M\ OWASP Foundation

~—
o

security-zone 2012 -
September 19th, 2012 ‘..»' . h’[’[pS/ /\WWW. Oowasp.org

OWASP
Top 10 Mobile Risks

Sven Vetsch
| eader OWASP Switzerland

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License .

INntroduction
‘.

® Sven Vetsch

® | cader OWASP Switzerland

® http://www.owasp.ch

® Partner & CTO Redguard AG
® Nhttp://www.redguard.ch

® Focused on Application Security (Web,
Mobile, ...)

Agenda

® Mobile Security Project
® Mobile Threat Model

® [op 10 Mobile Risks

® Wrap Up

® Q&A

Mobile Security Project

* Started in Q3 2010

* Why?
|]

* Unique and different
security risks

* Goal

* [0 build security into
mobile dev. life cycle

Moblle Threat Model

Mobile Threat Model

* Platforms vary heavily

* Very different from traditional web app
model due to wildly varying use cases and
usage patterns

* Must consider more than the “Apps”

* Remote web services

* Platform integration (ICloud, GCM})

* Device (in)security considerations
T

Peer Devices
Payments

Laptops

NFC
Bluetooth

Mobile Threat Model

App Stores

802.11
NFC
Bluetooth

N\

Carrier
Network

Web
Services

Local Network
(WIiFi, VPN, etc)

Corporate

Consumer

Buil

t-in Malicious

APPS
Libraries Dependencies M‘:;.ltll;:elzs
Kernel Drivers SyF:tI:m
(01
Radios GPS Sensors

Hardware

Mobile Device

Corporate
Networks

Hardware
Extensions

Hardware
Extensions

s .

2>

Laptop
Card Reader

Sensors

Boundary

Bi-directional
Communication

Communication

Bi-directional
Communication

Mobile Threat Model

Improper - Modifying
Session S_ocual_ Local Data

Handling Engineering \
\ Weak

> Authorization Ta m eri ng
Spoof i n —— Weak

Authentication
Carrier Insecure
Malicious Network WiFi
Mallcous Application Breach network
QR Code Untrusted
NFC Tag Or
Peer Malware Lost

Bosics o e~ ~
“~ > Information
Repudiation Disclosure

Engineering Breach

Client Apps
Side
Injection Make

Unauthorized
Malware Purchases Push Apps
Remotely

Sandbox /
Escape Compromised

Elevation of

Denial of Privilege .
Se rVi ce \ Authorization
‘/ N . g
DDoS / \

Excessive Rooted/ Rootkits
API Usage Jailbroken

Push
_ Notification e el =
Crashing Flooding
Apps
Flawed
\ Authentication

Top 10 Mobile Risks

Top 10 Moblle Risks

* |ntended to be platform-agnostic

* Focused on areas of risk rather than individual

vulnerabllities

* Weighted utilizing the OWAS
Methodology

SISk

Rating

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Top 10 Mobile Risks

* Everything in this presentation is in a draft
state.

* First final version is planned for around
—ebruary 2013

Top 10 Moblle Risks

M1 Insecure Data Storage M6 Improper Session Handling
M2 Weak Server Side Controls M7 Secunty Decisions
Via Untrusted Inputs
M3 Lol Transport M8 Side Channel Data Leakage
Layer Protection

M4 Client Side Injection M9 Broken Cryptography

Poor Authorization and Sensitive Information
M5 o M10 .

Authentication Disclosure

M1 - Insecure Data Storage

* Sensitive data left unprotected

* Applies to locally stored data + .
cloud synced

* (Generally a result of: .
* Not encrypting data

* (Caching data not intended for long-term o
storage

* Weak or global permissions

* Not leveraging platform best-practices

lmpact]

Confidentiality of
data lost

Credentials
disclosed

Privacy violations

Non-compliance

M1 - Insecure Data Storage

Login

Username

Password

V CENE N EAE

OWASP

The Open Wb Applaation Secwty Progect

public void saveCredentials(String userName, String password) {

SharedPreferences crede = thi dPreferences(

"credentials”, |MODE WORLD_READABLE); i— Very Bad
SharedPreferences.Editor editor = credentials.edit();
editor.putString("username”, fUserName);Yy
editor.putString("password”,
editor.putBoolean("remember", true);
editor.commit();

Convenient!

M1 - Insecure Data Storage
Prevention Tips

Store ONLY what is absolutely
required

1.1-1.14 |dentify and protect sensitive

Never use public storage areas (ie- data on the mobile device
SD card) e

Jse secure containers and platform
orovided file encryption APIs

DO not grant files world readable or
world writeable permissions

M1 - Insecure Data Storage

Drwv/inntinn TiNne
European Network and Information Security Agency (ENISA)
“Smartphones secure development guidelines for app
developers”

Store ONLY what is absolutely
required

1.1-1.14 |dentify and protect sensitive

Never use public storage areas (ie- data on the mobile device
SD card) e

_everage secure containers and

olatform provided file encryption
APIs

Do not grant files world readable or
world writeable permissions

M2- Weak Server Side Controls

* Applies to the backend services [lmpact]

* Not mobile specific per se, but * Confidentially of
essential to get it right data lost

* We still can’t trust the client * |ntegrity of data

* Luckily, we understand these not tristed

iIssues (quite) well

* Existing controls may need to be
re-evaluated

M2- Weak Server Side Controls

OWASP Top 10

A3: Broken
A2: Cross Site | Authentication
Scripting (XSS) W and Session

Management

Al; Injection

A5: Cross Site

A6: Security
Request Forgery M ,: |
(CSRF) Misconfiguration

A7: Failure to
Restrict URL
Access

A9: Insecure W A10: Insufficient

Cryptographic [Transport Layer
Storage Protection

* https://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project

A4: Insecure
Direct Object
References

AS: Unvalidated
Redirects and
Forwards

OWASP Cloud Top 10

: Accountability & Data Risk

: User Identity Federation

: Regulatory Compliance

: Business Continuity & Resiliency

: User Privacy & Secondary Usage of Data
: Service & Data Integration

: Multi-tenancy & Physical Security

: Incidence Analysis & Forensics

. R9: Infrastructure Security

‘ R10: Non-production Environment Exposure

* https://www.owasp.org/images/4/47/Cloud-
Top10-Security-Risks.pdf

M2- Weak Server Side Controls
Prevention Tips

Understand the additional risks

mobile apps introduce into existing

architectures 5.1-5.8 Keep the backend APls

(services) and the platform
(server) secure

Leverage the wealth of knowledge
that Is already out there

OWASP Web Top 10, Cloud Top
10, Web Services Top 10

Cheat sheets, development guides,
ESAPI

M3- Insufficient Transport Layer Protection

* Complete lack of encryption for [Impact]
transmitted data

* Man-in-the-

* Yes, this unfortunately happens often middle attacks

* Weakly encrypted data in transit

* Jampering w/
* Strong encryption, but ignoring data In transit

security warnings * Confidentiality of

* Ignoring certificate validation errors data lost

 Falling back to plain text after failures

M3- Insufficient Transport Layer Protection

Real World Example: Google ClientLogin
Authentication Protocol (fixed)

* Authorization header sent over HI TP

* \When users connected via wifl, apps
automatically sent the token in an attempt to
automatically synchronize data from server

* Sniff this value, impersonate the user

http://www.uni-ulm.de/in/mi/mitarbeiter/koenings/catching-authtokens.html

M3- Insufficient Transport Layer Protection
Prevention T1ps

* Ensure that all sensitive data
eaving the device Is encrypted

3.1.3.6 Ensure sensitive data is
protected in transit

* This includes data over carrier
networks, WiFi, and even NFC

* \When security exceptions are
thrown, it’s generally for a
reason...DO NOT ignore them!

M4- Client Side Injection

* Apps using browser libraries [Impact]
* Pure web apps .
| | * Device
* Hybrid web/native apps C ompromi 36
* Some familiar faces
* Joll fraud
e XSS and HTML Injection
* SQL Injection ° P”V”eg.e
escalation

* New and exciting twists
* Abusing phone dialer + SMS

* Abusing in-app payments

M4- Client Side Injection

Garden Variety XSS....

@0verride
public void onCreate(Bundle savedInstanceState) {

}

super.onCreate(savedInstanceState);
setContentView(R.layout. demo);

context = this.getApplicationContext();

webView = (WebView) findViewById(R.id.demoWebView);

webView.addJavascriptInterface(new Sms)SInterface(this),
"sms)SInterface");

GetSomelnfo getInfo = new GetSomelnfo();

getInfo.execute(null, null);

[ebView .getSettings().setJavaScriptEnabled(true);]

public String generateHTML(pPtring untrustedData} {

}

return "Check this out!
" +@trusted00t@

With access to:

public class Sms)SInterface implements Cloneable {

Context mContext;
public Sms)SInterface(Context context) {

mContext = context;

}

fshblic void sendSMS(String phoneNumber, String message) {

SmsManager sms = SmsManager.getDefault();

.

sms.sendTextMessage(phoneNumber, null, message, null, null);

\

/

M4- Client Side Injection

Prevention Tips

* Sanitize or escape untrusted data
before rendering or executing It

* Use prepared statements for
database calls...concatenation is
still bad, and always will be bad

10.1-10.5

* Minimize the sensitive native
capabillities tied to hybrid web
functionality

Pay particular attention to
validating all data received
from and sent to non-
trusted third party apps
before processing

Carefully check any runtime
interpretation of code for
errors

M5- Poor Authorization and Authentication

* Part mobile, part architecture [Impact]
e Some apps rely solely on * Privilege
immutable, potentially escalation
compromised values (IMEl, IMS,
UUID) * Unauthorized
aCCess

* Hardware identifiers persist across
data wipes and factory resets

* Adding contextual information is
useful, but not foolproof

M5- Poor Authorization and Authentication

if (dao.
int
dao.
dao.

bean.
bean.
bean.

bean
retu

1sDevicePermanentlyAuthorized(devicelD)) {
newSessionToken = LoginUtils.generateSessionToken();
openConnection();
updateAuthorizedDeviceSession(devicelD,

sessionloken, LoginUtils.getTimeMilliseconds());
setSessionToken(newSessionToken);
setUserName(dao.getUserName(sessionToken));
setAccountNumber(dao.getAccountNumber(sessionToken));
.setSuccess(true);
rn bean;

M5- Poor Authorization and Authentication
Prevention Tips

e (Contextual info can enhance

things, but only as part of a

multi-factor implementation 4146 Implementuser
and session management
* (Qut-of-band doesn’t work when S
t’s all the same device (l.e. paid resources
MTAN)
* Never use device ID or
subscriber ID as sole

authenticator

MO- Improper Session Handling

Mobile app sessions are generally
MUCH longer

Why? -> Convenience and usability

AppPs Maintain sessions via

HT TP cookies
OAuth tokens

SSO authentication services

Using a device identifier as a session

token Is a bad idea

lmpact]

Privilege
escalation

Unauthorized
aCCess

Circumvent
icensing and
Dayments

MO- Improper Session Handling
Prevention Tips

* Don’t be afraid to make users
re_abthentlca‘te from tlme tO tlme 1.13 Use non-persistent identifiers

* :nsure tha tO <ens Can be A0 Iazz’l?fgr?tiecn?:l[’[il<J)Sr1e/;1uthoriza’tion
revoked quickly in the event of a and session management
ost/stolen device

e Utilize high entropy, tested token
generation resources

M7 - Security Decisions Via Untrusted Inputs

* (Can be leveraged to bypass [Impact]
permissions and security models

e (Consuming paid
resSources

* Similar but different depending on

platform

e Data exfiltration
* |OS: Abusing URL Schemes

* Privilege

* Android: Abusing Intents |
escalation

* Several attack vectors
e Malicious apps

* (Client side injection

M7 - Security Decisions Via Untrusted Inputs

Skype I0S URL Scheme Handling Issue

HTM.L or Attacker <_|f:ame . Skype app
Script src="skype: :
e embeds handles this
Injection via : 170312345677
iframe : URL Scheme
app call></iframe>

* http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/

M7 - Security

Decisions Via Untrusted Inputs
Prevention TIps

* (Check caller’'s permissions at
iINnput boundaries

Run interpreters at minimal
privilege levels

* Prompt the user for additional

authorization

* \Where permission checks

cannot be pe
additional ste

before allowing

formed, ensure

0S required to

launch sensitive actions

M8- Side Channel Data Leakage

* Mix of not disabling platform features and [
programmatic flaws

lmpact]

* Sensitive data ends up in unintended places * Data retained
iIndefinitely

* \Web caches

* Keystroke logging ¢ Privacy violations
* Screenshots (i.e. I0OS backgrounding)
* Logs (system, crash)

* Temp directories

* Understand what 3@ party libraries in your

apps are doing with user data (i.e. ad
networks, analytics)

M8- Side Channel Data Leakage

Screenshots

(] com.krvw.iGoat

(2B o[m] [o](s](8] Q

Name 4| Date Modified Size Kind
£ UlApplicationAutomaticSnapshotDefault-Portrait.jpg Today, 3:32 AM 53KB JPEGC image '

0gging
try {

userInfo = client.validateCredentials(userName, password);
if (userInfo.get("success").equals("true"))

launchHome(v);
else {

Log.w("Failed login", EerName + "y passwo@;

}

} catch (Exception e) {
Log.w("Failed login",[EEerName + "y passonE};

}

Introduction Exercise

Password reset...

In what city were you born?

r N

NYC

What is your favorite color?

Green|

a|w|efr|T|v|ul1]o]P
Als|pfF|GIH|J|K|L

L zixc]viein|mE

return

M8- Side Channel Data Leakage
Prevention Tips

Never log credentials, or any other sensitive data to -
Control Description
(system) logs

Remove sensitive data before screenshots are taken,

7.3 Check whether you are
collecting PII, it may not

disable keystroke logging per field, and utilize anti- always be obvious

caching directives for web content 7 4 Audit communication
mechanisms to check for

Debug your apps before releasing them to observe unintended leaks (e.g. image

files created, written to, or modified in any way metadata)

Carefully review any third party libraries you introduce
and the data they consume

Test your applications across as many platform
Versions as possible

M9- Broken Cryptography

Two primary categories [Impact]
Broken implementations using strong : T
crypto libraries * (Confidentiality of
data lost
Custom, easily defeated crypto
implementations °* Privilege
escalation

Encoding = encryption
* (Circumvent

Obfuscation = encryption | ,
business logic

Serialization = encryption

M9- Broken Cryptography

byte[] array0OfBytel - { 110, 72, 113, 80, 114, 89, 52, 52, 68, 115, 55, 71, 104, 98, 72, 71 };
sKey = new SecretKeySpec(arrayOfBytel, "AES");

sKeySize = 16,

sivBytes = new byte[l6];

byte[] arrayOfBytel = slvBytes;

slvipec = new IvParameterSpec(arrayOfBytel);

sPaddingChar = 32;

M9- Broken Cryptography
Prevention Tips

* Storing the key with the
encrypted data negates -
everything

Utilize file encryption API’s

2.3 Leverage secure containers

* [everage battle-tested crypto
lbraries vice writing your own

* Jake advantage of what your
platform already provides!

M10- Sensitive Information Disclosure

We differentiate by stored (M1) vs. [Impact]
embedded/hardcoded (M10)

* (Credentials

Apps can be reverse engineered with B s A

relative ease

* |ntellectual

Code obfuscation raises the bar, but
property exposedo

doesn’t eliminate the risk

Commonly found “treasures”’:

APl keys
Passwords
Sensitive business logic

M10- Sensitive Information Disclosure

if (rememberMe)
saveCredentials(userName, password);
//our secret backdoor account
if (userName.equals("all_powerful")
&& password.equals("iamsosmart”))

launchAdminHome(v);

public static final double SECRET_SAUCE_FORMULA = (1.2344 * 4.35 - 4 4+ 1.442) * 2.221,

M10- Sensitive Information Disclosure
Prevention Tips

* Private AP| keys are called that for
a reason...keep them off of the

Do not store any passwords

' or secrets in the application
client o oec

e Keep proprietary and sensitive
business logic on the server

* Almost never a legitimate reason
to hardcode a password (if there
IS, you have other problems)

Going Forward

* 12 month revision cycle

* Rapidly evolving platforms

e Stale data == not as useful

* |f you have suggestions or ideas, we want
to hear them!

Conclusion

* Thisis a good start, but we have a long

way 10 go

e \We've identified the issues...now we have

to fix them

* Platforms must mature, frameworks must

* The OWAS
mMust grow

mature, apps must mature

P Mobile body of knowledge

Q&A

Thanks for listening!

* Thanks to Jack Mannino, Zach Lanier and Mike Zusman for
their original OWASP Top 10 Mobile Risks presentations.

* (Contact me:

* gsven.vetsch@owasp.org

* Twitter: @disenchant_ch / @owasp_ch

