Semigroup intersection problems in the Heisenberg groups

Ruiwen Dong

University of Oxford

March 2023

3 x 3

An old decidability problem

Post Correspondence Problem (1946). The following is undecidable:

Input: A set of pairs of words $\mathcal{G} = \{(v_1, w_1), \dots, (v_K, w_K)\}$ over the alphabet $\{a, b\}$.

Output: Can we find a sequence (possibly with repetition) $(v_{i_1}, w_{i_1}), (v_{i_2}, w_{i_2}), \dots, (v_{i_m}, w_{i_m}) \in \mathcal{G}$ such that the concatenations:

 $v_{i_1}v_{i_2}\cdots v_{i_m}=w_{i_1}w_{i_2}\cdots w_{i_m}?$

An old decidability problem

Post Correspondence Problem (1946). The following is undecidable:

Input: A set of pairs of words $\mathcal{G} = \{(v_1, w_1), \dots, (v_K, w_K)\}$ over the alphabet $\{a, b\}$.

Output: Can we find a sequence (possibly with repetition) $(v_{i_1}, w_{i_1}), (v_{i_2}, w_{i_2}), \dots, (v_{i_m}, w_{i_m}) \in \mathcal{G}$ such that the concatenations:

$$v_{i_1}v_{i_2}\cdots v_{i_m}=w_{i_1}w_{i_2}\cdots w_{i_m}?$$

Markov (1940s): is the following decidable?

Input: Two sets of matrices $\mathcal{G} = \{A_1, \ldots, A_M\}$, $\mathcal{H} = \{B_1, \ldots, B_N\}$.

Output: Can we find there two sequences $A_{i_1}, A_{i_2}, \ldots, A_{i_m} \in \mathcal{G}$ and $B_{j_1}, B_{j_2}, \ldots, B_{j_n} \in \mathcal{H}$, such that

$$A_{i_1}A_{i_2}\cdots A_{i_m}=B_{j_1}B_{j_2}\cdots B_{j_n}?$$

周 とう きょう うまし しょう

An old decidability problem

Post Correspondence Problem (1946). The following is undecidable:

Input: A set of pairs of words $\mathcal{G} = \{(v_1, w_1), \dots, (v_K, w_K)\}$ over the alphabet $\{a, b\}$.

Output: Can we find a sequence (possibly with repetition) $(v_{i_1}, w_{i_1}), (v_{i_2}, w_{i_2}), \dots, (v_{i_m}, w_{i_m}) \in \mathcal{G}$ such that the concatenations:

$$v_{i_1}v_{i_2}\cdots v_{i_m}=w_{i_1}w_{i_2}\cdots w_{i_m}?$$

Markov (1940s): is the following decidable?

Input: Two sets of matrices $\mathcal{G} = \{A_1, \ldots, A_M\}$, $\mathcal{H} = \{B_1, \ldots, B_N\}$.

Output: Can we find there two sequences $A_{i_1}, A_{i_2}, \ldots, A_{i_m} \in \mathcal{G}$ and $B_{j_1}, B_{j_2}, \ldots, B_{j_n} \in \mathcal{H}$, such that

$$A_{i_1}A_{i_2}\cdots A_{i_m}=B_{j_1}B_{j_2}\cdots B_{j_n}?$$

Markov (1947) : undecidable in $\mathbb{Z}^{4 \times 4}$.

ミ▶ ▲ ミ ト ミ つへぐ

Reformulation as Semigroup Intersection Emptiness

Intersection Emptiness Problem: is the following decidable?

Input: *m* finite sets of elements $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_m$ in an ambient (semi)group *S*.

Output: Denote by $\langle \mathcal{G}_i \rangle$ the semigroup generated by \mathcal{G}_i . Does

 $\langle \mathcal{G}_1 \rangle \cap \langle \mathcal{G}_2 \rangle \cap \cdots \cap \langle \mathcal{G}_m \rangle = \emptyset$?

Intersection Emptiness Problem: is the following decidable?

Input: *m* finite sets of elements $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_m$ in an ambient (semi)group *S*.

Output: Denote by $\langle \mathcal{G}_i \rangle$ the semigroup generated by \mathcal{G}_i . Does

 $\langle \mathcal{G}_1 \rangle \cap \langle \mathcal{G}_2 \rangle \cap \cdots \cap \langle \mathcal{G}_m \rangle = \emptyset$?

Undecidability results (for m = 2):

• Post Correspondence Problem: $S = \{a, b\}^* \times \{a, b\}^*$. Take $\mathcal{G}_1 = \{(v_{i_1}, w_{i_1}), (v_{i_2}, w_{i_2}), \dots, (v_{i_m}, w_{i_m})\}, \mathcal{G}_2 = \{(a, a), (b, b)\}.$

Intersection Emptiness Problem: is the following decidable?

Input: *m* finite sets of elements $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_m$ in an ambient (semi)group *S*.

Output: Denote by $\langle \mathcal{G}_i \rangle$ the semigroup generated by \mathcal{G}_i . Does

 $\langle \mathcal{G}_1 \rangle \cap \langle \mathcal{G}_2 \rangle \cap \cdots \cap \langle \mathcal{G}_m \rangle = \emptyset$?

Undecidability results (for m = 2):

- Post Correspondence Problem: $S = \{a, b\}^* \times \{a, b\}^*$. Take $\mathcal{G}_1 = \{(v_{i_1}, w_{i_1}), (v_{i_2}, w_{i_2}), \dots, (v_{i_m}, w_{i_m})\}, \mathcal{G}_2 = \{(a, a), (b, b)\}.$
- Markov (1947): undecidable for $S = \mathbb{Z}^{4 \times 4}$.
- Halava and Harju (2007): undecidable for $S = \mathbb{Z}^{3 \times 3}$.

Intersection Emptiness Problem: is the following decidable?

Input: *m* finite sets of elements $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_m$ in an ambient (semi)group *S*.

Output: Denote by $\langle \mathcal{G}_i \rangle$ the semigroup generated by \mathcal{G}_i . Does

 $\langle \mathcal{G}_1 \rangle \cap \langle \mathcal{G}_2 \rangle \cap \cdots \cap \langle \mathcal{G}_m \rangle = \emptyset$?

Undecidability results (for m = 2):

- Post Correspondence Problem: $S = \{a, b\}^* \times \{a, b\}^*$. Take $\mathcal{G}_1 = \{(v_{i_1}, w_{i_1}), (v_{i_2}, w_{i_2}), \dots, (v_{i_m}, w_{i_m})\}, \mathcal{G}_2 = \{(a, a), (b, b)\}.$
- Markov (1947): undecidable for $S = \mathbb{Z}^{4 \times 4}$.
- Halava and Harju (2007): undecidable for $S = \mathbb{Z}^{3 \times 3}$.

Open problem: decidability for $S = \mathbb{Z}^{2 \times 2}$.

э.

When is Intersection Emptiness decidable?

Intersection Emptiness is decidable in Abelian groups.

When is Intersection Emptiness decidable?

Intersection Emptiness is decidable in Abelian groups.

Example $(S = \mathbb{Z}^d)$ Let $\mathcal{G}_1 = \{a_1, \dots, a_n\}, \mathcal{G}_2 = \{b_1, \dots, b_m\} \subset \mathbb{Z}^d$. Then $\langle \mathcal{G}_1 \rangle \cap \langle \mathcal{G}_2 \rangle \neq \emptyset$ iff $\ell_1 a_1 + \dots + \ell_n a_n = k_1 b_1 + \dots + k_m b_m$ for some $(\ell_1, \dots, \ell_n) \in \mathbb{N}^n \setminus \{0\}, (k_1, \dots, k_m) \in \mathbb{N}^m \setminus \{0\}.$

What about simple non-abelian groups?

When is Intersection Emptiness decidable?

Intersection Emptiness is decidable in Abelian groups.

Example $(S = \mathbb{Z}^d)$

Let $\mathcal{G}_1 = \{a_1, \dots, a_n\}, \mathcal{G}_2 = \{b_1, \dots, b_m\} \subset \mathbb{Z}^d$. Then $\langle \mathcal{G}_1 \rangle \cap \langle \mathcal{G}_2 \rangle \neq \emptyset$ iff

$$\ell_1 a_1 + \dots + \ell_n a_n = k_1 b_1 + \dots + k_m b_m$$

for some $(\ell_1, \ldots, \ell_n) \in \mathbb{N}^n \setminus \{0\}, (k_1, \ldots, k_m) \in \mathbb{N}^m \setminus \{0\}.$

What about simple non-abelian groups?

Our result:

- **Decidable** when *S* is *2-step nilpotent*.
- **PTIME** when *S* is *torsion-free 2-step nilpotent*. For example, when $S = H_n(\mathbb{K})^m$.

Definition (2-step nilpotent groups)

A group S is called 2-step nilpotent if the its quotient by its center is abelian.

Motivation: These are the simplest non-abelian groups!

Example (Heisenberg Groups)

Let \mathbbm{K} be a number field.

The Heisenberg Group $H_3(\mathbb{K})$ is 2-step nilpotent:

$$\mathsf{H}_3(\mathbb{K}) := \left\{ \begin{pmatrix} 1 & \ast & \ast \\ 0 & 1 & \ast \\ 0 & 0 & 1 \end{pmatrix} \; \middle| \; \ast \in \mathbb{K} \right\}.$$

Lie algebra

For now on we illustrate all results with m = 2 and $S = H_3(\mathbb{K})$.

<回>< E> < E> < E> <

æ –

Lie algebra

For now on we illustrate all results with m = 2 and $S = H_3(\mathbb{K})$.

Definition $(\mathfrak{u}(3))$

Define $\mathfrak{u}(3)$ to be the K-linear space of 3 by 3 upper triangular matrices with *zeros* on the diagonal. It is naturally a Q-linear space.

$$\mathsf{H}_3(\mathbb{K}) \coloneqq \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}. \quad \mathfrak{u}(3) \coloneqq \left\{ \begin{pmatrix} 0 & * & * \\ 0 & 0 & * \\ 0 & 0 & 0 \end{pmatrix} \; \middle| \; * \in \mathbb{K} \right\}.$$

э

Lie algebra

For now on we illustrate all results with m = 2 and $S = H_3(\mathbb{K})$.

Definition $(\mathfrak{u}(3))$

Define $\mathfrak{u}(3)$ to be the \mathbb{K} -linear space of 3 by 3 upper triangular matrices with *zeros* on the diagonal. It is naturally a \mathbb{Q} -linear space.

$$\mathsf{H}_3(\mathbb{K}) := \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}. \quad \mathfrak{u}(3) := \left\{ \begin{pmatrix} 0 & * & * \\ 0 & 0 & * \\ 0 & 0 & 0 \end{pmatrix} \ \bigg| \ * \in \mathbb{K} \right\}.$$

$$\log: \mathsf{H}_3(\mathbb{K}) \to \mathfrak{u}(3), \quad A \mapsto (A - I) - \frac{1}{2}(A - I)^2$$

and

$$\exp: \mathfrak{u}(3) \to \mathsf{H}_3(\mathbb{K}), \quad X \mapsto I + X + \frac{1}{2}X^2$$

are inverse of one another. In particular, $\log I = 0$ and $\exp(0) = I$.

$$\log(AB) = \log A + \log B + \frac{1}{2} [\log A, \log B].$$

where $[X, Y] \coloneqq XY - YX$ is the **Lie bracket**.

2

$$\log(AB) = \log A + \log B + \frac{1}{2}[\log A, \log B].$$

where $[X, Y] \coloneqq XY - YX$ is the **Lie bracket**.

Example

$$\log A, \log B = \begin{pmatrix} 0 & * & * \\ 0 & 0 & * \\ 0 & 0 & 0 \end{pmatrix} \implies [\log A, \log B] = \begin{pmatrix} 0 & 0 & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- ∢ ⊒ →

$$\log(AB) = \log A + \log B + \frac{1}{2} [\log A, \log B].$$

where $[X, Y] \coloneqq XY - YX$ is the **Lie bracket**.

$$\log(C_1C_2\cdots C_k) = \sum_{i=1}^k \log C_i + \frac{1}{2} \sum_{1 \le i < j \le k} [\log C_i, \log C_j].$$

$$\log(C_1 C_2 \cdots C_k) = \sum_{i=1}^k \log C_i + \frac{1}{2} \sum_{1 \le i < j \le k} [\log C_i, \log C_j].$$
(1)

Ξ.

$$\log(C_1 C_2 \cdots C_k) = \sum_{i=1}^{\kappa} \log C_i + \frac{1}{2} \sum_{1 \le i \le j \le k} [\log C_i, \log C_j].$$
(1)

Given a set $\mathcal{G} = \{A_1, \dots, A_M\}$ and a word $w = A_{i_1}A_{i_2}\cdots A_{i_m} \in \mathcal{G}^*$. For $i = 1, \dots, M$, denote

• "Parikh Image" $\ell_i(w) :=$ number of A_i appearing in w,

1.

$$\log(C_1 C_2 \cdots C_k) = \sum_{i=1}^{k} \log C_i + \frac{1}{2} \sum_{1 \le i < j \le k} [\log C_i, \log C_j].$$
(1)

Given a set $\mathcal{G} = \{A_1, \dots, A_M\}$ and a word $w = A_{i_1}A_{i_2}\cdots A_{i_m} \in \mathcal{G}^*$. For $i = 1, \dots, M$, denote

- "Parikh Image" $\ell_i(w) :=$ number of A_i appearing in w,
- $\delta_{ii}^+(w) :=$ number of " $\cdots A_i \cdots A_j \cdots$ " appearing in w,

1.

• $\delta_{ii}^{-}(w) :=$ number of " $\cdots A_{j} \cdots A_{i} \cdots$ " appearing in w,

$$\log(C_1 C_2 \cdots C_k) = \sum_{i=1}^{k} \log C_i + \frac{1}{2} \sum_{1 \le i < j \le k} [\log C_i, \log C_j].$$
(1)

Given a set $\mathcal{G} = \{A_1, \dots, A_M\}$ and a word $w = A_{i_1}A_{i_2}\cdots A_{i_m} \in \mathcal{G}^*$. For $i = 1, \dots, M$, denote

- "Parikh Image" $\ell_i(w) :=$ number of A_i appearing in w,
- $\delta_{ii}^+(w) :=$ number of " $\cdots A_i \cdots A_j \cdots$ " appearing in w,
- $\delta_{ii}^{-}(w) :=$ number of " $\cdots A_{j} \cdots A_{i} \cdots$ " appearing in w,
- "Inversion Number" $\delta_{ij}(w) := \delta^+_{ij}(w) \delta^-_{ij}(w).$

1.

Example

If $w = A_1 A_1 A_2 A_1$ then

$$\ell_1(w) = 3, \ell_2(w) = 1, \delta_{AB}(w) = 2 - 1 = 1.$$

÷.

$$\log(C_1 C_2 \cdots C_k) = \sum_{i=1}^k \log C_i + \frac{1}{2} \sum_{1 \le i < j \le k} [\log C_i, \log C_j].$$
(1)

Given a set $\mathcal{G} = \{A_1, \dots, A_M\}$ and a word $w = A_{i_1}A_{i_2}\cdots A_{i_m} \in \mathcal{G}^*$. For $i = 1, \dots, M$, denote

- "Parikh Image" $\ell_i(w) :=$ number of A_i appearing in w,
- $\delta_{ij}^+(w) :=$ number of " $\cdots A_i \cdots A_j \cdots$ " appearing in w,
- $\delta_{ii}^{-}(w) :=$ number of " $\cdots A_{j} \cdots A_{i} \cdots$ " appearing in w,
- "Inversion Number" $\delta_{ij}(w) := \delta^+_{ij}(w) \delta^-_{ij}(w).$

.

Example

If $w = A_1 A_1 A_2 A_1$ then

$$\ell_1(w) = 3, \ell_2(w) = 1, \delta_{AB}(w) = 2 - 1 = 1.$$

Then (1) becomes

$$\log w = \sum_{i=1}^{M} \ell_i(w) \cdot \log A_i + \frac{1}{2} \sum_{1 \le i < j \le M} \delta_{ij}(w) \cdot [\log A_i, \log A_j].$$

Back to Semigroup Intersection

Let
$$G = \{A_1, ..., A_M\}, G' = \{A'_1, ..., A'_N\}.$$

$$\langle \mathcal{G} \rangle \cap \langle \mathcal{G}' \rangle \neq \emptyset \iff$$

we can find words $w = A_{i_1}A_{i_2}\cdots A_{i_m} \in \mathcal{G}^*, w' = A'_{j_1}A'_{j_2}\cdots A_{j_m} \in \mathcal{G'}^*$ that $\log w = \log w'$.

Back to Semigroup Intersection

Let
$$G = \{A_1, ..., A_M\}, G' = \{A'_1, ..., A'_N\}.$$

$$\langle \mathcal{G} \rangle \cap \langle \mathcal{G}' \rangle \neq \emptyset \iff$$

we can find words $w = A_{i_1}A_{i_2}\cdots A_{i_m} \in \mathcal{G}^*, w' = A'_{j_1}A'_{j_2}\cdots A_{j_m} \in \mathcal{G'}^*$ that $\log w = \log w'$.

This is equivalent to solving the word equation

$$\begin{split} \sum_{i=1}^{M} \ell_i(\mathbf{w}) \cdot \log A_i &+ \frac{1}{2} \sum_{1 \le i < j \le M} \delta_{ij}(\mathbf{w}) \cdot [\log A_i, \log A_j] \\ &= \sum_{i=1}^{N} \ell'_i(\mathbf{w}') \cdot \log A'_i + \frac{1}{2} \sum_{1 \le i < j \le N} \delta'_{ij}(\mathbf{w}') \cdot [\log A'_i, \log A'_j]. \end{split}$$

for $w \in \mathcal{G}^*, w' \in {\mathcal{G}'}^*$.

医下颌 医下颌

From word equation to linear equation

We want to find $w \in \mathcal{G}^*, w' \in \mathcal{G'}^*$ that satisfy

$$\sum_{i=1}^{M} \ell_i(\boldsymbol{w}) \cdot \log A_i + \frac{1}{2} \sum_{1 \le i < j \le M} \delta_{ij}(\boldsymbol{w}) \cdot [\log A_i, \log A_j]$$
$$= \sum_{i=1}^{N} \ell'_i(\boldsymbol{w}') \cdot \log A'_i + \frac{1}{2} \sum_{1 \le i < j \le N} \delta'_{ij}(\boldsymbol{w}') \cdot [\log A'_i, \log A'_j]. \quad (2)$$

Proposition

Equation (2) has solution $w \in \mathcal{G}^*$, $w' \in \mathcal{G'}^*$ if and only if the following relaxed equation has solution $s_i, s'_i \in \mathbb{N}, d_{ij}, d'_{ij} \in \mathbb{Z}$.

$$\sum_{i=1}^{M} s_{i} \cdot \log A_{i} + \frac{1}{2} \sum_{1 \le i < j \le M} d_{ij} \cdot [\log A_{i}, \log A_{j}] \\ = \sum_{i=1}^{N} s_{i}' \cdot \log A_{i}' + \frac{1}{2} \sum_{1 \le i < j \le N} d_{ij}' \cdot [\log A_{i}', \log A_{j}'].$$
(3)

Main difficulty: given $s_i \in \mathbb{N}$, $d_{ij} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^*$ with $\ell_i(w) = s_i, \delta_{ij}(w) = d_{ij}$ for all i, j?

通 ト イ ヨ ト イ ヨ ト ー

Main difficulty: given $s_i \in \mathbb{N}$, $d_{ij} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^*$ with $\ell_i(w) = s_i, \delta_{ij}(w) = d_{ij}$ for all i, j?

Example for words over two letters:

Example

Let $\mathcal{G} = \{A, B\}$, can we find $w \in \mathcal{G}^*$ with

$$\ell_A(w) = 3, \ell_B(w) = 4, \delta_{AB}(w) = 4?$$

Main difficulty: given $s_i \in \mathbb{N}$, $d_{ij} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^*$ with $\ell_i(w) = s_i, \delta_{ij}(w) = d_{ij}$ for all i, j?

Example for words over two letters:

Example

Let $\mathcal{G} = \{A, B\}$, can we find $w \in \mathcal{G}^*$ with

$$\ell_A(w) = 3, \ell_B(w) = 4, \delta_{AB}(w) = 4?$$

• When w = AAABBBB, then $\delta_{AB}(w) = 12$.

Main difficulty: given $s_i \in \mathbb{N}$, $d_{ij} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^*$ with $\ell_i(w) = s_i, \delta_{ij}(w) = d_{ij}$ for all i, j?

Example for words over two letters:

Example

Let $\mathcal{G} = \{A, B\}$, can we find $w \in \mathcal{G}^*$ with

$$\ell_A(w) = 3, \ell_B(w) = 4, \delta_{AB}(w) = 4?$$

- When w = AAABBBB, then $\delta_{AB}(w) = 12$.
- When w = AABABBB, then $\delta_{AB}(w) = 10$.

温泉 不良ない

э.

Main difficulty: given $s_i \in \mathbb{N}$, $d_{ij} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^*$ with $\ell_i(w) = s_i, \delta_{ij}(w) = d_{ij}$ for all i, j?

Example for words over two letters:

Example

Let $\mathcal{G} = \{A, B\}$, can we find $w \in \mathcal{G}^*$ with

$$\ell_A(w) = 3, \ell_B(w) = 4, \delta_{AB}(w) = 4?$$

- When w = AAABBBB, then $\delta_{AB}(w) = 12$.
- When w = AABABBB, then $\delta_{AB}(w) = 10$.
- When w = AABBABB, then $\delta_{AB}(w) = 8$.

Main difficulty: given $s_i \in \mathbb{N}$, $d_{ij} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^*$ with $\ell_i(w) = s_i, \delta_{ij}(w) = d_{ij}$ for all i, j?

Example for words over two letters:

Example

Let $\mathcal{G} = \{A, B\}$, can we find $w \in \mathcal{G}^*$ with

$$\ell_A(w) = 3, \ell_B(w) = 4, \delta_{AB}(w) = 4?$$

- When w = AAABBBB, then $\delta_{AB}(w) = 12$.
- When w = AABABBB, then $\delta_{AB}(w) = 10$.
- When w = AABBABB, then $\delta_{AB}(w) = 8$.
- When w = AABBBAB, then $\delta_{AB}(w) = 6$.

Main difficulty: given $s_i \in \mathbb{N}$, $d_{ij} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^*$ with $\ell_i(w) = s_i, \delta_{ij}(w) = d_{ij}$ for all i, j?

Example for words over two letters:

Example

Let $\mathcal{G} = \{A, B\}$, can we find $w \in \mathcal{G}^*$ with

$$\ell_A(w) = 3, \ell_B(w) = 4, \delta_{AB}(w) = 4?$$

- When w = AAABBBB, then $\delta_{AB}(w) = 12$.
- When w = AABABBB, then $\delta_{AB}(w) = 10$.
- When w = AABBABB, then $\delta_{AB}(w) = 8$.
- When w = AABBBAB, then $\delta_{AB}(w) = 6$.
- When w = AABBBBA, then $\delta_{AB}(w) = 4$. Found it!

э

2 letter case

Example

Let $\mathcal{G} = \{A, B\}$, we can find $w \in \mathcal{G}^*$ with

$$\ell_A(w) = 3, \ell_B(w) = 4, \delta_{AB}(w) = 4.$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ � � �

2 letter case

Example

Let $\mathcal{G} = \{A, B\}$, we can find $w \in \mathcal{G}^*$ with

$$\ell_A(w) = 3, \ell_B(w) = 4, \delta_{AB}(w) = 4.$$

Let $\mathcal{G} = \{A, B\}$, can we find $w \in \mathcal{G}^*$ with

$$\ell_A(w) = 3, \ell_B(w) = 4, \delta_{AB}(w) = 14?$$

No! Because $14 > 3 \times 4$.

向 ト イヨ ト イヨ ト

2 letter case

Example

Let
$$\mathcal{G} = \{A, B\}$$
, we can find $w \in \mathcal{G}^*$ with

$$\ell_A(w) = 3, \ell_B(w) = 4, \delta_{AB}(w) = 4.$$

Let $\mathcal{G} = \{A, B\}$, can we find $w \in \mathcal{G}^*$ with

$$\ell_A(w) = 3, \ell_B(w) = 4, \delta_{AB}(w) = 14?$$

No! Because $14 > 3 \times 4$.

Example

Let $\mathcal{G} = \{A, B\}$, we can find $w \in \mathcal{G}^*$ with

$$\ell_A(w) = 3n, \ell_B(w) = 4n, \delta_{AB}(w) = 14n.$$

for some large n.

Because $|14n| < |3n \times 4n|$ when *n* large.

э

In general:

We can find words w with $\ell_i(w) = s_i n$, $\ell_j(w) = s_j n$ such that $\delta_{ij}(w)$ covers all possible values between $-s_i s_j n^2$ and $s_i s_j n^2$. (Subject to oddity constraints.)

2 letter case (continued)

In general:

We can find words w with $\ell_i(w) = s_i n$, $\ell_j(w) = s_j n$ such that $\delta_{ij}(w)$ covers all possible values between $-s_i s_j n^2$ and $s_i s_j n^2$. (Subject to oddity constraints.)

Linear equation is homogeneous: it suffices to find $w \in \mathcal{G}^*$ and $n \in \mathbb{N}$ such that $\ell_i(w) = s_i n, \delta_{ij}(w) = d_{ij} n$ for all i, j.

In general:

We can find words w with $\ell_i(w) = s_i n$, $\ell_j(w) = s_j n$ such that $\delta_{ij}(w)$ covers all possible values between $-s_i s_j n^2$ and $s_i s_j n^2$. (Subject to oddity constraints.)

Linear equation is homogeneous: it suffices to find $w \in \mathcal{G}^*$ and $n \in \mathbb{N}$ such that $\ell_i(w) = s_i n, \delta_{ij}(w) = d_{ij} n$ for all i, j.

By taking large enough n, we can suppose

$$-(s_i n)(s_j n) \leq d_{ij} n \leq (s_i n)(s_j n).$$

Problem solved!

In general:

We can find words w with $\ell_i(w) = s_i n$, $\ell_j(w) = s_j n$ such that $\delta_{ij}(w)$ covers all possible values between $-s_i s_j n^2$ and $s_i s_j n^2$. (Subject to oddity constraints.)

Linear equation is homogeneous: it suffices to find $w \in \mathcal{G}^*$ and $n \in \mathbb{N}$ such that $\ell_i(w) = s_i n, \delta_{ij}(w) = d_{ij} n$ for all i, j.

By taking large enough n, we can suppose

$$-(s_i n)(s_j n) \leq d_{ij} n \leq (s_i n)(s_j n).$$

Problem solved!

The case with more letters is more complicated, but the idea is similar.

Proposition

We have $\langle \mathcal{G} \rangle \cap \langle \mathcal{G}' \rangle \neq \emptyset$ if and only if the following relaxed equation has non-zero solution $\ell_i, \ell'_i \in \mathbb{N}, \delta_{ij}, \delta'_{ii} \in \mathbb{Z}$.

$$\sum_{i=1}^{M} \ell_i \cdot \log A_i + \frac{1}{2} \sum_{1 \le i < j \le M} \delta_{ij} \cdot [\log A_i, \log A_j]$$
$$= \sum_{i=1}^{N} \ell'_i \cdot \log A'_i + \frac{1}{2} \sum_{1 \le i < j \le N} \delta'_{ij} \cdot [\log A'_i, \log A'_j]. \quad (4)$$

Proposition

We have $\langle \mathcal{G} \rangle \cap \langle \mathcal{G}' \rangle \neq \emptyset$ if and only if the following relaxed equation has non-zero solution $\ell_i, \ell'_i \in \mathbb{N}, \delta_{ij}, \delta'_{ij} \in \mathbb{Z}$.

$$\sum_{i=1}^{M} \ell_i \cdot \log A_i + \frac{1}{2} \sum_{1 \le i < j \le M} \delta_{ij} \cdot [\log A_i, \log A_j]$$
$$= \sum_{i=1}^{N} \ell'_i \cdot \log A'_i + \frac{1}{2} \sum_{1 \le i < j \le N} \delta'_{ij} \cdot [\log A'_i, \log A'_j]. \quad (4)$$

This is a *homogeneous* linear Diophantine equation. So it is solvable in **PTIME**.

э

Theorem (Semigroup Intersection Emptiness)

Let S be a 2-step nilpotent group. Given finite sets $\mathcal{G}_1, \ldots, \mathcal{G}_m \subset S$, it is decidable whether

$$\langle \mathcal{G}_1 \rangle \cap \cdots \cap \langle \mathcal{G}_m \rangle = \emptyset.$$

Furthermore the decision procedure is PTIME if S is torsion-free.

э

Theorem (Semigroup Intersection Emptiness)

Let S be a 2-step nilpotent group. Given finite sets $\mathcal{G}_1, \ldots, \mathcal{G}_m \subset S$, it is decidable whether

$$\langle \mathcal{G}_1 \rangle \cap \cdots \cap \langle \mathcal{G}_m \rangle = \emptyset.$$

Furthermore the decision procedure is PTIME if S is torsion-free.

Generalization using similar idea:

Theorem (Orbit Intersection)

Given finite sets $\mathcal{G}, \mathcal{H} \subset H_3(\mathbb{Q})$ and elements $T, S \in H_3(\mathbb{Q})$, it is decidable whether

 $T \cdot \langle \mathcal{G} \rangle \cap S \cdot \langle \mathcal{H} \rangle = \emptyset.$

However, Orbit Intersection in $H_3(\mathbb{Q})^{10000}$ is undecidable.

Open problem: Semigroup Intersection Emptiness for higher-order nilpotent groups?

Open problem: Semigroup Intersection Emptiness for higher-order nilpotent groups?

Theorem (Tit's alternative for semigroups)

Every matrix group G is either virtually nilpotent or it contains a free monoid over two generators.

If G contains a free monoid over two generators, then Semigroup Intersection is undecidable in G^2 .

If G is nilpotent, then G^2 is also nilpotent.