
Sara Mahmoudi

Modeling multi-die stack FPGAs



Current code data structures

How VPR currently looks like
The physical blocks that we are trying to model



● Keep the current sub_tiles and tiles data structure 
(which can not currently model sub_tiles with 
different size on top of each other)

● Add width_offset, height_offset to sub_tile 
structure as well as the grid to specify anchor 
positions for LABs on top of a NoC block

● Very straightforward approach and easy to 
implement.

● Have to store multiple sub_tiles for LAB type since 
their anchor positions are different (which might 
be a bad solution if NoC size is large (10X10))

First solution



● Keep the current sub_tiles and tiles data structure.
● Add an explicit z dimension to grid and a a layer 

capacity that would specify how many physical 
tiles were stacked at that point.

● Access to grid[x][y] will be converted to 
grid[x][y][z_layer]. 

● Existing code should work since we do not change 
the current sub_tiles and tiles definitions and 
meaning. 

● A lot of code changes since grid is widely used in 
different part of VPR (RR graph, placement, and 
etc)

● Might become slightly slower since code has to 
work with multiple layers.

Second solution



● Redefine sub_tile and possibly tile data structure.
● Add a capacity attribute to grid data structure, and 

also adding some attribute (e.g. width and height) 
to sub_tile itself.

● Keep multiple width and height offset for each 
sub_tile (the exact number would be capacity) 

● Less code changes.
● Will probably break the existing code while 

re-imagining sub_tiles and tiles data structures 
(e.g. physical_tile currently groups multiple 
sub_tiles and allows their pins to be grouped and 
located around the composite physical_tile).

Third solution



● Move sub_tile data structure from physical_tile to 
grid. 

● Add a capacity attribute to grid which shows how 
many sub_tiles we have at the current location.

● Keeps multiple sub_tiles with current attribute 
(plus some new attributes such as width and 
height), but no redefinition is required.

● Most of existing code should still be working since 
we do not change the sub_tile definition with a few 
changes.

● More code changes (but less than second 
solution) since grid is widely used throughout the 
VPR. 

Fourth solution



● Adding an explicit z dimension (second solution) seems to be the best proposal.
● Better code readability and maintenance. 
● No need to change any existing architecture files.
● Will not break any existing code since main data structures remain untouched. 

Conclusion


