Semigroup intersection problems in the Heisenberg groups

Ruiwen Dong

University of Oxford

March 2023

An old decidability problem

Post Correspondence Problem (1946). The following is undecidable:
Input: A set of pairs of words $\mathcal{G}=\left\{\left(v_{1}, w_{1}\right), \ldots,\left(v_{K}, w_{K}\right)\right\}$ over the alphabet $\{a, b\}$.

Output: Can we find a sequence (possibly with repetition) $\left(v_{i_{1}}, w_{i_{1}}\right),\left(v_{i_{2}}, w_{i_{2}}\right), \ldots,\left(v_{i_{m}}, w_{i_{m}}\right) \in \mathcal{G}$ such that the concatenations:

$$
v_{i_{1}} v_{i_{2}} \cdots v_{i_{m}}=w_{i_{1}} w_{i_{2}} \cdots w_{i_{m}} ?
$$

An old decidability problem

Post Correspondence Problem (1946). The following is undecidable:
Input: A set of pairs of words $\mathcal{G}=\left\{\left(v_{1}, w_{1}\right), \ldots,\left(v_{K}, w_{K}\right)\right\}$ over the alphabet $\{a, b\}$.

Output: Can we find a sequence (possibly with repetition) $\left(v_{i_{1}}, w_{i_{1}}\right),\left(v_{i_{2}}, w_{i_{2}}\right), \ldots,\left(v_{i_{m}}, w_{i_{m}}\right) \in \mathcal{G}$ such that the concatenations:

$$
v_{i_{1}} v_{i_{2}} \cdots v_{i_{m}}=w_{i_{1}} w_{i_{2}} \cdots w_{i_{m}} ?
$$

Markov (1940s): is the following decidable?
Input: Two sets of matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{M}\right\}, \mathcal{H}=\left\{B_{1}, \ldots, B_{N}\right\}$.
Output: Can we find there two sequences $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{m}} \in \mathcal{G}$ and $B_{j_{1}}, B_{j_{2}}, \ldots, B_{j_{n}} \in \mathcal{H}$, such that

$$
A_{i_{1}} A_{i_{2}} \cdots A_{i_{m}}=B_{j_{1}} B_{j_{2}} \cdots B_{j_{n}} ?
$$

An old decidability problem

Post Correspondence Problem (1946). The following is undecidable:
Input: A set of pairs of words $\mathcal{G}=\left\{\left(v_{1}, w_{1}\right), \ldots,\left(v_{K}, w_{K}\right)\right\}$ over the alphabet $\{a, b\}$.

Output: Can we find a sequence (possibly with repetition) $\left(v_{i_{1}}, w_{i_{1}}\right),\left(v_{i_{2}}, w_{i_{2}}\right), \ldots,\left(v_{i_{m}}, w_{i_{m}}\right) \in \mathcal{G}$ such that the concatenations:

$$
v_{i_{1}} v_{i_{2}} \cdots v_{i_{m}}=w_{i_{1}} w_{i_{2}} \cdots w_{i_{m}} ?
$$

Markov (1940s): is the following decidable?
Input: Two sets of matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{M}\right\}, \mathcal{H}=\left\{B_{1}, \ldots, B_{N}\right\}$.
Output: Can we find there two sequences $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{m}} \in \mathcal{G}$ and $B_{j_{1}}, B_{j_{2}}, \ldots, B_{j_{n}} \in \mathcal{H}$, such that

$$
A_{i_{1}} A_{i_{2}} \cdots A_{i_{m}}=B_{j_{1}} B_{j_{2}} \cdots B_{j_{n}} ?
$$

Markov (1947) : undecidable in $\mathbb{Z}^{4 \times 4}$.

Reformulation as Semigroup Intersection Emptiness

Intersection Emptiness Problem: is the following decidable?
Input: m finite sets of elements $\mathcal{G}_{1}, \mathcal{G}_{2}, \ldots, \mathcal{G}_{m}$ in an ambient (semi)group S.

Output: Denote by $\left\langle\mathcal{G}_{i}\right\rangle$ the semigroup generated by \mathcal{G}_{i}. Does

$$
\left\langle\mathcal{G}_{1}\right\rangle \cap\left\langle\mathcal{G}_{2}\right\rangle \cap \cdots \cap\left\langle\mathcal{G}_{m}\right\rangle=\emptyset ?
$$

Reformulation as Semigroup Intersection Emptiness

Intersection Emptiness Problem: is the following decidable?
Input: m finite sets of elements $\mathcal{G}_{1}, \mathcal{G}_{2}, \ldots, \mathcal{G}_{m}$ in an ambient (semi)group S.

Output: Denote by $\left\langle\mathcal{G}_{i}\right\rangle$ the semigroup generated by \mathcal{G}_{i}. Does

$$
\left\langle\mathcal{G}_{1}\right\rangle \cap\left\langle\mathcal{G}_{2}\right\rangle \cap \cdots \cap\left\langle\mathcal{G}_{m}\right\rangle=\emptyset ?
$$

Undecidability results (for $m=2$):

- Post Correspondence Problem: $S=\{a, b\}^{*} \times\{a, b\}^{*}$. Take $\mathcal{G}_{1}=\left\{\left(v_{i_{1}}, w_{i_{1}}\right),\left(v_{i_{2}}, w_{i_{2}}\right), \ldots,\left(v_{i_{m}}, w_{i_{m}}\right)\right\}, \mathcal{G}_{2}=\{(a, a),(b, b)\}$.

Reformulation as Semigroup Intersection Emptiness

Intersection Emptiness Problem: is the following decidable?
Input: m finite sets of elements $\mathcal{G}_{1}, \mathcal{G}_{2}, \ldots, \mathcal{G}_{m}$ in an ambient (semi)group S.

Output: Denote by $\left\langle\mathcal{G}_{i}\right\rangle$ the semigroup generated by \mathcal{G}_{i}. Does

$$
\left\langle\mathcal{G}_{1}\right\rangle \cap\left\langle\mathcal{G}_{2}\right\rangle \cap \cdots \cap\left\langle\mathcal{G}_{m}\right\rangle=\emptyset ?
$$

Undecidability results (for $m=2$):

- Post Correspondence Problem: $S=\{a, b\}^{*} \times\{a, b\}^{*}$. Take $\mathcal{G}_{1}=\left\{\left(v_{i_{1}}, w_{i_{1}}\right),\left(v_{i_{2}}, w_{i_{2}}\right), \ldots,\left(v_{i_{m}}, w_{i_{m}}\right)\right\}, \mathcal{G}_{2}=\{(a, a),(b, b)\}$.
- Markov (1947): undecidable for $S=\mathbb{Z}^{4 \times 4}$.
- Halava and Harju (2007): undecidable for $S=\mathbb{Z}^{3 \times 3}$.

Reformulation as Semigroup Intersection Emptiness

Intersection Emptiness Problem: is the following decidable?
Input: m finite sets of elements $\mathcal{G}_{1}, \mathcal{G}_{2}, \ldots, \mathcal{G}_{m}$ in an ambient (semi)group S.

Output: Denote by $\left\langle\mathcal{G}_{i}\right\rangle$ the semigroup generated by \mathcal{G}_{i}. Does

$$
\left\langle\mathcal{G}_{1}\right\rangle \cap\left\langle\mathcal{G}_{2}\right\rangle \cap \cdots \cap\left\langle\mathcal{G}_{m}\right\rangle=\emptyset ?
$$

Undecidability results (for $m=2$):

- Post Correspondence Problem: $S=\{a, b\}^{*} \times\{a, b\}^{*}$. Take $\mathcal{G}_{1}=\left\{\left(v_{i_{1}}, w_{i_{1}}\right),\left(v_{i_{2}}, w_{i_{2}}\right), \ldots,\left(v_{i_{m}}, w_{i_{m}}\right)\right\}, \mathcal{G}_{2}=\{(a, a),(b, b)\}$.
- Markov (1947): undecidable for $S=\mathbb{Z}^{4 \times 4}$.
- Halava and Harju (2007): undecidable for $S=\mathbb{Z}^{3 \times 3}$.

Open problem: decidability for $S=\mathbb{Z}^{2 \times 2}$.

When is Intersection Emptiness decidable?

Intersection Emptiness is decidable in Abelian groups.

When is Intersection Emptiness decidable?

Intersection Emptiness is decidable in Abelian groups.

Example $\left(S=\mathbb{Z}^{d}\right)$

Let $\mathcal{G}_{1}=\left\{a_{1}, \ldots, a_{n}\right\}, \mathcal{G}_{2}=\left\{b_{1}, \ldots, b_{m}\right\} \subset \mathbb{Z}^{d}$. Then $\left\langle\mathcal{G}_{1}\right\rangle \cap\left\langle\mathcal{G}_{2}\right\rangle \neq \emptyset$ iff

$$
\ell_{1} a_{1}+\cdots+\ell_{n} a_{n}=k_{1} b_{1}+\cdots+k_{m} b_{m}
$$

for some $\left(\ell_{1}, \ldots, \ell_{n}\right) \in \mathbb{N}^{n} \backslash\{0\},\left(k_{1}, \ldots, k_{m}\right) \in \mathbb{N}^{m} \backslash\{0\}$.

What about simple non-abelian groups?

When is Intersection Emptiness decidable?

Intersection Emptiness is decidable in Abelian groups.

Example $\left(S=\mathbb{Z}^{d}\right)$

Let $\mathcal{G}_{1}=\left\{a_{1}, \ldots, a_{n}\right\}, \mathcal{G}_{2}=\left\{b_{1}, \ldots, b_{m}\right\} \subset \mathbb{Z}^{d}$. Then $\left\langle\mathcal{G}_{1}\right\rangle \cap\left\langle\mathcal{G}_{2}\right\rangle \neq \emptyset$ iff

$$
\ell_{1} a_{1}+\cdots+\ell_{n} a_{n}=k_{1} b_{1}+\cdots+k_{m} b_{m}
$$

for some $\left(\ell_{1}, \ldots, \ell_{n}\right) \in \mathbb{N}^{n} \backslash\{0\},\left(k_{1}, \ldots, k_{m}\right) \in \mathbb{N}^{m} \backslash\{0\}$.

What about simple non-abelian groups?
Our result:

- Decidable when S is 2-step nilpotent.
- PTIME when S is torsion-free 2-step nilpotent.

For example, when $S=\mathrm{H}_{n}(\mathbb{K})^{m}$.

2-step nilpotent groups

Definition (2-step nilpotent groups)

A group S is called 2-step nilpotent if the its quotient by its center is abelian.

Motivation: These are the simplest non-abelian groups!

Example (Heisenberg Groups)

Let \mathbb{K} be a number field.
The Heisenberg Group $\mathrm{H}_{3}(\mathbb{K})$ is 2-step nilpotent:

$$
H_{3}(\mathbb{K}):=\left\{\left.\left(\begin{array}{ccc}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right) \right\rvert\, * \in \mathbb{K}\right\} .
$$

Lie algebra

For now on we illustrate all results with $m=2$ and $S=\mathrm{H}_{3}(\mathbb{K})$.

Lie algebra

For now on we illustrate all results with $m=2$ and $S=\mathrm{H}_{3}(\mathbb{K})$.

Definition ($\mathfrak{u}(3)$)

Define $\mathfrak{u}(3)$ to be the \mathbb{K}-linear space of 3 by 3 upper triangular matrices with zeros on the diagonal. It is naturally a \mathbb{Q}-linear space.

$$
\mathrm{H}_{3}(\mathbb{K}):=\left\{\left(\begin{array}{ccc}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right)\right\} . \mathfrak{u}(3):=\left\{\left.\left(\begin{array}{lll}
0 & * & * \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right) \right\rvert\, * \in \mathbb{K}\right\} .
$$

Lie algebra

For now on we illustrate all results with $m=2$ and $S=\mathrm{H}_{3}(\mathbb{K})$.

Definition ($\mathfrak{u}(3)$)

Define $\mathfrak{u}(3)$ to be the \mathbb{K}-linear space of 3 by 3 upper triangular matrices with zeros on the diagonal. It is naturally a \mathbb{Q}-linear space.

$$
\mathrm{H}_{3}(\mathbb{K}):=\left\{\left(\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right)\right\} . \mathfrak{u}(3):=\left\{\left.\left(\begin{array}{lll}
0 & * & * \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right) \right\rvert\, * \in \mathbb{K}\right\} .
$$

$$
\log : \mathrm{H}_{3}(\mathbb{K}) \rightarrow \mathfrak{u}(3), \quad A \mapsto(A-I)-\frac{1}{2}(A-I)^{2}
$$

and

$$
\exp : \mathfrak{u}(3) \rightarrow H_{3}(\mathbb{K}), \quad X \mapsto I+X+\frac{1}{2} X^{2}
$$

are inverse of one another. In particular, $\log I=0$ and $\exp (0)=I$.

Baker-Campbell-Hausdorff formula

$$
\log (A B)=\log A+\log B+\frac{1}{2}[\log A, \log B] .
$$

where $[X, Y]:=X Y-Y X$ is the Lie bracket.

Baker-Campbell-Hausdorff formula

$$
\log (A B)=\log A+\log B+\frac{1}{2}[\log A, \log B] .
$$

where $[X, Y]:=X Y-Y X$ is the Lie bracket.

Example

$$
\log A, \log B=\left(\begin{array}{lll}
0 & * & * \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right) \Longrightarrow[\log A, \log B]=\left(\begin{array}{lll}
0 & 0 & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Baker-Campbell-Hausdorff formula

$$
\log (A B)=\log A+\log B+\frac{1}{2}[\log A, \log B] .
$$

where $[X, Y]:=X Y-Y X$ is the Lie bracket.

Example

$$
\log A, \log B=\left(\begin{array}{lll}
0 & * & * \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right) \Longrightarrow[\log A, \log B]=\left(\begin{array}{lll}
0 & 0 & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

$$
\log \left(C_{1} C_{2} \cdots C_{k}\right)=\sum_{i=1}^{k} \log C_{i}+\frac{1}{2} \sum_{1 \leq i<j \leq k}\left[\log C_{i}, \log C_{j}\right]
$$

Baker-Campbell-Hausdorff formula 2

$$
\begin{equation*}
\log \left(C_{1} C_{2} \cdots C_{k}\right)=\sum_{i=1}^{k} \log C_{i}+\frac{1}{2} \sum_{1 \leq i<j \leq k}\left[\log C_{i}, \log C_{j}\right] \tag{1}
\end{equation*}
$$

Baker-Campbell-Hausdorff formula 2

$$
\begin{equation*}
\log \left(C_{1} C_{2} \cdots C_{k}\right)=\sum_{i=1}^{k} \log C_{i}+\frac{1}{2} \sum_{1 \leq i<j \leq k}\left[\log C_{i}, \log C_{j}\right] \tag{1}
\end{equation*}
$$

Given a set $\mathcal{G}=\left\{A_{1}, \ldots, A_{M}\right\}$ and a word $w=A_{i_{1}} A_{i_{2}} \cdots A_{i_{m}} \in \mathcal{G}^{*}$. For $i=1, \ldots, M$, denote

- "Parikh Image" $\ell_{i}(w):=$ number of A_{i} appearing in w,

Baker-Campbell-Hausdorff formula 2

$$
\begin{equation*}
\log \left(C_{1} C_{2} \cdots C_{k}\right)=\sum_{i=1}^{k} \log C_{i}+\frac{1}{2} \sum_{1 \leq i<j \leq k}\left[\log C_{i}, \log C_{j}\right] . \tag{1}
\end{equation*}
$$

Given a set $\mathcal{G}=\left\{A_{1}, \ldots, A_{M}\right\}$ and a word $w=A_{i_{1}} A_{i_{2}} \cdots A_{i_{m}} \in \mathcal{G}^{*}$. For $i=1, \ldots, M$, denote

- "Parikh Image" $\ell_{i}(w):=$ number of A_{i} appearing in w,
- $\delta_{i j}^{+}(w):=$ number of " $\cdots A_{i} \cdots A_{j} \ldots$ " appearing in w,
- $\delta_{i j}^{-}(w):=$ number of " $\cdots A_{j} \cdots A_{i} \cdots$ " appearing in w,

Baker-Campbell-Hausdorff formula 2

$$
\begin{equation*}
\log \left(C_{1} C_{2} \cdots C_{k}\right)=\sum_{i=1}^{k} \log C_{i}+\frac{1}{2} \sum_{1 \leq i<j \leq k}\left[\log C_{i}, \log C_{j}\right] . \tag{1}
\end{equation*}
$$

Given a set $\mathcal{G}=\left\{A_{1}, \ldots, A_{M}\right\}$ and a word $w=A_{i_{1}} A_{i_{2}} \cdots A_{i_{m}} \in \mathcal{G}^{*}$. For $i=1, \ldots, M$, denote

- "Parikh Image" $\quad \ell_{i}(w):=$ number of A_{i} appearing in w,
- $\delta_{i j}^{+}(w):=$ number of " $\cdots A_{i} \cdots A_{j} \cdots$ " appearing in w,
- $\delta_{i j}^{-}(w):=$ number of " $\cdots A_{j} \cdots A_{i} \cdots$ " appearing in w,
- "Inversion Number" $\delta_{i j}(w):=\delta_{i j}^{+}(w)-\delta_{i j}^{-}(w)$.

Example

If $w=A_{1} A_{1} A_{2} A_{1}$ then

$$
\ell_{1}(w)=3, \ell_{2}(w)=1, \delta_{A B}(w)=2-1=1 .
$$

Baker-Campbell-Hausdorff formula 2

$$
\begin{equation*}
\log \left(C_{1} C_{2} \cdots C_{k}\right)=\sum_{i=1}^{k} \log C_{i}+\frac{1}{2} \sum_{1 \leq i<j \leq k}\left[\log C_{i}, \log C_{j}\right] . \tag{1}
\end{equation*}
$$

Given a set $\mathcal{G}=\left\{A_{1}, \ldots, A_{M}\right\}$ and a word $w=A_{i_{1}} A_{i_{2}} \cdots A_{i_{m}} \in \mathcal{G}^{*}$. For $i=1, \ldots, M$, denote

- "Parikh Image" $\ell_{i}(w):=$ number of A_{i} appearing in w,
- $\delta_{i j}^{+}(w):=$ number of " $\cdots A_{i} \cdots A_{j} \ldots$ " appearing in w,
- $\delta_{i j}^{-}(w):=$ number of " $\cdots A_{j} \cdots A_{i} \cdots$ " appearing in w,
- "Inversion Number" $\delta_{i j}(w):=\delta_{i j}^{+}(w)-\delta_{i j}^{-}(w)$.

Example

If $w=A_{1} A_{1} A_{2} A_{1}$ then

$$
\ell_{1}(w)=3, \ell_{2}(w)=1, \delta_{A B}(w)=2-1=1 .
$$

Then (1) becomes

$$
\log w=\sum_{i=1}^{M} \ell_{i}(w) \cdot \log A_{i}+\frac{1}{2} \sum_{1 \leq i<j \leq M} \delta_{i j}(w) \cdot\left[\log A_{i}, \log A_{j}\right]
$$

Back to Semigroup Intersection

Let $\mathcal{G}=\left\{A_{1}, \ldots, A_{M}\right\}, \mathcal{G}^{\prime}=\left\{A_{1}^{\prime}, \ldots, A_{N}^{\prime}\right\}$.
$\langle\mathcal{G}\rangle \cap\left\langle\mathcal{G}^{\prime}\right\rangle \neq \emptyset \Longleftrightarrow$
we can find words $w=A_{i_{1}} A_{i_{2}} \cdots A_{i_{m}} \in \mathcal{G}^{*}, w^{\prime}=A_{j_{1}}^{\prime} A_{j_{2}}^{\prime} \cdots A_{j_{m}} \in \mathcal{G}^{\prime *}$ that $\log w=\log w^{\prime}$.

Back to Semigroup Intersection

Let $\mathcal{G}=\left\{A_{1}, \ldots, A_{M}\right\}, \mathcal{G}^{\prime}=\left\{A_{1}^{\prime}, \ldots, A_{N}^{\prime}\right\}$.
$\langle\mathcal{G}\rangle \cap\left\langle\mathcal{G}^{\prime}\right\rangle \neq \emptyset \Longleftrightarrow$
we can find words $w=A_{i_{1}} A_{i_{2}} \cdots A_{i_{m}} \in \mathcal{G}^{*}, w^{\prime}=A_{j_{1}}^{\prime} A_{j_{2}}^{\prime} \cdots A_{j_{m}} \in \mathcal{G}^{\prime *}$ that $\log w=\log w^{\prime}$.

This is equivalent to solving the word equation

$$
\begin{aligned}
& \sum_{i=1}^{M} \ell_{i}(w) \cdot \log A_{i}+\frac{1}{2} \sum_{1 \leq i<j \leq M} \delta_{i j}(w) \cdot\left[\log A_{i}, \log A_{j}\right] \\
& =\sum_{i=1}^{N} \ell_{i}^{\prime}\left(w^{\prime}\right) \cdot \log A_{i}^{\prime}+\frac{1}{2} \sum_{1 \leq i<j \leq N} \delta_{i j}^{\prime}\left(w^{\prime}\right) \cdot\left[\log A_{i}^{\prime}, \log A_{j}^{\prime}\right]
\end{aligned}
$$

for $w \in \mathcal{G}^{*}, w^{\prime} \in \mathcal{G}^{\prime *}$.

From word equation to linear equation

We want to find $w \in \mathcal{G}^{*}, w^{\prime} \in \mathcal{G}^{* *}$ that satisfy

$$
\begin{align*}
\sum_{i=1}^{M} \ell_{i}(w) & \cdot \log A_{i}+\frac{1}{2} \sum_{1 \leq i<j \leq M} \delta_{i j}(w) \cdot\left[\log A_{i}, \log A_{j}\right] \\
= & \sum_{i=1}^{N} \ell_{i}^{\prime}\left(w^{\prime}\right) \cdot \log A_{i}^{\prime}+\frac{1}{2} \sum_{1 \leq i<j \leq N} \delta_{i j}^{\prime}\left(w^{\prime}\right) \cdot\left[\log A_{i}^{\prime}, \log A_{j}^{\prime}\right] \tag{2}
\end{align*}
$$

Proposition

Equation (2) has solution $w \in \mathcal{G}^{*}, w^{\prime} \in \mathcal{G}^{\prime *}$ if and only if the following relaxed equation has solution $s_{i}, s_{i}^{\prime} \in \mathbb{N}, d_{i j}, d_{i j}^{\prime} \in \mathbb{Z}$.

$$
\begin{align*}
\sum_{i=1}^{M} s_{i} \cdot \log A_{i}+\frac{1}{2} & \sum_{1 \leq i<j \leq M} d_{i j} \cdot\left[\log A_{i}, \log A_{j}\right] \\
& =\sum_{i=1}^{N} s_{i}^{\prime} \cdot \log A_{i}^{\prime}+\frac{1}{2} \sum_{1 \leq i<j \leq N} d_{i j}^{\prime} \cdot\left[\log A_{i}^{\prime}, \log A_{j}^{\prime}\right] \tag{3}
\end{align*}
$$

Main difficulty: given $s_{i} \in \mathbb{N}, d_{i j} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^{*}$ with $\ell_{i}(w)=s_{i}, \delta_{i j}(w)=d_{i j}$ for all i, j ?

Finding the word w

Main difficulty: given $s_{i} \in \mathbb{N}, d_{i j} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^{*}$ with $\ell_{i}(w)=s_{i}, \delta_{i j}(w)=d_{i j}$ for all i, j ?

Example for words over two letters:

Example

Let $\mathcal{G}=\{A, B\}$, can we find $w \in \mathcal{G}^{*}$ with

$$
\ell_{A}(w)=3, \ell_{B}(w)=4, \delta_{A B}(w)=4 ?
$$

Finding the word w

Main difficulty: given $s_{i} \in \mathbb{N}, d_{i j} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^{*}$ with $\ell_{i}(w)=s_{i}, \delta_{i j}(w)=d_{i j}$ for all i, j ?

Example for words over two letters:

Example

Let $\mathcal{G}=\{A, B\}$, can we find $w \in \mathcal{G}^{*}$ with

$$
\ell_{A}(w)=3, \ell_{B}(w)=4, \delta_{A B}(w)=4 ?
$$

- When $w=A A A B B B B$, then $\delta_{A B}(w)=12$.

Finding the word w

Main difficulty: given $s_{i} \in \mathbb{N}, d_{i j} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^{*}$ with $\ell_{i}(w)=s_{i}, \delta_{i j}(w)=d_{i j}$ for all i, j ?

Example for words over two letters:

Example

Let $\mathcal{G}=\{A, B\}$, can we find $w \in \mathcal{G}^{*}$ with

$$
\ell_{A}(w)=3, \ell_{B}(w)=4, \delta_{A B}(w)=4 ?
$$

- When $w=A A A B B B B$, then $\delta_{A B}(w)=12$.
- When $w=A A B A B B B$, then $\delta_{A B}(w)=10$.

Finding the word w

Main difficulty: given $s_{i} \in \mathbb{N}, d_{i j} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^{*}$ with $\ell_{i}(w)=s_{i}, \delta_{i j}(w)=d_{i j}$ for all i, j ?

Example for words over two letters:

Example

Let $\mathcal{G}=\{A, B\}$, can we find $w \in \mathcal{G}^{*}$ with

$$
\ell_{A}(w)=3, \ell_{B}(w)=4, \delta_{A B}(w)=4 ?
$$

- When $w=A A A B B B B$, then $\delta_{A B}(w)=12$.
- When $w=A A B A B B B$, then $\delta_{A B}(w)=10$.
- When $w=A A B B A B B$, then $\delta_{A B}(w)=8$.

Finding the word w

Main difficulty: given $s_{i} \in \mathbb{N}, d_{i j} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^{*}$ with $\ell_{i}(w)=s_{i}, \delta_{i j}(w)=d_{i j}$ for all i, j ?

Example for words over two letters:

Example

Let $\mathcal{G}=\{A, B\}$, can we find $w \in \mathcal{G}^{*}$ with

$$
\ell_{A}(w)=3, \ell_{B}(w)=4, \delta_{A B}(w)=4 ?
$$

- When $w=A A A B B B B$, then $\delta_{A B}(w)=12$.
- When $w=A A B A B B B$, then $\delta_{A B}(w)=10$.
- When $w=A A B B A B B$, then $\delta_{A B}(w)=8$.
- When $w=A A B B B A B$, then $\delta_{A B}(w)=6$.

Finding the word w

Main difficulty: given $s_{i} \in \mathbb{N}, d_{i j} \in \mathbb{Z}$, how to find $w \in \mathcal{G}^{*}$ with $\ell_{i}(w)=s_{i}, \delta_{i j}(w)=d_{i j}$ for all i, j ?

Example for words over two letters:

Example

Let $\mathcal{G}=\{A, B\}$, can we find $w \in \mathcal{G}^{*}$ with

$$
\ell_{A}(w)=3, \ell_{B}(w)=4, \delta_{A B}(w)=4 ?
$$

- When $w=A A A B B B B$, then $\delta_{A B}(w)=12$.
- When $w=A A B A B B B$, then $\delta_{A B}(w)=10$.
- When $w=A A B B A B B$, then $\delta_{A B}(w)=8$.
- When $w=A A B B B A B$, then $\delta_{A B}(w)=6$.
- When $w=A A B B B B A$, then $\delta_{A B}(w)=4$. Found it!

2 letter case

Example

Let $\mathcal{G}=\{A, B\}$, we can find $w \in \mathcal{G}^{*}$ with

$$
\ell_{A}(w)=3, \ell_{B}(w)=4, \delta_{A B}(w)=4 .
$$

2 letter case

Example

Let $\mathcal{G}=\{A, B\}$, we can find $w \in \mathcal{G}^{*}$ with

$$
\ell_{A}(w)=3, \ell_{B}(w)=4, \delta_{A B}(w)=4 .
$$

Let $\mathcal{G}=\{A, B\}$, can we find $w \in \mathcal{G}^{*}$ with

$$
\ell_{A}(w)=3, \ell_{B}(w)=4, \delta_{A B}(w)=14 ?
$$

No! Because $14>3 \times 4$.

2 letter case

Example

Let $\mathcal{G}=\{A, B\}$, we can find $w \in \mathcal{G}^{*}$ with

$$
\ell_{A}(w)=3, \ell_{B}(w)=4, \delta_{A B}(w)=4 .
$$

Let $\mathcal{G}=\{A, B\}$, can we find $w \in \mathcal{G}^{*}$ with

$$
\ell_{A}(w)=3, \ell_{B}(w)=4, \delta_{A B}(w)=14 ?
$$

No! Because $14>3 \times 4$.

Example

Let $\mathcal{G}=\{A, B\}$, we can find $w \in \mathcal{G}^{*}$ with

$$
\ell_{A}(w)=3 n, \ell_{B}(w)=4 n, \delta_{A B}(w)=14 n .
$$

for some large n.
Because $|14 n|<|3 n \times 4 n|$ when n large.

2 letter case (continued)

In general:

We can find words w with $\ell_{i}(w)=s_{i} n, \ell_{j}(w)=s_{j} n$ such that $\delta_{i j}(w)$ covers all possible values between $-s_{i} s_{j} n^{2}$ and $s_{i} s_{j} n^{2}$. (Subject to oddity constraints.)

2 letter case (continued)

In general:
We can find words w with $\ell_{i}(w)=s_{i} n, \ell_{j}(w)=s_{j} n$ such that $\delta_{i j}(w)$ covers all possible values between $-s_{i} s_{j} n^{2}$ and $s_{i} s_{j} n^{2}$. (Subject to oddity constraints.)

Linear equation is homogeneous: it suffices to find $w \in \mathcal{G}^{*}$ and $n \in \mathbb{N}$ such that $\ell_{i}(w)=s_{i} n, \delta_{i j}(w)=d_{i j} n$ for all i, j.

2 letter case (continued)

In general:
We can find words w with $\ell_{i}(w)=s_{i} n, \ell_{j}(w)=s_{j} n$ such that $\delta_{i j}(w)$ covers all possible values between $-s_{i} s_{j} n^{2}$ and $s_{i} s_{j} n^{2}$. (Subject to oddity constraints.)

Linear equation is homogeneous: it suffices to find $w \in \mathcal{G}^{*}$ and $n \in \mathbb{N}$ such that $\ell_{i}(w)=s_{i} n, \delta_{i j}(w)=d_{i j} n$ for all i, j.

By taking large enough n, we can suppose

$$
-\left(s_{i} n\right)\left(s_{j} n\right) \leq d_{i j} n \leq\left(s_{i} n\right)\left(s_{j} n\right) .
$$

Problem solved!

2 letter case (continued)

In general:

We can find words w with $\ell_{i}(w)=s_{i} n, \ell_{j}(w)=s_{j} n$ such that $\delta_{i j}(w)$ covers all possible values between $-s_{i} s_{j} n^{2}$ and $s_{i} s_{j} n^{2}$. (Subject to oddity constraints.)

Linear equation is homogeneous: it suffices to find $w \in \mathcal{G}^{*}$ and $n \in \mathbb{N}$ such that $\ell_{i}(w)=s_{i} n, \delta_{i j}(w)=d_{i j} n$ for all i, j.

By taking large enough n, we can suppose

$$
-\left(s_{i} n\right)\left(s_{j} n\right) \leq d_{i j} n \leq\left(s_{i} n\right)\left(s_{j} n\right) .
$$

Problem solved!

The case with more letters is more complicated, but the idea is similar.

Proposition

We have $\langle\mathcal{G}\rangle \cap\left\langle\mathcal{G}^{\prime}\right\rangle \neq \emptyset$ if and only if the following relaxed equation has non-zero solution $\ell_{i}, \ell_{i}^{\prime} \in \mathbb{N}, \delta_{i j}, \delta_{i j}^{\prime} \in \mathbb{Z}$.

$$
\begin{align*}
\sum_{i=1}^{M} \ell_{i} \cdot \log A_{i}+\frac{1}{2} & \sum_{1 \leq i<j \leq M} \delta_{i j} \cdot\left[\log A_{i}, \log A_{j}\right] \\
& =\sum_{i=1}^{N} \ell_{i}^{\prime} \cdot \log A_{i}^{\prime}+\frac{1}{2} \sum_{1 \leq i<j \leq N} \delta_{i j}^{\prime} \cdot\left[\log A_{i}^{\prime}, \log A_{j}^{\prime}\right] \tag{4}
\end{align*}
$$

From Semigroup Intersection to linear equation

Proposition

We have $\langle\mathcal{G}\rangle \cap\left\langle\mathcal{G}^{\prime}\right\rangle \neq \emptyset$ if and only if the following relaxed equation has non-zero solution $\ell_{i}, \ell_{i}^{\prime} \in \mathbb{N}, \delta_{i j}, \delta_{i j}^{\prime} \in \mathbb{Z}$.

$$
\begin{align*}
\sum_{i=1}^{M} \ell_{i} \cdot \log A_{i}+\frac{1}{2} & \sum_{1 \leq i<j \leq M} \delta_{i j} \cdot\left[\log A_{i}, \log A_{j}\right] \\
& =\sum_{i=1}^{N} \ell_{i}^{\prime} \cdot \log A_{i}^{\prime}+\frac{1}{2} \sum_{1 \leq i<j \leq N} \delta_{i j}^{\prime} \cdot\left[\log A_{i}^{\prime}, \log A_{j}^{\prime}\right] \tag{4}
\end{align*}
$$

This is a homogeneous linear Diophantine equation. So it is solvable in PTIME.

Generalizations

Theorem (Semigroup Intersection Emptiness)
Let S be a 2-step nilpotent group. Given finite sets $\mathcal{G}_{1}, \ldots, \mathcal{G}_{m} \subset S$, it is decidable whether

$$
\left\langle\mathcal{G}_{1}\right\rangle \cap \cdots \cap\left\langle\mathcal{G}_{m}\right\rangle=\emptyset .
$$

Furthermore the decision procedure is PTIME if S is torsion-free.

Generalizations

Theorem (Semigroup Intersection Emptiness)

Let S be a 2-step nilpotent group. Given finite sets $\mathcal{G}_{1}, \ldots, \mathcal{G}_{m} \subset S$, it is decidable whether

$$
\left\langle\mathcal{G}_{1}\right\rangle \cap \cdots \cap\left\langle\mathcal{G}_{m}\right\rangle=\emptyset .
$$

Furthermore the decision procedure is PTIME if S is torsion-free.
Generalization using similar idea:

Theorem (Orbit Intersection)

Given finite sets $\mathcal{G}, \mathcal{H} \subset \mathrm{H}_{3}(\mathbb{Q})$ and elements $T, S \in \mathrm{H}_{3}(\mathbb{Q})$, it is decidable whether

$$
T \cdot\langle\mathcal{G}\rangle \cap S \cdot\langle\mathcal{H}\rangle=\emptyset .
$$

However, Orbit Intersection in $\mathrm{H}_{3}(\mathbb{Q})^{10000}$ is undecidable.

Open problem: Semigroup Intersection Emptiness for higher-order nilpotent groups?

Open problem: Semigroup Intersection Emptiness for higher-order nilpotent groups?

Theorem (Tit's alternative for semigroups)

Every matrix group G is either virtually nilpotent or it contains a free monoid over two generators.

If G contains a free monoid over two generators, then Semigroup Intersection is undecidable in G^{2}.

If G is nilpotent, then G^{2} is also nilpotent.

