Modeling multi-die stack FPGAs

Sara Mahmoudi

UNIVERSITY OF

¥ TORONTO

grid[x]ly]

How VPR currently looks like

Current code data structures The physical blocks that we are trying to model

t_physical_tile_type_ptr

[
—4 t sub_tile ‘

width_offset, height_offset

s LAB(0,1) | LAB(11)
——ffmc —

| LAB(0,0) | LAB(1,0)

First solution

Keep the current sub_tiles and tiles data structure
(which can not currently model sub_tiles with
different size on top of each other)

Add width_offset, height offset to sub_tile
structure as well as the grid to specify anchor
positions for LABs on top of a NoC block

Very straightforward approach and easy to
implement.

Have to store multiple sub_tiles for LAB type since
their anchor positions are different (which might
be a bad solution if NoC size is large (10X10))

gridxy

(0.0)

LAB position respect to
NoC

Same for all subtiles

Other attributes

(11)

LAB position respect to
NoC

t sub_tile (LAB#1)
"
t_physical tile_type_ptr —— 2
NoC (Width = 2, Height = 2) .
"
"
width_offset, height_offset
t_sub_tile (LAB#4)

Same for all subtiles

Other attributes

Second solution

Keep the current sub_tiles and tiles data structure.
Add an explicit z dimension to grid and a a layer
capacity that would specify how many physical
tiles were stacked at that point.

Access to grid[x][y] will be converted to
grid[x][y][z_layer].

Existing code should work since we do not change
the current sub tiles and tiles definitions and
meaning.

A lot of code changes since grid is widely used in
different part of VPR (RR graph, placement, and
etc)

Might become slightly slower since code has to
work with multiple layers.

grid[x]ly]

t_physical_tile_type_ptr

width_oifset, height_offset

z_layer=1

t_physical_tile_type_ptr

t_sub_tile (LAB)

width_offset, height_offset

Third solution

Redefine sub _tile and possibly tile data structure.
Add a capacity attribute to grid data structure, and
also adding some attribute (e.g. width and height)
to sub_tile itself.

Keep multiple width and height offset for each
sub_tile (the exact number would be capacity)
Less code changes.

Will probably break the existing code while
re-imagining sub_tiles and tiles data structures
(e.g. physical_tile currently groups multiple
sub_tiles and allows their pins to be grouped and
located around the composite physical_tile).

t_physical_tile_type_ptr —

gridpy]

Width = 2, Height = 2

t sub_tie (NoC)

Capacity (1 NoC + 4 LAB)

width_offset, height_offset

should also change
based on capacity

t_sub_tile (LAB)

sub_tile other attribute might
need to be redefined

Other atfributes

Width = 1, Height = 1

sub _tile other attribute might
need to be redefined

Other attributes

Fourth solution

Move sub _tile data structure from physical_tile to
grid.

Add a capacity attribute to grid which shows how
many sub_tiles we have at the current location.
Keeps multiple sub_tiles with current attribute
(plus some new attributes such as width and
height), but no redefinition is required.

Most of existing code should still be working since
we do not change the sub _tile definition with a few
changes.

More code changes (but less than second
solution) since grid is widely used throughout the
VPR.

.
+ Width =2, Height=2 |

sub_tile other attribute might
need to be redefined

gridix]iy]

t_physical_tile_type_ptr

Capacity (1 NoC +4 LAB)

t sub_tile (LAB)

sub _tile other attribute might
need to be redefined

Other attributes

width_offset, height_offset

should also change
based on capacity

sub_tiles

Conclusion

Adding an explicit z dimension (second solution) seems to be the best proposal.
Better code readability and maintenance.

No need to change any existing architecture files.
Will not break any existing code since main data structures remain untouched.

