
vg: the variation graph toolkit

Erik Garrison

May 31, 2016

Abstract

Reference genomes provide a prior to guide our interpretation of
new sequence data. However, they have a fundamental limitation
in that they only represent one version of each locus, whereas in a
population or species there is in general a distribution of related se-
quences at each locus. Mapping new data to a single sequence from
this distribution can introduce bias and other problems. To allow the
representation of alternate genomes in our reference system, we de-
velop variation graphs, which are bidirectional DNA sequence graphs
with embedded paths that describe sequences of interest as walks
through the graph. Here we enable the practical use of variation
graphs at human genome scale by building a toolkit of computational
methods for the creation, manipulation, and utilization of these struc-
tures. Our approach generalizes fundamental aspects of resequenc-
ing analysis (assembly, alignment, variant calling, and genotyping) to
operate on variation graphs.

1 Introduction

Where genomes are small and sequences from different individuals can
be reliably isolated, we can understand variation by assembling whole

1

genomes and then comparing them via whole-genome comparison ap-
proaches [6]. In practice, complete genomes are rare, and we require prior
information to reduce the cost of our efforts. The genomes of organisms
of interest (such as Homo sapiens) are often large [4], and would be costly
to work with this way. Or, they may simply be difficult to completely assem-
ble reliably using cost effective technology (for example, despite extensive
efforts and its importance for public health, the current reference for Plas-
modium falciparum still contains 80 gaps in 250 megabases [9,13]).

We reduce the cost of inference of new genomes by using a suitable
prior— in most cases, a genome of a closely-related individual. We align
sequence reads from the new sample against a single high-quality refer-
ence genome. While expedient, this approach biases our results towards
a reference that may poorly represent alleles present in the sample we
are attempting to characterize. We would like to align to a genome that
is as similar to our sample as possible, ideally a “personalized” reference
genome [29].

We expect to infer new genomes most accurately when they are well-
represented by the prior represented by the reference genome. As a linear
reference genome is fundamentally unable to incorporate the genetic in-
formation we have available, we are led to ask what structure could include
this information.

The natural computational structure for doing so is the sequence graph.
These have a long history of application to problems which require the rep-
resentation of multiple genomes or ambiguities in the same structure. For
example, multiple sequence alignments have a natural representation as
partially ordered sequence graphs [19]. The total information available in
a shotgun sequencing data set set can be compressed into a string graph,
in which single-copy sequences are represented uniquely and repeated
sequences unresolvable due to read lengths are collapsed into single en-
tities [22, 25]. A similar structure which has good scaling properties when

2

applied to the problem of genome assembly is the de Bruijn graph, which
records the relationships between unique k-mers of a set of sequences
with edges that link pairs of k-mers for which the suffix of one k-mer is
the prefix of the next [16]. The variant call format (VCF) [5], which is a
common data format for describing populations of genomes, does not ex-
plicitly define a graph model, but can be understood as defining a partially
ordered graph similar to those used in multiple sequence alignment.

To serve as a generalized reference system, we propose a general
model which allows us to represent these different kinds of sequence
graphs. We then implement this model in a practical software environ-
ment for operating with them at the multi-gigabase scale: vg. Finally, we
explore the use of the model for resequencing by constructing whole hu-
man genome graphs from a population reference and aligning short read
sequencing data against it.

2 Model

We define a variation graph to be a graph with embedded paths G =

(N,E, P) comprised of a set of nodes N = n1 . . . nM , a set of directed
edges E = e1 . . . eL, and a set of paths P = p1 . . . pQ which describe trans-
formations from the graph space into a set of sequences.

Each node ni represents a sequence seq(ni) which is built from an ar-
bitrary alphabet A. For DNA sequences, we might use A = {A, T, G, C, N},
but in principle the model can be based in any alphabet. Nodes may be
traversed in either the forward (+) or reverse direction (−), with the se-
quence being reverse-complemented in the − direction. In general we
will use simple variables such as i to indicate a strand of a node (forward
or reverse) with ı̄ for its reverse-complement. By this definition seq(ni) =

revcomp(seq(ni)).
Edges represent linkages between nodes that are allowed to be fol-

3

lowed in representing longer sequences as paths through the graph. Edges
can be identified with the ordered pairs of node strands that they link, so
we can write ei→j = (i, j). In fact this defines one strand of an edge.
Edges also can be traversed in either forward or reverse direction, with the
reverse strand defined by ei→j = (̄, ı̄).

We define paths as alignments to a walk through the graph. Explicitly,
a path is a series of “mapping” operations, each describing the segment
of the path derived from a single node, p = m1, . . . ,m|p|. Each mapping
m can be written as ((n, o), ei . . . e|m|), where n is the node strand, o is the
zero-offset start position on the strand (0 ≤ o < |n|), and each ei is an
“edit” which copies or replaces a segment of the node sequence. In vg

we encode e as (f, t, s) where f is a length in the node (“from length”),
t is a length in the derived sequence (“to length”), and s is an optional
replacement literal sequence of length t. Edges traversed in a path are
implicitly defined by the node strands of neighboring mappings. If all the
edits are copies then we say that the path is fully embedded in the graph.

Figure 1 provides a visual explanation of this model using a small frag-
ment of an assembly of MHC haplotypes.

3 Operations on the graph

Using two operations we can construct, extend, and modify variation graphs
to incorporate new genomes. Alignment provides a description of the op-
timal set of edits to the graph which would be required to fully embed a
given sequence in it. Editing is the process by which we modify the graph
to embed the paths describing some set of alignments.

4

Figure 1: A visualization of a fragment of the MHC variation graph. The
graph nodes and edges are written at bottom. The edges flow across the
tops of the nodes, which indicates in this visualization that they are on the
forward strand of the graph and not inverting. Paths are described in a
matrix above the graph. The path name (shown at left) is hashed into a
space of 8 colors and 766 Unicode characters (emoji) to provide stable
and non-overlapping visual motifs for hundreds of paths. These colored
pictographs are used to annotate parts of the graph, in this case the edges
are labeled with the paths that cross them. Visualizations of this type are
produced using vg view -dpn.

3.1 Editing

A fundamental operation on the variation graph is edit(G,P), where the
graph G is extended to include the sequences described by paths P .

If the nodes of the graph have single-base labels, then they are atomic
and need not be split to allow the incorporation of new elements to the
graph. To edit an atomic graph, we only add edges and new nodes repre-
senting novel sequence. We walk the mappings of the alignment through
the graph. We make no changes for matches. For insertions, substitutions,

5

and soft clipping1, we add the novel sequence from the alignment as new
nodes in the graph. For deletions we add edges between existing nodes
in the graph.

To edit a non-atomic graph, where the node labels may be of arbitrary
length > 1, we would first prepare the graph by walking the mappings
of any alignments we want to add and cutting the nodes at the positions
where we would integrate new sequences. We record a translation of the
node coordinate space to project the alignments mapping positions (which
are against the old version of the graph) into the cut graph. After doing
this for any alignments we want to include, we include them by collecting
the unique novel subpaths relative to the graph and adding these into the
graph at the new cut points.

We implement this editing method as VG::edit, which consumes a set
of paths (possibly from alignments) and extends the graph destructively to
fully embed them as paths.

3.2 Alignment

An alignment is a function that describes a transformation between two
sequences. In our context, one of these sequences is embedded in a
graph. Alignments to the graph look very much like alignments between a
pair of linear sequences. However, we must describe the basis sequence
we align against relative to the graph. We can do this using a path through
the graph, and describing edits against it. In vg, this non-embedded path
is an alignment.

We implement efficient local alignment to variation graphs by devel-
oping a SIMD-accelerated2 string to graph alignment algorithm. We then

1Soft clips are insertions at the end of an alignment.
2Single input multiple data (SIMD) instructions allow vectorized mathematical opera-

tions in a single machine instruction, and can be used to greatly speed up algorithms
which may be implemented in terms of operations on vectors.

6

https://github.com/vgteam/vg/blob/fbcb6e62/src/vg.cpp#L4846-L4912

enable alignment against completely generic graphs by a transformation
process that projects a cyclic and bidirectional graph into an acyclic, unidi-
rectional (single-stranded) graph which preserves the sequence space of
the original graph up to a given length.

3.2.1 Background

Alignments between strings and graphs have been used in several con-
texts in bioinformatics. We draw on this work to implement a local align-
ment method for generic variation graphs.

The canonical approach for aligning acyclic sequence graphs is par-
tial order alignment (POA) [19]. In POA, we can align partially ordered
graphs (DAGs) to each other using a basic generalization of the traditional
dynamic-programming based alignment algorithms for pairs of sequences.
POA generalizes the scoring recurrence such that we consider all possi-
ble inbound positions in the graph when deriving the score for a new node.
This model requires that the graph be acyclic, as we cannot derive the
score for a new node until we have determined it for all of our predeces-
sors. 3

Assembly algorithms that construct a deBruijn graph do so by aligning
new sequences into a deBruijn graph, and then editing the graph to include
them by adding the kmers of the new sequence [17, 30]. Recent work
utilizes this same concept to implement an aligner for mapping short reads
into population reference graphs [7], which is very similar in spirit to our
work but does not generalize to arbitrary sequence graphs.

The general case of alignment between cyclic graphs was described
by [23] in the context of the alignment of regular expressions. As our se-
quence graphs are models of regular languages, they can be considered

3An implementation of POA-msa has been available since 2002. It has been used
for multiple sequence alignment and more recently recently for correcting nanopore se-
quencing errors.

7

https://sourceforge.net/projects/poamsa/
https://simpsonlab.github.io/2015/03/30/optimizing-hmm/
https://simpsonlab.github.io/2015/03/30/optimizing-hmm/

equivalent to regular expressions, so we understand this result to hold for
variation graphs as well. By transforming our graph from a cyclic to acyclic
format, we produce a performant implementation of the limited case of
alignment between strings and regular languages. However, we have not
implemented the general case of alignment between regular languages,
and know of no available software methods that implement it.

3.2.2 SIMD-accelerated local alignment

We implement a SIMD-accelerated version of partial order alignment, which
we term “graph striped Smith-Waterman” GSSW. This method extends an
implementation [31] of Farrar’s the striped Smith Waterman (SSW) algo-
rithm [10] to operate over graphs and retain its scoring matrices for later
traceback. GSSW generalizes all aspects of SSW to operate over se-
quence DAGs, including affine gap penalties, and is around 6 times faster
than a non-SIMD based implementation of POA.

We interface with GSSW by transforming our graph into the internal
graph used by GSSW. This graph is acyclic and only represents a single
strand of the DNA. In order to align against completely general, bidirec-
tional sequence graphs (such as those with cycles and inversions), we
can apply several transformations to the graph first to generate a DAG
with the property that we can find any sequence up to a given length from
our source graph in it.

These two operations are unfold, which expands the graph to include
its reverse complement where accessible via an inversion, and kDAGify,
which unrolls strongly connected components of the graph “far enough”
that we are guaranteed to be able to find any sequence of length k in the
source graph in the unrolled one. This allows us to align any sequence
of up to length k against a completely general variation graph. Through
these steps we retain a mapping from old node ids to new ones, which we
will use to project alignments to the transformed graph back into our base

8

https://github.com/ekg/gssw
https://github.com/vgteam/vg/blob/fbcb6e62/src/vg.cpp#L6461-L6532
https://github.com/vgteam/vg/blob/fbcb6e62/src/vg.cpp#L6461-L6532

coordinate space.

3.2.3 Unfolding

In VG::unfold we use a breadth first search starting at every inverting
edge in the graph to explore the reverse complemented portions of the
graph that we reach in some length k from the inverting edge. We then
copy this subgraph, take its reverse complement, and replace the inverting
edges connecting it to the forward strand of the graph with non-inverting
ones. If k is greater than any length in our graph, then we will duplicate the
entire reverse complement of the graph on the forward strand, effectively
doubling the size of the graph if we have any inversions in it, as shown in
figure 2.

3.2.4 kDAG-ification

Variation graphs may have cycles. These are useful as compact repre-
sentations of copy number variable regions, and arise naturally in the pro-
cess of genome assembly. However, partial order alignment cannot han-
dle these structures, and so we must convert them into an approximately
equivalent acyclic graph in order to align with GSSW. To do so, we unroll
cyclic structures by copying their internal nodes an appropriate number of
times to allow a given query length to align through the unrolled version of
the component.

We first detect all strongly connected components by using a recursion-
free implementation of Tarjan’s strongly connected components algorithm
[28]. Then, we copy each strongly connected component and its internal
edges into a new graph. We greedily break edges in this graph that in-
troduce cycles. Now, we k-DAGify the component progressively copying
the base component and for each edge between nodes in the component,
connecting from the source node in the previous copy to the target node

9

https://github.com/vgteam/vg/blob/fbcb6e62/src/vg.cpp#L8289-L8400
https://github.com/vgteam/vg/blob/fbcb6e62/src/vg.cpp#L3508-L3552
https://github.com/vgteam/vg/blob/fbcb6e62/src/vg.cpp#L3508-L3552

in the current copy.
We use dynamic programming to track the minimum distance back

through the graph to a root node outside the component at each step.
When this reaches our target k, we stop unrolling, and add the expanded
component back into the graph by reconnecting it with its original neigh-
borhood. For each copy of a node in the DAG-ified component we copy all
of its inbound and outbound edges where the other end of the edge lies
outside the strongly connected component. The resulting graph is acyclic
and supports queries up to length k on the original graph provided the
translation between the new graph and the source one. Figure 3 provides
a visual description of the process.

3.3 Construction

We can build a trivial graph without any bifurcations and a single acyclic
component from any linear reference sequence. A more interesting graph
may be generated by a series of align, edit operations. Assemblies of
this type may be generated by a variety of methods, and we implement
interfaces to read in the most common forms.

3.3.1 From population-scale sequencing results

A VCF file encodes a sequence DAG. We can interpret it as a multiple se-
quence alignment of individual genomes and a single reference. As such,
it is straightforward to build a variation graph from population variation data
in a VCF file. We do this using the same technique as in VG::edit. First,
we convert the alleles in the VCF file into mappings to a graph made of
only the reference sequence. We then edit this graph using the mappings,
incorporating the sequences given by the alleles in the VCF record into the
graph.

10

In standard practice, we ignore the haplotype information in the VCF
file and build the graph so as to allow all possible recombinations be-
tween successive variant loci. This haplotype-agnostic approach has ad-
vantages of simplicity and ubiquity. Even data providers with closed ac-
cess policies will release information about the variants discovered in their
cohorts, which provides a valuable resource when examining new indi-
viduals even if we do not have the complete haplotype information of the
source genomes [32]. However, there are valuable uses for the haplo-
types, and storing this haplotype information efficiently is an area of active
work among other collaborators on vg are exploring generalizations of the
positional Burrows Wheeler Transform (PBWT) [8].4

3.3.2 De novo assemblers

Many de novo assembly algorithms utilize a graph model internally to rep-
resent ambiguity in the sequencing data they are applied to. They assem-
ble a graph by overlapping reads or their k-mers, then generate contigs
as regions of this graph with low diversity in the input sequencing data.
Provided a de novo assembler implements a compatible data model to
the variation graph, we can build variation graphs from intermediate rep-
resentations. In vg we support the graphical fragment assembly (GFA)
format, which is a community standard serialization for bidirectional se-
quence graphs. In theory this allows interchange of graph data between
different assemblers and sequence graph algorithms, but in practice the
format is young and tools have not coalesced around a completely stable
schema.

4Adam Novak, a collaborator on the vg project, has implemented a generalization of
the PBWT to graphs in xg. This generalization (gPBWT) is designed for efficient haplo-
type matching and frequency queries, but does not provide efficient positional queries.

11

https://github.com/pmelsted/GFA-spec
https://github.com/pmelsted/GFA-spec

3.3.3 Progressive variation graph assembly

Provided the VG::align and VG::edit functions, we can generate pro-
gressive assemblies in much the same manner as is done in POA. We
align each sequence and edit the graph to include it in turn. The resulting
graph contains all input sequences as embedded paths. We implement
this technique as the multiple sequence/graph aligner vg msga, and have
applied it to assemble long sequences from the human MHC as described
in section 6.5.

4 Indexing variation graphs

It is practical to disable editing of the graph when we want to use the graph
as a reference system. In doing so, we have an opportunity to derive a
more compact representation for the graph that is static but allows efficient
queries of the graph. Such representations are termed “succinct” when
they occupy only a small constant factor more space than that required to
store a compressed version of their source data. In vg we use two indexes
based on succinct data structures to enable the alignment of sequences
to large graphs using low memory: a succinct variation graph index (xg),
and the generalized compressed suffix array (GCSA2).

4.1 Succinct graph representation (xg)

Our core implementation of variation graphs, vg::VG, is optimized for ef-
ficient runtime for editing and transformation operations. These needs
mean we must store a dynamic version of the graph, which we do using
unordered maps that are optimized for runtime and not memory overhead.
We have estimated that more than 300G of RAM would be necessary to
load the entire graph into main memory. Furthermore, serialization over-

12

https://github.com/vgteam/vg/blob/fbcb6e62/src/main.cpp#L674-L1248
https://github.com/vgteam/vg/blob/fbcb6e62/src/vg.hpp#L196-L1146

heads mean that loading this graph would take up to an hour. Editing
operations are mostly local, and so this poses little problem for many use.
However, it prevents us from working with the entire graph in one context.

When using a variation graph as a reference system, we are unlikely to
need to modify it. As such we can compress it into a system that provides
efficient access to important aspects of the graph. Specifically, we care
about the node and edge structure of the graph and queries that allow us
to extract and seek to positions in embedded paths. We would like to be
able to query a part of the graph corresponding to a particular region of a
chromosome in a reference path embedded in the graph. Similarly, if we
find an exact match on the graph using GCSA2, we would like to load that
region of the graph into memory for efficient local alignment.

We implement a succinct representation of the graph in the xg library.
We do so using data structures from SDSL-lite, which provides rank/select
dictionaries that we use to navigate compressed vectors that record the
labels and id space of the nodes, edges, and paths of the graph [24]. Our
model is summarized visually in figure 4.

4.1.1 Storing the nodes of the graph

We first concatenate node labels to generate the node sequence vector
Vs = seq(n1) + seq(n2) + . . . + seq(n|N |). We store this as a compressed
integer vector using the minimum required number of bits per base (which
is typically 3 bits, as we need to represent A, T, G, C, N}). In a second bit
vector Vb : |Vb| = |Vs| (the node bit vector), we write 1 at the position
corresponding to the first base in every node in Vs, and write a 0 for all
internal bases. We then store the node ids in the wavelet tree Vi [15],
ordered by their appearance in Vs.

By building a rank/select dictionary from Vb, we can map from positions
in the sequence vector to node ids, and from node ids to ranges in the se-
quence vector. For example, we can look up the sequence of a particular

13

https://github.com/vgteam/xg
https://github.com/simongog/sdsl-lite
https://en.wikipedia.org/wiki/Succinct_data_structure#Succinct_dictionaries
https://en.wikipedia.org/wiki/Succinct_data_structure#Succinct_dictionaries

node by its id in several steps. We first query the node id wavelet tree to
obtain the rank n of a particular node by its id i: n = ranki(Vi, 1). Then,
select1(Vb, n) will return the position of the start of the nth node in the node
sequence vector. In reverse, we can use rank1(Vs, n) to map from posi-
tions in Vs to node ranks, and then find the node id as Vi[n]. Recording
the node identifiers in Vi allows us to work with non-contiguous node id
spaces, but internally within xg, we identify nodes by their rank in Vs and
Vi.

4.1.2 A succinct bidirectional encoding of the edges of the graph

Variation graphs which we are likely to use as a reference system tend to
have few nodes with a high in or out degree. We rely on this tendency
to generate a bidirectional index of edges that is optimized for sparsely-
connected graphs.

We store the edges of graph, E, using a pair of compressed integer
vectors Fe and Te. In each vector, we record information about the edges
of each node in a single range of the vector. We record the ranges of these
vectors corresponding to particular nodes by marking bit vectors Fb and Tb.

We record the edges in the forward direction in Fe. For each ni ∈ N

we write its own id into Fe. Then for each edge from that node (∀j : eni→j)
we record the id of the node it goes to (j) in a block after the entry for ni.
We record the position of the node blocks in Fe in Fb by marking the node
entry with a 1, and leaving edge entries as 0.

Te and Tb follow the same pattern, but instead of recording the edges
from a node, we record the edges to it. This bidirectional structure al-
lows for fast traversal of the graph. Note that |Fe| = |Te| = |N | + |E|. In
other words, these vectors encode one entry for each node and edge in
the graph. We can exploit this property to provide a unique rank-based
identifier for every node and edge in the entity space of the graph, which
is useful for marking subgraphs with particular properties.

14

We use such a pattern to record the which node strand each edge
starts and ends on. Four additional bit vectors mark whether an edge
starts or ends on the forward or reverse strand: |If | = |It| = |Jf | = |Jt| =

|N |+|E|. We first mark all positions corresponding to the node block starts
in Fe as 0. This padding ensures that we are working in the graph’s entity
space as described by Fe. In If we record if an edge in Fe begins on
the reverse strand (1) or not (0), and in Jf we do the some for edges as
described in Te. In It we store if an edge in Fe goes to the reverse strand
(1) or not (0), while Jt lets us do the some for edges as ordered in Te.
In directed graphs these are typically sparse and easily compressible, but
they are necessary to represent completely generic graphs.

4.1.3 Compact path storage allowing positional queries

In xg we develop a compact representation of embedded paths that allows
them to be used for O(1) time positional queries. For each path pj we store
a bit vector Cj

p with the same length as our forward edge vector Fe. We
mark 1 in this vector for each element in the graph which occurs in the
path at its corresponding position in Fe, and a 0 otherwise.

We record the positions of the mappings (m1, . . . ,m|pj |) of pj in an in-
teger vector M j

p , where we record the node ranks of the nodes the path
traverses in Vs. The strand of each mapping m is marked in a bit vector Sj

p

of the same length as M j
p . We mark 0 if the mapping traverses the node’s

forward strand and 1 if it traverses the reverse.
Finally, we build a positional index of the path that allows us to de-

termine what node strand of the path is at a given position. We cache
the start position of each node relative to the beginning of the path in
Lj
p : |Lj

p| = |M j
p |. The bit vector Bj

p has the same length as the sequence
represented by the path. For each position in the path where we begin a
node, we mark a 1, and leave 0 otherwise. We can now determine the
node at a given position x in the path as M j

p [rank1(B
j
p, x)]. Furthermore,

15

we can efficiently determine where in a particular path a node is using the
Lj
p vector. This representation is not lightweight, and does not allow the

storage of many paths because it requires O(
∑

∀p∈P |p|) space. However,
it is an essential component of the index if we wish to query the graph
based on the coordinate system of an existing linear reference sequence.

4.2 Sequence queries (GCSA2)

Efficient alignment of sequences against large graphs using only dynamic
programming is not feasible as it requires O(NM) operations to derive an
optimal alignment of a pair of sequences of length N and M . We can
substantially improve these bounds by focusing the expensive dynamic
programming alignment only in regions of the graph where we find exact
matches between the query and our reference. For linear sequences, the
FM-index [11, 12] provides the required functionality to do so. Based on
the Burrows-Wheeler transform (BWT) of a source text [2], the FM-index
adds operations that allow the traversal of the suffix array embedded in the
BWT. An auxiliary data structure provides the mapping from BWT positions
to positions in the source sequence. As we can look up exact matches of
length N in a suffix array in O(N) operations, the FM-index and other com-
pressed suffix array variants allow us to efficiently localize reads to regions
of the reference before applying expensive local alignment algorithms.

Several generalizations of the FM-index to sequence graphs have been
developed in recent years. The generalized compressed suffix array (GCSA)
allows sequence queries in populations of genomes represented in a sin-
gle multiple sequence alignment, but is limited to directed acyclic repre-
sentations of these collections and requires heuristic optimization to build
whole genome indexes [26,27]. The hierarchical graph FM index (HGFM)
implemented in HISAT2 allows direct mapping of RNA sequencing reads
against a transcriptome model including small sequence variants such as

16

https://github.com/infphilo/hisat2

SNPs and indels [18]. In the HGFM, a global GFM represents the general
population, while tens of thousands of local GFMs represent denser vari-
ation on a small scale. Similarly to GCSA, HGFM requires the input graph
be acyclic.

Recently, Sirén5 has developed GCSA2, which generalizes the GCSA/GFM
model to use positionally-labeled deBruijn graphs as input. We implement
global alignment in vg by transforming the variation graph into a deBruijn
graph with positional labels that indicate where in the source graph a par-
ticular kmer starts and ends. GCSA2 can then generate a GCSA from this
labeled deBruijn graph, which we utilize during queries of the sequence
space of the graph.

MEMs are matches between a query and a reference system that can-
not be extended in either direction along the query while still matching
some sequence in the reference system. Super-maximal exact matches
(SMEMs) are MEMs that are not contained by any other MEM. As in bwa

mem [21], we use SMEMs to seed local alignment of reads. GCSA2 provides
a nearly-complete generalization of the FM-index to sequence graphs. As
it provides functions to traverse the suffix tree embedded in the GCSA, we
can use it to derive maximal exact matches (MEMs) against the source
graph in a single pass over our query.

5 Resequencing against the graph

Provided compact representations of the graph and the sequences of paths
through it, we are able to support resequencing experiments where a
graph is used as the reference system. Here we describe the two es-
sential phases of this process: the global alignment of reads to a large
graph, and the detection of novel variation against the graph.

5Jouni Sirén is currently a postdoctoral fellow in computational genomics at the
Sanger.

17

https://github.com/jltsiren/gcsa2

5.1 Global alignment

We begin global alignment by deriving the MEMs for a query relative to
our reference system. MEMs that are high-abundance may be filtered out
by counting the number of occurrences in the graph using GCSA2’s count

function, which uses techniques from document counting in compressed
indexes to generalize the range counting that is possible in a compressed
suffix array to GCSA. This allows us to avoid MEMs that have hundreds
of thousands of hits in our index without extracting the specific hits from
GCSA2.

We then cluster these MEMs by exploiting an approximate distance
metric on the graph. If our node id space is locally ordered, then nodes
with nearby ids are likely to lie close together in the graph. We set a
parameter to limit the distance at which we cluster, which is usually small
(in the range of 5-10 when we have built our graph with a maximum node
size of 32).

Now, for each cluster we extract the subgraph of the cluster and a small
neighborhood around it from xg, and locally align against it using unfolding,
kDAGification, and GSSW alignment. We sort the hits by their GSSW
alignment score, and return either the top hit or all hits if multi-mapping
results are desired.

Paired end reads may be handled using the approximate locality metric
based on node ids. Where one but not both fragments of a read pair map,
we attempt to rescue the failed mate by aligning it in a window around the
successful mapping.

For very long reads, where the local dynamic programming can be-
come prohibitively expensive, we break the reads into “bands” of a fixed
width w with overlap between successive bands of w/2. We then align
these bands independently, trim the overlaps from the alignments, and
concatenate the results. This allows vg to map reads of arbitrary length,
and is used as a core component in the long read progressive assembler

18

https://github.com/jltsiren/gcsa2/releases/tag/v0.6
https://github.com/jltsiren/gcsa2/releases/tag/v0.6

vg msga.

5.2 Variant calling

Variant calling on the graph is similar to variant calling on a linear refer-
ence [14, 20]. To call new variation, we extend the graph with the putative
novel alleles from alignments (via edit), label the graph with the amount
of read support we have, and filter out the portions of the graph with little
or no support from the reads. The resulting graph is a sample-specific
graph, and conveys similar information as a gVCF file, which describes
both the novel and reference-matching portions of the genome of a par-
ticular sample. Currently variant calling in vg is rudimentary and based
around a multi-stage “pileup”, edit, and calling pipeline.6

6 Results

We have implemented vg in C++11 under an open, distributed software de-
velopment model. The vg source repository totals 28k lines of vg-specific
code, which is augmented by a variety of dependencies (including xg and
GCSA2).

Here we briefly describe several results demonstrating the functionality
of vg. All experiments were carried out on the Sanger farm on a dedicated
compute node with 256 gigabytes of RAM and 32 2.4GHz AMD Opteron
6378 processors.

6UCSC researchers Glenn Hickey, Adam Novak, Benedict Paten, and Maciej Smuga-
Otto have contributed to this effort as part of the Global Alliance for Genomics and Health
evaluation of graph reference genomes.

19

http://samtools.github.io/hts-specs/VCFv4.2.pdf
https://github.com/vgteam/vg

6.1 Software development and continuous integration test-
ing

All features of vg are validated after every update to the source repository
using continuous integration software validation approaches. As such, ba-
sic tests demonstrate the desired functionality for each feature, in some
cases in using a programmatic proof. For example, we use kmer match-
ing to verify that the kmer space of a graph is equivalent before and after
unrolling and kDAGification. As of this writing, we have implemented 228
tests validating the functionality of the system.

6.2 The 1000 Genomes Project graph

The final phase of the 1000 Genomes Project has produced a data set
describing the genomes of 2500 humans [3]. We transformed the se-
quence DAG described by the project’s released VCF and the GRCh37
reference into a variation graph in 15.5 hours using 32 threads.7 The re-
sulting graph is 4.5G when serialized to disk, and contains 3.181 giga-
bases of sequence, which is exactly equivalent to the length of the input
reference plus the length of the novel alleles in the VCF file.

6.3 Indexing the 1000GP graph

We indexed the 1000GP+GRCh37 graph in two phases. First, we built
the xg index using a single-threaded process in 1.5 hours. This process
requires a high amount of RAM as it must load the entire graph into mem-
ory. For this bootstrapping process we use a reduced representation of
the variation graph that requires 170G of RAM at peak. The resulting xg

index is 30G on disk and when loaded into RAM for use by vg.
7VCF-based construction is parallelized by breaking the build into smaller pieces at

particular parts of the reference and concatenating the resulting graphs.

20

https://travis-ci.org/vgteam/vg

The 1000GP+GRCh37 graph includes some regions that are highly
degenerate, where many variants occur in small window. As our current
construction process does not take into account the haplotypes in the VCF
file, we include all recombinations between these alleles in our graph, gen-
erating small regions of high complexity. To build the GCSA2 index, we must
remove these regions. Otherwise, the intermediate deBruijn graph will
be too large to process in reasonable time. Using algorithms in vg mod,
we pruned edges from the graph which induce more than 4 bifurcations
in 16bp, and removed any extremely short subgraphs that result from this
destructive masking operation. This transformation preserves the id space
of the graph, allowing us to use it as the basis for seed generation against
the un-pruned graph.

Then, we transform this pruned 1000GP+GRCh37 graph into an order
16 deBruijn graph. We were able to distribute the pruning and deBruijn
graph generation steps by chromosome across the cluster, so precise tim-
ing of this step was not possible, but we estimate it to be in the range of
24 hours on a single 32-core system. We then built the GCSA2 index with
two steps of prefix doubling, wherein the its construction algorithm uses
the positional information in the input deBruijn graph to double the order of
the graph (prefix doubling takes us from a graph where k = 16 to k = 32,
and finally k = 64). The GCSA2 indexing process required 100G of RAM
at peak, but minimizes memory usage by implementing most operations
using streaming disk-backed sorts. As such, it required several terabytes
of I/O during indexing. The final step of GCSA2 indexing required 32.9 hours
of wall clock time and 105.3 hours of CPU time.

6.4 Mapping reads from NA12878

As a basic test of the functionality of the current implementation of the in-
dexes, we aligned a million reads from an Illumina X10 read set of NA12878

21

against the graph. This requires 60 seconds to load the indexes, 67G of
RAM, and approximately 145 seconds to align the reads.8 The mapping
rate is 99.4% = 1− (6418/1e6). Based on this test, we estimate that we are
able to align 7000 reads per second on the 32-core machine.9 We were
not able to complete a whole genome analysis using vg’s MEM mapping
algorithm in time for this report.

6.5 An overlap assembly of the MHC

In many contexts we have finished genomes, but not an assembly graph or
VCF file suitable for direct transformation into a variation graph. To support
the use of vg in these contexts, we developed a long read assembler vg
msga. This method takes a starting sequence or graph and progressively
aligns new sequences to the graph, editing the graph to embed each new
sequence as a path until all sequences have been included. The process
is deterministic and complete in that each new sequence will generate
an alignment. New sequences which do not map become new disjoint
subgraphs, while homologs will be compressed against each other in the
resulting graph.

We applied this method to the GRCh38 alternate alleles for the en-
tire MHC. Each sequence is between 4.6 and 5 megabases. We begin
with the base reference sequence and add GI568335879, GI568335954,
GI568335976, GI568335986, GI568335989, GI568335992, GI568335994,
and GI568335997 in turn. The process requires around on hour on our test
machine, producing a graph that serializes to 18M on disk. We observe
that the similarity of the sequences results in a more compact graph than
would be expected by concatenating the sequences. The total sequence

8Completed on vg-fbcb6e62 using paired end mapping and parameters -GX 0.9 -m
10 -c 5

9This will need to be improved by as much as a factor of two to ensure that the method
can be used in production on resources available at the Sanger.

22

https://github.com/vgteam/vg/wiki/Long-read-assemblies-using-vg-msga
https://github.com/vgteam/vg/wiki/Long-read-assemblies-using-vg-msga

length of the input is 38.16 × 106 bases, whereas the resulting graph con-
tains 10.8 × 106, a reduction of 3.5 fold. Figure 5 shows a rendering of
a graph generated by vg msga using the sequences of one of the MHC
genes (DRB1-3123).

7 Discussion and future plans

Presently vg provides interfaces to the basic functions required for rese-
quencing analysis using variation graph references. We can construct,
import, visualize, assemble, examine, modify, index, and query the graph
and associated indexes using tools in vg. We can efficiently map new se-
quence reads to the reference using succinct indexes of the graph and
its sequence space, and finally we can describe variation between a new
sample and an arbitrary reference embedded as a path in the graph. This
framework provides the basis for future improvements and experimenta-
tion. However, the project currently has a number of weak points which we
would like to improve.

For one, the variant calling method is rudimentary and focused on de-
termining variants against single nodes in the graph, which works for de-
tecting SNPs and small indels. We plan to implement a calling and geno-
typing approach based on superbubbles in the graph. To do this we can
employ recent work which develops a linear-time algorithm for the detec-
tion of superbubbles in the graph [1]. After detecting superbubbles, we
plan to apply haplotype-based variant calling approaches [14] to the reads
overlapping the superbubble. This approach will be generic and handle all
classes of variation, both small (SNPs and indels) and large (SVs).

Furthermore, we would like to utilize recent work generalizing the PBWT
to graphs in the genotyping process. This generalized system, gPBWT,
provides the same efficient haplotype matching and counting queries pos-
sible in PBWT, but on a variation graph. It should also be possible to

23

apply this to reduce the complexity of the indexing process by generating
a deBruijn graph for GCSA2 that only contains kmers we have observed
previously. In anticipation of this, we have attempted a modification of the
indexing process that only indexes the embedded paths in the graph, but
have not completely debugged and tested it.

We would like to complete several experiments to validate the perfor-
mance of the method in and end-to-end alignment and variant calling pro-
cess. First, we plan to complete a whole genome analysis of NA12878 and
other individuals in the platinum genomes pedigree. This is currently not
possible as the calling method is localized to small regions of the graph,
and we have not developed efficient techniques to extract reads overlap-
ping a particular region. Similarly, we plan to use sequencing data from
the CHM1 and CHM13 cell lines to construct a synthetic pseudodiploid.
The high quality of the de novo assemblies for these cell lines (which are
based on deep PacBio long-read sequencing) will allow us to evaluate the
variation calling processes in a completely generic way within the graph
itself. We will use the calling process to generate a sample graph based
on short reads and the 1000GP reference, then evaluate our results by
threading the assembled contigs for CHM1 and CHM13 through the graph
and counting the path divergences between them and our estimated sam-
ple graph.

A large number of organisms lack complete reference genomes, or
have such high rates of heterozygosity that generating linear versions of
their genomes may be practically impossible. We plan to apply vg to these
contexts by generating assembly graphs with other methods and then us-
ing these graphs as a reference for resequencing analysis. This would al-
low whole genome resequencing analysis in previously-inaccessible con-
texts, such as in pooled sequencing of organisms without the aid of a
finished reference sequence. Validating these approaches will require the
extension of methods for population structure and association analysis to

24

http://www.ncbi.nlm.nih.gov/assembly/706168/

the graph, which will be a difficult but essential step in the generalization
of genomics from linear to graphical systems.

References

[1] Ljiljana Brankovic, Costas S Iliopoulos, Ritu Kundu, Manal Mohamed,
Solon P Pissis, and Fatima Vayani. Linear-time superbubble identi-
fication algorithm for genome assembly. Theoretical Computer Sci-
ence, 609:374–383, 2016.

[2] Michael Burrows and David Wheeler. A block-sorting lossless data
compression algorithm. In DIGITAL SRC RESEARCH REPORT.
Citeseer, 1994.

[3] 1000 Genomes Project Consortium et al. A global reference for hu-
man genetic variation. Nature, 526(7571):68–74, 2015.

[4] International Human Genome Sequencing Consortium. Ini-
tial sequencing and analysis of the human genome. Nature,
409(6822):860–921, Feb 2001.

[5] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A.
DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry,
G. McVean, and R. Durbin. The variant call format and VCFtools.
Bioinformatics, 27(15):2156–2158, Aug 2011.

[6] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and
S. L. Salzberg. Alignment of whole genomes. Nucleic Acids Res.,
27(11):2369–2376, Jun 1999.

[7] A. Dilthey, C. Cox, Z. Iqbal, M. R. Nelson, and G. McVean. Improved
genome inference in the MHC using a population reference graph.
Nat. Genet., 47(6):682–688, Jun 2015.

25

[8] Richard Durbin. Efficient haplotype matching and storage using
the positional burrows–wheeler transform (pbwt). Bioinformatics,
30(9):1266–1272, 2014.

[9] Plasmodium falciparum Genome Project Consortium. Plasmodium
falciparum Genome Project. http://www.sanger.ac.uk/resources/

downloads/protozoa/plasmodium-falciparum.html, 2015.

[10] M. Farrar. Striped Smith-Waterman speeds database searches six
times over other SIMD implementations. Bioinformatics, 23(2):156–
161, Jan 2007.

[11] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures
with applications. In Foundations of Computer Science, 2000. Pro-
ceedings. 41st Annual Symposium on, pages 390–398. IEEE, 2000.

[12] Paolo Ferragina and Giovanni Manzini. Indexing compressed text.
Journal of the ACM (JACM), 52(4):552–581, 2005.

[13] M. J. Gardner, N. Hall, E. Fung, O. White, M. Berriman, R. W. Hy-
man, J. M. Carlton, A. Pain, K. E. Nelson, S. Bowman, I. T. Paulsen,
K. James, J. A. Eisen, K. Rutherford, S. L. Salzberg, A. Craig, S. Kyes,
M. S. Chan, V. Nene, S. J. Shallom, B. Suh, J. Peterson, S. Angiuoli,
M. Pertea, J. Allen, J. Selengut, D. Haft, M. W. Mather, A. B. Vaidya,
D. M. Martin, A. H. Fairlamb, M. J. Fraunholz, D. S. Roos, S. A. Ralph,
G. I. McFadden, L. M. Cummings, G. M. Subramanian, C. Mungall,
J. C. Venter, D. J. Carucci, S. L. Hoffman, C. Newbold, R. W. Davis,
C. M. Fraser, and B. Barrell. Genome sequence of the human malaria
parasite Plasmodium falciparum. Nature, 419(6906):498–511, Oct
2002.

[14] Erik Garrison and Gabor Marth. Haplotype-based variant detection
from short-read sequencing. arXiv preprint arXiv:1207.3907, 2012.

26

http://www.sanger.ac.uk/resources/downloads/protozoa/plasmodium-falciparum.html
http://www.sanger.ac.uk/resources/downloads/protozoa/plasmodium-falciparum.html

[15] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order
entropy-compressed text indexes. In Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 841–
850. Society for Industrial and Applied Mathematics, 2003.

[16] Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean. De novo
assembly and genotyping of variants using colored de Bruijn graphs.
Nat. Genet., 44(2):226–232, Feb 2012.

[17] Z. Iqbal, I. Turner, and G. McVean. High-throughput microbial popu-
lation genomics using the Cortex variation assembler. Bioinformatics,
29(2):275–276, Jan 2013.

[18] Daehwan Kim, Ben Langmead, and Steven L Salzberg. Hisat: a
fast spliced aligner with low memory requirements. Nature methods,
12(4):357–360, 2015.

[19] C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment
using partial order graphs. Bioinformatics, 18(3):452–464, Mar 2002.

[20] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,
G. Marth, G. Abecasis, and R. Durbin. The Sequence Alignment/Map
format and SAMtools. Bioinformatics, 25(16):2078–2079, Aug 2009.

[21] Heng Li. Aligning sequence reads, clone sequences and assembly
contigs with bwa-mem, 2013.

[22] E. W. Myers. The fragment assembly string graph. Bioinformatics, 21
Suppl 2:79–85, Sep 2005.

[23] E. W. Myers and W. Miller. Approximate matching of regular expres-
sions. Bull. Math. Biol., 51(1):5–37, 1989.

[24] Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-
compressed rank/select dictionary. In Proceedings of the Meeting

27

on Algorithm Engineering & Expermiments, pages 60–70. Society for
Industrial and Applied Mathematics, 2007.

[25] J. T. Simpson and R. Durbin. Efficient construction of an assembly
string graph using the FM-index. Bioinformatics, 26(12):i367–373,
Jun 2010.

[26] Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing finite language
representation of population genotypes. In Algorithms in Bioinformat-
ics, pages 270–281. Springer, 2011.

[27] Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing graphs
for path queries with applications in genome research. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (TCBB),
11(2):375–388, 2014.

[28] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2):146–160, 1972.

[29] Shuai Yuan and Zhaohui Qin. Read-mapping using personalized
diploid reference genome for rna sequencing data reduced bias for
detecting allele-specific expression. 2012 IEEE International Confer-
ence on Bioinformatics and Biomedicine Workshops, Oct 2012.

[30] D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res., 18(5):821–829, May
2008.

[31] M. Zhao, W. P. Lee, E. P. Garrison, and G. T. Marth. SSW library: an
SIMD Smith-Waterman C/C++ library for use in genomic applications.
PLoS ONE, 8(12):e82138, 2013.

[32] James Zou, Gregory Valiant, Paul Valiant, Konrad Karczewski, Siu On
Chan, Kaitlin Samocha, Mokol Lek, Shamil Sunyaev, Mark Daly,

28

Daniel MacArthur, et al. Quantifying the unobserved protein-coding
variants in human populations provides a roadmap for large-scale se-
quencing projects. bioRxiv, page 030841, 2015.

29

Figure 2: The starting graph (A) has an inverting edge leading from the
forward to reverse strand of node 2. In (B) we unroll the graph with k
greater than the length of the graph, which materializes the implied reverse
strand as sequence on the forward strand of new nodes.

30

Figure 3: The starting graph (A) and a representation without sequences
or sides to clarify the underlying structure (B). In (C) we have unrolled one
step (k = 2). In (D), k = 4, (E) k = 10, and (F) k = 25.

31

Figure 4: A sketch of important components of the xg graph index. The
source graph is at the top of the figure. A single path is defined by the
nodes and edges in black. For simplicity we omit the edge type vectors
and the traversal orientation vector as in this directed acyclic graph they
would be marked as 0.

32

Figure 5: A rendering of a portion of the MHC graph assembled by vg

msga around the DRB1-3123 gene. Node labels have been omitted. The
graph rendering required enhancement to make the structure clear at this
zoom level, which results in the embossed effect.

33

	Introduction
	Model
	Operations on the graph
	Editing
	Alignment
	Background
	SIMD-accelerated local alignment
	Unfolding
	kDAG-ification

	Construction
	From population-scale sequencing results
	De novo assemblers
	Progressive variation graph assembly

	Indexing variation graphs
	Succinct graph representation (xg)
	Storing the nodes of the graph
	A succinct bidirectional encoding of the edges of the graph
	Compact path storage allowing positional queries

	Sequence queries (GCSA2)

	Resequencing against the graph
	Global alignment
	Variant calling

	Results
	Software development and continuous integration testing
	The 1000 Genomes Project graph
	Indexing the 1000GP graph
	Mapping reads from NA12878
	An overlap assembly of the MHC

	Discussion and future plans

