Mono } from 'next/font/google’

import styles from './global.css'

const inter = Inter({
subsets: ['latin'],

variable: '--font-inter’,
display: 'swap',

}

const roboto_mono = Roboto_Mono({
subsets: ['latin'],
variable: '--font-roboto-mono’,
display: 'swap',

}

export default function RootLayout({
children,
FA
children: React.ReactNode
H A
return (
<html lang="en" className={"${inter.variable} ${roboto_mono.variable} }>
<body>
<h1>My App</h1>
<div>{children}</div>
</body>
</html>
)
}

" jsx filename="app/layout.js" switcher
import { Inter, Roboto_Mono } from 'next/font/google’

const inter = Inter({
subsets: ['latin'],
variable: '--font-inter’,
display: 'swap',

}

const roboto_mono = Roboto_Mono({
subsets: ['latin'],
variable: '--font-roboto-mono’,
display: 'swap',

}

export default function RootLayout({ children }) {
return (
<html lang="en" className={" ${inter.variable} ${roboto_mono.variable} }>
<body>
<h1>My App</h1>
<div>{children}</div>

</body>

</html>

)
}
</AppOnly>
" “css filename="app/global.css"
html {

font-family: var(--font-inter);
}
h1 {

font-family: var(--font-roboto-mono);
}

In the example above, "Inter” will be applied globally, and any "<h1>" tags will
be styled with "Roboto Mono .

> **Recommendation**: Use multiple fonts conservatively since each new font
is an additional resource the client has to download.

Local Fonts

Import “next/font/local” and specify the “src” of your local font file. We
recommend using [variable fonts](https://fonts.google.com/variablefonts) for
the best performance and flexibility.

<AppOnly>

“ " tsx filename="app/layout.tsx" switcher
import localFont from 'next/font/local’

/| Font files can be colocated inside of “app"”
const myFont = localFont({

src: './my-font.woff2’,

display: 'swap',

)

export default function RootLayout({
children,

3o
children: React.ReactNode

DA

return (

<html lang="en" className={myFont.className}>
<body>{children}</body>
</html>
)
}

" jsx filename="app/layout.js" switcher
import localFont from 'next/font/local’

/| Font files can be colocated inside of "app’
const myFont = localFont({

src: './my-font.woff2’,

display: 'swap',

}

export default function RootLayout({ children }) {
return (
<html lang="en" className={myFont.className}>
<body>{children}</body>
</html>
)
}

</AppOnly>
<PagesOnly>

" jsx filename="pages/_app.js"
import localFont from 'next/font/local’

/| Font files can be colocated inside of "pages’
const myFont = localFont({ src: './my-font.woff2' })

export default function MyApp({ Component, pageProps }) {
return (
<main className={myFont.className}>
<Component {...pageProps} />
</main>
)
}

</PagesOnly>

If you want to use multiple files for a single font family, “src”™ can be an array:

js
const roboto = localFont({
src: [

{

path: './Roboto-Regular.woff2’,
weight: '400',

style: 'normal’,

|3

{
path: './Roboto-Italic.woff2',

weight: '400',
style: 'italic',
h

{
path: './Roboto-Bold.woff2',

weight: '700,
style: 'normal’,
h

{
path: './Roboto-Boldltalic.woff2’,

weight: '700',
style: 'italic’,

View the [Font API Reference](/docs/app/api-reference/components/font) for
more information.

With Tailwind CSS

‘next/font” can be used with [Tailwind CSS](https://tailwindcss.com/) through a
[CSS variable](/docs/app/api-reference/components/font#css-variables).

In the example below, we use the font “Inter’ from “next/font/google’ (you can
use any font from Google or Local Fonts). Load your font with the "variable®
option to define your CSS variable name and assign it to “inter’. Then, use
“inter.variable to add the CSS variable to your HTML document.

<AppOnly>

" tsx filename="app/layout.tsx" switcher
import { Inter, Roboto_Mono } from 'next/font/google’

const inter = Inter({

subsets: ['latin'],

display: 'swap',
variable: '--font-inter’,
1)

const roboto_mono = Roboto_Mono({
subsets: ['latin'],

display: 'swap',
variable: '--font-roboto-mono’,
})
export default function RootLayout({
children,
et
children: React.ReactNode
HA
return (

<html lang="en" className={" ${inter.variable} ${roboto_mono.variable} }>
<body>{children}</body>
</html>
)
}

“"Yjsx filename="app/layout.js" switcher
import { Inter, Roboto_Mono } from 'next/font/google’

const inter = Inter({
subsets: ['latin'],

display: 'swap',
variable: '--font-inter’,
H

const roboto_mono = Roboto_Mono({
subsets: ['latin'],

display: 'swap',
variable: '--font-roboto-mono’,
1

export default function RootLayout({ children }) {
return (
<html lang="en" className={" ${inter.variable} ${roboto_mono.variable} }>
<body>{children}</body>
</html>
)
}

</AppOnly>
<PagesOnly>

“Yjsx filename="pages/_app.js"
import { Inter } from 'next/font/google’

const inter = Inter({
subsets: ['latin'],
variable: '--font-inter’,

}

export default function MyApp({ Component, pageProps }) {
return (
<main className={"${inter.variable} font-sans}>
<Component {...pageProps} />
</main>
)
}

</PagesOnly>

Finally, add the CSS variable to your [Tailwind CSS config](/docs/app/building-
your-application/styling/tailwind-css#configuring-tailwind):

“ s filename="tailwind.config.js"
[** @type {import('tailwindcss').Config} */
module.exports = {
content: [
'.pages/**[*{js,ts,jsX,tsx},
'./components/**[*{js,ts,jsX,tsx}
LJapp/**[*.{js,1s,jsX,tsx},
1
theme: {
extend: {
fontFamily: {
sans: ['var(--font-inter)'],
mono: ['var(--font-roboto-mono)'],

h
|3
h
plugins: [],
}

You can now use the “font-sans™ and "font-mono" utility classes to apply the
font to your elements.

Preloading

<AppOnly>

When a font function is called on a page of your site, it is not globally available
and preloaded on all routes. Rather, the font is only preloaded on the related
routes based on the type of file where it is used:

- If it's a [unique page](/docs/app/building-your-application/routing/pages-and-
layouts#pages), it is preloaded on the unique route for that page.

- If it's a [layout](/docs/app/building-your-application/routing/pages-and-
layouts#layouts), it is preloaded on all the routes wrapped by the layout.

- If it's the [root layout](/docs/app/building-your-application/routing/pages-
and-layouts#root-layout-required), it is preloaded on all routes.

</AppOnly>
<PagesOnly>

When a font function is called on a page of your site, it is not globally available
and preloaded on all routes. Rather, the font is only preloaded on the related
route/s based on the type of file where it is used:

- if it's a [unique page](/docs/pages/building-your-application/routing/pages-
and-layouts), it is preloaded on the unique route for that page

- if it's in the [custom App](/docs/pages/building-your-application/routing/
custom-app), it is preloaded on all the routes of the site under */pages’

</PagesOnly>
Reusing fonts

Every time you call the “localFont™ or Google font function, that font is hosted
as one instance in your application. Therefore, if you load the same font
function in multiple files, multiple instances of the same font are hosted. In this
situation, it is recommended to do the following:

- Call the font loader function in one shared file
- Export it as a constant
- Import the constant in each file where you would like to use this font

title: Script Optimization
nav_title: Scripts

description: Optimize 3rd party scripts with the built-in Script component.
related:
title: APl Reference
description: Learn more about the next/script API.
links:
- app/api-reference/components/script

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

<AppOnly>
Layout Scripts

To load a third-party script for multiple routes, import “next/script” and include
the script directly in your layout component:

* " tsx filename="app/dashboard/layout.tsx" switcher
import Script from 'next/script’

export default function DashboardLayout({
children,
b A
children: React.ReactNode
HA
return (
<>
<section>{children}</section>
<Script src="https://example.com/script.js" />
<[>
)
}

" jsx filename="app/dashboard/layout.js" switcher
import Script from 'next/script’

export default function DashboardLayout({ children }) {
return (
<>
<section>{children}</section>
<Script src="https://example.com/script.js" />
<[>

)

The third-party script is fetched when the folder route (e.g. "dashboard/
page.js) or any nested route (e.g. "dashboard/settings/page.js’) is accessed
by the user. Next.js will ensure the script will **only load once** even if a user
navigates between multiple routes in the same layout.

</AppOnly>
Application Scripts
<AppOnly>

To load a third-party script for all routes, import "next/script’ and include the
script directly in your root layout:

" tsx filename="app/layout.tsx" switcher
import Script from 'next/script’

export default function RootLayout({
children,
et
children: React.ReactNode
A
return (
<html lang="en">
<body>{children}</body>
<Script src="https://example.com/script.js" />
</html>
)
}

“Yjsx filename="app/layout.js" switcher
import Script from 'next/script’

export default function RootLayout({ children }) {
return (
<html lang="en">
<body>{children}</body>
<Script src="https://example.com/script.js" />
</html>
)
}

</AppOnly>
<PagesOnly>

To load a third-party script for all routes, import "next/script™ and include the
script directly in your custom "_app :

" jsx filename="pages/_app.js"
import Script from 'next/script’

export default function MyApp({ Component, pageProps }) {
return (
<>
<Component {...pageProps} />
<Script src="https://example.com/script.js" />
<[>
)
}

</PagesOnly>

This script will load and execute when _any_ route in your application is
accessed. Next.js will ensure the script will **only load once**, even if a user
navigates between multiple pages.

> **Recommendation**: We recommend only including third-party scripts in
specific pages or layouts in order to minimize any unnecessary impact to
performance.

Strategy

Although the default behavior of "next/script” allows you to load third-party
scripts in any page or layout, you can fine-tune its loading behavior by using
the “strategy’ property:

- "beforelnteractive ": Load the script before any Next.js code and before any
page hydration occurs.

- "afterInteractive : (**default**) Load the script early but after some
hydration on the page occurs.

- 'lazyOnload": Load the script later during browser idle time.

- "worker": (experimental) Load the script in a web worker.

Refer to the [next/script](/docs/app/api-reference/components/
script#strategy) API reference documentation to learn more about each
strategy and their use cases.

Offloading Scripts To A Web Worker (Experimental)

> **Warning:** The “worker" strategy is not yet stable and does not yet work
with the [app](/docs/app/building-your-application/routing/defining-routes)
directory. Use with caution.

Scripts that use the "worker™ strategy are offloaded and executed in a web
worker with [Partytown](https://partytown.builder.io/). This can improve the
performance of your site by dedicating the main thread to the rest of your
application code.

This strategy is still experimental and can only be used if the
“nextScriptWorkers ™ flag is enabled in "next.config.js :

**js filename="next.config.js"
module.exports = {
experimental: {
nextScriptWorkers: true,

}
}

Then, run "next’ (normally "npm run dev’ or “yarn dev ') and Next.js will guide
you through the installation of the required packages to finish the setup:

**bash filename="Terminal"
npm run dev

You'll see instructions like these: Please install Partytown by running "npm
install @builder.io/partytown’

Once setup is complete, defining “strategy="worker"" will automatically
instantiate Partytown in your application and offload the script to a web worker.

“ " tsx filename="pages/home.tsx" switcher
import Script from 'next/script’

export default function Home() {
return (
<>
<Script src="https://example.com/script.js" strategy="worker" />
<[>
)
}

" Yjsx filename="pages/home.js" switcher
import Script from 'next/script’

export default function Home() {
return (
<>
<Script src="https://example.com/script.js" strategy="worker" />
<[>
)
}

There are a number of trade-offs that need to be considered when loading a
third-party script in a web worker. Please see Partytown's [tradeoffs] (https://
partytown.builder.io/trade-offs) documentation for more information.

Inline Scripts

Inline scripts, or scripts not loaded from an external file, are also supported by
the Script component. They can be written by placing the JavaScript within
curly braces:

Tjsx
<Script id="show-banner">
{"document.getElementByld('banner').classList.remove('hidden') '}
</Script>

Or by using the “dangerouslySetinnerHTML " property:

ljsx
<Script
id="show-banner"
dangerouslySetinnerHTML={{
__html: "document.getElementByld('banner').classList.remove(‘'hidden') ",
1
/>

> **Warning**: An “id" property must be assigned for inline scripts in order for
Next.js to track and optimize the script.
Executing Additional Code

Event handlers can be used with the Script component to execute additional
code after a certain event occurs:

- ‘onLoad: Execute code after the script has finished loading.

- "onReady ': Execute code after the script has finished loading and every time
the component is mounted.

- ‘onError : Execute code if the script fails to load.

<AppOnly>

These handlers will only work when “next/script” is imported and used inside of
a [Client Component](/docs/app/building-your-application/rendering/client-
components) where ""use client" " is defined as the first line of code:

“tsx filename="app/page.tsx" switcher
'use client'

import Script from 'next/script’

export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
onLoad={() => {
console.log('Script has loaded")
3
[>
<[>
)
}

*jsx filename="app/page.js" switcher
'use client'

import Script from 'next/script’

export default function Page() {
return (
<>

<Script
src="https://example.com/script.js"
onLoad={() => {

console.log('Script has loaded")

3

/>

<[>

Refer to the ['next/script '](/docs/app/api-reference/components/
script#onload) API reference to learn more about each event handler and view
examples.

</AppOnly>
<PagesOnly>

These handlers will only work when “next/script” is imported and used inside of
a [Client Component](/docs/app/building-your-application/rendering/client-
components) where ""use client" " is defined as the first line of code:

" tsx filename="pages/index.tsx" switcher
import Script from 'next/script’

export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
onLoad={() => {
console.log('Script has loaded")
13
[>
<[>
)
}

" jsx filename="pages/index.js" switcher
import Script from 'next/script’

export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
onLoad={() => {
console.log('Script has loaded")
13
[>
<[>
)
}

Refer to the [next/script](/docs/pages/api-reference/components/
script#onload) API reference to learn more about each event handler and view
examples.

</PagesOnly>
Additional Attributes

There are many DOM attributes that can be assigned to a “<script>" element
that are not used by the Script component, like [nonce "] (https://
developer.mozilla.org/docs/Web/HTML/Global_attributes/nonce) or [custom
data attributes](https://developer.mozilla.org/docs/Web/HTML/
Global_attributes/data-*). Including any additional attributes will automatically
forward it to the final, optimized “<script>" element that is included in the
HTML.

<AppOnly>

“ " tsx filename="app/page.tsx" switcher
import Script from 'next/script’

export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
id="example-script"
nonce="XUENAJFW"
data-test="script"
/>
<[>
)
}

“jsx filename="app/page.js" switcher
import Script from 'next/script’

export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
id="example-script"
nonce="XUENAJFW"

data-test="script"
[>
<[>
)
}

</AppOnly>
<PagesOnly>

" tsx filename="pages/index.tsx" switcher
import Script from 'next/script’

export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
id="example-script"
nonce="XUENAJFW"
data-test="script"
[>
<[>
)
}

“Yjsx filename="pages/index.js" switcher
import Script from 'next/script’

export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
id="example-script"
nonce="XUENAJFW"
data-test="script"
/>
<[>
)
}

</PagesOnly>

title: Metadata
description: Use the Metadata API to define metadata in any layout or page.
related:
description: View all the Metadata API options.
links:
- app/api-reference/functions/generate-metadata
- app/api-reference/file-conventions/metadata
- app/api-reference/functions/generate-viewport

Next.js has a Metadata API that can be used to define your application
metadata (e.g. ‘'meta’ and 'link" tags inside your HTML “head’ element) for
improved SEO and web shareability.

There are two ways you can add metadata to your application:

- **Config-based Metadata**: Export a [static "'metadata’ object](/docs/app/
api-reference/functions/generate-metadata#metadata-object) or a dynamic
['generateMetadata’ function](/docs/app/api-reference/functions/generate-
metadata#generatemetadata-function) in a "layout.js™ or "page.js” file.

- **Fijle-based Metadata**: Add static or dynamically generated special files
to route segments.

With both these options, Next.js will automatically generate the relevant
‘<head>" elements for your pages. You can also create dynamic OG images
using the [ImageResponse '] (/docs/app/api-reference/functions/image-
response) constructor.

Static Metadata

To define static metadata, export a [Metadata’ object](/docs/app/api-
reference/functions/generate-metadata#metadata-object) from a "layout.js” or
static "page.js’ file.

" tsx filename="layout.tsx | page.tsx" switcher
import type { Metadata } from 'next’

export const metadata: Metadata = {
title: ...,
description: "...",

}

export default function Page() {}

“"jsx filename="layout.js | page.js" switcher
export const metadata = {

title: ...,

description: ...,

}

export default function Page() {}

For all the available options, see the [API Reference](/docs/app/api-reference/
functions/generate-metadata).

Dynamic Metadata

You can use "generateMetadata” function to “fetch™ metadata that requires
dynamic values.

“tsx filename="app/products/[id]/page.tsx" switcher
import type { Metadata, ResolvingMetadata } from 'next'

type Props ={
params: { id: string }
searchParams: { [key: string]: string | string[] | undefined }

}

export async function generateMetadata(
{ params, searchParams }: Props,
parent: ResolvingMetadata

): Promise<Metadata> {
/| read route params
const id = params.id

/| fetch data
const product = await fetch(https://.../${id}").then((res) => res.json())

/| optionally access and extend (rather than replace) parent metadata
const previousimages = (await parent).openGraph?.images || []

return {
title: product.title,
openGraph: {
images: ['/some-specific-page-image.jpgd’, ...previousimages],
h
}
}

export default function Page({ params, searchParams }: Props) {}

" jsx filename="app/products/[id]/page.js" switcher

export async function generateMetadata({ params, searchParams }, parent) {
/| read route params
const id = params.id

/| fetch data
const product = await fetch(https://.../${id}").then((res) => res.json())

/| optionally access and extend (rather than replace) parent metadata
const previousimages = (await parent).openGraph?.images || []

return {
title: product.title,
openGraph: {
images: ['/some-specific-page-image.jpgd’, ...previousimages],
h
}
}

export default function Page({ params, searchParams }) {}

For all the available params, see the [API Reference](/docs/app/api-reference/
functions/generate-metadata).

> **Good to know**:

>

> - Both static and dynamic metadata through "generateMetadata” are **only
supported in Server Components**,

> - “fetch’ requests are automatically [memoized](/docs/app/building-your-
application/caching#request-memoization) for the same data across
‘generateMetadata’, ‘generateStaticParams’, Layouts, Pages, and Server
Components. React [cache ™ can be used](/docs/app/building-your-
application/caching#request-memoization) if “fetch’ is unavailable.

> - Next.js will wait for data fetching inside "generateMetadata’ to complete
before streaming Ul to the client. This guarantees the first part of a [streamed
response](/docs/app/building-your-application/routing/loading-ui-and-
streaming) includes "<head>" tags.

File-based metadata

These special files are available for metadata:

- [favicon.ico, apple-icon.jpg, and icon.jpg](/docs/app/api-reference/file-
conventions/metadata/app-icons)

- [opengraph-image.jpg and twitter-image.jpg](/docs/app/api-reference/file-
conventions/metadata/opengraph-image)

- [robots.txt](/docs/app/api-reference/file-conventions/metadata/robots)

- [sitemap.xml](/docs/app/api-reference/file-conventions/metadata/sitemap)

You can use these for static metadata, or you can programmatically generate
these files with code.

For implementation and examples, see the [Metadata Files](/docs/app/api-
reference/file-conventions/metadata) API Reference and [Dynamic Image
Generation] (#dynamic-image-generation).

Behavior

File-based metadata has the higher priority and will override any config-based
metadata.

Default Fields

There are two default "'meta’ tags that are always added even if a route doesn't
define metadata:

- The [meta charset tag] (https://developer.mozilla.org/docs/Web/HTML/
Element/meta#attr-charset) sets the character encoding for the website.

- The [meta viewport tag](https://developer.mozilla.org/docs/Web/HTML/
Viewport_meta_tag) sets the viewport width and scale for the website to adjust
for different devices.

“ T html
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />

> **Good to know**: You can overwrite the default [viewport](/docs/app/api-
reference/functions/generate-metadata#viewport) meta tag.
Ordering

Metadata is evaluated in order, starting from the root segment down to the
segment closest to the final "page.js’ segment. For example:

1. “app/layout.tsx” (Root Layout)
2. “app/blog/layout.tsx” (Nested Blog Layout)
3. "app/blog/[slug]/page.tsx” (Blog Page)

Merging

Following the [evaluation order](#ordering), Metadata objects exported from
multiple segments in the same route are **shallowly** merged together to
form the final metadata output of a route. Duplicate keys are **replaced**
based on their ordering.

This means metadata with nested fields such as [openGraph “](/docs/app/api-
reference/functions/generate-metadata#opengraph) and [robots "](/docs/app/
api-reference/functions/generate-metadata#robots) that are defined in an
earlier segment are **overwritten** by the last segment to define them.

Overwriting fields

**Yjsx filename="app/layout.js"
export const metadata = {
title: '"Acme’,
openGraph: {
title: 'Acme’,
description: 'Acme is a...'

}I
-

" jsx filename="app/blog/page.js"
export const metadata = {
title: 'Blog’,
openGraph: {
title: 'Blog’,
3
}

/| Output:
/| <title>Blog</title>
/| <meta property="o0g:title" content="Blog" />

In the example above:

- “title® from “app/layout.js” is **replaced** by ‘title" in “app/blog/page.js’.
- All "openGraph” fields from “app/layout.js” are **replaced** in "app/blog/
page.js’ because "app/blog/page.js’ sets ‘openGraph’ metadata. Note the

absence of “openGraph.description’.

If you'd like to share some nested fields between segments while overwriting
others, you can pull them out into a separate variable:

“*Yjsx filename="app/shared-metadata.js"
export const openGraphimage = { images: ['http://...'] }

" jsx filename="app/page.js"
import { openGraphlmage } from './[shared-metadata’

export const metadata = {
openGraph: {
...openGraphlmage,
title: '"Home',
h
}

" "jsx filename="app/about/page.js"
import { openGraphlmage } from '../shared-metadata’

export const metadata = {
openGraph: {
...openGraphlmage,
title: 'About’,

}I
-

In the example above, the OG image is shared between “app/layout.js’ and
‘app/about/page.js” while the titles are different.

Inheriting fields

**Yjsx filename="app/layout.js"
export const metadata = {
title: '"Acme’,
openGraph: {
title: 'Acme’,
description: 'Acme is a...'

}I
-

" jsx filename="app/about/page.js"
export const metadata = {
title: 'About’,

}

/| Output:

/| <title>About</title>

/| <meta property="og:title" content="Acme" />

/| <meta property="og:description" content="Acme is a..." />

Notes

- “title’ from “app/layout.js’ is **replaced** by “title in "app/about/page.js’.
- All “openGraph’ fields from “app/layout.js* are **inherited** in “app/about/
page.js’ because ‘app/about/page.js’ doesn't set ‘openGraph” metadata.

Dynamic Image Generation

The "ImageResponse’ constructor allows you to generate dynamic images
using JSX and CSS. This is useful for creating social media images such as
Open Graph images, Twitter cards, and more.

‘ImageResponse’ uses the [Edge Runtime](/docs/app/building-your-
application/rendering/edge-and-nodejs-runtimes#edge-runtime), and Next.js
automatically adds the correct headers to cached images at the edge, helping
improve performance and reducing recomputation.

To use it, you can import "ImageResponse’ from "next/og :

**Yjsx filename="app/about/route.js"
import { ImageResponse } from 'next/og’

export const runtime = 'edge’

export async function GET() {
return new ImageResponse(
(
<div
style={{
fontSize: 128,
background: 'white',
width: '"100%",
height: "100%",
display: 'flex’,
textAlign: 'center’,
alignltems: 'center’,
justifyContent: 'center’,
13
>
Hello world!

</div>

)I
{

width: 1200,
height: 600,
}
)
}

‘ImageResponse’ integrates well with other Next.js APls, including [Route
Handlers](/docs/app/building-your-application/routing/route-handlers) and file-
based Metadata. For example, you can use 'ImageResponse’ in a “opengraph-
image.tsx " file to generate Open Graph images at build time or dynamically at
request time.

‘ImageResponse” supports common CSS properties including flexbox and
absolute positioning, custom fonts, text wrapping, centering, and nested
images. [See the full list of supported CSS properties](/docs/app/api-reference/
functions/image-response).

> **Good to know**:

>

> - Examples are available in the [Vercel OG Playground](https://og-
playground.vercel.app/).

> - "ImageResponse’ uses [@vercel/og](https://vercel.com/docs/concepts/
functions/edge-functions/og-image-generation), [Satori] (https://github.com/
vercel/satori), and Resvg to convert HTML and CSS into PNG.

> - Only the Edge Runtime is supported. The default Node.js runtime will not
work.

> - Only flexbox and a subset of CSS properties are supported. Advanced
layouts (e.g. "display: grid ") will not work.

> - Maximum bundle size of "500KB". The bundle size includes your JSX, CSS,
fonts, images, and any other assets. If you exceed the limit, consider reducing
the size of any assets or fetching at runtime.

> - Only "ttf’, "otf’, and "woff" font formats are supported. To maximize the
font parsing speed, "ttf" or "otf" are preferred over "woff".

JSON-LD

[JSON-LD](https://json-ld.org/) is a format for structured data that can be used
by search engines to understand your content. For example, you can use it to
describe a person, an event, an organization, a movie, a book, a recipe, and
many other types of entities.

Our current recommendation for JSON-LD is to render structured data as a
‘<script>" tag in your ‘layout.js® or ‘page.js’ components. For example:

“ " tsx filename="app/products/[id]/page.tsx" switcher
export default async function Page({ params }) {
const product = await getProduct(params.id)

const jsonLd ={
'@context": 'https://schema.org’,
'@type': 'Product’,
name: product.name,
image: product.image,
description: product.description,

}

return (
<section>
{/* Add JSON-LD to your page */}
<script
type="application/ld+json"
dangerouslySetinnerHTML={{ __html: JSON.stringify(jsonLd) }}
[>
{* ... *}
</section>
)
}

“"jsx filename="app/products/[id]/page.js" switcher
export default async function Page({ params }) {
const product = await getProduct(params.id)

const jsonLd ={
'@context': 'https://[schema.org’,
'@type': 'Product,
name: product.name,
image: product.image,
description: product.description,

}

return (
<section>
{/* Add JSON-LD to your page */}
<script
type="application/ld+json"
dangerouslySetinnerHTML={{ __html: JSON.stringify(jsonLd) }}
[>
... "1

<[section>

You can validate and test your structured data with the [Rich Results Test]
(https://search.google.com/test/rich-results) for Google or the generic [Schema
Markup Validator] (https://validator.schema.org/).

You can type your JSON-LD with TypeScript using community packages like
['schema-dts] (https://www.npmjs.com/package/schema-dts):

T Ttsx
import { Product, WithContext } from 'schema-dts'

const jsonLd: WithContext<Product> = {
'@context': 'https://schema.org’,
'@type': 'Product’,
name: 'Next.js Sticker',
image: 'https://nextjs.org/imgs/sticker.png’,
description: 'Dynamic at the speed of static.!,

LURNRN

title: Static Assets
description: Next.js allows you to serve static files, like images, in the public
directory. You can learn how it works here.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

Next.js can serve static files, like images, under a folder called “public’ in the
root directory. Files inside “public’ can then be referenced by your code
starting from the base URL (/).

For example, if you add "'me.png’ inside “public’, the following code will
access the image:

" Yjsx filename="Avatar.js"
import Image from 'next/image'

export function Avatar() {
return <Image src="/me.png" alt="me" width="64" height="64" />

}

<PagesOnly>

This folder is also useful for ‘robots.txt", "favicon.ico’, Google Site Verification,
and any other static files (including “.html"). But make sure to not have a static
file with the same name as a file in the "pages/" directory, as this will result in
an error. [Read more](/docs/messages/conflicting-public-file-page).

</PagesOnly>
<AppOnly>

For static metadata files, such as ‘robots.txt", “favicon.ico’, etc, you should
use [special metadata files](/docs/app/api-reference/file-conventions/
metadata) inside the "app’ folder.

</AppOnly>

> Good to know:

>

> - The directory must be named “public’. The name cannot be changed and
it's the only directory used to serve static assets.

> - Only assets that are in the "public’ directory at [build time](/docs/app/api-
reference/next-cli#build) will be served by Next.js. Files added at request time
won't be available. We recommend using a third-party service like [AWS S3]
(https://aws.amazon.com/s3/) for persistent file storage.

title: Lazy Loading
description: Lazy load imported libraries and React Components to improve
your application's loading performance.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

[Lazy loading](https://developer.mozilla.org/docs/Web/Performance/
Lazy_loading) in Next.js helps improve the initial loading performance of an
application by decreasing the amount of JavaScript needed to render a route.

It allows you to defer loading of **Client Components** and imported libraries,
and only include them in the client bundle when they're needed. For example,
you might want to defer loading a modal until a user clicks to open it.

There are two ways you can implement lazy loading in Next.js:

1. Using [Dynamic Imports](#nextdynamic) with “next/dynamic’
2. Using ['React.lazy() "](https://react.dev/reference/react/lazy) with
[Suspense](https://react.dev/reference/react/Suspense)

By default, Server Components are automatically [code split] (https://
developer.mozilla.org/docs/Glossary/Code_splitting), and you can use
[streaming](/docs/app/building-your-application/routing/loading-ui-and-
streaming) to progressively send pieces of Ul from the server to the client. Lazy
loading applies to Client Components.

“next/dynamic’

‘next/dynamic’ is a composite of [React.lazy() "](https://react.dev/reference/
react/lazy) and [Suspense](https://react.dev/reference/react/Suspense). It
behaves the same way in the "app ™ and "pages’ directories to allow for
incremental migration.

Examples

<AppOnly>
Importing Client Components

*jsx filename="app/page.js"
'use client'

import { useState } from 'react’
import dynamic from 'next/dynamic'

/| Client Components:

const ComponentA = dynamic(() => import('../components/A'))

const ComponentB = dynamic(() => import('../components/B'))

const ComponentC = dynamic(() => import('../components/C'), { ssr: false })

export default function ClientComponentExample() {
const [showMore, setShowMore] = useState(false)

return (
<div>
{/* Load immediately, but in a separate client bundle */}
<ComponentA />

{/* Load on demand, only when/if the condition is met */}
{showMore && <ComponentB />}
<button onClick={() => setShowMore(!showMore)}>Toggle</button>

{/* Load only on the client side */}
<ComponentC />
</div>
)
}

Skipping SSR

When using "React.lazy() " and Suspense, Client Components will be pre-
rendered (SSR) by default.

If you want to disable pre-rendering for a Client Component, you can use the
“ssr option set to ‘false:

T jsx
const ComponentC = dynamic(() => import('../components/C'), { ssr: false })

Importing Server Components

If you dynamically import a Server Component, only the Client Components that
are children of the Server Component will be lazy-loaded - not the Server
Component itself.

**Yjsx filename="app/page.js"
import dynamic from 'next/dynamic'

/| Server Component:
const ServerComponent = dynamic(() => import('../components/
ServerComponent'))

export default function ServerComponentExample() {
return (
<div>
<ServerComponent />
</div>
)
}

Loading External Libraries

External libraries can be loaded on demand using the [import() "](https://
developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/import)
function. This example uses the external library “fuse.js™ for fuzzy search. The

module is only loaded on the client after the user types in the search input.

*Yjsx filename="app/page.js"
'use client'

import { useState } from 'react’
const names = ['Tim', 'Joe', 'Bel', 'Lee']

export default function Page() {
const [results, setResults] = useState()

return (
<div>
<input
type="text"
placeholder="Search"
onChange={async (e) => {
const { value } = e.currentTarget
/| Dynamically load fuse.js
const Fuse = (await import('fuse.js')).default
const fuse = new Fuse(names)

setResults(fuse.search(value))

3
[>
<pre>Results: {JSON.stringify(results, null, 2)}</pre>
</div>
)
}

Adding a custom loading component
**Yjsx filename="app/page.js"
import dynamic from 'next/dynamic'

const WithCustomLoading = dynamic(
() => import('../components/WithCustomLoading'),
{
loading: () => <p>Loading...</p>,
}
)

export default function Page() {
return (
<div>

{/* The loading component will be rendered while <WithCustomLoading/> is
loading */}
<WithCustomLoading />
</div>
)
}

Importing Named Exports

To dynamically import a named export, you can return it from the Promise
returned by [import() "] (https://developer.mozilla.org/docs/Web/JavaScript/
Reference/Operators/import) function:

" Yjsx filename="components/hello.js"
'use client'

export function Hello() {
return <p>Hello!</p>

AR RN

“Yjsx filename="app/page.js"
import dynamic from 'next/dynamic'

const ClientComponent = dynamic(() =>
import('../components/hello').then((mod) => mod.Hello)

LURNRN

</AppOnly>
<PagesOnly>

By using "next/dynamic’, the header component will not be included in the
page's initial JavaScript bundle. The page will render the Suspense “fallback’
first, followed by the "Header component when the "Suspense’ boundary is
resolved.

jsx
import dynamic from 'next/dynamic'
const DynamicHeader = dynamic(() => import('../components/header'), {

loading: () => <p>Loading...</p>,
})

export default function Home() {

return <DynamicHeader />

LURNRN

> **Good to know**: In “import('path/to/component') ’, the path must be
explicitly written. It can't be a template string nor a variable. Furthermore the
“import() " has to be inside the "dynamic() " call for Next.js to be able to match
webpack bundles / module ids to the specific "dynamic() " call and preload
them before rendering. "dynamic() " can't be used inside of React rendering as
it needs to be marked in the top level of the module for preloading to work,
similar to "React.lazy .

With named exports

To dynamically import a named export, you can return it from the [Promise]
(https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/
Promise) returned by [import() '] (https://github.com/tc39/proposal-dynamic-
import#example):

*jsx filename="components/hello.js"
export function Hello() {
return <p>Hello!</p>

}

/| pages/index.js
import dynamic from 'next/dynamic'

const DynamicComponent = dynamic(() =>
import('../components/hello').then((mod) => mod.Hello)

)

With no SSR

To dynamically load a component on the client side, you can use the “ssr’
option to disable server-rendering. This is useful if an external dependency or

component relies on browser APIs like "window .

TUjsx
import dynamic from 'next/dynamic'

const DynamicHeader = dynamic(() => import('../components/header'), {
ssr: false,

8

With external libraries

This example uses the external library “fuse.js™ for fuzzy search. The module is
only loaded in the browser after the user types in the search input.

jsx
import { useState } from 'react’

const names = ['Tim', 'Joe', 'Bel', 'Lee']

export default function Page() {
const [results, setResults] = useState()

return (
<div>
<input
type="text"
placeholder="Search"
onChange={async (e) => {
const { value } = e.currentTarget
/| Dynamically load fuse.js
const Fuse = (await import('fuse.js')).default
const fuse = new Fuse(names)

setResults(fuse.search(value))

13
[>
<pre>Results: {JSON.stringify(results, null, 2)}</pre>
</div>
)
}

</PagesOnly>

title: Analytics
description: Measure and track page performance using Next.js Speed Insights

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

Next.js has built-in support for measuring and reporting performance metrics.
You can either use the "useReportWebVitals' hook to manage reporting
yourself, or alternatively, Vercel provides a [managed service] (https://

vercel.com/analytics?utm_source=next-
site&utm_medium=docs&utm_campaign=next-website) to automatically collect
and visualize metrics for you.

Build Your Own
<PagesOnly>

" jsx filename="pages/_app.js"
import { useReportWebVitals } from 'next/web-vitals'

function MyApp({ Component, pageProps }) {
useReportWebVitals((metric) => {
console.log(metric)

}

return <Component {...pageProps} />

LURNRY

View the [API Reference](/docs/pages/api-reference/functions/use-report-web-
vitals) for more information.

</PagesOnly>
<AppOnly>

“jsx filename="app/_components/web-vitals.js"
'use client'

import { useReportWebVitals } from 'next/web-vitals'

export function WebVitals() {
useReportWebVitals((metric) => {
console.log(metric)

)
-

*jsx filename="app/layout.js"
import { WebVitals } from './_components/web-vitals'

export default function Layout({ children }) {
return (
<html>
<body>
<WebVitals />

{children}
</body>
</html>
)
}

> Since the "useReportWebVitals™ hook requires the ""use client" " directive,
the most performant approach is to create a separate component that the root
layout imports. This confines the client boundary exclusively to the "WebVitals®
component.

View the [API Reference](/docs/app/api-referencef/functions/use-report-web-
vitals) for more information.

</AppOnly>
Web Vitals

[Web Vitals](https://web.dev/vitals/) are a set of useful metrics that aim to
capture the user
experience of a web page. The following web vitals are all included:

- [Time to First Byte] (https://developer.mozilla.org/docs/Glossary/
Time_to_first_byte) (TTFB)

- [First Contentful Paint] (https://developer.mozilla.org/docs/Glossary/
First_contentful_paint) (FCP)

- [Largest Contentful Paint](https://web.dev/Icp/) (LCP)

- [First Input Delay] (https://web.dev/fid/) (FID)

- [Cumulative Layout Shift](https://web.dev/cls/) (CLS)

- [Interaction to Next Paint](https://web.dev/inp/) (INP)

You can handle all the results of these metrics using the "name’ property.
<PagesOnly>

**jsx filename="pages/_app.js"
import { useReportWebVitals } from 'next/web-vitals'

function MyApp({ Component, pageProps }) {
useReportWebVitals((metric) => {
switch (metric.name) {
case 'FCP": {
// handle FCP results
}
case 'LCP": {
// handle LCP results

return <Component {...pageProps} />

RN

</PagesOnly>
<AppOnly>

* " tsx filename="app/components/web-vitals.tsx" switcher
'use client'

import { useReportWebVitals } from 'next/web-vitals'

export function WebVitals() {
useReportWebVitals((metric) => {
switch (metric.name) {
case 'FCP": {
// handle FCP results
}
case 'LCP": {
// handle LCP results

" jsx filename="app/components/web-vitals.js" switcher
'use client'

import { useReportWebVitals } from 'next/web-vitals'

export function WebVitals() {
useReportWebVitals((metric) => {
switch (metric.name) {
case 'FCP": {
// handle FCP results
}
case 'LCP": {
// handle LCP results
}

</AppOnly>
<PagesOnly>
Custom Metrics

In addition to the core metrics listed above, there are some additional custom
metrics that
measure the time it takes for the page to hydrate and render:

- "Next.js-hydration": Length of time it takes for the page to start and finish
hydrating (in ms)
- "Next.js-route-change-to-render ": Length of time it takes for a page to start
rendering after a

route change (in ms)
- "Next.js-render ': Length of time it takes for a page to finish render after a
route change (in ms)

You can handle all the results of these metrics separately:

js
export function reportWebVitals(metric) {
switch (metric.name) {
case 'Next.js-hydration':
// handle hydration results
break
case 'Next.js-route-change-to-render":
// handle route-change to render results
break
case 'Next.js-render":
/| handle render results
break
default:
break

These metrics work in all browsers that support the [User Timing API](https://
caniuse.com/#feat=user-timing).

</PagesOnly>
Sending results to external systems

You can send results to any endpoint to measure and track
real user performance on your site. For example:

js
useReportWebVitals((metric) => {
const body = JSON.stringify(metric)
const url = 'https://example.com/analytics'
/| Use "navigator.sendBeacon() " if available, falling back to “fetch() .
if (navigator.sendBeacon) {
navigator.sendBeacon(url, body)
} else {
fetch(url, { body, method: 'POST', keepalive: true })
}
1

> **Good to know**: If you use [Google Analytics](https://
analytics.google.com/analytics/web/), using the

> "id" value can allow you to construct metric distributions manually (to
calculate percentiles,

> etc.)

> s

> useReportWebVitals(metric => {

> [/ Use "window.gtag if you initialized Google Analytics as this example:
> [/ https://github.com/vercel/next.js/blob/canary/examples/with-google-
analytics/pages/_app.js

> window.gtag('event', metric.name, {

> value: Math.round(metric.name === "'CLS' ? metric.value * 7000 :
metric.value), // values must be integers

> event_label: metric.id, // id unique to current page load

> non_interaction: true, [/ avoids affecting bounce rate.

> });

>}
S

>
> Read more about [sending results to Google Analytics] (https://github.com/
GoogleChrome/web-vitals#send-the-results-to-google-analytics).

title: OpenTelemetry

description: Learn how to instrument your Next.js app with OpenTelemetry.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

> **Good to know**: This feature is **experimental**, you need to explicitly
opt-in by providing “experimental.instrumentationHook = true; " in your
“next.config.js .

Observability is crucial for understanding and optimizing the behavior and
performance of your Next.js app.

As applications become more complex, it becomes increasingly difficult to
identify and diagnose issues that may arise. By leveraging observability tools,
such as logging and metrics, developers can gain insights into their
application's behavior and identify areas for optimization. With observability,
developers can proactively address issues before they become major problems
and provide a better user experience. Therefore, it is highly recommended to
use observability in your Next.js applications to improve performance, optimize
resources, and enhance user experience.

We recommend using OpenTelemetry for instrumenting your apps.

It's a platform-agnostic way to instrument apps that allows you to change your
observability provider without changing your code.

Read [Official OpenTelemetry docs](https://opentelemetry.io/docs/) for more
information about OpenTelemetry and how it works.

This documentation uses terms like _Span_, _Trace_ or _Exporter_ throughout
this doc, all of which can be found in [the OpenTelemetry Observability Primer]
(https://opentelemetry.io/docs/concepts/observability-primer/).

Next.js supports OpenTelemetry instrumentation out of the box, which means
that we already instrumented Next.js itself.

When you enable OpenTelemetry we will automatically wrap all your code like
“getStaticProps’ in_spans_ with helpful attributes.

> **Good to know**: We currently support OpenTelemetry bindings only in
serverless functions.
> We don't provide any for "edge” or client side code.

Getting Started

OpenTelemetry is extensible but setting it up properly can be quite verbose.
That's why we prepared a package "@vercel/otel” that helps you get started

quickly.

It's not extensible and you should configure OpenTelemetry manually if you
need to customize your setup.

Using “@vercel/otel”

To get started, you must install “@vercel/otel *:

" “bash filename="Terminal"

npm install @vercel/otel

<AppOnly>

Next, create a custom [instrumentation.ts "](/docs/app/building-your-
application/optimizing/instrumentation) (or ".js") file in the **root directory** of
the project (or inside “src” folder if using one):

</AppOnly>

<PagesOnly>

Next, create a custom [instrumentation.ts '](/docs/pages/building-your-
application/optimizing/instrumentation) (or ".js’) file in the **root directory** of
the project (or inside “src” folder if using one):

</PagesOnly>

" ts filename="your-project/instrumentation.ts" switcher
import { registerOTel } from '@vercel/otel’

export function register() {
registerOTel('next-app')
}

" js filename="your-project/instrumentation.js" switcher
import { registerOTel } from '@vercel/otel'

export function register() {
registerOTel('next-app')
}

<AppOnly>

> **Good to know**

>
> - The “instrumentation” file should be in the root of your project and not
inside the "app ™ or "pages’ directory. If you're using the "src” folder, then
place the file inside "src™ alongside "pages™ and “app".

> - If you use the [pageExtensions’ config option](/docs/app/api-reference/
next-config-js/pageExtensions) to add a suffix, you will also need to update the
‘instrumentation” filename to match.

> - We have created a basic [with-opentelemetry](https://github.com/vercel/
next.js/tree/canary/examples/with-opentelemetry) example that you can use.

</AppOnly>
<PagesOnly>

> **Good to know**

>

> - The “instrumentation” file should be in the root of your project and not
inside the "app’ or "pages’ directory. If you're using the “src” folder, then
place the file inside "src” alongside “pages’ and “app .

> - If you use the [pageExtensions’ config option](/docs/pages/api-reference/
next-config-js/pageExtensions) to add a suffix, you will also need to update the
‘instrumentation” filename to match.

> - We have created a basic [with-opentelemetry](https://github.com/vercel/
next.js/tree/canary/examples/with-opentelemetry) example that you can use.

</PagesOnly>
Manual OpenTelemetry configuration

If our wrapper “@vercel/otel” doesn't suit your needs, you can configure
OpenTelemetry manually.

Firstly you need to install OpenTelemetry packages:

" “bash filename="Terminal"

npm install @opentelemetry/sdk-node @opentelemetry/resources
@opentelemetry/semantic-conventions @opentelemetry/sdk-trace-node
@opentelemetry/exporter-trace-otlp-http

Now you can initialize "NodeSDK " in your “instrumentation.ts".
OpenTelemetry APIs are not compatible with edge runtime, so you need to
make sure that you are importing them only when
“process.env.NEXT_RUNTIME === 'nodejs' . We recommend creating a new
file “instrumentation.node.ts™ which you conditionally import only when using
node:

“*ts filename="instrumentation.ts" switcher
export async function register() {
if (process.env.NEXT_RUNTIME === 'nodejs') {
await import('./instrumentation.node.ts')

)
-

" js filename="instrumentation.js" switcher
export async function register() {
if (process.env.NEXT_RUNTIME === 'nodejs') {
await import('./instrumentation.node.js')
}
}

“ts filename="instrumentation.node.ts" switcher

import { NodeSDK } from '@opentelemetry/sdk-node'

import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http'
import { Resource } from '@opentelemetry/resources’

import { SemanticResourceAttributes } from '@opentelemetry/semantic-
conventions'

import { SimpleSpanProcessor } from '@opentelemetry/sdk-trace-node'

const sdk = new NodeSDK({
resource: new Resource({
[SemanticResourceAttributes.SERVICE_NAME]: 'next-app/,
R

spanProcessor: new SimpleSpanProcessor(new OTLPTraceExporter()),

1
sdk.start()

" js filename="instrumentation.node.js" switcher

import { NodeSDK } from '@opentelemetry/sdk-node'

import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http'
import { Resource } from '@opentelemetry/resources’

import { SemanticResourceAttributes } from '@opentelemetry/semantic-
conventions'

import { SimpleSpanProcessor } from '@opentelemetry/sdk-trace-node'

const sdk = new NodeSDK({
resource: new Resource({
[SemanticResourceAttributes.SERVICE_NAME]: 'next-app’,

D,

spanProcessor: new SimpleSpanProcessor(new OTLPTraceExporter()),

1
sdk.start()

Doing this is equivalent to using “@vercel/otel, but it's possible to modify and
extend.

For example, you could use "@opentelemetry/exporter-trace-otlp-grpc’
instead of “@opentelemetry/exporter-trace-otlp-http ™ or you can specify more
resource attributes.

Testing your instrumentation

You need an OpenTelemetry collector with a compatible backend to test
OpenTelemetry traces locally.

We recommend using our [OpenTelemetry dev environment](https://
github.com/vercel/opentelemetry-collector-dev-setup).

If everything works well you should be able to see the root server span labeled
as GET /[requested/pathname”.

All other spans from that particular trace will be nested under it.

Next.js traces more spans than are emitted by default.
To see more spans, you must set "NEXT_OTEL_VERBOSE=1".

Deployment

Using OpenTelemetry Collector

When you are deploying with OpenTelemetry Collector, you can use "@vercel/
otel .

It will work both on Vercel and when self-hosted.

Deploying on Vercel

We made sure that OpenTelemetry works out of the box on Vercel.

Follow [Vercel documentation](https://vercel.com/docs/concepts/observability/
otel-overview/quickstart) to connect your project to an observability provider.

Self-hosting
Deploying to other platforms is also straightforward. You will need to spin up
your own OpenTelemetry Collector to receive and process the telemetry data

from your Next.js app.

To do this, follow the [OpenTelemetry Collector Getting Started guide] (https://
opentelemetry.io/docs/collector/getting-started/), which will walk you through

setting up the collector and configuring it to receive data from your Next.js app.

Once you have your collector up and running, you can deploy your Next.js app
to your chosen platform following their respective deployment guides.

Custom Exporters

We recommend using OpenTelemetry Collector.

If that is not possible on your platform, you can use a custom OpenTelemetry
exporter with [manual OpenTelemetry configuration](/docs/pages/building-
your-application/optimizing/open-telemetry#manual-opentelemetry-
configuration)

Custom Spans

You can add a custom span with [OpenTelemetry APIs](https://
opentelemetry.io/docs/instrumentation/js/instrumentation).

**pbash filename="Terminal"
npm install @opentelemetry/api

The following example demonstrates a function that fetches GitHub stars and
adds a custom “fetchGithubStars™ span to track the fetch request's result:

“ts
import { trace } from '@opentelemetry/api'

export async function fetchGithubStars() {
return await trace
.getTracer('nextjs-example')
.startActiveSpan('fetchGithubStars', async (span) => {

try {
return await getValue()

} finally {
span.end()
}
1
}

The ‘register’ function will execute before your code runs in a new
environment.

You can start creating new spans, and they should be correctly added to the
exported trace.

Default Spans in Next.js

Next.js automatically instruments several spans for you to provide useful
insights into your application's performance.

Attributes on spans follow [OpenTelemetry semantic conventions] (https://
opentelemetry.io/docs/reference/specification/trace/semantic_conventions/).
We also add some custom attributes under the "next’ namespace:

- ‘'next.span_name’ - duplicates span name
- ‘next.span_type " - each span type has a unique identifier
- ‘next.route’ - The route pattern of the request (e.g., /[param]/user’).
- ‘next.page’

- This is an internal value used by an app router.

- You can think about it as a route to a special file (like "page.ts”, "layout.ts,
‘loading.ts” and others)

- It can be used as a unique identifier only when paired with "next.route’
because ‘/layout’ can be used to identify both “/(groupA)/layout.ts™ and °/
(groupB)/layout.ts”

" [http.method] [next.route]”
- ‘next.span_type : 'BaseServer.handleRequest”

This span represents the root span for each incoming request to your Next.js
application. It tracks the HTTP method, route, target, and status code of the
request.

Attributes:

- [Common HTTP attributes] (https://opentelemetry.io/docs/reference/
specification/trace/semantic_conventions/http/#common-attributes)
- "http.method"
- “http.status_code’
- [Server HTTP attributes](https://opentelemetry.io/docs/reference/
specification/trace/semantic_conventions/http/#http-server-semantic-
conventions)
- "http.route”
- “http.target’
- ‘next.span_name’
- "next.span_type’
- ‘next.route’

render route (app) [next.route]’
- ‘next.span_type: "AppRender.getBodyResult".

This span represents the process of rendering a route in the app router.

Attributes:
- ‘next.span_name’
- "'next.span_type"
- ‘next.route’
fetch [http.method] [http.url]’
- ‘next.span_type': "AppRender.fetch’
This span represents the fetch request executed in your code.
Attributes:
- [Common HTTP attributes](https://opentelemetry.io/docs/reference/
specification/trace/semantic_conventions/http/#common-attributes)
- "http.method"
- [Client HTTP attributes](https://opentelemetry.io/docs/reference/
specification/trace/semantic_conventions/http/#http-client)
- “http.url’
- ‘net.peer.name’
- ‘net.peer.port’ (only if specified)
- "'next.span_name"’
- ‘next.span_type’
##4# " executing api route (app) [next.route]”
- ‘next.span_type : "AppRouteRouteHandlers.runHandler .
This span represents the execution of an API route handler in the app router.
Attributes:
- ‘next.span_name’
- ‘next.span_type"
- ‘next.route’
##4# “getServerSideProps [next.route]”

- "next.span_type : '"Render.getServerSideProps".

This span represents the execution of "getServerSideProps™ for a specific
route.

Attributes:

- ‘next.span_name’

- ‘next.span_type"

- ‘next.route’

##4# " getStaticProps [next.route]’

- "next.span_type : 'Render.getStaticProps .
This span represents the execution of “getStaticProps™ for a specific route.
Attributes:

- ‘next.span_name’

- ‘next.span_type"

- ‘next.route’

##4# “render route (pages) [next.route]”

- ‘next.span_type': "Render.renderDocument .

This span represents the process of rendering the document for a specific
route.

Attributes:

- "'next.span_name’
- ‘next.span_type’
- "next.route”

##1# “generateMetadata [next.page]’
- "next.span_type : 'ResolveMetadata.generateMetadata’.

This span represents the process of generating metadata for a specific page (a
single route can have multiple of these spans).

Attributes:

- "'next.span_name’
- ‘next.span_type’
- ‘next.page’

title: Instrumentation
description: Learn how to use instrumentation to run code at server startup in
your Next.js app

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

If you export a function named ‘register” from a ‘instrumentation.ts™ (or ".js’)
file in the **root directory** of your project (or inside the “src” folder if using
one), we will call that function whenever a new Next.js server instance is
bootstrapped.

<AppOnly>

> **Good to know**

>

> - This feature is **experimental** To use it, you must explicitly opt in by
defining “experimental.instrumentationHook = true;" in your "next.config.js".
> - The “instrumentation file should be in the root of your project and not
inside the "app’ or "pages’ directory. If you're using the “src” folder, then
place the file inside “src’ alongside "pages’ and “app".

> - If you use the [pageExtensions’ config option](/docs/app/api-reference/
next-config-js/pageExtensions) to add a suffix, you will also need to update the
‘instrumentation” filename to match.

> - We have created a basic [with-opentelemetry](https://github.com/vercel/
next.js/tree/canary/examples/with-opentelemetry) example that you can use.

</AppOnly>
<PagesOnly>

> **Good to know**

>

> - This feature is **experimental** To use it, you must explicitly opt in by
defining “experimental.instrumentationHook = true;" in your "next.config.js".

> - The “instrumentation” file should be in the root of your project and not
inside the "app’ or "pages’ directory. If you're using the “src” folder, then
place the file inside "src’ alongside "pages™ and "app".

> - If you use the [pageExtensions’ config option](/docs/pages/api-reference/
next-config-js/pageExtensions) to add a suffix, you will also need to update the
‘instrumentation” filename to match.

> - We have created a basic [with-opentelemetry](https://github.com/vercel/
next.js/tree/canary/examples/with-opentelemetry) example that you can use.

</PagesOnly>

When your ‘register’ function is deployed, it will be called on each cold boot

(but exactly once in each environment).

Sometimes, it may be useful to import a file in your code because of the side
effects it will cause. For example, you might import a file that defines a set of
global variables, but never explicitly use the imported file in your code. You
would still have access to the global variables the package has declared.

You can import files with side effects in “instrumentation.ts’, which you might
want to use in your ‘register” function as demonstrated in the following
example:

" ts filename="your-project/instrumentation.ts" switcher
import { init } from 'package-init’

export function register() {
init()
}

“ s filename="your-project/instrumentation.js" switcher
import { init } from 'package-init’

export function register() {
init()
}

However, we recommend importing files with side effects using “import™ from
within your ‘register” function instead. The following example demonstrates a
basic usage of "import” in a ‘register’ function:

“*ts filename="your-project/instrumentation.ts" switcher
export async function register() {
await import('package-with-side-effect')

EUR RN

“ s filename="your-project/instrumentation.js" switcher
export async function register() {
await import('package-with-side-effect')

EUR RN

By doing this, you can colocate all of your side effects in one place in your
code, and avoid any unintended consequences from importing files.

We call ‘register’ in all environments, so it's necessary to conditionally import

any code that doesn't support both "edge” and "'nodejs . You can use the
environment variable "NEXT_RUNTIME to get the current environment.
Importing an environment-specific code would look like this:

“ " ts filename="your-project/instrumentation.ts" switcher
export async function register() {
if (process.env.NEXT_RUNTIME === 'nodejs') {
await import('./instrumentation-node')

}

if (process.env.NEXT_RUNTIME === 'edge') {
await import('./instrumentation-edge')
}
}

“js filename="your-project/instrumentation.js" switcher
export async function register() {
if (process.env.NEXT_RUNTIME === 'nodejs') {
await import('./instrumentation-node')

}

if (process.env.NEXT_RUNTIME === "edge') {
await import('./instrumentation-edge')

title: Third Party Libraries
description: Optimize the performance of third-party libraries in your
application with the ~@next/third-parties” package.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

**+* @next/third-parties ** is a library that provides a collection of components
and utilities that

improve the performance and developer experience of loading popular third-
party libraries in your

Next.js application.

> **Good to know**: *@next/third-parties’ is a new **experimental** library
that is still under

> active development. We're currently working on adding more third-party
integrations.

All third-party integrations provided by “@next/third-parties™ have been
optimized for performance
and ease of use.

Getting Started
To get started, you must install the ~@next/third-parties” library:

**“bash filename="Terminal"
npm install @next/third-parties

Google Third-Parties

All supported third-party libraries from Google can be imported from ~@next/
third-parties/google .

Google Tag Manager

The "GoogleTagManager®' component can be used to instantiate a [Google Tag
Manager] (https://developers.google.com/tag-platform/tag-manager) container
to your

page. By default, it fetches the original inline script after hydration occurs on
the page.

<AppOnly>

To load Google Tag Manager for all routes, include the component directly in
your root layout:

“ " tsx filename="app/layout.tsx" switcher
import { GoogleTagManager } from '@next/third-parties/google’

export default function RootLayout({
children,
et
children: React.ReactNode
NA
return (
<html lang="en">
<body>{children}</body>
<GoogleTagManager gtmld="GTM-XYZ" />
</html>

)

" jsx filename="app/layout.js" switcher
import { GoogleTagManager } from '@next/third-parties/google’

export default function RootLayout({ children }) {
return (
<html lang="en">
<body>{children}</body>
<GoogleTagManager gtmld="GTM-XYZ" />
</html>
)
}

</AppOnly>
<PagesOnly>

To load Google Tag Manager for all routes, include the component directly in
your custom "_app :

“jsx filename="pages/_app.js"

import { GoogleTagManager } from '@next/third-parties/google’

export default function MyApp({ Component, pageProps }) {
return (
<>
<Component {...pageProps} />
<GoogleTagManager gtmld="GTM-XYZ" />
<[>
)
}

</PagesOnly>

To load Google Tag Manager for a single route, include the component in your
page file:

<AppOnly>

" jsx filename="app/page.js"
import { GoogleTagManager } from '@next/third-parties/google’

export default function Page() {

return <GoogleTagManager gtmld="GTM-XYZ" />
}

</AppOnly>
<PagesOnly>

" jsx filename="pages/index.js"
import { GoogleTagManager } from '@next/third-parties/google’

export default function Page() {
return <GoogleTagManager gtmld="GTM-XYZ" />

AUENEN

</PagesOnly>
Sending Events

The "sendGTMEvent" function can be used to track user interactions on your
page by sending events

using the “datalLayer’ object. For this function to work, the
‘<GoogleTagManager /> component must be

included in either a parent layout, page, or component, or directly in the same
file.

<AppOnly>

*jsx filename="app/page.js"
'use client'

import { sendGTMEvent } from '@next/third-parties/google’

export function EventButton() {
return (
<div>
<button
onClick={() => sendGTMEvent({ event: 'buttonClicked’, value: 'xyz' })}
>
Send Event
</button>
</div>
)
}

</AppOnly>
<PagesOnly>

" jsx filename="pages/index.js"
import { sendGTMEvent } from '@next/third-parties/google’

export function EventButton() {
return (
<div>
<button
onClick={() => sendGTMEvent({ event: 'buttonClicked', value: 'xyz' })}
>
Send Event
</button>
</div>
)
}

</PagesOnly>

Refer to the [Tag Manager](https://developers.google.com/tag-platform/tag-
manager/datalayer)

documentation to learn about the different variables and events that can be
passed into the

function.

Options
Options to pass to the Google Tag Manager. For a full list of options, read the

[Google Tag Manager
docs](https://developers.google.com/tag-platform/tag-manager/datalayer).

| Name | Type | Description |
| =mmmmmmee- | == |

|

| “gtmld” | Required | Your GTM container id.

I

| "dataLayer® | Optional | Data layer array to instantiate the container with.

Defaults to an empty array. |

| “"dataLayerName" | Optional | Name of the data layer. Defaults to "datalLayer .
|

| “auth’ | Optional | Value of authentication parameter ('gtm_auth’) for
environment snippets. |

| “preview’ | Optional | Value of preview parameter (" gtm_preview") for
environment snippets. |

Google Maps Embed

The "GoogleMapsEmbed™ component can be used to add a [Google Maps
Embed](https://developers.google.com/maps/documentation/embed/
embedding-map) to your page. By

default, it uses the “loading " attribute to lazy-load the embed below the fold.

<AppOnly>

*Yjsx filename="app/page.js"
import { GoogleMapsEmbed } from '@next/third-parties/google’

export default function Page() {

return (
<GoogleMapsEmbed
apiKey="XYZ"

height={200}
width="100%"
mode="place"
q="Brooklyn+Bridge,New+York,NY"
/>
)
}

</AppOnly>
<PagesOnly>

" jsx filename="pages/index.js"
import { GoogleMapsEmbed } from '@next/third-parties/google’

export default function Page() {

return (
<GoogleMapsEmbed
apiKey="XYZ"

height={200}

width="100%"

mode="place"
q="Brooklyn+Bridge,New+York,NY"

/>

</PagesOnly>
Options

Options to pass to the Google Maps Embed. For a full list of options, read the
[Google Map Embed
docs](https://developers.google.com/maps/documentation/embed/embedding-
map).

| Name | Type | Description

|

| = | ==mmmee |

____________________ |

| “apiKey | Required | Your api key.

I

| “'mode’ | Required | [Map mode](https://developers.google.com/maps/
documentation/embed/embedding-map#choosing_map_modes) |

| “height” | Optional | Height of the embed. Defaults to "auto".
|

| “width® | Optional | Width of the embed. Defaults to "auto".
I

| “style’ | Optional | Pass styles to the iframe.

I

I

“allowfullscreen” | Optional | Property to allow certain map parts to go full
screen. |

| “loading” | Optional | Defaults to lazy. Consider changing if you know your
embed will be above the fold. |

| "q° | Optional | Defines map marker location. _This may be required
depending on the map mode_. |

| “center’ | Optional | Defines the center of the map view.

|

| "zoom" | Optional | Sets initial zoom level of the map.

I

| “maptype’ | Optional | Defines type of map tiles to load.

I

| “language’ | Optional | Defines the language to use for Ul elements and
for the display of labels on map tiles. |

| “region’ | Optional | Defines the appropriate borders and labels to

display, based on geo-political sensitivities. |
YouTube Embed
The "YouTubeEmbed' component can be used to load and display a YouTube

embed. This component loads
faster by using ['lite-youtube-embed '] (https://github.com/paulirish/lite-

youtube-embed) under the
hood.

<AppOnly>

“*jsx filename="app/page.js"
import { YouTubeEmbed } from '@next/third-parties/google’

export default function Page() {
return <YouTubeEmbed videoid="0gfYd705cRs" height={400}
params="controls=0" />

}
</AppOnly>

<PagesOnly>

" Yjsx filename="pages/index.js"
import { YouTubeEmbed } from '@next/third-parties/google’

export default function Page() {
return <YouTubeEmbed videoid="o0gfYd705cRs" height={400}
params="controls=0" />

}

</PagesOnly>

Options

| Name | Type | Description

‘videoid™ | Required | YouTube video id.

‘width® | Optional | Width of the video container. Defaults to "auto’
“height™ | Optional | Height of the video container. Defaults to "auto’
“playlabel” | Optional | A visually hidden label for the play button for

accessibility.

I
| “‘params’ | Optional | The video player params defined [here](https://

developers.google.com/youtube/player_parameters#Parameters).
 Params
are passed as a query param string.
 Eg:
‘params="controls=0&start=10&end=30"" |

| “style” | Optional | Used to apply styles to the video container.

title: Optimizations

nav_title: Optimizing

description: Optimize your Next.js application for best performance and user
experience.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

Next.js comes with a variety of built-in optimizations designed to improve your
application's speed and [Core Web Vitals](https://web.dev/vitals/). This guide
will cover the optimizations you can leverage to enhance your user experience.

Built-in Components

Built-in components abstract away the complexity of implementing common Ul
optimizations. These components are:

- **Images**: Built on the native "" element. The Image Component
optimizes images for performance by lazy loading and automatically resizing
images based on device size.

- **| ink**: Built on the native "<a>" tags. The Link Component prefetches
pages in the background, for faster and smoother page transitions.

- **Scripts**: Built on the native "<script>" tags. The Script Component gives
you control over loading and execution of third-party scripts.

Metadata

Metadata helps search engines understand your content better (which can
result in better SEQ), and allows you to customize how your content is
presented on social media, helping you create a more engaging and consistent
user experience across various platforms.

<AppOnly>

The Metadata API in Next.js allows you to modify the "<head>" element of a
page. You can configure metadata in two ways:

- **Config-based Metadata**: Export a [static 'metadata’ object](/docs/app/
api-reference/functions/generate-metadata#metadata-object) or a dynamic

['generateMetadata” function](/docs/app/api-reference/functions/generate-
metadata#generatemetadata-function) in a “layout.js” or "page.js’ file.

- **File-based Metadata**: Add static or dynamically generated special files to
route segments.

Additionally, you can create dynamic Open Graph Images using JSX and CSS
with [imageResponse](/docs/app/api-reference/functions/image-response)
constructor.

</AppOnly>
<PagesOnly>

The Head Component in Next.js allows you to modify the "<head>" of a page.
Learn more in the [Head Component](/docs/pages/api-reference/components/
head) documentation.

</PagesOnly>
Static Assets

Next.js “/public” folder can be used to serve static assets like images, fonts,
and other files. Files inside "/public’ can also be cached by CDN providers so
that they are delivered efficiently.

Analytics and Monitoring

For large applications, Next.js integrates with popular analytics and monitoring
tools to help you understand how your application is performing. Learn more in
the <PagesOnly>[Analytics](/docs/app/building-your-application/optimizing/
analytics), </PagesOnly> [OpenTelemetry](/docs/pages/building-your-
application/optimizing/open-telemetry)<PagesOnly>,</PagesOnly> and
[Instrumentation](/docs/pages/building-your-application/optimizing/
instrumentation) guides.

title: TypeScript
description: Next.js provides a TypeScript-first development experience for
building your React application.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped

in a component. */}

Next.js provides a TypeScript-first development experience for building your
React application.

It comes with built-in TypeScript support for automatically installing the
necessary packages and configuring the proper settings.

<AppOnly>
As well as a [TypeScript Plugin] (#typescript-plugin) for your editor.

> **& Watch:** Learn about the built-in TypeScript plugin = [YouTube (3
minutes)] (https://www.youtube.com/watch?v=pgMqgn9fKEf8)

</AppOnly>

New Projects

“create-next-app’ now ships with TypeScript by default.

" “bash filename="Terminal"

npx create-next-app@latest

Existing Projects

Add TypeScript to your project by renaming a file to ".ts" / ".tsx . Run "next
dev' and "next build® to automatically install the necessary dependencies and
add a “tsconfig.json’ file with the recommended config options.

If you already had a “jsconfig.json” file, copy the “paths’ compiler option from
the old “jsconfig.json’ into the new “tsconfig.json" file, and delete the old
‘jsconfig.json” file.

<AppOnly>

TypeScript Plugin

Next.js includes a custom TypeScript plugin and type checker, which VSCode
and other code editors can use for advanced type-checking and auto-
completion.

You can enable the plugin in VS Code by:

1. Opening the command palette (" Ctrl/& " + "Shift™ + "'P")
2. Searching for "TypeScript: Select TypeScript Version"

3. Selecting "Use Workspace Version"

<lmage
alt="TypeScript Command Palette"
srcLight="/docs/light/typescript-command-palette.png"
srcDark="/docs/dark/typescript-command-palette.png"

width="1600"
height="637"
/>

Now, when editing files, the custom plugin will be enabled. When running "next
build", the custom type checker will be used.

Plugin Features

The TypeScript plugin can help with:

- Warning if the invalid values for [segment config options](/docs/app/api-
reference/file-conventions/route-segment-config) are passed.

- Showing available options and in-context documentation.

- Ensuring the “use client” directive is used correctly.

- Ensuring client hooks (like "useState ') are only used in Client Components.
> **Good to know**: More features will be added in the future.

</AppOnly>

Minimum TypeScript Version

It is highly recommended to be on at least 'v4.5.2" of TypeScript to get syntax
features such as [type modifiers on import names](https://
devblogs.microsoft.com/typescript/announcing-typescript-4-5/#type-on-
import-names) and [performance improvements](https://
devblogs.microsoft.com/typescript/announcing-typescript-4-5/#real-path-
sync-native).

<AppOnly>

Statically Typed Links

Next.js can statically type links to prevent typos and other errors when using
“next/link ", improving type safety when navigating between pages.

To opt-into this feature, "experimental.typedRoutes™ need to be enabled and
the project needs to be using TypeScript.

**js filename="next.config.js"

[** @type {import('next').NextConfig} */
const nextConfig = {
experimental: {
typedRoutes: true,

}I
}

module.exports = nextConfig

Next.js will generate a link definition in ".next/types’ that contains information
about all existing routes in your application, which TypeScript can then use to
provide feedback in your editor about invalid links.

Currently, experimental support includes any string literal, including dynamic
segments. For non-literal strings, you currently need to manually cast the
“href™ with “as Route ":

T ltsx
import type { Route } from 'next’;
import Link from 'next/link’

/| No TypeScript errors if href is a valid route
<Link href="/about" />

<Link href="/blog/nextjs" [>

<Link href={"/blog/${slug}'} />

<Link href={('/blog' + slug) as Route} />

/| TypeScript errors if href is not a valid route
<Link href="/aboot" />

To accept “href’ in a custom component wrapping "next/link", use a generic:

T tsx
import type { Route } from 'next’
import Link from 'next/link’

function Card<T extends string>({ href }: { href: Route<T> | URL }) {
return (
<Link href={href}>
<div>My Card</div>
</Link>
)
}

> **How does it work?**

>

> When running "next dev' or "next build’, Next.js generates a hidden ".d.ts"
file inside ".next" that contains information about all existing routes in your
application (all valid routes as the “href’ type of "Link"). This ".d.ts" file is
included in “tsconfig.json” and the TypeScript compiler will check that ".d.ts"
and provide feedback in your editor about invalid links.

End-to-End Type Safety
Next.js 13 has **enhanced type safety** This includes:

1. **No serialization of data between fetching function and page**: You can
“fetch ™ directly in components, layouts, and pages on the server. This data
does not need to be serialized (converted to a string) to be passed to the
client side for consumption in React. Instead, since “app’ uses Server
Components by default, we can use values like "Date”, "Map ", "Set’, and more
without any extra steps. Previously, you needed to manually type the boundary
between server and client with Next.js-specific types.

2. **Streamlined data flow between components**: With the removal of "_app"
in favor of root layouts, it is now easier to visualize the data flow between
components and pages. Previously, data flowing between individual "pages’
and "_app’ were difficult to type and could introduce confusing bugs. With
[colocated data fetching](/docs/app/building-your-application/data-fetching/
fetching-caching-and-revalidating) in Next.js 13, this is no longer an issue.

[Data Fetching in Next.js](/docs/app/building-your-application/data-fetching/
fetching-caching-and-revalidating) now provides as close to end-to-end type
safety as possible without being prescriptive about your database or content

provider selection.

We're able to type the response data as you would expect with normal
TypeScript. For example:

* " tsx filename="app/page.tsx"
async function getData() {
const res = await fetch('https://api.example.com/...")
/| The return value is *not* serialized
/| You can return Date, Map, Set, etc.
return res.json()

}

export default async function Page() {
const name = await getData()

return '...

For _complete_ end-to-end type safety, this also requires your database or
content provider to support TypeScript. This could be through using an [ORM]
(https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping) or type-
safe query builder.

Async Server Component TypeScript Error

To use an “async’ Server Component with TypeScript, ensure you are using
TypeScript '5.1.3" or higher and ~@types/react” "18.2.8" or higher.

If you are using an older version of TypeScript, you may see a
“'Promise<Element>' is not a valid JSX element” type error. Updating to the
latest version of TypeScript and “@types/react” should resolve this issue.

Passing Data Between Server & Client Components

When passing data between a Server and Client Component through props, the
data is still serialized (converted to a string) for use in the browser. However, it
does not need a special type. It's typed the same as passing any other props
between components.

Further, there is less code to be serialized, as un-rendered data does not cross
between the server and client (it remains on the server). This is only now
possible through support for Server Components.

</AppOnly>
<PagesOnly>
Static Generation and Server-side Rendering

For [getStaticProps'](/docs/pages/api-reference/functions/get-static-props),
[getStaticPaths '](/docs/pages/api-reference/functions/get-static-paths), and
[‘getServerSideProps '] (/docs/pages/api-reference/functions/get-server-side-
props), you can use the "GetStaticProps’, "GetStaticPaths ", and
"GetServerSideProps ' types respectively:

“ " tsx filename="pages/blog/[slug].tsx"
import { GetStaticProps, GetStaticPaths, GetServerSideProps } from 'next'

export const getStaticProps = (async (context) => {

/] ...
}) satisfies GetStaticProps

export const getStaticPaths = (async () => {

/] ...
}) satisfies GetStaticPaths

export const getServerSideProps = (async (context) => {

/...

}) satisfies GetServerSideProps

> **Good to know:** “satisfies” was added to TypeScript in [4.9](https://
www.typescriptlang.org/docs/handbook/release-notes/typescript-4-9.html).
We recommend upgrading to the latest version of TypeScript.

APl Routes
The following is an example of how to use the built-in types for API routes:

s
import type { NextApiRequest, NextApiResponse } from 'next'

export default function handler(req: NextApiRequest, res: NextApiResponse) {
res.status(200).json({ name: 'John Doe' })

LUR RN

You can also type the response data:

“ts
import type { NextApiRequest, NextApiResponse } from 'next'

type Data ={
name: string

}

export default function handler(
req: NextApiRequest,
res: NextApiResponse<Data>

) {

res.status(200).json({ name: 'John Doe'})

AR RN

Custom "App’

If you have a [custom "App](/docs/pages/building-your-application/routing/
custom-app), you can use the built-in type "AppProps’ and change file name

to *./pages/_app.tsx” like so:

“ts
import type { AppProps } from 'next/app’

export default function MyApp({ Component, pageProps }: AppProps) {
return <Component {...pageProps} />

}
</PagesOnly>

Path aliases and baseUrl

Next.js automatically supports the “tsconfig.json™ ""paths"™ and ""baseUr|""
options.

<AppOnly>

You can learn more about this feature on the [Module Path aliases
documentation](/docs/app/building-your-application/configuring/absolute-
imports-and-module-aliases).

</AppOnly>
<PagesOnly>

You can learn more about this feature on the [Module Path aliases
documentation](/docs/pages/building-your-application/configuring/absolute-
imports-and-module-aliases).

</PagesOnly>
Type checking next.config.js

The "next.config.js" file must be a JavaScript file as it does not get parsed by
Babel or TypeScript, however you can add some type checking in your IDE
using JSDoc as below:

‘g
/| @ts-check

/**
* @type {import('next').NextConfig}
**/
const nextConfig = {
[* config options here */

}

module.exports = nextConfig

Incremental type checking

Since 'v10.2.1" Next.js supports [incremental type checking](https://
www.typescriptlang.org/tsconfig#incremental) when enabled in your
“tsconfig.json’, this can help speed up type checking in larger applications.

Ilgnoring TypeScript Errors

Next.js fails your **production build** (" next build*) when TypeScript errors are
present in your project.

If you'd like Next.js to dangerously produce production code even when your
application has errors, you can disable the built-in type checking step.

If disabled, be sure you are running type checks as part of your build or deploy
process, otherwise this can be very dangerous.

Open "next.config.js* and enable the “ignoreBuildErrors™ option in the
“typescript’ config:

* s filename="next.config.js"
module.exports = {
typescript: {
/[" WARN !
/| Dangerously allow production builds to successfully complete even if
/| your project has type errors.
/[" WARN !
ignoreBuildErrors: true,
h
}

Version Changes

| Version | Changes

| "v13.2.0" | Statically typed links are available in beta.

I
| "v12.0.0" | [SWC](/docs/architecture/nextjs-compiler) is now used by default

to compile TypeScript and TSX for faster builds. |
| "v10.2.17 | [Incremental type checking](https://www.typescriptlang.org/
tsconfig#incremental) support added when enabled in your “tsconfig.json". |

title: ESLint
description: Next.js provides an integrated ESLint experience by default. These
conformance rules help you use Next.js in an optimal way.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

Next.js provides an integrated [ESLint](https://eslint.org/) experience out of the
box. Add "next lint" as a script to "package.json:

“*"json filename="package.json"
{
"scripts": {
"lint": "next lint"
}
}

Then run "npm run lint” or “yarn lint:

**bash filename="Terminal"
yarn lint

If you don't already have ESLint configured in your application, you will be
guided through the installation and configuration process.

**“bash filename="Terminal"
yarn lint

> You'll see a prompt like this:

>

> ? How would you like to configure ESLint?
>

>) Strict (recommended)

> Base

> Cancel

One of the following three options can be selected:

- **Strict**: Includes Next.js' base ESLint configuration along with a stricter
[Core Web Vitals rule-set] (#core-web-vitals). This is the recommended
configuration for developers setting up ESLint for the first time.

" json filename=".eslintrc.json"

{

"extends": "next/core-web-vitals"

LUENRY

- **Base**: Includes Next.js' base ESLint configuration.

“json filename=".eslintrc.json"
{

"extends": "next"

AURNRY

- **Cancel**: Does not include any ESLint configuration. Only select this option
if you plan on setting up your own custom ESLint configuration.

If either of the two configuration options are selected, Next.js will automatically
install “eslint™ and “eslint-config-next™ as dependencies in your application and
create an ".eslintrc.json" file in the root of your project that includes your
selected configuration.

You can now run "next lint" every time you want to run ESLint to catch errors.
Once ESLint has been set up, it will also automatically run during every build
("next build ™). Errors will fail the build, while warnings will not.

<AppOnly>

> If you do not want ESLint to run during "next build ", refer to the
documentation for [Ignoring ESLint](/docs/app/api-reference/next-config-js/
eslint).

</AppOnly>

<PagesOnly>

> If you do not want ESLint to run during "next build", refer to the

documentation for [Ignoring ESLint](/docs/pages/api-reference/next-config-js/
eslint).

</PagesOnly>

We recommend using an appropriate [integration](https://eslint.org/docs/user-
guide/integrations#editors) to view warnings and errors directly in your code
editor during development.

ESLint Config

The default configuration (" eslint-config-next ") includes everything you need
to have an optimal out-of-the-box linting experience in Next.js. If you do not
have ESLint already configured in your application, we recommend using "next
lint" to set up ESLint along with this configuration.

> If you would like to use “eslint-config-next™ along with other ESLint
configurations, refer to the [Additional Configurations](#additional-
configurations) section to learn how to do so without causing any conflicts.

Recommended rule-sets from the following ESLint plugins are all used within
“eslint-config-next ":

- [eslint-plugin-react] (https://www.npmjs.com/package/eslint-plugin-react)

- [eslint-plugin-react-hooks "] (https://www.npmjs.com/package/eslint-plugin-
react-hooks)

- [eslint-plugin-next] (https://www.npmjs.com/package/@next/eslint-plugin-

next)

This will take precedence over the configuration from "next.config.js .
ESLint Plugin

Next.js provides an ESLint plugin, [eslint-plugin-next] (https://
www.npmjs.com/package/@next/eslint-plugin-next), already bundled within the
base configuration that makes it possible to catch common issues and
problems in a Next.js application. The full set of rules is as follows:

<Check size={18} /> Enabled in the recommended configuration

| | Rule
| Description

| <Check size={18} /> | [@next/next/google-font-display](/docs/messages/
google-font-display) | Enforce font-display

behavior with Google Fonts. |

| <Check size={18} /> | [@next/next/google-font-preconnect](/docs/messages/
google-font-preconnect) | Ensure “preconnect’ is
used with Google Fonts. |

| <Check size={18} /> | [@next/next/inline-script-id](/docs/messages/inline-
script-id) | Enforce “id" attribute on "next/
script’ components with inline content. |

| <Check size={18} /> | [@next/next/next-script-for-ga](/docs/messages/next-
script-for-ga) | Prefer "next/script’ component
when using the inline script for Google Analytics. |

| <Check size={18} /> | [@next/next/no-assign-module-variable](/docs/
messages/no-assign-module-variable) | Prevent
assignment to the "'module’ variable. |
| <Check size={18} /> | [@next/next/no-async-client-component](/docs/
messages/no-async-client-component) | Prevent client
components from being async functions. |

| <Check size={18} /> | [@next/next/no-before-interactive-script-outside-
document](/docs/messages/no-before-interactive-script-outside-document) |
Prevent usage of "next/script’'s "beforelnteractive’ strategy outside of “pages/
_document.js". |

| <Check size={18} /> | [@next/next/no-css-tags](/docs/messages/no-css-tags)
| Prevent manual stylesheet tags.

I

| <Check size={18} /> | [@next/next/no-document-import-in-page](/docs/
messages/no-document-import-in-page) | Prevent
importing "next/document’ outside of "pages/_document.js .

I

| <Check size={18} /> | [@next/next/no-duplicate-head](/docs/messages/no-
duplicate-head) | Prevent duplicate usage of
"<Head>" in "pages/_document.js . |

| <Check size={18} /> | [@next/next/no-head-element](/docs/messages/no-

head-element) | Prevent usage of "<head>"
element. |

| <Check size={18} /> | [@next/next/no-head-import-in-document](/docs/
messages/no-head-import-in-document) | Prevent

usage of "'next/head’ in "pages/_document.js .

I

| <Check size={18} /> | [@next/next/no-html-link-for-pages](/docs/messages/
no-html-link-for-pages) | Prevent usage of "<a>"
elements to navigate to internal Next.js pages. |

| <Check size={18} /> | [@next/next/no-img-element](/docs/messages/no-img-
element) | Prevent usage of ""
element due to slower LCP and higher bandwidth. |

| <Check size={18} /> | [@next/next/no-page-custom-font](/docs/messages/no-
page-custom-font) | Prevent page-only custom
fonts. |

| <Check size={18} /> | [@next/next/no-script-component-in-head](/docs/

messages/no-script-component-in-head) | Prevent usage
of "next/script’ in "next/head™ component. |

| <Check size={18} /> | [@next/next/no-styled-jsx-in-document](/docs/
messages/no-styled-jsx-in-document) | Prevent usage
of “styled-jsx’ in “pages/_document.js". |

| <Check size={18} /> | [@next/next/no-sync-scripts](/docs/messages/no-sync-
scripts) | Prevent synchronous scripts.

I

| <Check size={18} /> | [@next/next/no-title-in-document-head](/docs/
messages/no-title-in-document-head) | Prevent usage
of “<title>" with "Head"™ component from "next/document’.

|

| <Check size={18} /> | @next/next/no-typos

| Prevent common typos in [Next.js's data fetching functions](/docs/pages/
building-your-application/data-fetching) |

| <Check size={18} /> | [@next/next/no-unwanted-polyfillio] (/docs/messages/
no-unwanted-polyfillio) | Prevent duplicate polyfills
from Polyfill.io. |

If you already have ESLint configured in your application, we recommend
extending from this plugin directly instead of including “eslint-config-next"
unless a few conditions are met. Refer to the [Recommended Plugin Ruleset]
(#recommended-plugin-ruleset) to learn more.

Custom Settings

“rootDir’

If you're using “eslint-plugin-next” in a project where Next.js isn't installed in
your root directory (such as a monorepo), you can tell “eslint-plugin-next”
where to find your Next.js application using the "settings™ property in your

*.eslintrc:

" “json filename=".eslintrc.json"

{
"extends": "next",
"settings": {
"next": {
"rootDir": "packages/my-app/"
}
}
}

‘rootDir’ can be a path (relative or absolute), a glob (i.e. ""packages/*/" "), or
an array of paths and/or globs.

Linting Custom Directories and Files

By default, Next.js will run ESLint for all files in the “pages/’, “app/’,
‘components/’, ‘lib/’, and “src/” directories. However, you can specify which
directories using the “dirs” option in the “eslint’™ config in “next.config.js™ for
production builds:

“*js filename="next.config.js"
module.exports = {
eslint: {
dirs: ['pages’, 'utils'], // Only run ESLint on the 'pages' and 'utils' directories
during production builds (next build)
b
}

Similarly, the "--dir’ and "--file" flags can be used for "next lint" to lint specific
directories and files:

" “bash filename="Terminal"

next lint --dir pages --dir utils --file bar.js

Caching

<AppOnly>

To improve performance, information of files processed by ESLint are cached
by default. This is stored in ".next/cache’ or in your defined [build directory](/
docs/app/api-reference/next-config-js/distDir). If you include any ESLint rules
that depend on more than the contents of a single source file and need to
disable the cache, use the "--no-cache’ flag with "next lint".

</AppOnly>

<PagesOnly>

To improve performance, information of files processed by ESLint are cached
by default. This is stored in ".next/cache’ or in your defined [build directory](/
docs/pages/api-reference/next-config-js/distDir). If you include any ESLint
rules that depend on more than the contents of a single source file and need to
disable the cache, use the "--no-cache’ flag with "next lint".

</PagesOnly>

"““bash filename="Terminal"

next lint --no-cache

Disabling Rules
If you would like to modify or disable any rules provided by the supported
plugins (‘react’, ‘react-hooks’, "next’), you can directly change them using

the “rules” property in your ".eslintrc’:

“*“json filename=".eslintrc.json"

{
"extends": "next",
"rules": {
"react/no-unescaped-entities": "off",
"@next/next/no-page-custom-font": "off"
}
}

Core Web Vitals

The “next/core-web-vitals" rule set is enabled when "next lint" is run for the
first time and the **strict** option is selected.

" json filename=".eslintrc.json"

{

"extends": "next/core-web-vitals"

AR RN

‘next/core-web-vitals® updates "eslint-plugin-next" to error on a number of
rules that are warnings by default if they affect [Core Web Vitals](https://
web.dev/vitals/).

> The "next/core-web-vitals™ entry point is automatically included for new
applications built with [Create Next App](/docs/app/api-reference/create-next-

app).
Usage With Other Tools
Prettier

ESLint also contains code formatting rules, which can conflict with your existing
[Prettier] (https://prettier.iof) setup. We recommend including [eslint-config-
prettier] (https://github.com/prettier/eslint-config-prettier) in your ESLint config
to make ESLint and Prettier work together.

First, install the dependency:

" “bash filename="Terminal"
npm install --save-dev eslint-config-prettier

yarn add --dev eslint-config-prettier
pnpm add --save-dev eslint-config-prettier

bun add --dev eslint-config-prettier

Then, add “prettier” to your existing ESLint config:

" json filename=".eslintrc.json"

{

"extends": ["next", "prettier"]

LUENRY

lint-staged

If you would like to use “next lint™ with [lint-staged](https://github.com/okonet/
lint-staged) to run the linter on staged git files, you'll have to add the following
to the ".lintstagedrc.js" file in the root of your project in order to specify usage
of the "--file" flag.

“ s filename=".lintstagedrc.js"
const path = require('path')

const buildEslintCommand = (filenames) =>
“next lint --fix --file ${filenames
.map((f) => path.relative(process.cwd(), f))
Join(' --file ")}’

module.exports = {
"*{js,jsx,ts,tsx}": [buildEslintCommand],
}
Migrating Existing Config
Recommended Plugin Ruleset

If you already have ESLint configured in your application and any of the
following conditions are true:

- You have one or more of the following plugins already installed (either
separately or through a different config such as "airbnb™ or ‘react-app’):

- ‘react’

- ‘react-hooks”

- Yjsx-ally’

- “import”’
- You've defined specific "parserOptions” that are different from how Babel is
configured within Next.js (this is not recommended unless you have
[customized your Babel configuration](/docs/pages/building-your-application/
configuring/babel))
- You have “eslint-plugin-import" installed with Node.js and/or TypeScript
[resolvers](https://github.com/benmosher/eslint-plugin-import#resolvers)
defined to handle imports

Then we recommend either removing these settings if you prefer how these
properties have been configured within [eslint-config-next] (https://
github.com/vercel/next.js/blob/canary/packages/eslint-config-next/index.js) or
extending directly from the Next.js ESLint plugin instead:

s
module.exports = {
extends: [

/...

'plugin:@next/next/recommended’,

]I
-

The plugin can be installed normally in your project without needing to run
“next lint":

" “bash filename="Terminal"
npm install --save-dev @next/eslint-plugin-next

yarn add --dev @next/eslint-plugin-next

pnpm add --save-dev @next/eslint-plugin-next

bun add --dev @next/eslint-plugin-next

This eliminates the risk of collisions or errors that can occur due to importing
the same plugin or parser across multiple configurations.

Additional Configurations

If you already use a separate ESLint configuration and want to include “eslint-
config-next’, ensure that it is extended last after other configurations. For
example:

" json filename=".eslintrc.json"
{

"extends": ["eslint:recommended", "next"]

LUENRY

The "next’ configuration already handles setting default values for the
‘parser’, “plugins’ and “settings” properties. There is no need to manually re-
declare any of these properties unless you need a different configuration for
your use case.

If you include any other shareable configurations, **you will need to make
sure that these properties are not overwritten or modified**. Otherwise, we
recommend removing any configurations that share behavior with the "next’
configuration or extending directly from the Next.js ESLint plugin as mentioned
above.

title: Environment Variables
description: Learn to add and access environment variables in your Next.js
application.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

<details>
<summary>Examples</summary>

- [Environment Variables](https://github.com/vercel/next.js/tree/canary/
examples/environment-variables)

</details>

Next.js comes with built-in support for environment variables, which allows you
to do the following:

- [Use ".env.local’ to load environment variables](#loading-environment-
variables)
- [Bundle environment variables for the browser by prefixing with

"NEXT_PUBLIC_] (#bundling-environment-variables-for-the-browser)
Loading Environment Variables

Next.js has built-in support for loading environment variables from ".env.local’
into “process.env .

“txt filename=".env.local"
DB_HOST=localhost
DB_USER=myuser
DB_PASS=mypassword

<PagesOnly>

This loads “process.env.DB_HOST ", "process.env.DB_USER", and
‘process.env.DB_PASS" into the Node.js environment automatically allowing
you to use them in [Next.js data fetching methods](/docs/pages/building-your-
application/data-fetching) and [API routes](/docs/pages/building-your-
application/routing/api-routes).

For example, using [getStaticProps "](/docs/pages/building-your-application/
data-fetching/get-static-props):

" js filename="pages/index.js"
export async function getStaticProps|() {
const db = await myDB.connect({
host: process.env.DB_HOST,
username: process.env.DB_USER,
password: process.env.DB_PASS,

)
/...
-

</PagesOnly>
<AppOnly>

> **Note**: Next.js also supports multiline variables inside of your ".env*" files:
>

> " “bash

> # .env.local

>

> # you can write with line breaks

> PRIVATE_KEY="----- BEGIN RSA PRIVATE KEY-----

> ...

> KhONV...

> ...
D END DSA PRIVATE KEY----- "

>

> # or with "\n" inside double quotes

> PRIVATE_KEY="----- BEGIN RSA PRIVATE KEY----- \nKhONV..\n----- END DSA
PRIVATE KEY----- \n"

>

> **Note**: If you are using a "/src’ folder, please note that Next.js will load
the .env files **only** from the parent folder and **not** from the “/src" folder.
> This loads “process.env.DB_HOST ", "process.env.DB_USER", and
“process.env.DB_PASS" into the Node.js environment automatically allowing
you to use them in [Route Handlers](/docs/app/building-your-application/
routing/route-handlers).

For example:

" js filename="app/api/route.js"
export async function GET() {
const db = await myDB.connect({
host: process.env.DB_HOST,
username: process.env.DB_USER,
password: process.env.DB_PASS,
1
/...
}

</AppOnly>

Referencing Other Variables

Next.js will automatically expand variables that use "$" to reference other
variables e.g. "$VARIABLE" inside of your ".env*" files. This allows you to
reference other secrets. For example:

" txt filename=".env"

TWITTER_USER=nextjs
TWITTER_URL=https://twitter.com/$TWITTER_USER

In the above example, "process.env.TWITTER_URL ™ would be set to "https://
twitter.com/nextjs".

> **Good to know**: If you need to use variable with a *$" in the actual value,
it needs to be escaped e.g. "\$".

Bundling Environment Variables for the Browser

Non-"NEXT_PUBLIC_" environment variables are only available in the Node.js
environment, meaning they aren't accessible to the browser (the client runs in a
different _environment.).

In order to make the value of an environment variable accessible in the browser,
Next.js can "inline" a value, at build time, into the js bundle that is delivered to
the client, replacing all references to “process.env.[variable] " with a hard-
coded value. To tell it to do this, you just have to prefix the variable with
"NEXT_PUBLIC_". For example:

" txt filename="Terminal"
NEXT_PUBLIC_ANALYTICS_ID=abcdefghijk

This will tell Next.js to replace all references to
‘process.env.NEXT_PUBLIC_ANALYTICS_ID in the Node.js environment with
the value from the environment in which you run "next build ", allowing you to
use it anywhere in your code. It will be inlined into any JavaScript sent to the
browser.

> **Note**: After being built, your app will no longer respond to changes to
these environment variables. For instance, if you use a Heroku pipeline to
promote slugs built in one environment to another environment, or if you build
and deploy a single Docker image to multiple environments, all
"NEXT_PUBLIC_" variables will be frozen with the value evaluated at build time,
so these values need to be set appropriately when the project is built. If you
need access to runtime environment values, you'll have to setup your own API
to provide them to the client (either on demand or during initialization).

" js filename="pages/index.js"
import setupAnalyticsService from '../lib/my-analytics-service'

/| 'NEXT_PUBLIC_ANALYTICS_ID' can be used here as it's prefixed by
'NEXT_PUBLIC_".

/] 1t will be transformed at build time to "setupAnalyticsService('abcdefghijk') *.
setupAnalyticsService(process.env.NEXT_PUBLIC_ANALYTICS_ID)

function HomePage() {
return <h1>Hello World</h1>

}

export default HomePage

Note that dynamic lookups will _not_ be inlined, such as:

S
/| This will NOT be inlined, because it uses a variable
const varName = 'NEXT_PUBLIC_ANALYTICS_ID'
setupAnalyticsService(process.env[varName])

// This will NOT be inlined, because it uses a variable
const env = process.env
setupAnalyticsService(env.NEXT_PUBLIC_ANALYTICS_ID)

Runtime Environment Variables
Next.js can support both build time and runtime environment variables.

By default, environment variables are only available on the server. To
expose an environment variable to the browser, it must be prefixed with
"NEXT_PUBLIC_". However, these public environment variables will be inlined
into the JavaScript bundle during "next build".

To read runtime environment variables, we recommend using
“getServerSideProps " or [incrementally adopting the App Router](/docs/app/
building-your-application/upgrading/app-router-migration). With the App
Router, we can safely read environment variables on the server during dynamic
rendering. This allows you to use a singular Docker image that can be promoted
through multiple environments with different values.

"jsx
import { unstable_noStore as noStore } from 'next/cache'

export default function Component() {
noStore()
/| cookies(), headers(), and other dynamic functions
/] will also opt into dynamic rendering, making
/| this env variable is evaluated at runtime
const value = process.env.MY_VALUE

Il -

Good to know:

- You can run code on server startup using the [register” function](/docs/app/
building-your-application/optimizing/instrumentation).
- We do not recommend using the [runtimeConfig](/docs/pages/api-reference/

next-config-js/runtime-configuration) option, as this does not work with the
standalone output mode. Instead, we recommend [incrementally adopting](/
docs/app/building-your-application/upgrading/app-router-migration) the App
Router.

Default Environment Variables

In general only one ".env.local” file is needed. However, sometimes you might
want to add some defaults for the "development’ ("next dev’) or “production’
("next start’) environment.

Next.js allows you to set defaults in “.env’ (all environments),
“.env.development’ (development environment), and ".env.production’
(production environment).

“.env.local’ always overrides the defaults set.

> **Good to know**: “.env’, ".env.development’, and ".env.production’ files
should be included in your repository as they define defaults. ***.env*.local’
should be added to ".gitignore **, as those files are intended to be ignored.
“.env.local’ is where secrets can be stored.

Environment Variables on Vercel

When deploying your Next.js application to [Vercel](https://vercel.com),
Environment Variables can be configured [in the Project Settings](https://
vercel.com/docs/concepts/projects/environment-variables?utm_source=next-
site&utm_medium=docs&utm_campaign=next-website).

All types of Environment Variables should be configured there. Even
Environment Variables used in Development — which can be [downloaded onto
your local device] (https://vercel.com/docs/concepts/projects/environment-
variables#development-environment-variables?utm_source=next-
site&utm_medium=docs&utm_campaign=next-website) afterwards.

If you've configured [Development Environment Variables] (https://vercel.com/
docs/concepts/projects/environment-variables#development-environment-
variables?utm_source=next-site&utm_medium=docs&utm_campaign=next-
website) you can pull them into a ".env.local” for usage on your local machine
using the following command:

" “bash filename="Terminal"
vercel env pull .env.local

Test Environment Variables

Apart from “development’ and “production’ environments, there is a 3rd
option available: “test". In the same way you can set defaults for development
or production environments, you can do the same with a ".env.test" file for the
“testing” environment (though this one is not as common as the previous two).
Next.js will not load environment variables from "“.env.development” or
“.env.production’ in the "testing™ environment.

This one is useful when running tests with tools like “jest® or "cypress™ where
you need to set specific environment vars only for testing purposes. Test
default values will be loaded if "NODE_ENV " is set to “test’, though you usually
don't need to do this manually as testing tools will address it for you.

There is a small difference between “test’™ environment, and both
“development” and “production” that you need to bear in mind: ".env.local’
won't be loaded, as you expect tests to produce the same results for everyone.
This way every test execution will use the same env defaults across different
executions by ignoring your “.env.local’ (which is intended to override the
default set).

> **Good to know**: similar to Default Environment Variables, ".env.test" file
should be included in your repository, but ".env.test.local” shouldn't, as
“.env*local” are intended to be ignored through ".gitignore".

While running unit tests you can make sure to load your environment variables
the same way Next.js does by leveraging the "loadEnvConfig" function from the
‘@next/env’ package.

s
/| The below can be used in a Jest global setup file or similar for your testing
set-up

import { loadEnvConfig } from '@next/env'

export default async () => {
const projectDir = process.cwd()
loadEnvConfig(projectDir)

EUR RN

Environment Variable Load Order

Environment variables are looked up in the following places, in order, stopping
once the variable is found.

1. "process.env’
1. ".env.$(NODE_ENV).local’
1. ".env.local” (Not checked when "NODE_ENV " is "test'.)

1. ".env.$(NODE_ENV)"®
1. “.env’

For example, if ‘'NODE_ENV" is "development’ and you define a variable in
both ".env.development.local’ and ".env’, the value in ".env.development.local’
will be used.

> **Good to know**: The allowed values for "NODE_ENV " are “production”,
“development” and ‘test .

Good to know

- If you are using a [/src’ directory](/docs/app/building-your-application/
configuring/src-directory), “.env*" files should remain in the root of your
project.

- If the environment variable "NODE_ENV" is unassigned, Next.js automatically
assigns ‘development’ when running the “next dev' command, or “production’
for all other commands.

Version History
| Version | Changes |

| 'v9.4.0" | Support ".env' and "NEXT_PUBLIC_" introduced. |

title: Absolute Imports and Module Path Aliases
description: Configure module path aliases that allow you to remap certain
import paths.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

<details>
<summary>Examples</summary>

- [Absolute Imports and Aliases] (https://github.com/vercel/next.js/tree/canary/
examples/with-absolute-imports)

</details>

Next.js has in-built support for the ""paths"" and ""baseUrl"" options of
“tsconfig.json’ and “jsconfig.json" files.

These options allow you to alias project directories to absolute paths, making it
easier to import modules. For example:

T ltsx
/| before
import { Button } from '../../../[components/button’

/| after
import { Button } from '@/components/button’

> **Good to know**: "create-next-app "’ will prompt to configure these options
for you.

Absolute Imports

The “baseUrl" configuration option allows you to import directly from the root
of the project.

An example of this configuration:

" “json filename="tsconfig.json or jsconfig.json"
{
"compilerOptions": {
"baseUr|": "."
}
}

" tsx filename="components/button.tsx" switcher
export default function Button() {
return <button>Click me</button>

AUENRN

" jsx filename="components/button.js" switcher
export default function Button() {
return <button>Click me</button>

AUENEN

* " tsx filename="app/page.tsx" switcher
import Button from 'components/button’

export default function HomePage() {
return (

<>
<h1>Hello World</h1>
<Button />
<[>
)
}

*jsx filename="app/page.js" switcher
import Button from 'components/button’

export default function HomePage() {
return (
<>
<h1>Hello World</h1>
<Button />
<[>
)
}

Module Aliases

In addition to configuring the "baseUrl" path, you can use the "paths"" option
to "alias" module paths.

For example, the following configuration maps “~@/components/*" to
‘components/*:

" json filename="tsconfig.json or jsconfig.json"

{
"compilerOptions": {
"baseUr|": ".",
"paths": {
"@/components/*": ["components/*"]
}
}
}

*tsx filename="components/button.tsx" switcher
export default function Button() {
return <button>Click me</button>

AUENEN

**Yjsx filename="components/button.js" switcher

export default function Button() {
return <button>Click me</button>

EUR RN

* " tsx filename="app/page.tsx" switcher
import Button from '@/components/button’

export default function HomePage() {
return (
<>
<h1>Hello World</h1>
<Button />
<[>
)
}

" jsx filename="app/page.js" switcher
import Button from '@/components/button’

export default function HomePage() {
return (
<>
<h1>Hello World</h1>
<Button />
<[>
)
}

Each of the ""paths"" are relative to the "baseUrl" location. For example:

*json
/| tsconfig.json or jsconfig.json
{
"compilerOptions": {
"baseUrl": "src/",
"paths": {
"@/styles/*": ["styles/*"],
"@/components/*": ["components/*"]
}
}
}

“ljsx

/| pages/index.js

import Button from '@/components/button’
import '@/styles/styles.css'

import Helper from 'utils/helper’

export default function HomePage() {
return (
<Helper>
<h1>Hello World</h1>
<Button />
</Helper>

title: Markdown and MDX
nav_title: MDX
description: Learn how to configure MDX to write JSX in your markdown files.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

[Markdown](https://daringfireball.net/projects/markdown/syntax) is a
lightweight markup language used to format text. It allows you to write using
plain text syntax and convert it to structurally valid HTML. It's commonly used
for writing content on websites and blogs.

You write...

“'md
| **love** using [Next.js](https://nextjs.org/)
Output:

T html
<p>| love using Next.js</

P>

[MDX](https://mdxjs.com/) is a superset of markdown that lets you write [JSX]
(https:/[react.dev/learn/writing-markup-with-jsx) directly in your markdown
files. It is a powerful way to add dynamic interactivity and embed React

components within your content.

Next.js can support both local MDX content inside your application, as well as
remote MDX files fetched dynamically on the server. The Next.js plugin handles
transforming markdown and React components into HTML, including support
for usage in Server Components (the default in App Router).

@next/mdx’

The “@next/mdx" package is used to configure Next.js so it can process
markdown and MDX. **It sources data from local files**, allowing you to
create pages with a “.mdx" extension, directly in your “/pages” or ‘[app’
directory.

Let's walk through how to configure and use MDX with Next.js.
Getting Started
Install packages needed to render MDX:

" “bash filename="Terminal"
npm install @next/mdx @mdx-js/loader @mdx-js/react @types/mdx

<AppOnly>

Create a "'mdx-components.tsx” file at the root of your application (the parent
folder of “app/ or “src/’):

> **Good to know**: "'mdx-components.tsx " is required to use MDX with App
Router and will not work without it.

“ " tsx filename="mdx-components.tsx" switcher
import type { MDXComponents } from 'mdx/types'

export function useMDXComponents(components: MDXComponents):
MDXComponents {
return {
...components,

)
-

" js filename="mdx-components.js" switcher
export function useMDXComponents(components) {
return {
...components,

</AppOnly>

Update the "next.config.js" file at your project's root to configure it to use
MDX:

“*js filename="next.config.js"
const withMDX = require('@next/mdx')()

[** @type {import('next').NextConfig} */

const nextConfig = {
/| Configure “pageExtensions’ to include MDX files
pageExtensions: ['js', 'jsx', 'mdx", 'ts', 'tsx'],
/| Optionally, add any other Next.js config below

}

module.exports = withMDX (nextConfig)

<AppOnly>

Then, create a new MDX page within the “/app " directory:

T ltxt
your-project
——app

| L—— my-mdx-page

| L page.mdx

L— package.json
</AppOnly>

<PagesOnly>

Then, create a new MDX page within the “/pages’ directory:

" txt
your-project
—— pages

| L—— my-mdx-page.mdx
L— package.json

</PagesOnly>

Now you can use markdown and import React components directly inside your
MDX page:

" mdx
import { MyComponent } from 'my-components'

Welcome to my MDX page!

This is some **bold** and _italics_ text.
This is a list in markdown:

- One

- Two

- Three

Checkout my React component:

<MyComponent />

Navigating to the "/my-mdx-page " route should display your rendered MDX.
Remote MDX

If your markdown or MDX files or content lives _somewhere else_, you can fetch
it dynamically on the server. This is useful for content stored in a separate local
folder, CMS, database, or anywhere else.

There are two popular community packages for fetching MDX content:

- ['next-mdx-remote "] (https://github.com/hashicorp/next-mdx-remote#react-
server-components-rsc--nextjs-app-directory-support)

- [contentlayer] (https://www.contentlayer.dev/)

> **Good to know**: Please proceed with caution. MDX compiles to JavaScript
and is executed on the server. You should only fetch MDX content from a
trusted source, otherwise this can lead to remote code execution (RCE).

The following example uses "next-mdx-remote :

<AppOnly>

“ " tsx filename="app/my-mdx-page-remote/page.tsx" switcher

import { MDXRemote } from 'next-mdx-remote/rsc'

export default async function RemoteMdxPage() {
/| MDX text - can be from a local file, database, CMS, fetch, anywhere...
const res = await fetch('https://...")
const markdown = await res.text()
return <MDXRemote source={markdown} />

LUENRY

*jsx filename="app/my-mdx-page-remote/page.js" switcher
import { MDXRemote } from 'next-mdx-remote/rsc'

export default async function RemoteMdxPage() {
/| MDX text - can be from a local file, database, CMS, fetch, anywhere...
const res = await fetch('https://...")
const markdown = await res.text()
return <MDXRemote source={markdown} />

EUE RN

</AppOnly>
<PagesOnly>

" tsx filename="pages/my-mdx-page-remote.tsx" switcher
import { serialize } from 'next-mdx-remote/serialize'
import { MDXRemote, MDXRemoteSerializeResult } from 'next-mdx-remote’

interface Props {
mdxSource: MDXRemoteSerializeResult

}

export default function RemoteMdxPage({ mdxSource }: Props) {
return <MDXRemote {...mdxSource} />

}

export async function getStaticProps|() {
/| MDX text - can be from a local file, database, CMS, fetch, anywhere...
const res = await fetch('https:...")
const mdxText = await res.text()
const mdxSource = await serialize(mdxText)
return { props: { mdxSource } }

“"jsx filename="pages/my-mdx-page-remote.js" switcher

import { serialize } from 'next-mdx-remote/serialize'
import { MDXRemote } from 'next-mdx-remote'

export default function RemoteMdxPage({ mdxSource }) {
return <MDXRemote {...mdxSource} />

}

export async function getStaticProps() {
/| MDX text - can be from a local file, database, CMS, fetch, anywhere...
const res = await fetch('https:...")
const mdxText = await res.text()
const mdxSource = await serialize(mdxText)
return { props: { mdxSource } }

</PagesOnly>

Navigating to the "/my-mdx-page-remote " route should display your rendered
MDX.

Layouts
<AppOnly>

To share a layout amongst MDX pages, you can use the [built-in layouts
support](/docs/app/building-your-application/routing/pages-and-
layouts#layouts) with the App Router.

T tsx filename="app/my-mdx-page/layout.tsx" switcher

export default function MdxLayout({ children }: { children: React.ReactNode }) {
/| Create any shared layout or styles here
return <div style={{ color: 'blue' }}>{children}</div>

LURNRY

“jsx filename="app/my-mdx-page/layout.js" switcher
export default function MdxLayout({ children }) {

/| Create any shared layout or styles here

return <div style={{ color: 'blue' }}>{children}</div>

AUR RN

</AppOnly>

<PagesOnly>

To share a layout around MDX pages, create a layout component:

* " tsx filename="components/mdx-layout.tsx" switcher

export default function MdxLayout({ children }: { children: React.ReactNode }) {
/| Create any shared layout or styles here
return <div style={{ color: 'blue' }}>{children}</div>

LR RN

*Yjsx filename="components/mdx-layout.js" switcher
export default function MdxLayout({ children }) {

/| Create any shared layout or styles here

return <div style={{ color: 'blue' }}>{children}</div>

AUENEN

Then, import the layout component into the MDX page, wrap the MDX content
in the layout, and export it:

" mdx
import MdxLayout from '../components/mdx-layout’

Welcome to my MDX page!

export default function MDXPage({ children }) {
return <MdxLayout>{children}</MdxLayout>;

</PagesOnly>
Remark and Rehype Plugins

You can optionally provide ‘remark™ and ‘rehype’ plugins to transform the
MDX content.

For example, you can use ‘remark-gfm" to support GitHub Flavored Markdown.

Since the ‘remark’ and ‘rehype’ ecosystem is ESM only, you'll need to use
“next.config.mjs’ as the configuration file.

* s filename="next.config.mjs"
import remarkGfm from 'remark-gfm’
import createMDX from '@next/mdx'

[** @type {import('next').NextConfig} */

const nextConfig = {
/| Configure “pageExtensions ™ to include MDX files
pageExtensions: ['js', 'jsx', 'mdx', 'ts', 'tsx'],
/| Optionally, add any other Next.js config below

}

const withMDX = createMDX({
/| Add markdown plugins here, as desired
options: {
remarkPlugins: [remarkGfm],
rehypePlugins: [],
|3
)

/| Merge MDX config with Next.js config
export default withMDX(nextConfig)

Frontmatter

Frontmatter is a YAML like key/value pairing that can be used to store data
about a page. "@next/mdx " does **not** support frontmatter by default,
though there are many solutions for adding frontmatter to your MDX content,
such as:

- [remark-frontmatter] (https://github.com/remarkjs/remark-frontmatter)
- [gray-matter](https://github.com/jonschlinkert/gray-matter).

To access page metadata with “@next/mdx”, you can export a metadata object
from within the ".mdx" file:

" mdx

export const metadata = {
author: 'John Doe',

}

My MDX page

Custom Elements

One of the pleasant aspects of using markdown, is that it maps to native
"HTML " elements, making writing fast, and intuitive:

“*md

This is a list in markdown:

- One
- Two
- Three

The above generates the following "HTML ":

“ T html
<p>This is a list in markdown:</p>

One
Two
Three

When you want to style your own elements for a custom feel to your website or
application, you can pass in shortcodes. These are your own custom
components that map to "HTML ™ elements.

<AppOnly>

To do this, open the "mdx-components.tsx” file at the root of your application
and add custom elements:

</AppOnly>
<PagesOnly>

To do this, create a "'mdx-components.tsx" file at the root of your application
(the parent folder of “pages/” or “src/’) and add custom elements:

</PagesOnly>

“ " tsx filename="mdx-components.tsx" switcher
import type { MDXComponents } from 'mdx/types'
import Image from 'next/image'

/| This file allows you to provide custom React components
/| to be used in MDX files. You can import and use any

/| React component you want, including inline styles,

/| components from other libraries, and more.

export function useMDXComponents(components: MDXComponents):

MDXComponents {
return {
/| Allows customizing built-in components, e.g. to add styling.
h1: ({ children }) => <h1 style={{ fontSize: "100px' }}>{children}</h1>,
img: (props) => (
<lmage
sizes="100vw"
style={{ width: '"100%"', height: 'auto' }}
{...props}
[>
),
...components,
}
}

" js filename="mdx-components.js" switcher
import Image from 'next/image’

/| This file allows you to provide custom React components
/| to be used in MDX files. You can import and use any

/| React component you want, including inline styles,

/| components from other libraries, and more.

export function useMDXComponents(components) {
return {
/| Allows customizing built-in components, e.g. to add styling.
h1: ({ children }) => <h1 style={{ fontSize: '100px’' }}>{children}</h1>,
img: (props) => (
<lmage
sizes="100vw"
style={{ width: '"100%"', height: 'auto' }}
{...props}
[>
),
...components,
}
}

Deep Dive: How do you transform markdown into HTML?

React does not natively understand markdown. The markdown plaintext needs
to first be transformed into HTML. This can be accomplished with ‘remark” and
‘rehype’.

‘remark’ is an ecosystem of tools around markdown. ‘rehype is the same, but

for HTML. For example, the following code snippet transforms markdown into
HTML:

js
import { unified } from 'unified'
import remarkParse from 'remark-parse'
import remarkRehype from 'remark-rehype'
import rehypeSanitize from 'rehype-sanitize'
import rehypeStringify from 'rehype-stringify'

main()

async function main() {
const file = await unified()
.use(remarkParse) [/ Convert into markdown AST
.use(remarkRehype) /[Transform to HTML AST
.use(rehypeSanitize) // Sanitize HTML input
.use(rehypeStringify) // Convert AST into serialized HTML
.process('Hello, Next.js!")

console.log(String(file)) // <p>Hello, Next.js!</p>
}

The ‘remark™ and “rehype’ ecosystem contains plugins for [syntax
highlighting] (https://github.com/atomiks/rehype-pretty-code), [linking
headings](https://github.com/rehypejs/rehype-autolink-headings), [generating
a table of contents](https://github.com/remarkjs/remark-toc), and more.

When using “@next/mdx" as shown above, you **do not** need to use
‘remark” or ‘rehype’ directly, as it is handled for you. We're describing it here
for a deeper understanding of what the “@next/mdx " package is doing
underneath.

Using the Rust-based MDX compiler (Experimental)

Next.js supports a new MDX compiler written in Rust. This compiler is still
experimental and is not recommended for production use. To use the new
compiler, you need to configure "next.config.js’ when you pass it to
"withMDX :

**js filename="next.config.js"
module.exports = withMDX({
experimental: {
mdxRs: true,

}I
}

Helpful Links
- [MDX] (https://mdxjs.com)

‘@next/mdx] (https://www.npmjs.com/package/@next/mdx)
remark] (https://github.com/remarkjs/remark)

rehype] (https://github.com/rehypejs/rehype)

— — ——

title: src Directory
description: Save pages under the “src’ directory as an alternative to the root
‘pages directory.
related:
links:
- app/building-your-application/routing/colocation

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

As an alternative to having the special Next.js "app’ or "pages’ directories in
the root of your project, Next.js also supports the common pattern of placing
application code under the “src” directory.

This separates application code from project configuration files which mostly
live in the root of a project, which is preferred by some individuals and teams.

To use the “src’ directory, move the “app’ Router folder or “pages’ Router
folder to “src/app’ or “src/pages’ respectively.

<lmage
alt="An example folder structure with the “src" directory"
srcLight="/docs/light/project-organization-src-directory.png"
srcDark="/docs/dark/project-organization-src-directory.png"
width="1600"
height="687"

/>

> **Good to know**

>

> - The “/public” directory should remain in the root of your project.

> - Config files like “package.json’, "next.config.js’ and "tsconfig.json’ should
remain in the root of your project.

> - ".envX* files should remain in the root of your project.

> - “srcfapp’ or ‘src/pages’ will be ignored if "app” or ‘pages’ are present in
the root directory.

> - If you're using “src’, you'll probably also move other application folders
such as “/components” or /lib".

> - If you're using Middleware, ensure it is placed inside the “src’ directory.

> - If you're using Tailwind CSS, you'll need to add the “/src” prefix to the
“tailwind.config.js" file in the [content section](https://tailwindcss.com/docs/
content-configuration).

title: Draft Mode
description: Next.js has draft mode to toggle between static and dynamic
pages. You can learn how it works with App Router here.

Static rendering is useful when your pages fetch data from a headless CMS.
However, it's not ideal when you're writing a draft on your headless CMS and
want to view the draft immediately on your page. You'd want Next.js to render
these pages at **request time** instead of build time and fetch the draft
content instead of the published content. You'd want Next.js to switch to
[dynamic rendering](/docs/app/building-your-application/rendering/server-
components#dynamic-rendering) only for this specific case.

Next.js has a feature called **Draft Mode** which solves this problem. Here
are instructions on how to use it.

Step 1: Create and access the Route Handler

First, create a [Route Handler](/docs/app/building-your-application/routing/
route-handlers). It can have any name - e.g. "app/api/draft/route.ts”

Then, import “draftMode ™ from "next/headers” and call the “enable() " method.

" ts filename="app/api/draft/route.ts" switcher
/| route handler enabling draft mode
import { draftMode } from 'next/headers'

export async function GET(request: Request) {
draftMode().enable()
return new Response('Draft mode is enabled")

LURNRY

“js filename="app/api/draft/route.js" switcher
/| route handler enabling draft mode
import { draftMode } from 'next/headers'

export async function GET(request) {
draftMode().enable()
return new Response('Draft mode is enabled")

AUR RN

This will set a **cookie** to enable draft mode. Subsequent requests
containing this cookie will trigger **Draft Mode** changing the behavior for
statically generated pages (more on this later).

You can test this manually by visiting “/api/draft” and looking at your browser’s
developer tools. Notice the "Set-Cookie ™ response header with a cookie named
*__prerender_bypass”.

Securely accessing it from your Headless CMS

In practice, you'd want to call this Route Handler _securely_from your headless
CMS. The specific steps will vary depending on which headless CMS you're
using, but here are some common steps you could take.

These steps assume that the headless CMS you're using supports setting
custom draft URLs. If it doesn’t, you can still use this method to secure
your draft URLs, but you'll need to construct and access the draft URL
manually.

Eirst you should create a **secret token string** using a token generator
of your choice. This secret will only be known by your Next.js app and your
headless CMS. This secret prevents people who don’t have access to your CMS
from accessing draft URLs.

Second, if your headless CMS supports setting custom draft URLs, specify
the following as the draft URL. This assumes that your Route Handler is located
at “app/api/draft/route.ts’

" “bash filename="Terminal"
https://<your-site>/api/draft?secret=<token>&slug=<path>

- “<your-site>" should be your deployment domain.

- '<token>" should be replaced with the secret token you generated.

- “<path>" should be the path for the page that you want to view. If you want to
view " [posts/foo’, then you should use "&slug=/posts/foo .

Your headless CMS might allow you to include a variable in the draft URL so
that “<path>" can be set dynamically based on the CMS's data like so: "&slug=/
posts/{entry.fields.slug}"

Einally, in the Route Handler:

- Check that the secret matches and that the “slug’ parameter exists (if not,
the request should fail).

- Call "draftMode.enable() " to set the cookie.

- Then redirect the browser to the path specified by “slug .

" ts filename="app/api/draft/route.ts" switcher
/| route handler with secret and slug

import { draftMode } from 'next/headers'

import { redirect } from 'next/navigation’

export async function GET(request: Request) {
/| Parse query string parameters
const { searchParams } = new URL(request.url)
const secret = searchParams.get('secret')
const slug = searchParams.get('slug')

/| Check the secret and next parameters
/| This secret should only be known to this route handler and the CMS
if (secret !=="MY_SECRET_TOKEN" || !slug) {

return new Response('Invalid token', { status: 407})

}

/| Fetch the headless CMS to check if the provided “slug” exists

/| getPostBySlug would implement the required fetching logic to the headless
CMS

const post = await getPostBySlug(slug)

/| If the slug doesn't exist prevent draft mode from being enabled
if (!post) {
return new Response('Invalid slug’, { status: 407})

}

/| Enable Draft Mode by setting the cookie
draftMode().enable()

/| Redirect to the path from the fetched post

/| We don't redirect to searchParams.slug as that might lead to open redirect
vulnerabilities

redirect(post.slug)

LURNRY

" js filename="app/api/draft/route.js" switcher
/| route handler with secret and slug

import { draftMode } from 'next/headers'
import { redirect } from 'next/navigation’

export async function GET (request) {
/| Parse query string parameters
const { searchParams } = new URL(request.url)
const secret = searchParams.get('secret')
const slug = searchParams.get('slug')

/| Check the secret and next parameters
/| This secret should only be known to this route handler and the CMS
if (secret !=="'MY_SECRET_TOKEN" || !slug) {

return new Response('Invalid token', { status: 407})

}

/| Fetch the headless CMS to check if the provided “slug™ exists

/| getPostBySlug would implement the required fetching logic to the headless
CMS

const post = await getPostBySlug(slug)

/| If the slug doesn't exist prevent draft mode from being enabled
if (!post) {
return new Response('Invalid slug’, { status: 4017 })

}

/| Enable Draft Mode by setting the cookie
draftMode().enable()

/| Redirect to the path from the fetched post

/| We don't redirect to searchParams.slug as that might lead to open redirect
vulnerabilities

redirect(post.slug)

AR RN

If it succeeds, then the browser will be redirected to the path you want to view
with the draft mode cookie.

Step 2: Update page

The next step is to update your page to check the value of
“draftMode().isEnabled .

If you request a page which has the cookie set, then data will be fetched at
request time (instead of at build time).

Furthermore, the value of “isEnabled” will be “true’.

* " tsx filename="app/page.tsx" switcher
/| page that fetches data
import { draftMode } from 'next/headers'

async function getData() {
const { isEnabled } = draftMode()

const url = isEnabled
? 'https://draft.example.com’
: 'https://production.example.com’

const res = await fetch(url)

return res.json()

}

export default async function Page() {
const { title, desc } = await getData()

return (
<main>
<h1>{title}</h1>
<p>{desc}</p>
</main>
)
}

*Yjsx filename="app/page.js" switcher
/| page that fetches data
import { draftMode } from 'next/headers'

async function getData() {
const { isEnabled } = draftMode()

const url = isEnabled
? 'https://draft.example.com’
: 'https://production.example.com’

const res = await fetch(url)

return res.json()

}

export default async function Page() {
const { title, desc } = await getData()

return (
<main>
<h1>{title}</h1>
<p>{desc}</p>
</main>
)
}

That's it! If you access the draft Route Handler (with "secret™ and “slug’) from
your headless CMS or manually, you should now be able to see the draft
content. And if you update your draft without publishing, you should be able to
view the draft.

Set this as the draft URL on your headless CMS or access manually, and you
should be able to see the draft.

" “bash filename="Terminal"
https://<your-site>/api/draft?secret=<token>&slug=<path>

More Details
Clear the Draft Mode cookie
By default, the Draft Mode session ends when the browser is closed.

To clear the Draft Mode cookie manually, create a Route Handler that calls
“draftMode().disable() *:

" ts filename="app/api/disable-draft/route.ts" switcher
import { draftMode } from 'next/headers'

export async function GET (request: Request) {
draftMode().disable()
return new Response('Draft mode is disabled")

AUENEN

* s filename="app/api/disable-draft/route.js" switcher
import { draftMode } from 'next/headers'

export async function GET(request) {
draftMode().disable()
return new Response('Draft mode is disabled")

}

Then, send a request to "/api/disable-draft’ to invoke the Route Handler. If
calling this route using [next/link "](/docs/app/api-reference/components/link),
you must pass “prefetch={false}" to prevent accidentally deleting the cookie on
prefetch.

Unique per "next build®
A new bypass cookie value will be generated each time you run "next build".
This ensures that the bypass cookie can't be guessed.

> **Good to know**: To test Draft Mode locally over HTTP, your browser will
need to allow third-party cookies and local storage access.

title: Content Security Policy
description: Learn how to set a Content Security Policy (CSP) for your Next.js
application.
related:
links:
- app/building-your-application/routing/middleware
- app/api-reference/functions/headers

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

[Content Security Policy (CSP)](https://developer.mozilla.org/docs/Web/HTTP/
CSP) is important to guard your Next.js application against various security
threats such as cross-site scripting (XSS), clickjacking, and other code
injection attacks.

By using CSP, developers can specify which origins are permissible for content
sources, scripts, stylesheets, images, fonts, objects, media (audio, video),

iframes, and more.

<details>
<summary>Examples</summary>

- [Strict CSP](https://github.com/vercel/next.js/tree/canary/examples/with-
strict-csp)

</details>

Nonces

A [nonce](https://developer.mozilla.org/docs/Web/HTML/Global_attributes/
nonce) is a unique, random string of characters created for a one-time use. It is
used in conjunction with CSP to selectively allow certain inline scripts or styles
to execute, bypassing strict CSP directives.

Why use a nonce?

Even though CSPs are designed to block malicious scripts, there are legitimate
scenarios where inline scripts are necessary. In such cases, nonces offer a way
to allow these scripts to execute if they have the correct nonce.

Adding a nonce with Middleware

[Middleware](/docs/app/building-your-application/routing/middleware) enables
you to add headers and generate nonces before the page renders.

Every time a page is viewed, a fresh nonce should be generated. This means
that you **must use dynamic rendering to add nonces**.

For example:

**'ts filename="middleware.ts" switcher
import { NextRequest, NextResponse } from 'next/server’

export function middleware(request: NextRequest) {

const nonce = Buffer.from(crypto.randomUUID()).toString('base64')
const cspHeader = °

default-src 'self’;

script-src 'self' 'nonce-${nonce}' 'strict-dynamic’;

style-src 'self' 'nonce-${nonce}';

img-src 'self' blob: data:;

font-src 'self’;

object-src 'none’;

base-uri 'self’;

form-action 'self’;

frame-ancestors 'none’;

block-all-mixed-content;

upgrade-insecure-requests;

/| Replace newline characters and spaces
const contentSecurityPolicyHeaderValue = cspHeader

.replace(/|s{2,}/g, ' ")
rim()

const requestHeaders = new Headers(request.headers)
requestHeaders.set('x-nonce', nonce)

requestHeaders.set(
'Content-Security-Policy',
contentSecurityPolicyHeaderValue

)

const response = NextResponse.next({
request: {
headers: requestHeaders,
h
1

response.headers.set(
'Content-Security-Policy’,
contentSecurityPolicyHeaderValue

)

return response

LUENRY

“js filename="middleware.js" switcher
import { NextResponse } from 'next/server’

export function middleware(request) {
const nonce = Buffer.from(crypto.randomUUID()).toString('base64')
const cspHeader = °
default-src 'self’;
script-src 'self' 'nonce-${nonce}' 'strict-dynamic';
style-src 'self' 'nonce-${nonce}';
img-src 'self' blob: data:;
font-src 'self'";
object-src 'none’;
base-uri 'self’;
form-action 'self';
frame-ancestors 'none’;
block-all-mixed-content;
upgrade-insecure-requests;

/| Replace newline characters and spaces
const contentSecurityPolicyHeaderValue = cspHeader

.replace(/|s{2,}/g9, ' ")
rim()

const requestHeaders = new Headers(request.headers)

requestHeaders.set('x-nonce', nonce)

requestHeaders.set(
'Content-Security-Policy’,
contentSecurityPolicyHeaderValue

)

const response = NextResponse.next({
request: {
headers: requestHeaders,

}I
}

response.headers.set(
'Content-Security-Policy’,
contentSecurityPolicyHeaderValue

)

return response

LR RN

By default, Middleware runs on all requests. You can filter Middleware to run on
specific paths using a [matcher](/docs/app/building-your-application/routing/
middleware#matcher).

We recommend ignoring matching prefetches (from "next/link ") and static
assets that don't need the CSP header.

" ts filename="middleware.ts" switcher
export const config = {
matcher: [
/*

* Match all request paths except for the ones starting with:
* - api (API routes)
* - _next/static (static files)
* - _next/image (image optimization files)
* - favicon.ico (favicon file)

*/

{

source: '/((?!api|_next/static|_next/image|favicon.ico) *)',
missing: [

{ type: 'header’, key: 'next-router-prefetch' },
{ type: 'header’, key: 'purpose’, value: 'prefetch' },

e

js filename="middleware.js" switcher
export const config = {
matcher: [
/*
* Match all request paths except for the ones starting with:
* - api (API routes)
* - _next/static (static files)
* - _next/image (image optimization files)
* - favicon.ico (favicon file)
*/
{
source: '/((?!api|_next/static|_next/image|favicon.ico) *)',
missing: [
{ type: 'header’, key: 'next-router-prefetch' },
{ type: 'header’, key: 'purpose’, value: 'prefetch' },

Reading the nonce

You can now read the nonce from a [Server Component](/docs/app/building-
your-application/rendering/server-components) using [headers](/docs/app/
api-reference/functions/headers):

* " tsx filename="app/page.tsx" switcher
import { headers } from 'next/headers'
import Script from 'next/script’

export default function Page() {
const nonce = headers().get('x-nonce')

return (
<Script
src="https://www.googletagmanager.com/gtag/js"
strategy="afterInteractive"
nonce={nonce}
[>
)
}

" jsx filename="app/page.jsx" switcher
import { headers } from 'next/headers'

import Script from 'next/script’

export default function Page() {
const nonce = headers().get('x-nonce')

return (
<Script
src="https://www.googletagmanager.com/gtag/js"
strategy="afterInteractive"
nonce={nonce}
/>
)
}

Version History

We recommend using 'v13.4.20+" of Next.js to properly handle and apply
nonces.

title: Configuring
description: Learn how to configure your Next.js application.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

Next.js allows you to customize your project to meet specific requirements.
This includes integrations with TypeScript, ESlint, and more, as well as internal
configuration options such as Absolute Imports and Environment Variables.

title: Static Exports
description: Next.js enables starting as a static site or Single-Page Application
(SPA), then later optionally upgrading to use features that require a server.

{/* The content of this doc is shared between the app and pages router. You
can use the "<PagesOnly>Content</PagesOnly>" component to add content
that is specific to the Pages Router. Any shared content should not be wrapped
in a component. */}

Next.js enables starting as a static site or Single-Page Application (SPA), then
later optionally upgrading to use features that require a server.

When running "next build", Next.js generates an HTML file per route. By
breaking a strict SPA into individual HTML files, Next.js can avoid loading
unnecessary JavaScript code on the client-side, reducing the bundle size and
enabling faster page loads.

Since Next.js supports this static export, it can be deployed and hosted on any
web server that can serve HTML/CSS/JS static assets.

<PagesOnly>

> **Good to know**: We recommend using the App Router for enhanced static
export support.

</PagesOnly>
Configuration
To enable a static export, change the output mode inside "next.config.js :
“"js filename="next.config.js" highlight={5}
*%
/* @type {import('next').NextConfig}
%
cénst nextConfig = {
output: 'export’,
/| Optional: Change links '/me” -> "/me/" and emit ‘/me.html" -> "/me/
index.html®

[/ trailingSlash: true,

/| Optional: Prevent automatic '/me” -> "/me/’, instead preserve "href’
/| skipTrailingSlashRedirect: true,

/| Optional: Change the output directory "out™ -> “dist’

/| distDir: 'dist’,
}

module.exports = nextConfig

After running "next build", Next.js will produce an "out’ folder which contains
the HTML/CSS/JS assets for your application.
<PagesOnly>

You can utilize [getStaticProps](/docs/pages/building-your-application/data-

fetching/get-static-props) and [getStaticPaths](/docs/pages/building-your-
application/data-fetching/get-static-paths) to generate an HTML file for each
page in your “pages’ directory (or more for [dynamic routes](/docs/app/
building-your-application/routing/dynamic-routes)).
</PagesOnly>
<AppOnly>
Supported Features
The core of Next.js has been designed to support static exports.
Server Components
When you run “next build® to generate a static export, Server Components
consumed inside the "app" directory will run during the build, similar to
traditional static-site generation.
The resulting component will be rendered into static HTML for the initial page
load and a static payload for client navigation between routes. No changes are
required for your Server Components when using the static export, unless they
consume [dynamic server functions](#unsupported-features).
**tsx filename="app/page.tsx" switcher
export default async function Page() {

/| This fetch will run on the server during "next build"

const res = await fetch('https://api.example.com/...")

const data = await res.json()

return <main>...</main>
}
Client Components

If you want to perform data fetching on the client, you can use a Client
Component with [SWR](https://github.com/vercel/swr) to memoize requests.

“ " tsx filename="app/other/page.tsx" switcher
'use client'

import useSWR from 'swr'
const fetcher = (url: string) => fetch(url).then((r) => r.json())

export default function Page() {

const { data, error } = useSWR(
“https://jsonplaceholder.typicode.com/posts/17,
fetcher

)

if (error) return 'Failed to load'

if (!data) return 'Loading...'

return data.title

LUENRN

*"jsx filename="app/other/page.js" switcher
'use client'

import useSWR from 'swr'
const fetcher = (url) => fetch(url).then((r) => r.json())

export default function Page() {
const { data, error } = useSWR(
“https://jsonplaceholder.typicode.com/posts/1°,
fetcher
)
if (error) return 'Failed to load'
if (!data) return 'Loading...'

return data.title

Since route transitions happen client-side, this behaves like a traditional SPA.
For example, the following index route allows you to navigate to different posts
on the client:

“ " tsx filename="app/page.tsx" switcher
import Link from 'next/link’

export default function Page() {
return (
<>
<h1>Index Page</h1>
<hr />

<Link href="/post/1">Post 1</Link>

<Link href="/post/2">Post 2</Link>

<[ul>
<[>
)
}

“jsx filename="app/page.js" switcher
import Link from 'next/link’

export default function Page() {
return (
<>
<h1>Index Page</h1>
<p>
<Link href="/other">0ther Page</Link>
<[p>
<[>
)
}

</AppOnly>
<PagesOnly>
Supported Features

The majority of core Next.js features needed to build a static site are
supported, including:

- [Dynamic Routes when using "getStaticPaths](/docs/app/building-your-
application/routing/dynamic-routes)

- Prefetching with "next/link”

- Preloading JavaScript

- [Dynamic Imports](/docs/pages/building-your-application/optimizing/lazy-
loading)

- Any styling options (e.g. CSS Modules, styled-jsx)

- [Client-side data fetching](/docs/pages/building-your-application/data-
fetching/client-side)

- [getStaticProps '](/docs/pages/building-your-application/data-fetching/get-
static-props)

- [getStaticPaths '] (/docs/pages/building-your-application/data-fetching/get-
static-paths)

</PagesOnly>

Image Optimization

[Image Optimization](/docs/app/building-your-application/optimizing/images)
through "next/image" can be used with a static export by defining a custom
image loader in "next.config.js . For example, you can optimize images with a
service like Cloudinary:

" js filename="next.config.js"
[** @type {import('next').NextConfig} */
const nextConfig = {
output: 'export’,
images: {
loader: 'custom’,
loaderFile: './my-loader.ts',

}
}

module.exports = nextConfig

This custom loader will define how to fetch images from a remote source. For
example, the following loader will construct the URL for Cloudinary:

“ts filename="my-loader.ts" switcher
export default function cloudinaryLoader({
src,
width,
quality,
et
src: string
width: number
quality?: number
HA
const params = ['f_auto’, 'c_limit', "'w_${width}", "g_${quality || '‘auto'} ']
return “https://res.cloudinary.com/demo/image/upload/${params.join(
)}${src}"
}

*js filename="my-loader.js" switcher

export default function cloudinaryLoader({ src, width, quality }) {
const params = ['f_auto’, 'c_limit', "w_${width}", "q_%${quality || 'auto'}]
return “https://res.cloudinary.com/demo/image/upload/${params.join(

)}'${src}‘

You can then use "next/image’ in your application, defining relative paths to the
image in Cloudinary:

" tsx filename="app/page.tsx" switcher
import Image from 'next/image'

export default function Page() {
return <Image alt="turtles" src="/turtles.jpg" width={300} height={300} />

LR RN

“Yjsx filename="app/page.js" switcher
import Image from 'next/image'

export default function Page() {
return <Image alt="turtles" src="/turtles.jpg" width={300} height={300} />
}

<AppOnly>
Route Handlers

Route Handlers will render a static response when running “next build". Only
the "GET" HTTP verb is supported. This can be used to generate static HTML,
JSON, TXT, or other files from cached or uncached data. For example:

" ts filename="app/data.json/route.ts" switcher
export async function GET() {
return Response.json({ name: 'Lee'})

LUR RN

* s filename="app/data.json/route.js" switcher
export async function GET() {
return Response.json({ name: 'Lee'})

EUR RN

The above file "app/data.json/route.ts” will render to a static file during "next
build’, producing “data.json’ containing "{ name: 'Lee' } .

If you need to read dynamic values from the incoming request, you cannot use
a static export.

Browser APIs

Client Components are pre-rendered to HTML during "next build". Because
[Web APIs](https://developer.mozilla.org/docs/Web/API) like “window ",
"localStorage’, and "navigator™ are not available on the server, you need to
safely access these APIs only when running in the browser. For example:

jsx
'use client";

import { useEffect } from 'react’;

export default function ClientComponent() {
useEffect(() => {
/| You now have access to "window"’
console.log(window.innerHeight);

300

return ...;

LUE RN

</AppOnly>
Unsupported Features

Features that require a Node.js server, or dynamic logic that cannot be
computed during the build process, are **not** supported:

<AppOnly>

- [Dynamic Routes](/docs/app/building-your-application/routing/dynamic-
routes) with “dynamicParams: true’

- [Dynamic Routes](/docs/app/building-your-application/routing/dynamic-
routes) without “generateStaticParams() "

- [Route Handlers](/docs/app/building-your-application/routing/route-handlers)
that rely on Request

- [Cookies](/docs/app/api-reference/functions/cookies)

- [Rewrites](/docs/app/api-reference/next-config-js/rewrites)

- [Redirects](/docs/app/api-reference/next-config-js/redirects)

- [Headers](/docs/app/api-reference/next-config-js/headers)

- [Middleware](/docs/app/building-your-application/routing/middleware)

- [Incremental Static Regeneration](/docs/app/building-your-application/data-
fetching/fetching-caching-and-revalidating)

- [Image Optimization](/docs/app/building-your-application/optimizing/images)
with the default "loader”

- [Draft Mode](/docs/app/building-your-application/configuring/draft-mode)

Attempting to use any of these features with "next dev" will result in an error,
similar to setting the [dynamic "](/docs/app/api-reference/file-conventions/
route-segment-config#dynamic) option to “error’ in the root layout.

Tjsx
export const dynamic = 'error’

</AppOnly>
<PagesOnly>

- [Internationalized Routing](/docs/pages/building-your-application/routing/
internationalization)

- [API Routes](/docs/pages/building-your-application/routing/api-routes)

- [Rewrites](/docs/pages/api-reference/next-config-js/rewrites)

- [Redirects](/docs/pages/api-reference/next-config-js/redirects)

- [Headers](/docs/pages/api-reference/next-config-js/headers)

- [Middleware](/docs/pages/building-your-application/routing/middleware)

- [Incremental Static Regeneration](/docs/pages/building-your-application/
data-fetching/incremental-static-regeneration)

- [Image Optimization](/docs/pages/building-your-application/optimizing/
images) with the default “loader”

- [Draft Mode](/docs/pages/building-your-application/configuring/draft-mode)
- [getStaticPaths™ with “fallback: true "](/docs/pages/api-reference/functions/
get-static-paths#fallback-true)

- [getStaticPaths™ with “fallback: 'blocking'](/docs/pages/api-reference/
functions/get-static-paths#fallback-blocking)

- ['getServerSideProps "] (/docs/pages/building-your-application/data-fetching/
get-server-side-props)

</PagesOnly>
Deploying

With a static export, Next.js can be deployed and hosted on any web server
that can serve HTML/CSS/JS static assets.

When running "next build ", Next.js generates the static export into the "out’
folder. For example, let's say you have the following routes:

o
- [blog/[id]"

After running “next build”, Next.js will generate the following files:

*[out/index.html®
“Jout/404.html”
“Jout/blog/post-1.html"
“Jout/blog/post-2.html"

If you are using a static host like Nginx, you can configure rewrites from
incoming requests to the correct files:

" 'nginx filename="nginx.conf"
server {

listen 80;

server_name acme.com;

root [var/www/out;

location / {
try_files $uri $uri.html $uri/ =404;
}

This is necessary when “trailingSlash: false".
You can omit this when "trailingSlash: true".
location /blog/ {

rewrite ~/blog/(*)$ /blog/$1.html break;

}

error_page 404 [404.html;
location = /404.html {
internal;

)
-

Version History

| Version | Changes

| "v14.0.0° | "next export™ has been removed in favor of ""output": "export""

|

| "v13.4.0" | App Router (Stable) adds enhanced static export support, including
using React Server Components and Route Handlers. |

| "v13.3.0" | "next export " is deprecated and replaced with “"output": "export"’

Congratulations, it's time to ship to production.

You can deploy [managed Next.js with Vercel](#managed-nextjs-with-vercel),
or self-host on a Node.js server, Docker image, or even static HTML files. When
deploying using "next start’, all Next.js features are supported.

Production Builds

Running "next build™ generates an optimized version of your application for
production. HTML, CSS, and JavaScript files are created based on your pages.
JavaScript is **compiled** and browser bundles are **minified** using the
[Next.js Compiler](/docs/architecture/nextjs-compiler) to help achieve the best
performance and support [all modern browsers](/docs/architecture/supported-
browsers).

Next.js produces a standard deployment output used by managed and self-
hosted Next.js. This ensures all features are supported across both methods of
deployment. In the next major version, we will be transforming this output into
our [Build Output API specification] (https://vercel.com/docs/build-output-api/
v3?utm_source=next-site&utm_medium=docs&utm_campaign=next-website).

Managed Next.js with Vercel

[Vercel](https://vercel.com/docs/frameworks/nextjs?utm_source=next-
site&utm_medium=docs&utm_campaign=next-website), the creators and
maintainers of Next.js, provide managed infrastructure and a developer
experience platform for your Next.js applications.

Deploying to Vercel is zero-configuration and provides additional
enhancements for scalability, availability, and performance globally. However,
all Next.js features are still supported when self-hosted.

Learn more about [Next.js on Vercel](https://vercel.com/docs/frameworks/
nextjs?utm_source=next-site&utm_medium=docs&utm_campaign=next-
website) or [deploy a template for free](https://vercel.com/templates/next.js?
utm_source=next-site&utm_medium=docs&utm_campaign=next-website) to
try it out.

Self-Hosting
You can self-host Next.js in three different ways:
- [A Node.js server](#nodejs-server)

- [A Docker container](#docker-image)
- [A static export] (#static-html-export)

Node.js Server

Next.js can be deployed to any hosting provider that supports Node.js. Ensure
your package.json’ has the ""build"" and ""start"" scripts:

“*“json filename="package.json"

{
"scripts": {
"dev": "next dev",
"build": "next build",
"start": "next start"
}
}

Then, run "npm run build" to build your application. Finally, run "npm run start’
to start the Node.js server. This server supports all Next.js features.

Docker Image

Next.js can be deployed to any hosting provider that supports [Docker] (https://
www.docker.com/) containers. You can use this approach when deploying to
container orchestrators such as [Kubernetes] (https://kubernetes.iof) or when
running inside a container in any cloud provider.

1. [Install Docker] (https://docs.docker.com/get-docker/) on your machine

2. [Clone our example] (https://github.com/vercel/next.js/tree/canary/examples/
with-docker) (or the [multi-environment example] (https://github.com/vercel/
next.js/tree/canary/examples/with-docker-multi-env))

3. Build your container: “docker build -t nextjs-docker ."

4. Run your container: “docker run -p 3000:3000 nextjs-docker"

Next.js through Docker supports all Next.js features.
Static HTML Export

Next.js enables starting as a static site or Single-Page Application (SPA), then
later optionally upgrading to use features that require a server.

Since Next.js supports this [static export](/docs/app/building-your-application/
deploying/static-exports), it can be deployed and hosted on any web server
that can serve HTML/CSS/JS static assets. This includes tools like AWS S3,
Nginx, or Apache.

Running as a [static export](/docs/app/building-your-application/deploying/
static-exports) does not support Next.js features that require a server. [Learn

more](/docs/app/building-your-application/deploying/static-
exports#unsupported-features).

> **Good to know:**

>

> - [Server Components](/docs/app/building-your-application/rendering/server-
components) are supported with static exports.

Features
Image Optimization

[Image Optimization](/docs/app/building-your-application/optimizing/images)
through "next/image” works self-hosted with zero configuration when
deploying using "next start . If you would prefer to have a separate service to
optimize images, you can [configure an image loader](/docs/app/building-your-
application/optimizing/images#loaders).

Image Optimization can be used with a [static export](/docs/app/building-your-
application/deploying/static-exports#image-optimization) by defining a custom
image loader in "next.config.js . Note that images are optimized at runtime, not
during the build.

> **Good to know:**

>

> - When self-hosting, consider installing “sharp” for more performant [Image
Optimization](/docs/pages/building-your-application/optimizing/images) in your
production environment by running ‘npm install sharp " in your project
directory. On Linux platforms, "sharp™ may require [additional configuration]
(https://sharp.pixelplumbing.com/install#linux-memory-allocator) to prevent
excessive memory usage.

> - Learn more about the [caching behavior of optimized images](/docs/app/
api-reference/components/image#caching-behavior) and how to configure the
TTL.

> - You can also [disable Image Optimization](/docs/app/api-reference/
components/image#unoptimized) and still retain other benefits of using "next/
image " if you prefer. For example, if you are optimizing images yourself
separately.

Middleware
[Middleware](/docs/app/building-your-application/routing/middleware) works
self-hosted with zero configuration when deploying using "next start’. Since it
requires access to the incoming request, it is not supported when using a

[static export](/docs/app/building-your-application/deploying/static-exports).

Middleware uses a [runtime](/docs/app/building-your-application/rendering/

edge-and-nodejs-runtimes) that is a subset of all available Node.js APIs to help
ensure low latency, since it may run in front of every route or asset in your
application. This runtime does not require running “at the edge” and works in a
single-region server. Additional configuration and infrastructure are required to
run Middleware in multiple regions.

If you are looking to add logic (or use an external package) that requires all
Node.js APIs, you might be able to move this logic to a [layout](/docs/app/
building-your-application/routing/pages-and-layouts#layouts) as a [Server
Component](/docs/app/building-your-application/rendering/server-
components). For example, checking [headers](/docs/app/api-reference/
functions/headers) and [redirecting](/docs/app/api-reference/functions/
redirect). You can also use headers, cookies, or query parameters to [redirect](/
docs/app/api-reference/next-config-js/redirects#header-cookie-and-query-
matching) or [rewrite](/docs/app/api-reference/next-config-js/rewrites#header-
cookie-and-query-matching) through "next.config.js . If that does not work,
you can also use a [custom server](/docs/pages/building-your-application/
configuring/custom-server).

Environment Variables
Next.js can support both build time and runtime environment variables.

By default, environment variables are only available on the server. To
expose an environment variable to the browser, it must be prefixed with
"NEXT_PUBLIC_". However, these public environment variables will be inlined
into the JavaScript bundle during "next build .

To read runtime environment variables, we recommend using
“getServerSideProps " or [incrementally adopting the App Router](/docs/app/
building-your-application/upgrading/app-router-migration). With the App
Router, we can safely read environment variables on the server during dynamic
rendering. This allows you to use a singular Docker image that can be promoted
through multiple environments with different values.

Tjsx
import { unstable_noStore as noStore } from 'next/cache’;

export default function Component() {
noStore();
/| cookies(), headers(), and other dynamic functions
/] will also opt into dynamic rendering, making
/| this env variable is evaluated at runtime
const value = process.env.MY_VALUE

> **Good to know:**

>

> - You can run code on server startup using the [register” function](/docs/
app/building-your-application/optimizing/instrumentation).

> - We do not recommend using the [runtimeConfig](/docs/pages/api-
reference/next-config-js/runtime-configuration) option, as this does not work
with the standalone output mode. Instead, we recommend [incrementally
adopting](/docs/app/building-your-application/upgrading/app-router-migration)
the App Router.

Caching and ISR

Next.js can cache responses, generated static pages, build outputs, and other
static assets like images, fonts, and scripts.

Caching and revalidating pages (using Incremental Static Regeneration (ISR) or
newer functions in the App Router) use the **same shared cache**. By
default, this cache is stored to the filesystem (on disk) on your Next.js server.
This works automatically when self-hosting using both the Pages and
App Router.

You can configure the Next.js cache location if you want to persist cached
pages and data to durable storage, or share the cache across multiple
containers or instances of your Next.js application.

Automatic Caching

- Next.js sets the "Cache-Control™ header of "public, max-age=31536000,
immutable” to truly immutable assets. It cannot be overridden. These
immutable files contain a SHA-hash in the file name, so they can be safely
cached indefinitely. For example, [Static Image Imports](/docs/app/building-
your-application/optimizing/images#local-images). You can [configure the TTL]
(/docs/app/api-reference/components/image#caching-behavior) for images.

- Incremental Static Regeneration (ISR) sets the "Cache-Control™ header of "s-
maxage: <revalidate in getStaticProps>, stale-while-revalidate . This
revalidation time is defined in your [getStaticProps " function](/docs/pages/
building-your-application/data-fetching/get-static-props) in seconds. If you set
‘revalidate: false’, it will default to a one-year cache duration.

- Dynamically rendered pages set a "Cache-Control™ header of "private, no-
cache, no-store, max-age=0, must-revalidate” to prevent user-specific data
from being cached. This applies to both the App Router and Pages Router. This
also includes [Draft Mode](/docs/app/building-your-application/configuring/
draft-mode).

H##t## Static Assets

If you want to host static assets on a different domain or CDN, you can use the
‘assetPrefix" [configuration](/docs/app/api-reference/next-config-js/
assetPrefix) in "next.config.js . Next.js will use this asset prefix when retrieving
JavaScript or CSS files. Separating your assets to a different domain does
come with the downside of extra time spent on DNS and TLS resolution.

[Learn more about "assetPrefix '](/docs/app/api-reference/next-config-js/
assetPrefix).

Configuring Caching

By default, generated cache assets will be stored in memory (defaults to 50mb)
and on disk. If you are hosting Next.js using a container orchestration platform
like Kubernetes, each pod will have a copy of the cache. To prevent stale data
from being shown since the cache is not shared between pods by default, you
can configure the Next.js cache to provide a cache handler and disable in-
memory caching.

To configure the ISR/Data Cache location when self-hosting, you can configure
a custom handler in your "next.config.js” file:

" jsx filename="next.config.js"
module.exports = {
experimental: {
incrementalCacheHandlerPath: require.resolve('./cache-handler.js'),
isrMemoryCacheSize: 0, /| disable default in-memory caching
h
}

Then, create “cache-handler.js" in the root of your project, for example:

" "jsx filename="cache-handler.js"
const cache = new Map()

module.exports = class CacheHandler {
constructor(options) {
this.options = options

}

async get(key) {
/| This could be stored anywhere, like durable storage
return cache.get(key)

}

async set(key, data, ctx) {

/| This could be stored anywhere, like durable storage
cache.set(key, {
value: data,
lastModified: Date.now(),
tags: ctx.tags,
1
}

async revalidateTag(tag) {
/| lterate over all entries in the cache
for (let [key, value] of cache) {
/| If the value's tags include the specified tag, delete this entry
if (value.tags.includes(tag)) {
cache.delete(key)

}
}
}
}

Using a custom cache handler will allow you to ensure consistency across all
pods hosting your Next.js application. For instance, you can save the cached
values anywhere, like [Redis](https://github.com/vercel/next.js/tree/canary/
examples/cache-handler-redis) or AWS S3.

> **Good to know:**

>

> - ‘revalidatePath " is a convenience layer on top of cache tags. Calling
‘revalidatePath™ will call the "revalidateTag ™ function with a special default tag
for the provided page.

#i## Build Cache

Next.js generates an ID during "next build" to identify which version of your
application is being served. The same build should be used and boot up
multiple containers.

If you are rebuilding for each stage of your environment, you will need to
generate a consistent build ID to use between containers. Use the
‘generateBuildld® command in “next.config.js :

**Yjsx filename="next.config.js"
module.exports = {
generateBuildld: async () => {
/| This could be anything, using the latest git hash
return process.env.GIT_HASH

}I

Version Skew

Next.js will automatically mitigate most instances of [version skew](https://
www.industrialempathy.com/posts/version-skew/) and automatically reload the
application to retrieve new assets when detected. For example, if there is a
mismatch in the build ID, transitions between pages will perform a hard
navigation versus using a prefetched value.

When the application is reloaded, there may be a loss of application state if it's
not designed to persist between page navigations. For example, using URL
state or local storage would persist state after a page refresh. However,
component state like "useState” would be lost in such navigations.

Vercel provides additional [skew protection](https://vercel.com/docs/
deployments/skew-protection?utm_source=next-
site&utm_medium=docs&utm_campaign=next-website) for Next.js applications
to ensure assets and functions from the previous build are still available while
the new build is being deployed.

<PagesOnly>
Manual Graceful Shutdowns

When self-hosting, you might want to run code when the server shuts down on
"SIGTERM " or "SIGINT" signals.

You can set the env variable "NEXT_MANUAL_SIG_HANDLE" to "true’ and
then register a handler for that signal inside your "_document.js” file. You will
need to register the environment variable directly in the “package.json’ script,
and not in the ".env" file.

> **Good to know**: Manual signal handling is not available in "next dev .

“*“json filename="package.json"

{
"scripts": {
"dev": "next dev",
"build": "next build",
"start": "NEXT_MANUAL_SIG_HANDLE=true next start"
}
}

* s filename="pages/_document.js"

if (process.env.NEXT_MANUAL_SIG_HANDLE) {
process.on('SIGTERM', () => {
console.log('Received SIGTERM: cleaning up')
process.exit(0)
})
process.on('SIGINT!, () => {
console.log('Received SIGINT: cleaning up')
process.exit(0)
1
}

</PagesOnly>

title: Codemods
description: Use codemods to upgrade your Next.js codebase when new
features are released.

Codemods are transformations that run on your codebase programmatically.
This allows a large number of changes to be programmatically applied without
having to manually go through every file.

Next.js provides Codemod transformations to help upgrade your Next.js
codebase when an APl is updated or deprecated.

Usage

In your terminal, navigate ("cd’) into your project's folder, then run:
" “bash filename="Terminal"

npx @next/codemod <transform> <path>

Replacing “<transform>" and “<path>" with appropriate values.

- “transform’ - name of transform

- "path’ - files or directory to transform

- '=-dry" Do a dry-run, no code will be edited

- "--print’ Prints the changed output for comparison

Next.js Codemods

14.0

Migrate "ImageResponse’ imports

##H### next-og-import”
" bash filename="Terminal"

npx @next/codemod@latest next-og-import .

This codemod moves transforms imports from "next/server’ to "next/og" for
usage of [Dynamic OG Image Generation](/docs/app/building-your-application/
optimizing/metadata#dynamic-image-generation).

For example:

s
import { ImageResponse } from 'next/server’
Transforms into:

s
import { ImageResponse } from 'next/og’
Use "viewport™ e